JP5869072B2 - Method for surface modification of stainless steel sheet - Google Patents

Method for surface modification of stainless steel sheet Download PDF

Info

Publication number
JP5869072B2
JP5869072B2 JP2014160259A JP2014160259A JP5869072B2 JP 5869072 B2 JP5869072 B2 JP 5869072B2 JP 2014160259 A JP2014160259 A JP 2014160259A JP 2014160259 A JP2014160259 A JP 2014160259A JP 5869072 B2 JP5869072 B2 JP 5869072B2
Authority
JP
Japan
Prior art keywords
nitrogen
mass
stainless steel
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014160259A
Other languages
Japanese (ja)
Other versions
JP2015004133A (en
Inventor
富高 韋
富高 韋
及川 誠
誠 及川
池上 雄二
雄二 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2014160259A priority Critical patent/JP5869072B2/en
Publication of JP2015004133A publication Critical patent/JP2015004133A/en
Application granted granted Critical
Publication of JP5869072B2 publication Critical patent/JP5869072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はステンレス鋼板の表面を迅速に改質する方法に関する。   The present invention relates to a method for rapidly modifying the surface of a stainless steel plate.

ステンレス鋼の耐食性を向上させるには、窒素の添加が極めて有効である。窒素の添加方法として、主に、精錬の段階で窒素を添加する加圧溶解法や、ステンレス鋼が高温の固相状態において雰囲気ガスから窒素を吸収させる固相窒素吸収法等(特許文献1参照)が挙げられる。加圧溶解法においては、窒素が強い固溶強化効果をもつため、窒素添加後の難加工性が問題となる。一方、固相窒素吸収法は鋼材の加工または成形後に窒素を添加するため、難加工性の問題を回避できる。また、加圧溶解法より固相窒素吸収法の方がステンレス鋼の窒素吸収量が多くなるため、ステンレス鋼の大幅な耐食性向上が期待できる。   Addition of nitrogen is extremely effective for improving the corrosion resistance of stainless steel. As a method for adding nitrogen, mainly, a pressure melting method in which nitrogen is added in a refining stage, a solid-phase nitrogen absorption method in which stainless steel absorbs nitrogen from an atmospheric gas in a high-temperature solid phase state, and the like (see Patent Document 1) ). In the pressure dissolution method, since nitrogen has a strong solid solution strengthening effect, difficult workability after addition of nitrogen becomes a problem. On the other hand, in the solid-phase nitrogen absorption method, nitrogen is added after the steel material is processed or formed, so that the problem of difficult workability can be avoided. Further, since the solid-phase nitrogen absorption method has a larger nitrogen absorption amount than the pressure dissolution method, it can be expected that the corrosion resistance of the stainless steel will be greatly improved.

固相窒素吸収法では、ステンレス鋼を高温に曝しながら雰囲気ガスから窒素を吸収させる。このため、鋼材の組成や表面酸化皮膜などの材料自体の性質だけでなく、熱処理温度や雰囲気ガスなどの環境因子や熱処理時間が、材料表面の窒素吸収量と窒素の材料内部への拡散深さに大きく影響を与える。たとえば、熱処理前にすでに存在する表面酸化皮膜は窒素の材料内部への拡散を妨げる。この場合、製造コストを考慮し、酸化皮膜を除去するための特別な前処理を行わずに、そのまま鋼板の窒素吸収処理を行うためには、熱処理中の初期段階において酸化皮膜を還元して除去することが考えられる。また、適切な温度と窒素分圧で熱処理を行うことにより、窒化物や酸化物を形成せずに高濃度の窒素を鋼板に固溶させることができる。窒化物や酸化物が生成すると、窒素の材料内部への拡散が妨げられ、鋼板の耐食性が損なわれる。   In the solid-phase nitrogen absorption method, nitrogen is absorbed from the atmospheric gas while exposing the stainless steel to a high temperature. For this reason, not only the composition of the steel material and the properties of the material itself such as the surface oxide film, but also environmental factors such as the heat treatment temperature and atmospheric gas, and the heat treatment time, the amount of nitrogen absorbed on the material surface and the diffusion depth of nitrogen into the material. Greatly affects. For example, a surface oxide film already present before heat treatment prevents diffusion of nitrogen into the material. In this case, considering the manufacturing cost, in order to perform the nitrogen absorption treatment of the steel sheet as it is without performing a special pretreatment for removing the oxide film, the oxide film is reduced and removed in the initial stage during the heat treatment. It is possible to do. Further, by performing heat treatment at an appropriate temperature and nitrogen partial pressure, high concentration of nitrogen can be dissolved in the steel sheet without forming nitrides or oxides. When nitrides and oxides are generated, diffusion of nitrogen into the material is hindered, and the corrosion resistance of the steel sheet is impaired.

従来の一般的な固相窒素吸収法において高濃度の窒素を吸収させるには、熱処理に数十分以上かかる。このため、ステンレス鋼を長時間高温に曝すことになり、結晶粒が粗大化したり、製造コストが増加する等の問題がある。また、結晶粒の粗大化を防ぐために熱処理温度を下げ過ぎると、窒化物が形成されたり、熱処理時間を短縮し過ぎると窒素の拡散深さが不十分となるなどの問題も発生する。   In order to absorb a high concentration of nitrogen in a conventional general solid-phase nitrogen absorption method, it takes several tens of minutes or more for the heat treatment. For this reason, stainless steel is exposed to a high temperature for a long time, and there are problems such as coarsening of crystal grains and an increase in manufacturing cost. In addition, if the heat treatment temperature is lowered too much to prevent the crystal grains from becoming coarse, problems such as formation of nitrides and insufficient diffusion depth of nitrogen occur if the heat treatment time is shortened too much.

一方、光輝焼鈍(BA)処理のような連続生産ライン上で窒素吸収処理を行う場合には、熱処理の時間は数十秒しかない。したがって、このような短時間で十分に窒素を吸収させ、かつ材料内部へ十分な深さまで拡散させるためには、対象となるステンレス鋼を適切な温度と雰囲気ガス条件において熱処理することが重要である。具体的には、フェライト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼およびオーステナイト系ステンレス鋼は、それぞれ成分が異なるため、適切な温度と雰囲気ガス中の窒素分圧が異なる。たとえば、特許文献2では、オーステナイト・フェライト系ステンレス鋼(二相ステンレス鋼)を対象としており、この鋼板に光輝熱処理を施すことによって、表面に所定量の窒素を吸収させたオーステナイト富化層を形成している。   On the other hand, when the nitrogen absorption treatment is performed on a continuous production line such as bright annealing (BA) treatment, the heat treatment time is only tens of seconds. Therefore, in order to sufficiently absorb nitrogen in such a short time and diffuse to a sufficient depth inside the material, it is important to heat-treat the target stainless steel at an appropriate temperature and atmospheric gas conditions. . Specifically, ferritic stainless steel, austenitic / ferritic stainless steel, and austenitic stainless steel have different components, so that the appropriate temperature and nitrogen partial pressure in the atmospheric gas are different. For example, in Patent Document 2, austenite-ferritic stainless steel (duplex stainless steel) is targeted, and an austenite-enriched layer in which a predetermined amount of nitrogen is absorbed is formed on the surface by subjecting this steel plate to a bright heat treatment. doing.

特開2006−316338JP 2006-316338 A 特開2004−353041JP 2004-353041 A

上述のように、従来の固相窒素吸収法では、熱処理中の初期段階において酸化皮膜を除去し、短時間の熱処理で高濃度の窒素を十分な深さまで拡散させ、結晶粒の粗大化を抑制することはできない。また、特許文献2においては、窒素を吸収させたオーステナイト富化層が薄いため、耐食性向上の効果が十分ではない。そこで、本発明は、窒化物を生成せずに、短時間で高濃度の窒素を固溶させて、高耐食性を付与することができるステンレス鋼板の表面改質方法を提供することを目的とする。   As described above, the conventional solid-phase nitrogen absorption method removes the oxide film in the initial stage of heat treatment, diffuses high-concentration nitrogen to a sufficient depth with a short heat treatment, and suppresses the coarsening of crystal grains. I can't do it. Moreover, in patent document 2, since the austenite rich layer which absorbed nitrogen is thin, the effect of a corrosion resistance improvement is not enough. Accordingly, an object of the present invention is to provide a method for modifying the surface of a stainless steel plate that can provide high corrosion resistance by forming a high concentration of nitrogen in a short time without forming nitrides. .

