JP5867214B2 - Method for evaluating moisture resistance reliability of semiconductor devices - Google Patents

Method for evaluating moisture resistance reliability of semiconductor devices Download PDF

Info

Publication number
JP5867214B2
JP5867214B2 JP2012065124A JP2012065124A JP5867214B2 JP 5867214 B2 JP5867214 B2 JP 5867214B2 JP 2012065124 A JP2012065124 A JP 2012065124A JP 2012065124 A JP2012065124 A JP 2012065124A JP 5867214 B2 JP5867214 B2 JP 5867214B2
Authority
JP
Japan
Prior art keywords
moisture resistance
dielectric
measuring device
resistance reliability
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012065124A
Other languages
Japanese (ja)
Other versions
JP2013195329A (en
Inventor
朝仁 岩重
朝仁 岩重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012065124A priority Critical patent/JP5867214B2/en
Publication of JP2013195329A publication Critical patent/JP2013195329A/en
Application granted granted Critical
Publication of JP5867214B2 publication Critical patent/JP5867214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

本発明は、半導体装置の耐湿信頼性評価方法に関するものであり、詳しくは、従来の評価方法に比べ短時間で評価が可能な、半導体装置の耐湿信頼性評価方法に関するものである。   The present invention relates to a method for evaluating moisture resistance reliability of a semiconductor device, and more particularly to a method for evaluating moisture resistance reliability of a semiconductor device, which can be evaluated in a shorter time than a conventional evaluation method.

従来から、トランジスタ,IC,LSI等の各種半導体素子は、外部環境からの保護および半導体素子のハンドリングを可能にするという観点から、例えば、熱硬化性エポキシ樹脂組成物を用いて樹脂封止(プラスチックパッケージ)され、半導体装置化されている。   Conventionally, various semiconductor elements such as transistors, ICs, and LSIs are resin-sealed (for example, using a thermosetting epoxy resin composition) from the viewpoint of enabling protection from the external environment and handling of the semiconductor elements. Packaged) into a semiconductor device.

このような半導体封止用の樹脂組成物の重要な要求特性の一つとして、高温高湿信頼性があげられる。すなわち、高温または多湿下では、樹脂に含まれる塩素イオン等のイオン性不純物が動きやすくなることから、半導体素子上の配線の腐食が進み易いためである。   One of the important required characteristics of such a resin composition for semiconductor encapsulation is high temperature and high humidity reliability. That is, ionic impurities such as chlorine ions contained in the resin easily move under high temperature or high humidity, and thus the corrosion of the wiring on the semiconductor element easily proceeds.

そして、上記のような耐湿信頼性の評価は、従来、HAST試験(不飽和加圧蒸気試験)により行われている(例えば、特許文献1〜3参照)。   And evaluation of moisture resistance reliability as described above has been conventionally performed by a HAST test (unsaturated pressurized steam test) (see, for example, Patent Documents 1 to 3).

特開2004−311527号公報JP 2004-311527 A 特開2000−136995号公報JP 2000-136995 A WO2010/005086公報WO 2010/005086

HAST試験による耐湿信頼性の評価では、130℃、湿度85%の雰囲気下で、半導体装置に断線不良が発生する(顕著な抵抗値の上昇が生じる)まで試験を行い、その時間を計測する必要がある。   In the evaluation of moisture resistance reliability by the HAST test, it is necessary to test and measure the time until a disconnection failure occurs in the semiconductor device in an atmosphere of 130 ° C. and humidity of 85% (a remarkable increase in resistance value occurs). There is.

しかしながら、上記計測は非常に長時間を要する(数百時間から千時間超)ことから、短時間での耐湿信頼性の評価方法が求められている。   However, since the above measurement requires a very long time (several hundred hours to over 1,000 hours), a method for evaluating the moisture resistance reliability in a short time is required.