上記目的を達成するため、本発明者らは鋭意研究を重ねた結果、熱処理温度と雰囲気ガスを制御することで各種ステンレス鋼板に高濃度の窒素を迅速に固溶させる方法を見出し、本発明を完成するに至った。すなわち、窒素ガスと還元性ガスを含む高温の雰囲気ガス中にステンレス鋼板を通過させ、ステンレス鋼板表面に高濃度の窒素を迅速に固溶させて、優れた耐食性を付与できる、ステンレス鋼板表面の改質方法を見出した。本発明は、この知見に基づいて実験を重ね、最も望ましい条件を見出してなされたものである。   In order to achieve the above object, as a result of intensive research, the present inventors have found a method for rapidly dissolving high-concentration nitrogen in various stainless steel plates by controlling the heat treatment temperature and atmospheric gas, and It came to be completed. In other words, the stainless steel plate surface can be improved by allowing the stainless steel plate to pass through a high-temperature atmosphere gas containing nitrogen gas and reducing gas to quickly dissolve solid nitrogen at a high concentration on the stainless steel plate surface, thereby providing excellent corrosion resistance. I found a quality method. The present invention has been made by repeating experiments based on this finding and finding the most desirable conditions.

特に、本発明のステンレス鋼板の表面改質方法の骨子は、ステンレス鋼がオーステナイト単相となる温度域で、かつ、窒素ガスと平衡する領域において処理を行うことにある。オーステナイト相は、窒素の溶解度が高く、窒素吸収に有利である。さらに、窒素分圧を的確に設定し、窒化物が形成されない温度域を使用することによって、ステンレス鋼表面の窒素原子を固溶状態に維持することが可能である。この領域は、本発明者らが鋭意研究を重ねて見出したものであり、この条件を満たすように熱処理を行うことにより、高濃度の窒素を迅速に固溶させることができ、かつ表面から十分に深くまで拡散させることができる。   In particular, the essence of the method for modifying the surface of a stainless steel plate according to the present invention is to perform the treatment in a temperature range where the stainless steel becomes an austenite single phase and in a region where the stainless steel is in equilibrium with nitrogen gas. The austenite phase has high nitrogen solubility and is advantageous for nitrogen absorption. Furthermore, it is possible to maintain the nitrogen atoms on the surface of the stainless steel in a solid solution state by appropriately setting the nitrogen partial pressure and using a temperature range where no nitride is formed. This region was discovered by the present inventors through extensive research, and by performing heat treatment so as to satisfy this condition, high-concentration nitrogen can be rapidly dissolved, and sufficient from the surface. Can be diffused deeply.

すなわち、本発明のステンレス鋼板の表面改質方法は、窒素の分圧が0.7気圧であり残部が還元性ガスからなる雰囲気の炉内で、1140〜1210℃の温度範囲において、板厚が0.5〜2.0mmで、Cr:18.0〜20.0mass%、Ni:9.0〜13.0mass%、残部Feおよび不可避的不純物からなる鋼板をオーステナイト単相と平衡する温度で30〜90秒間保持し、鋼板の表面にオーステナイト単相を形成させながら窒素を0.3mass%以上固溶させ、上記ガス雰囲気を保ちながら炉内にて鋼板を冷却し、鋼板の表面を窒素が固溶したオーステナイト単相に維持することを特徴とする That is, the surface modification method for a stainless steel sheet according to the present invention has a thickness of 1140 to 1210 ° C. in a furnace having an atmosphere in which the partial pressure of nitrogen is 0.7 atm and the balance is made of a reducing gas. 0.5 to 2.0 mm, Cr: 18.0 to 20.0 mass%, Ni: 9.0 to 13.0 mass%, balance: Fe and unavoidable impurities and a temperature at which the steel plate equilibrates with the austenite single phase at 30 Hold for ~ 90 seconds, solidify 0.3 mass% or more of nitrogen while forming an austenite single phase on the surface of the steel sheet, cool the steel sheet in the furnace while maintaining the gas atmosphere, and nitrogen is solidified on the surface of the steel sheet. The molten austenite single phase is maintained .

本発明によれば、雰囲気ガスおよび熱処理温度を制御して鋼板の表面にオーステナイト単相を形成することによって、効率良く十分な深さまで高濃度の窒素を固溶させることができる。このステンレス鋼板表面のオーステナイト単相は、鋼板の板厚の中心よりも高い濃度の窒素を含有し、0.3mass%以上の窒素を含有しており、その厚みは10μm以上となる(以下、窒素富化層と表す)。また、オーステナイト単相となる温度域で、かつ、窒素ガスと平衡する領域において処理を行うため、ステンレス鋼表面の窒素原子を固溶状態に維持することができ、窒化物の生成を防ぐことができる。したがって、ステンレス鋼板表面の耐食性を効果的に向上させることができる。   According to the present invention, by controlling the atmospheric gas and the heat treatment temperature to form an austenite single phase on the surface of the steel plate, it is possible to efficiently dissolve high-concentration nitrogen to a sufficient depth. The austenite single phase on the surface of the stainless steel plate contains nitrogen at a concentration higher than the center of the plate thickness of the steel plate, contains 0.3 mass% or more of nitrogen, and has a thickness of 10 μm or more (hereinafter referred to as nitrogen). Represented as an enriched layer). In addition, since the treatment is performed in a temperature range where the austenite single phase is obtained and in a region where nitrogen gas is in equilibrium, nitrogen atoms on the surface of the stainless steel can be maintained in a solid solution state, thereby preventing the formation of nitrides. it can. Therefore, the corrosion resistance of the stainless steel plate surface can be effectively improved.

以下、本発明のステンレス鋼板の表面改質方法における数値限定理由を説明する。
窒素分圧:0.25〜0.7気圧
鋼板表面に窒素原子を固溶させるため、窒素ガスは必要不可欠なガスである。窒素分圧が0.25気圧未満では、窒素富化層を得難い。すなわち、鋼板表面からの窒素の拡散深さが10μm未満となったり、窒素濃度が0.3mass%未満となってしまう。一方、窒素分圧が0.7気圧を超えると、窒素の固溶状態を維持することができず、窒化物が形成され易くなる。このため、窒素分圧は0.25〜0.7気圧とするまた、雰囲気ガスの残部は、鋼板の酸化を防ぐために還元性ガスとする必要がある。なお、通常の処理では、全圧1気圧で構わないが、窒素の分圧を0.25〜0.7気圧とすればよいため、全圧はこれに限定する必要はない。
Hereinafter, the reason for the numerical limitation in the surface modification method of the stainless steel plate of the present invention will be described.
Nitrogen partial pressure: 0.25 to 0.7 atm Nitrogen gas is an indispensable gas for dissolving nitrogen atoms on the steel plate surface. If the nitrogen partial pressure is less than 0.25 atm, it is difficult to obtain a nitrogen-enriched layer. That is, the diffusion depth of nitrogen from the steel sheet surface is less than 10 μm, or the nitrogen concentration is less than 0.3 mass%. On the other hand, when the nitrogen partial pressure exceeds 0.7 atm, the solid solution state of nitrogen cannot be maintained, and nitride is easily formed. For this reason, nitrogen partial pressure shall be 0.25-0.7 atmosphere . Further, the remainder of the atmospheric gas needs to be a reducing gas in order to prevent oxidation of the steel sheet. In normal processing, the total pressure may be 1 atm. However, the partial pressure of nitrogen may be 0.25 to 0.7 atm, and the total pressure is not necessarily limited to this.

熱処理温度:1079〜1210℃
上記窒素雰囲気下において、ステンレス鋼板表面にオーステナイト単相を形成する。熱処理温度が1079℃未満では、窒素の固溶および拡散が不十分となって窒素富化層が得難く、あるいは、鋼種によってはオーステナイト単相とならず、窒素原子の固溶状態を維持することができないため、窒化物が形成され易くなる。一方、熱処理温度が1210℃を超えると、結晶粒が粗大化して靭性が低下するか、鋼種によってはフェライト相が形成されて窒素の溶解度が低減するため、高濃度の窒化富化層を得難い。したがって、熱処理温度は1079〜1210℃とする
Heat treatment temperature: 1079-1210 ° C
In the nitrogen atmosphere, an austenite single phase is formed on the stainless steel plate surface. When the heat treatment temperature is less than 1079 ° C., the solid solution and diffusion of nitrogen are insufficient, and it is difficult to obtain a nitrogen-enriched layer, or depending on the steel type, the austenite single phase is not maintained and the solid solution state of nitrogen atoms is maintained. Therefore, nitride is easily formed. On the other hand, when the heat treatment temperature exceeds 1210 ° C., the crystal grains become coarse and the toughness decreases, or depending on the steel type, a ferrite phase is formed and the solubility of nitrogen is reduced, so that it is difficult to obtain a high concentration nitride enriched layer. Therefore, the heat treatment temperature is set to 1,079-1210 ° C..

板厚:0.5〜2.0mm
製造工程の熱処理時間中に迅速に窒素を鋼板に吸収させるため、鋼板を迅速に目的とする温度、すなわち、1079〜1210℃に到達させる必要がある。板厚が厚すぎると鋼板の昇温に時間が掛かってしまい、製造工程中の限られた熱処理時間内では鋼板の窒素吸収時間が実質的に短くなるため、窒素富化層を得難い。一方、板厚が薄すぎると、高温での処理時に鋼板が変形し易くなり、品質に問題が生じる。このため、板厚は0.5〜2.0mmとする。
Plate thickness: 0.5-2.0mm
In order to allow the steel sheet to quickly absorb nitrogen during the heat treatment time of the manufacturing process, it is necessary to quickly reach the target temperature, that is, 1079 to 1210 ° C. If the plate thickness is too thick, it takes time to raise the temperature of the steel sheet, and the nitrogen absorption time of the steel sheet is substantially shortened within the limited heat treatment time during the manufacturing process, making it difficult to obtain a nitrogen-enriched layer. On the other hand, if the plate thickness is too thin, the steel plate is likely to be deformed during processing at a high temperature, causing a problem in quality. For this reason, plate thickness shall be 0.5-2.0 mm.

保持時間:30〜90s
各鋼種における窒素の固溶可能量は、熱処理の温度と窒素分圧によって決まる。適切な温度と窒素分圧の環境におけば、鋼板の表面に窒素が平衡濃度まで吸収され、鋼板内部へ拡散していく。たとえば、保持時間が十分長ければ、窒素を鋼板中心部まで拡散させ、板厚方向に均一に分布させることも可能である。しかしながら、BAラインのような連続雰囲気熱処理を考えた場合、熱処理の時間は数十秒しかない。本発明においては、製造コストを考慮し、このような短い時間内で窒素を鋼板表面から所定の深さまで拡散させる。このため、上記温度での保持時間を30〜90sに設定する。
Holding time: 30-90s
The amount of nitrogen that can be dissolved in each steel type is determined by the heat treatment temperature and the nitrogen partial pressure. In an environment of appropriate temperature and nitrogen partial pressure, nitrogen is absorbed to the surface of the steel plate to the equilibrium concentration and diffuses into the steel plate. For example, if the holding time is sufficiently long, it is possible to diffuse nitrogen to the central part of the steel sheet and distribute it uniformly in the thickness direction. However, when considering the continuous atmosphere heat treatment such as BA line, the heat treatment time is only tens of seconds. In the present invention, in consideration of the manufacturing cost, nitrogen is diffused from the steel sheet surface to a predetermined depth within such a short time. For this reason, the holding time at the above temperature is set to 30 to 90 s.

窒素濃度:0.3mass%以上
十分な耐食性を得るため、鋼板の表面に固溶させる窒素の濃度は0.3mass%以上とする。上述のような条件で熱処理を行うことにより、このような高窒素濃度で、かつ表面から10μm以上の窒素富化層が得られる。
Nitrogen concentration: 0.3 mass% or more
In order to obtain sufficient corrosion resistance, the concentration of nitrogen dissolved in the surface of the steel sheet is set to 0.3 mass% or more. By performing the heat treatment under the conditions as described above, a nitrogen-enriched layer having such a high nitrogen concentration and 10 μm or more from the surface can be obtained.

なお、本発明においては、十分な耐食性を付与するために、また傷など機械的な損傷に耐えるために、窒素富化層の厚みを10μm以上とするが、必要な耐食性が得られれば良いため、目的に応じた厚さとすればよく、10μm未満でも良い。   In the present invention, in order to provide sufficient corrosion resistance and withstand mechanical damage such as scratches, the thickness of the nitrogen-enriched layer is set to 10 μm or more, but it is only necessary to obtain necessary corrosion resistance. The thickness may be set according to the purpose, and may be less than 10 μm.

本発明においては、具体的には、たとえば、フェライト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼およびオーステナイト系ステンレス鋼等を用いることができる。鋼種によって熱処理の温度範囲を適切に変えることにより、窒化物を形成せずに、効率良く高濃度の窒素を十分な深さまで拡散させることができる。   In the present invention, specifically, for example, ferritic stainless steel, austenitic / ferritic stainless steel, and austenitic stainless steel can be used. By appropriately changing the temperature range of the heat treatment depending on the steel type, high-concentration nitrogen can be efficiently diffused to a sufficient depth without forming nitrides.

以下、フェライト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼およびオーステナイト系ステンレス鋼を用いた場合の好適な組成成分範囲および熱処理温度範囲を説明する。   Hereinafter, a preferable composition component range and heat treatment temperature range in the case of using ferritic stainless steel, austenitic / ferritic stainless steel, and austenitic stainless steel will be described.

1 フェライト系ステンレス鋼
1−1組成成分範囲
(Cr:24.0〜26.0mass%)
Crは、耐食性を向上させる元素であると共にフェライト形成元素でもあるので、必須元素である。母材の耐食性を十分に確保するためには24mass%以上が必要であるが、26mass%を超えて添加するとσ相などの金属間化合物が形成され、または窒素吸収処理の際にCr窒化物が形成されやすいため、鋼材の耐食性を低下させる。このため、Cr含有量を24.0〜26.0mass%とする。
1 Ferritic stainless steel
1-1 Composition component range
(Cr: 24.0-26.0 mass%)
Cr is an essential element because it is an element that improves corrosion resistance and is also a ferrite-forming element. In order to sufficiently secure the corrosion resistance of the base material, 24 mass% or more is necessary. However, if it exceeds 26 mass%, an intermetallic compound such as a σ phase is formed, or Cr nitride is formed during nitrogen absorption treatment. Since it is easily formed, the corrosion resistance of the steel material is lowered. For this reason, Cr content shall be 24.0-26.0 mass%.

1−2熱処理温度範囲(1079〜1140℃)
オーステナイト単相が得られる温度領域は1079〜1140℃であり、この温度領域では窒化物(Cr窒化物)が生成しないため、効率的に窒素を固溶させることができる。熱処理温度が1079℃未満であると、Cr窒化物が形成される。また、熱処理温度が1140℃を超えると、フェライト相が形成されるため窒素を高濃度に固溶させ難く、窒化富化層を得難い。このため、熱処理温度範囲を1079〜1140℃とする。
1-2 heat treatment temperature range (1079 ~ 1140 ℃)
The temperature range in which an austenite single phase is obtained is 1079 to 1140 ° C., and nitride (Cr nitride) is not generated in this temperature range, so that nitrogen can be dissolved efficiently. When the heat treatment temperature is less than 1079 ° C., Cr nitride is formed. On the other hand, when the heat treatment temperature exceeds 1140 ° C., a ferrite phase is formed, so that it is difficult to dissolve nitrogen at a high concentration and it is difficult to obtain a nitride-enriched layer. Therefore, the heat treatment temperature range is set to 1079 to 1140 ° C.

2 オーステナイト・フェライト系ステンレス鋼
2−1組成成分範囲
(Cr:24.0〜26.0mass%)
Crは、上記と同様の理由から添加する。母材の耐食性を確保するためには24mass%以上が必要であるが、26mass%を超えて添加するとσ相などの金属間化合物が形成され、または窒素吸収処理の際にCr窒化物が形成されやすいため、鋼材の耐食性を低下させる。一方、Cr含有量が24mass%を下回ると、窒素吸収処理の際に十分な量の窒素を固溶出来ないため、耐食性の向上効果が小さい。このため、Cr含有量を24.0〜26.0mass%とする。
2 Austenitic ferritic stainless steel
2-1 Composition component range
(Cr: 24.0-26.0 mass%)
Cr is added for the same reason as described above. In order to ensure the corrosion resistance of the base material, 24 mass% or more is necessary. However, if it exceeds 26 mass%, an intermetallic compound such as a σ phase is formed, or Cr nitride is formed during nitrogen absorption treatment. Because it is easy, it reduces the corrosion resistance of steel. On the other hand, if the Cr content is less than 24 mass%, a sufficient amount of nitrogen cannot be dissolved during the nitrogen absorption treatment, so that the effect of improving the corrosion resistance is small. For this reason, Cr content shall be 24.0-26.0 mass%.