本発明は、このような事情に鑑みなされたもので、短時間で耐湿信頼性の評価を行うことができる半導体装置の耐湿信頼性評価方法の提供を、その目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a moisture resistance reliability evaluation method for a semiconductor device capable of evaluating moisture resistance reliability in a short time.

上記の目的を達成するために、本発明の半導体装置の耐湿信頼性評価方法は、半導体素子をエポキシ樹脂組成物で封止してなる半導体装置の耐湿信頼性評価方法であって、上記エポキシ樹脂組成物を用いて下記(X)に示す熱硬化条件および寸法条件で円板状樹脂硬化体サンプルを作製し、上記サンプルに対して、下記(Y)に示す吸湿処理条件で吸湿させた後、誘電緩和測定装置を用いてイオン分極起因の誘電損失ピークを測定し、ピーク上の誘電損失が0.81±0.05となる周波数を読み取り、その周波数から上記半導体装置の耐湿信頼性を評価するという構成をとる。
(X)熱硬化条件:175±10℃×120±40秒間の加熱硬化の後、175±10℃×3±2時間のアフターキュア。
寸法条件:誘電緩和測定装置の電極の直径以上で、厚み1±0.6mm。
(Y)吸湿処理条件:130℃、湿度85%の雰囲気下で、80±30時間。
In order to achieve the above object, a moisture resistance reliability evaluation method for a semiconductor device of the present invention is a moisture resistance reliability evaluation method for a semiconductor device formed by sealing a semiconductor element with an epoxy resin composition, the epoxy resin A disk-shaped resin cured body sample was prepared using the composition under the thermosetting conditions and dimensional conditions shown in the following (X), and after the sample was made to absorb moisture under the hygroscopic treatment conditions shown in the following (Y), A dielectric loss peak due to ion polarization is measured using a dielectric relaxation measuring device, a frequency at which the dielectric loss on the peak is 0.81 ± 0.05 is read, and the moisture resistance reliability of the semiconductor device is evaluated from the frequency. The configuration is as follows.
(X) Thermal curing conditions: 175 ± 10 ° C. × 120 ± 40 seconds after heat curing, 175 ± 10 ° C. × 3 ± 2 hours after cure.
Dimensional condition: The diameter is equal to or larger than the electrode diameter of the dielectric relaxation measuring apparatus, and the thickness is 1 ± 0.6 mm.
(Y) Hygroscopic treatment conditions: 80 ± 30 hours in an atmosphere of 130 ° C. and 85% humidity.

すなわち、本発明者は、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、本発明者は、まず、半導体装置の封止用樹脂に含まれるイオン性不純物が断線の要因であるとの知見に基づき、封止用樹脂中のイオン性不純物濃度が、HAST試験特性と高い相関関係があるのではないかと予想し、それを検証するため実験を行った。しかしながら、上記実験の結果、そのような相関関係はあまり認められなかったことから、本発明者は別の評価方法を模索した。その過程で、本発明者は、封止用樹脂が吸湿すると、樹脂中のイオン性不純物のイオン易動度が高くなることに着目し、実験を進めた。その結果、半導体素子上の配線の腐食スピードは、封止用樹脂中のイオン性不純物濃度にも当然ながら関与するが、それよりも、封止用樹脂中のイオン性不純物のイオン易動度のほうが上記腐食スピードに実効的に関与する因子であることを突き止めた。また、本発明者は、封止用樹脂中のイオン性不純物のイオン易動度を定量評価するために、HAST試験の環境条件と同等の条件下で吸湿処理を施した封止用樹脂のサンプルに対し、誘電緩和測定装置による測定を行い、その際に得られるイオン分極による誘電損失ピークの位置、すなわち樹脂中での平均イオン易動度と、HAST試験特性との間に、非常に高い相関関係があることを突き止めた。そして、誘電緩和測定装置による測定結果と、HAST試験特性との対比により、HAST試験評価において最低限要求される測定時間(200時間)に対応する指標として