(Ni:5.0〜8.0mass%)
Niは、オーステナイト形成元素であり、CrやMoを多量に含有するステンレス鋼のオーステナイト・フェライト二相組織を維持するために、5.0mass%以上の添加が必要である。一方、8.0mass%を超えて添加すると、フェライト相が減少し、オーステナイト・フェライト二相組織を維持し難くなるため、Ni含有量を5.0〜8.0mass%とする。
(Ni: 5.0-8.0 mass%)
Ni is an austenite forming element, and in order to maintain the austenite-ferrite two-phase structure of stainless steel containing a large amount of Cr and Mo, addition of 5.0 mass% or more is necessary. On the other hand, if added over 8.0 mass%, the ferrite phase decreases and it becomes difficult to maintain the austenite-ferrite two-phase structure, so the Ni content is set to 5.0 to 8.0 mass%.

(Mo:3.0〜4.0mass%)
Moは、フェライト形成元素であると共に耐食性を向上させる元素である。Mo含有量が3.0mass%未満では、母材の耐食性を確保し難い。一方、 4.0mass%を超えて添加すると、σ相などの金属間化合物や、窒素吸収時にCrと反応して窒化物を生成するため、耐食性を低下させる。このため、Mo含有量を3.0〜4.0mass%とする。
(Mo: 3.0-4.0 mass%)
Mo is an element that improves corrosion resistance while being a ferrite-forming element. When the Mo content is less than 3.0 mass%, it is difficult to ensure the corrosion resistance of the base material. On the other hand, if it exceeds 4.0 mass%, it reacts with Cr during absorption of intermetallic compounds such as the σ phase and nitrogen, and forms nitrides, thus reducing the corrosion resistance. For this reason, Mo content shall be 3.0-4.0 mass%.

2−2熱処理温度(1193〜1208℃)
オーステナイト・フェライト系ステンレス鋼においては、その二相組織をオーステナイト単相組織に変えるためには、1193〜1208℃の温度領域で熱処理する必要がある。本鋼種では、熱処理温度が1193℃未満では、窒素の溶解速度が極端に遅くなり、10μm以上の窒素富化層を得難い。また、熱処理温度が1208℃を超えると、フェライト相が形成されるため、窒素の溶解度が低下してしまう。
2-2 Heat treatment temperature (1193 to 1208 ° C)
In austenitic ferritic stainless steel, in order to change the two-phase structure to an austenite single-phase structure, it is necessary to perform heat treatment in a temperature range of 1193 to 1208 ° C. In this steel type, when the heat treatment temperature is lower than 1193 ° C., the dissolution rate of nitrogen is extremely slow, and it is difficult to obtain a nitrogen-enriched layer of 10 μm or more. Moreover, since the ferrite phase is formed when the heat treatment temperature exceeds 1208 ° C., the solubility of nitrogen decreases.

3 オーステナイト系ステンレス鋼(1)
3−1組成成分範囲
(Cr:18.0〜20.0mass%)
Crは前述のように、耐食性を向上させる元素である。母材の耐食性を確保するため、18.0mass%以上のCrが必要である。ただし、20.0mass%を超えるとσ相などの金属間化合物が形成されるため、耐食性が低下する。このため、Cr含有量を18.0〜20.0mass%とする。
3 Austenitic stainless steel (1)
3-1 Composition component range
(Cr: 18.0 to 20.0 mass%)
As described above, Cr is an element that improves the corrosion resistance. In order to ensure the corrosion resistance of the base material, 18.0 mass% or more of Cr is required. However, if it exceeds 20.0 mass%, an intermetallic compound such as a σ phase is formed, so that the corrosion resistance is lowered. For this reason, Cr content shall be 18.0-20.0 mass%.

(Ni:9.0 〜13.0mass%)
Niは、オーステナイト形成元素であり、ステンレス鋼のオーステナイト単相組織を維持するため、9.0mass%以上が必要である。ただし、13.0mass%を超えるとコストが上昇するだけではなく、窒素の固溶限を下げてしまうため、窒素固溶可能量が低下する。このため、Ni含有量を9.0 〜13.0mass%とする。
(Ni: 9.0 to 13.0 mass%)
Ni is an austenite forming element, and in order to maintain the austenite single phase structure of stainless steel, 9.0 mass% or more is necessary. However, if it exceeds 13.0 mass%, not only the cost increases, but also the solid solubility limit of nitrogen is lowered, so that the amount of nitrogen solid solution is lowered. For this reason, Ni content shall be 9.0-13.0 mass%.

3−2熱処理温度(1140〜1210℃)
オーステナイト系ステンレス鋼(1)においては、1140〜1210℃の温度範囲で窒素吸収処理を行う。熱処理温度が1140℃未満では、窒素の溶解速度が極端に遅くなり、10μm以上の窒素富化層を得難い。一方、1210℃を超えると、結晶粒が粗大化しやすい。
3-2 Heat treatment temperature (1140-1210 ° C)
In the austenitic stainless steel (1), nitrogen absorption treatment is performed in a temperature range of 1140 to 1210 ° C. When the heat treatment temperature is less than 1140 ° C., the dissolution rate of nitrogen is extremely slow, and it is difficult to obtain a nitrogen-enriched layer of 10 μm or more. On the other hand, when it exceeds 1210 ° C., the crystal grains are likely to be coarsened.

4 オーステナイト系ステンレス鋼(2)
4−1組成成分範囲
(Cr:16.0〜18.0mass%)
Crは前述のように、耐食性を向上させる元素である。母材の耐食性を確保するため、Mo同時添加の場合、Cr含有量は16mass%以上が必要である。しかしながら、18.0mass%を超えると、σ相などの金属間化合物が形成されるため、耐食性が低下する。このため、Cr含有量を16.0〜18.0mass%とする。
4 Austenitic stainless steel (2)
4-1 Composition component range
(Cr: 16.0 to 18.0 mass%)
As described above, Cr is an element that improves the corrosion resistance. In order to ensure the corrosion resistance of the base material, in the case of simultaneous addition of Mo, the Cr content needs to be 16 mass% or more. However, if it exceeds 18.0 mass%, an intermetallic compound such as a σ phase is formed, so that the corrosion resistance decreases. For this reason, Cr content shall be 16.0-18.0 mass%.

(Ni:12.0〜15.0mass%)
Niは、オーステナイト形成元素であり、フェライト形成元素であるMoやCrを多量に含有するステンレス鋼においては、オーステナイト単相組織を維持するためにその含有量をより多くする必要がある。Ni含有量が12.0mass%未満では、オーステナイト単相組織を維持し難い。一方、15.0mass%を超えるとコストが上昇するだけではなく、窒素の固溶限を下げてしまうため、窒素固溶可能量が低下する。このため、Ni含有量を12.0〜15.0mass%とした。
(Ni: 12.0 to 15.0 mass%)
Ni is an austenite forming element, and in a stainless steel containing a large amount of Mo and Cr, which are ferrite forming elements, it is necessary to increase the content in order to maintain an austenite single phase structure. When the Ni content is less than 12.0 mass%, it is difficult to maintain the austenite single phase structure. On the other hand, when it exceeds 15.0 mass%, not only the cost increases, but also the solid solubility limit of nitrogen is lowered, so that the amount of nitrogen solid solution is lowered. For this reason, Ni content was 12.0-15.0 mass%.

(Mo:2.0〜3.0mass%)
Moは、フェライト形成元素であると共に耐食性を向上させる元素である。その効果を得るため、Mo含有量を2.0〜3.0mass%とする。Mo含有量が2.0mass%未満では、母材の耐食性を確保し難い。一方、3.0mass%を超えると、オーステナイト単相組織を維持できなくなり、さらに、σ相などの金属間化合物や、窒素吸収時にCrと反応して窒化物を生成するため、耐食性を低下させる。
(Mo: 2.0-3.0 mass%)
Mo is an element that improves corrosion resistance while being a ferrite-forming element. In order to obtain the effect, the Mo content is set to 2.0 to 3.0 mass%. If the Mo content is less than 2.0 mass%, it is difficult to ensure the corrosion resistance of the base material. On the other hand, if it exceeds 3.0 mass%, it becomes impossible to maintain an austenite single phase structure, and furthermore, since it reacts with Cr at the time of nitrogen absorption and intermetallic compounds such as σ phase, a nitride is formed, so that the corrosion resistance is lowered.

4−2熱処理温度(1139〜1210℃)
オーステナイト系ステンレス鋼(2)では、熱処理温度を1139〜1210℃とする。この温度範囲では、窒化物を生成することなくオーステナイト単相組織を形成できるため、効率的に窒素を固溶させることができる。熱処理温度が1139℃未満であると、Cr窒化物が形成される。また、熱処理温度が1210℃を超えると、フェライト相が形成されるため窒素を高濃度に固溶させ難く、窒化富化層を得難い。
4-2 Heat treatment temperature (1139-1210 ° C)
In the austenitic stainless steel (2), the heat treatment temperature is set to 1139 to 1210 ° C. In this temperature range, since an austenite single-phase structure can be formed without forming nitrides, nitrogen can be effectively dissolved. When the heat treatment temperature is lower than 1139 ° C., Cr nitride is formed. On the other hand, if the heat treatment temperature exceeds 1210 ° C., a ferrite phase is formed, so that it is difficult to dissolve nitrogen in a high concentration and it is difficult to obtain a nitride-enriched layer.

本発明によれば、ステンレス鋼板に対して、窒化物を生成せずに、短時間で高濃度の窒素を固溶させて、高耐食性を付与することができる。   According to the present invention, high corrosion resistance can be imparted to a stainless steel plate by forming a high concentration of nitrogen in a short time without forming nitrides.

Fe−25Crフェライト系ステンレス鋼において、窒素分圧が0.25気圧におけるオーステナイト単相が形成される温度域と鋼中に固溶する窒素濃度との関係を示す図である。In Fe-25Cr ferritic stainless steel, it is a figure which shows the relationship between the temperature range in which the austenite single phase in a nitrogen partial pressure of 0.25 atmosphere is formed, and the nitrogen concentration which dissolves in steel. 窒素分圧が0.25気圧において、1130℃で60s処理したFe−25Crフェライト系ステンレス鋼の断面組織を示す図である。It is a figure which shows the cross-sectional structure | tissue of Fe-25Cr ferritic stainless steel processed for 60 s at 1130 degreeC in nitrogen partial pressure 0.25 atmosphere. 窒素吸収処理前後のFe−25Crフェライト系ステンレス鋼のアノード分極曲線を示すグラフである。It is a graph which shows the anodic polarization curve of Fe-25Cr ferritic stainless steel before and behind a nitrogen absorption process.

次に、本発明をさらに詳細に説明する。まず、フェライト系ステンレス鋼について図1を参照して述べる。フェライト系ステンレス鋼はCr:24.0〜26.0mass%、残部Feおよび不可避的不純物からなり、たとえば、Fe−25Cr鋼等が挙げられる。図1は、Fe−25Crフェライト系ステンレス鋼において、窒素分圧が0.25気圧のときに、オーステナイト単相が形成される温度域と鋼中に固溶する窒素濃度(即ち固溶限)との関係を示す図である。オーステナイト単相が得られる温度領域は1079〜1140℃であり、0.25気圧の窒素雰囲気で処理した時のオーステナイト相に固溶する窒素濃度は式(1)で表される。この温度領域では、Cr窒化物が生成されないため、効率的に窒素を固溶させることができる。1079℃未満の温度では、Cr窒化物が形成される。また、1140℃を超えると、フェライト相が形成されるため、窒素の溶解度が低下し、窒素富化層を得難い。
mass%N = −0.00496×T(℃)+ 6.672 (1)
Next, the present invention will be described in more detail. First, ferritic stainless steel will be described with reference to FIG. Ferritic stainless steel is composed of Cr: 24.0 to 26.0 mass%, the balance Fe and inevitable impurities, and examples thereof include Fe-25Cr steel. FIG. 1 shows the temperature range in which an austenite single phase is formed and the concentration of nitrogen dissolved in the steel (that is, the solid solubility limit) when the nitrogen partial pressure is 0.25 atm in Fe-25Cr ferritic stainless steel. It is a figure which shows the relationship. The temperature range in which an austenite single phase is obtained is 1079 to 1140 ° C., and the concentration of nitrogen dissolved in the austenite phase when treated in a nitrogen atmosphere of 0.25 atm is expressed by formula (1). In this temperature region, since Cr nitride is not generated, nitrogen can be dissolved efficiently. At temperatures below 1079 ° C., Cr nitride is formed. On the other hand, when the temperature exceeds 1140 ° C., a ferrite phase is formed, so that the solubility of nitrogen is lowered and it is difficult to obtain a nitrogen-enriched layer.
mass% N = −0.000049 × T (° C.) + 6.672 (1)

オーステナイト・フェライト系ステンレス鋼は、Cr:24.0〜26.0mass%、Ni:5.0〜8.0mass%、Mo:3.0〜4.0mass%、残部Feおよび不可避的不純物からなり、たとえば、SUS329J4L二相系ステンレス鋼等が挙げられる。SUS329J4Lにおいては、その二相組織をオーステナイト単相組織に変えるためには、0.25〜0.7気圧の窒素ガスを含む雰囲気ガス中で1193〜1208℃の温度領域で熱処理する必要がある。たとえば、Cr:25mass%、Ni:6.0mass%、Mo:3.25mass%、残部Feおよび不可避的不純物からなるステンレス鋼を0.5気圧の窒素雰囲気で処理した時の固溶窒素の濃度は式(2)で表される。本鋼種では、熱処理温度が1193℃未満では、窒素の溶解速度が極端に遅くなり、10μm以上の窒素富化層を得難い。また、1208℃を超えると、フェライト相が形成され、窒素の溶解度が低下してしまう。
mass%N=−0.00367×T(℃)+5.277 (2)
The austenitic ferritic stainless steel consists of Cr: 24.0-26.0 mass%, Ni: 5.0-8.0 mass%, Mo: 3.0-4.0 mass%, the balance Fe and inevitable impurities, Examples thereof include SUS329J4L duplex stainless steel. In SUS329J4L, in order to change the two-phase structure to an austenite single-phase structure, it is necessary to perform heat treatment in an atmosphere gas containing nitrogen gas of 0.25 to 0.7 atm in a temperature range of 1193 to 1208 ° C. For example, the concentration of solute nitrogen when stainless steel consisting of Cr: 25 mass%, Ni: 6.0 mass%, Mo: 3.25 mass%, the balance Fe and unavoidable impurities is treated in a nitrogen atmosphere of 0.5 atm. It is represented by Formula (2). In this steel type, when the heat treatment temperature is lower than 1193 ° C., the dissolution rate of nitrogen is extremely slow, and it is difficult to obtain a nitrogen-enriched layer of 10 μm or more. Moreover, when it exceeds 1208 degreeC, a ferrite phase will be formed and the solubility of nitrogen will fall.
mass% N = −0.000036 × T (° C.) + 5.277 (2)

オーステナイト系ステンレス鋼は、Cr:18.0〜20.0mass%、Ni:9.0〜13.0mass%、残部Feおよび不可避的不純物からなり、たとえば、SUS304L等が挙げられる。具体的には、Cr:19.0mass%、Ni:11.0mass%、残部Feおよび不可避的不純物からなるSUS304Lでは、窒素分圧を0.5気圧にした場合、オーステナイト相に固溶する窒素の濃度は式(3)で表される。本鋼種では、熱処理温度が1140℃未満では、窒素の溶解速度が極端に遅くなり、10μm以上の窒素富化層を得難い。一方、1210℃を超えると、結晶粒が粗大化する。このため、熱処理温度は1140〜1210℃とする。
mass%N=−0.00110×T(℃)+1.715 (3)
The austenitic stainless steel is composed of Cr: 18.0 to 20.0 mass%, Ni: 9.0 to 13.0 mass%, the balance Fe and inevitable impurities, and examples thereof include SUS304L. Specifically, in SUS304L composed of Cr: 19.0 mass%, Ni: 11.0 mass%, the balance Fe and unavoidable impurities, the nitrogen dissolved in the austenite phase when the nitrogen partial pressure is 0.5 atm. The concentration is expressed by equation (3). In this steel type, when the heat treatment temperature is less than 1140 ° C., the dissolution rate of nitrogen is extremely slow, and it is difficult to obtain a nitrogen-enriched layer of 10 μm or more. On the other hand, when it exceeds 1210 ° C., the crystal grains become coarse. For this reason, heat processing temperature shall be 1140-1210 degreeC.
mass% N = −0.00110 × T (° C.) + 1.715 (3)

また、他のオーステナイト系ステンレス鋼として、Cr:16.0〜18.0mass%、Ni:12.0〜15.0mass%、Mo:2.0〜3.0mass%、残部Feおよび不可避的不純物からなる鋼が挙げられ、たとえば、SUS316L等がある。具体的には、Cr:17.0mass%、Ni:13.0mass%、Mo:2.5mass%、残部Feおよび不可避的不純物からなるSUS316Lオーステナイト系ステンレス鋼では、窒素分圧を0.5気圧にした場合、1139〜1210℃の温度範囲では窒化物を生成することなくオーステナイト単相組織が維持される。0.5気圧の窒素雰囲気で処理した時のオーステナイト相に固溶する窒素の濃度は式(4)で表される。
mass%N=−0.00087×T(℃)+1.4005 (4)
Further, as other austenitic stainless steels, Cr: 16.0 to 18.0 mass%, Ni: 12.0 to 15.0 mass%, Mo: 2.0 to 3.0 mass%, the balance Fe and inevitable impurities For example, SUS316L. Specifically, in SUS316L austenitic stainless steel consisting of Cr: 17.0 mass%, Ni: 13.0 mass%, Mo: 2.5 mass%, the balance Fe and unavoidable impurities, the nitrogen partial pressure is 0.5 atm. In this case, the austenite single phase structure is maintained without forming nitrides in the temperature range of 1139 to 1210 ° C. The concentration of nitrogen dissolved in the austenite phase when treated in a nitrogen atmosphere of 0.5 atm is expressed by the formula (4).
mass% N = −0.0087 × T (° C.) + 1.4005 (4)

以上説明したように、各鋼種において固溶可能な窒素量は熱処理の温度と窒素分圧によって決まる。適切な温度と窒素分圧の環境におけば、鋼板の表面に窒素が平衡濃度まで吸収され、鋼板内部へ拡散していくことになる。十分長い処理時間であれば、窒素が鋼板中心部まで到達するため、板厚方向に均一に分布させることが可能になる。しかしながら、製造コストの面から、熱処理の時間は数十秒しかない。このため、本発明においては、熱処理の保持時間を30〜90sとし、十分な耐食性を付与するために、また傷など機械的な損傷に耐えるために、窒素富化層の厚みを10μm以上とする。ただし、必要な耐食性が得られれば良いため、目的に応じた厚さとすればよく、10μm未満でも良い。   As described above, the amount of nitrogen that can be dissolved in each steel type is determined by the temperature of the heat treatment and the nitrogen partial pressure. In an environment with appropriate temperature and partial pressure of nitrogen, nitrogen is absorbed to the surface of the steel plate to the equilibrium concentration and diffuses into the steel plate. If the treatment time is sufficiently long, nitrogen reaches the center of the steel plate, and therefore it can be uniformly distributed in the thickness direction. However, in terms of manufacturing cost, the heat treatment time is only tens of seconds. For this reason, in the present invention, the thickness of the nitrogen-enriched layer is set to 10 μm or more in order to provide a heat treatment holding time of 30 to 90 s and to provide sufficient corrosion resistance and to withstand mechanical damage such as scratches. . However, since it is only necessary to obtain necessary corrosion resistance, the thickness may be set according to the purpose, and may be less than 10 μm.

なお、窒素を速く拡散させる方法として、熱処理温度を上げることは最も効果的である。このため、上記温度範囲内でも、結晶粒の粗大化を抑えながらできるだけ高い温度で処理することが好ましい。また、窒素を速く拡散させる他の方法は、鋼板表面の不動態皮膜などの酸化皮膜を除去することである。表面酸化皮膜は窒素の吸収を妨げ、拡散を遅らせるからである。たとえば、雰囲気ガス中に還元性の水素ガスを混入して、熱処理時に水素で酸化皮膜を還元させながら窒素を吸収させることにより、鋼板内部への窒素の拡散を促進させることができる。この場合、水素ガスの分圧は0.30気圧以上、0.75気圧以下が好ましい。また、露点を低くする必要があり、−30℃以下が好ましい。−30℃を超えると酸化の傾向が強くなり水素の還元能力が下がってしまう。   Note that raising the heat treatment temperature is the most effective method for rapidly diffusing nitrogen. For this reason, even within the above temperature range, it is preferable to perform the treatment at a temperature as high as possible while suppressing the coarsening of crystal grains. Another method for rapidly diffusing nitrogen is to remove an oxide film such as a passive film on the surface of the steel sheet. This is because the surface oxide film prevents absorption of nitrogen and delays diffusion. For example, it is possible to promote diffusion of nitrogen into the steel sheet by mixing reducing hydrogen gas into the atmospheric gas and absorbing nitrogen while reducing the oxide film with hydrogen during heat treatment. In this case, the partial pressure of hydrogen gas is preferably 0.30 atm or more and 0.75 atm or less. Moreover, it is necessary to make a dew point low, and -30 degrees C or less is preferable. If it exceeds −30 ° C., the tendency to oxidize becomes strong and the ability to reduce hydrogen decreases.

以下、本発明の一例を述べる。通常の製造方法により、表1に示す組成成分を有するFe−25Cr(フェライト系)、SUS329J4L(オーステナイト・フェライト二相系)およびSUS304LとSUS316L(オーステナイト系)のステンレス冷間圧延鋼板を作製した。この冷延鋼板から20mm×30mm×厚さ(0.5〜2.0)mmの試験片を採取して、エミリー紙2000番まで湿式研磨を行い、脱脂後、表2に示す条件で窒素吸収処理(熱処理)を施した。   Hereinafter, an example of the present invention will be described. Stainless steel cold-rolled steel sheets of Fe-25Cr (ferrite type), SUS329J4L (austenite / ferrite two-phase type), and SUS304L and SUS316L (austenite type) having the composition components shown in Table 1 were prepared by a normal manufacturing method. A test piece of 20 mm × 30 mm × thickness (0.5 to 2.0) mm was taken from this cold rolled steel sheet, wet-polished to Emily No. 2000, degreased, and then subjected to nitrogen absorption under the conditions shown in Table 2. Treatment (heat treatment) was performed.

窒素吸収処理の条件は、表2に示す通りである。まず、加熱室と冷却室を有する雰囲気炉を10−3Paまで真空引きをし、表2に示す雰囲気ガスを雰囲気炉に導入した。雰囲気ガスの流量を1リットル/minと一定にし、露点を−45℃以下に制御した。そして、表2に示す温度になってから試験片を投入し、表2に示す時間で保持した後、試験片を加熱室から同じ雰囲気ガスを有する冷却室中に移動させて、オーステナイト単相が維持されるように急速冷却を行った。 The conditions for the nitrogen absorption treatment are as shown in Table 2. First, an atmosphere furnace having a heating chamber and a cooling chamber was evacuated to 10 −3 Pa, and the atmosphere gases shown in Table 2 were introduced into the atmosphere furnace. The flow rate of the atmospheric gas was kept constant at 1 liter / min, and the dew point was controlled to −45 ° C. or lower. Then, after reaching the temperature shown in Table 2, the test piece was put in and held for the time shown in Table 2, and then the test piece was moved from the heating chamber to the cooling chamber having the same atmospheric gas, and the austenite single phase was Rapid cooling was performed to maintain.

Figure 0005869072
Figure 0005869072

Figure 0005869072
Figure 0005869072

上記のようにして得た各試験片について、組織観察を行った。組織観察は、光学顕微鏡、走査型電子顕微鏡(SEM)および電子線後方散乱回折法(EBSD)を用いて表面および断面組織について行った。なお、断面組織観察用の試料の一部は断面イオン加工装置(CP)により作製した。この組織観察により、オーステナイト相形成の確認を行った。その一例を図2に示す。図2は、雰囲気ガス中の窒素ガスが0.25気圧において、1130℃で60s処理したFe−25Crフェライト系ステンレス鋼の断面組織である。図2より、熱処理前の表面がフェライト単相組織だったFe−25Cr鋼は、熱処理後に表面にオーステナイト単相組織が形成されたことを確認できた。同様に、オーステナイト・フェライト二相組織だったSUS329J4L鋼も、熱処理後にオーステナイト単相組織が形成されたことを確認した。   The structure of each test piece obtained as described above was observed. Tissue observation was performed on the surface and cross-sectional structures using an optical microscope, a scanning electron microscope (SEM), and an electron beam backscatter diffraction method (EBSD). A part of the sample for observing the cross-sectional structure was produced by a cross-sectional ion processing apparatus (CP). The austenite phase formation was confirmed by this structure observation. An example is shown in FIG. FIG. 2 is a cross-sectional structure of Fe-25Cr ferritic stainless steel treated at 1130 ° C. for 60 s when the nitrogen gas in the atmosphere gas is 0.25 atm. From FIG. 2, it was confirmed that the Fe-25Cr steel whose surface before the heat treatment had a ferrite single phase structure had an austenite single phase structure formed on the surface after the heat treatment. Similarly, SUS329J4L steel, which had an austenite-ferrite dual phase structure, was also confirmed to have formed an austenite single phase structure after heat treatment.

また、組織観察により、結晶粒径の大きさ、窒化物生成の有無について評価を行った。結晶粒径は、本発明においては、50μm未満を○とし、50μm以上を×と判断した。また、窒化物は耐食性を低下させるため、窒化物を生成しなかったものを○、生成したものを×とした。さらに、高周波グロー発光分析装置(GD−OES)により、試験片の表面から深さ方向の窒素濃度分布を測定し、窒素富化層の特定を行った。ここで、窒化富化層とは、オーステナイト単相からなり、窒素濃度が0.3mass%以上の層のことで、表面からの厚さが10μm以上を○、10μm未満を×とした。これらの結果を表3に示す。   In addition, the crystal grain size and the presence or absence of nitride formation were evaluated by structure observation. In the present invention, the crystal grain size was judged as ○ when less than 50 μm, and as x when 50 μm or more. In addition, since nitride deteriorates the corrosion resistance, the case where the nitride was not generated is indicated as ◯, and the case where the nitride is generated is indicated as x. Further, the nitrogen concentration distribution in the depth direction from the surface of the test piece was measured by a high-frequency glow emission analyzer (GD-OES) to identify the nitrogen-enriched layer. Here, the nitride-enriched layer is a layer composed of an austenite single phase and having a nitrogen concentration of 0.3 mass% or more, and the thickness from the surface is 10 μm or more, and “less than 10 μm” is x. These results are shown in Table 3.

Figure 0005869072
Figure 0005869072

表3より、熱処理温度が各鋼種の評価項目に及ぼす影響がわかる。各鋼板において、熱処理温度が低すぎると(1060℃)、窒素富化層の厚さが不十分となったり、窒化物が生成した。一方、熱処理温度が高すぎると(1230℃または1220℃)、オーステナイト単相は形成されずフェライト相が形成されるため、効率的に窒素を固溶させることができず、厚さ10μm以上の窒素富化層が得られなかった。また、熱処理温度が高いため、結晶粒が粗大化した。このことから、オーステナイト単相が得られる温度領域で熱処理を行う必要があることが判った。すなわち、フェライト系ステンレス鋼(Fe−25Cr)では1079〜1140℃、オーステナイト・フェライト系ステンレス鋼(SUS329J4L)では1193〜1208℃、オーステナイト系ステンレス鋼(SUS304L)では1140〜1210℃、他のオーステナイト系ステンレス鋼(SUS316L)では1139〜1210℃の温度範囲が適している。   Table 3 shows the effect of the heat treatment temperature on the evaluation items of each steel type. In each steel plate, when the heat treatment temperature was too low (1060 ° C.), the thickness of the nitrogen-enriched layer became insufficient or nitride was generated. On the other hand, if the heat treatment temperature is too high (1230 ° C. or 1220 ° C.), an austenite single phase is not formed and a ferrite phase is formed, so that nitrogen cannot be dissolved efficiently and nitrogen having a thickness of 10 μm or more. An enriched layer was not obtained. Moreover, since the heat treatment temperature was high, the crystal grains became coarse. From this, it was found that it is necessary to perform the heat treatment in a temperature range where an austenite single phase is obtained. That is, 1079 to 1140 ° C. for ferritic stainless steel (Fe-25Cr), 1193 to 1208 ° C. for austenitic ferritic stainless steel (SUS329J4L), 1140 to 1210 ° C. for austenitic stainless steel (SUS304L), and other austenitic stainless steels For steel (SUS316L), a temperature range of 1139-1210 ° C is suitable.

また、表3より、熱処理時間が各鋼種の評価項目に及ぼす影響がわかる。各鋼板において、熱処理温度がそれぞれ適した温度のとき(1130℃、1150℃または1200℃)、熱処理時間が30s未満であると、十分な厚さの窒素富化層が得られなかった。一方、熱処理時間が90sを超えると、結晶粒が粗大化した。このことから、熱処理時間は30〜90sの間が適していることが判った。   In addition, Table 3 shows the effect of the heat treatment time on the evaluation items of each steel type. In each steel plate, when the heat treatment temperature was a suitable temperature (1130 ° C., 1150 ° C. or 1200 ° C.), if the heat treatment time was less than 30 s, a sufficiently thick nitrogen-enriched layer could not be obtained. On the other hand, when the heat treatment time exceeded 90 s, the crystal grains became coarse. From this, it was found that the heat treatment time is suitably between 30 and 90 seconds.

表4に、一例として、各試験片の窒素富化層の厚さおよびその窒素濃度を示す。試料番号1の試料は、窒素分圧0.25atm、1130℃において60s間窒素吸収処理を施したFe−25Cr(フェライト系)、試料番号2の試料は、窒素分圧0.5atm、1200℃において60s間窒素吸収処理を施したSUS329J4L(二相系)である。また、試料番号3の試料は、窒素分圧0.7atm、1150℃において60s間窒素吸収処理を施したSUS304L、試料番号4の試料は、窒素分圧0.5atm、1150℃において60s間窒素吸収処理を施したSUS316L(オーステナイト系)である。表4より、全ての鋼種において、窒素富化層が非常に厚く、窒素富化層中に母材より多くの窒素が含まれていることが分かる。   Table 4 shows the thickness of the nitrogen-enriched layer of each test piece and its nitrogen concentration as an example. The sample No. 1 sample is Fe-25Cr (ferrite type) which has been subjected to nitrogen absorption treatment for 60 s at a nitrogen partial pressure of 0.25 atm and 1130 ° C., and the sample No. 2 sample is at a nitrogen partial pressure of 0.5 atm and 1200 ° C. SUS329J4L (two-phase system) subjected to nitrogen absorption treatment for 60 s. Sample No. 3 is SUS304L that has been subjected to nitrogen absorption treatment for 60 s at a partial pressure of nitrogen of 0.7 atm and 1150 ° C., and Sample No. 4 is nitrogen absorption for 60 s at a partial pressure of nitrogen of 0.5 atm and 1150 ° C. It is SUS316L (austenite type) which processed. Table 4 shows that in all steel types, the nitrogen-enriched layer is very thick, and the nitrogen-enriched layer contains more nitrogen than the base material.

Figure 0005869072
Figure 0005869072

次に、鋼板の厚さの影響について検討を行った。上記と同様のステンレス冷間圧延鋼板を作製し、10mm×120mm×厚さ(0.2〜3.0)mmの試験片を採取して、エミリー紙2000番まで湿式研磨を行い、脱脂後、窒素吸収処理(熱処理)を施した。窒素吸収処理は、支点間隔100mmの置き台の上に試験片を水平に載せて行い、雰囲気ガス中の窒素分圧は0.50atm、熱処理時間は60sとした。熱処理後、各鋼板の変形を観察し、窒素富化層の測定を行った。このとき、歪みのないものを○とし、歪みのあるものを×とした。また、窒化富化層の厚さが10μm以上を○、10μm未満を×とした。これらの結果を表5に示す。   Next, the influence of the thickness of the steel sheet was examined. A stainless cold-rolled steel plate similar to the above was prepared, a 10 mm × 120 mm × thickness (0.2-3.0) mm test piece was collected, wet-polished to Emily No. 2000, and degreased, Nitrogen absorption treatment (heat treatment) was performed. The nitrogen absorption treatment was performed by placing a test piece horizontally on a table with a fulcrum interval of 100 mm, the nitrogen partial pressure in the atmosphere gas was 0.50 atm, and the heat treatment time was 60 s. After heat treatment, the deformation of each steel plate was observed and the nitrogen-enriched layer was measured. At this time, those without distortion were marked with ◯, and those with distortion were marked with X. Further, the thickness of the nitride-enriched layer was 10 μm or more, and the case of less than 10 μm was made x. These results are shown in Table 5.

Figure 0005869072
Figure 0005869072

表5より、板厚の影響がわかる。各鋼板において、板厚が0.5mm未満では、熱処理による板の歪みが観察された。一方、板厚が2.0mmを超えると、形成した窒素富化層の厚さが不十分となった。これは、板厚が大きいと昇温速度が遅くなり、所定の温度での均熱時間が短くなったためと考えられる。このことから、各鋼板の板厚は、0.3〜2.0mmが適していることが判った。   Table 5 shows the influence of the plate thickness. In each steel plate, when the plate thickness was less than 0.5 mm, distortion of the plate due to heat treatment was observed. On the other hand, when the plate thickness exceeded 2.0 mm, the thickness of the formed nitrogen-enriched layer was insufficient. This is considered to be because when the plate thickness is large, the rate of temperature increase becomes slow, and the soaking time at a predetermined temperature is shortened. From this, it was found that 0.3 to 2.0 mm is suitable for the thickness of each steel plate.

さらに、各鋼板の耐食性を評価するため、腐食試験を行った。腐食試験では、上記の試料番号1〜4の試料を用い、20wt%NaCl水溶液中でアノード分極を行い、各試験片の孔食電位を測定することにより、臨界孔食発生温度(CPT)を求めた。この結果を表6に示す。なお、一例として窒素吸収処理前後のFe−25Crフェライト系ステンレス鋼のアノード分極曲線を図3に示す。   Furthermore, in order to evaluate the corrosion resistance of each steel plate, a corrosion test was conducted. In the corrosion test, the critical pitting temperature (CPT) is obtained by performing anodic polarization in a 20 wt% NaCl aqueous solution and measuring the pitting corrosion potential of each test piece using the samples Nos. 1 to 4 described above. It was. The results are shown in Table 6. As an example, FIG. 3 shows anode polarization curves of Fe-25Cr ferritic stainless steel before and after nitrogen absorption treatment.

Figure 0005869072
Figure 0005869072

表6および図3より、窒素吸収処理の耐食性への影響がわかる。表6および図3より、Fe−25Cr鋼では、窒素吸収前の臨界孔食発生温度(CPT)は5℃であり、この温度で孔食が発生したが、窒素吸収処理後にはCPTは85℃まで向上した。また、他の種類の試験片においても、CPTの向上が見られた。表6において、特に、Fe−25Cr鋼とSUS329J4L鋼はSUS304LとSUS316Lより多く窒素を吸収したために耐食性の向上は最も顕著であった。これらのことから、窒素吸収処理により、鋼板の耐食性を向上させることができることを確認できた。   Table 6 and FIG. 3 show the influence of nitrogen absorption treatment on the corrosion resistance. From Table 6 and FIG. 3, in Fe-25Cr steel, the critical pitting corrosion temperature (CPT) before nitrogen absorption was 5 ° C., and pitting corrosion occurred at this temperature, but after nitrogen absorption treatment, CPT was 85 ° C. Improved. In addition, CPT was improved in other types of test pieces. In Table 6, in particular, Fe-25Cr steel and SUS329J4L steel absorbed nitrogen more than SUS304L and SUS316L, so the improvement in corrosion resistance was most remarkable. From these things, it has confirmed that the corrosion resistance of a steel plate could be improved by nitrogen absorption treatment.

Claims (1)

窒素の分圧が0.7気圧であり残部が還元性ガスからなる雰囲気の炉内で、1140〜1210℃の温度範囲において、板厚が0.5〜2.0mmで、Cr:18.0〜20.0mass%、Ni:9.0〜13.0mass%、残部Feおよび不可避的不純物からなる鋼板をオーステナイト単相と平衡する温度で30〜90秒間保持し、
前記鋼板の表面にオーステナイト単相を形成させながら窒素を0.3mass%以上固溶させ、
前記ガス雰囲気を保ちながら炉内にて前記鋼板を冷却し、
前記鋼板の表面を窒素が固溶したオーステナイト単相に維持することを特徴とするステンレス鋼板の表面改質方法。
In a furnace having an atmosphere in which the partial pressure of nitrogen is 0.7 atm and the balance is made of a reducing gas, in a temperature range of 1140 to 1210 ° C., the plate thickness is 0.5 to 2.0 mm, and Cr: 18.0 ~ 20.0 mass%, Ni: 9.0 to 13.0 mass%, the steel sheet consisting of the balance Fe and inevitable impurities is held for 30 to 90 seconds at a temperature equilibrated with the austenite single phase,
While forming an austenite single phase on the surface of the steel plate, 0.3 mass% or more of nitrogen was dissolved,
Cooling the steel sheet in a furnace while maintaining the gas atmosphere,
A method for modifying a surface of a stainless steel sheet, wherein the surface of the steel sheet is maintained in an austenite single phase in which nitrogen is dissolved.
JP2014160259A 2014-08-06 2014-08-06 Method for surface modification of stainless steel sheet Expired - Fee Related JP5869072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160259A JP5869072B2 (en) 2014-08-06 2014-08-06 Method for surface modification of stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160259A JP5869072B2 (en) 2014-08-06 2014-08-06 Method for surface modification of stainless steel sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011032288A Division JP5620301B2 (en) 2011-02-17 2011-02-17 Method for surface modification of stainless steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015148570A Division JP2016006232A (en) 2015-07-28 2015-07-28 Surface modification method of stainless steel plate

Publications (2)

Publication Number Publication Date
JP2015004133A JP2015004133A (en) 2015-01-08
JP5869072B2 true JP5869072B2 (en) 2016-02-24

Family

ID=52300250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160259A Expired - Fee Related JP5869072B2 (en) 2014-08-06 2014-08-06 Method for surface modification of stainless steel sheet

Country Status (1)

Country Link
JP (1) JP5869072B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543962B2 (en) * 2015-03-02 2019-07-17 日本製鉄株式会社 Austenitic stainless steel sheet and method of manufacturing the same
JP2020094266A (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Two-phase stainless steel and manufacturing method therefor
JP7338618B2 (en) * 2020-12-17 2023-09-05 Jfeスチール株式会社 Austenitic stainless steel sheet for fuel cell separator and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224753A (en) * 1984-04-19 1985-11-09 Fujitsu Ltd Manufacture of stainless sintered material
JP3052170B2 (en) * 1992-09-29 2000-06-12 新日本製鐵株式会社 Manufacturing method of bright annealed stainless steel with high weather resistance
DE4333917C2 (en) * 1993-10-05 1994-06-23 Hans Prof Dr Ing Berns Edge embroidery to create a high-strength austenitic surface layer in stainless steels
JP3511183B2 (en) * 1994-07-08 2004-03-29 濱中ナット株式会社 Continuous bright annealing method for austenitic stainless steel bars.
JPH08311618A (en) * 1995-05-12 1996-11-26 Nippon Steel Corp Austenitic stainless steel sheet excellent in corrosion resistance and workability
JPH093548A (en) * 1995-06-16 1997-01-07 Nippon Steel Corp Production of austenitic stainless steel sheet excellent in corrosion resistance and workability
JP4239718B2 (en) * 2003-07-04 2009-03-18 住友金属工業株式会社 Austenitic stainless steel sheet and manufacturing method thereof
WO2006134541A1 (en) * 2005-06-15 2006-12-21 Koninklijke Philips Electronics N.V. Method for manufacturing a stainless steel product
JP5620301B2 (en) * 2011-02-17 2014-11-05 日本冶金工業株式会社 Method for surface modification of stainless steel sheet

Also Published As

Publication number Publication date
JP2015004133A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP2006316338A (en) Method for producing product made of stainless steel, and the product made of stainless steel
JP5620301B2 (en) Method for surface modification of stainless steel sheet
JP6137434B1 (en) Austenitic stainless steel
JP2007224405A (en) Steel for blade
JP6385507B2 (en) Nb-containing ferritic stainless steel sheet and method for producing the same
JP2011162863A (en) Al-CONTAINING FERRITIC STAINLESS STEEL SUPERIOR IN OXIDATION RESISTANCE AND ELECTRIC CONDUCTIVITY
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
CN109504878B (en) Nickel-based alloy
JP5800116B1 (en) Ferritic stainless steel foil and manufacturing method thereof
JP2004339569A (en) Stainless steel sheet for solid high polymer type fuel cell separator, its production method, and its forming method
JP5869072B2 (en) Method for surface modification of stainless steel sheet
JP7339255B2 (en) Ferritic stainless steel with excellent high-temperature oxidation resistance and method for producing the same
JP5533712B2 (en) Hot-worked steel for surface hardening
WO2016039429A1 (en) Austenitic stainless steel sheet which is not susceptible to diffusion bonding
JP6482074B2 (en) Duplex stainless steel sheet and its manufacturing method
JP5644483B2 (en) Hot-worked steel for surface hardening
EP3249067A1 (en) Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating
JP2017206735A (en) Multi phase-based stainless steel excellent in steam oxidation resistance
JP2016006232A (en) Surface modification method of stainless steel plate
JP2009007663A (en) Ferritic stainless steel sheet having excellent crevice corrosion resistance
JP4479155B2 (en) Chromium-based stainless steel material and method for producing the same
KR20180004253A (en) Steel strip for cutlery
JP2009275268A (en) Cold-rolled ferritic stainless steel sheet and method for manufacturing therefor
JP7167343B2 (en) Aluminum plated steel sheet for hot press with excellent hydrogen delayed fracture characteristics and spot weldability, and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5869072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees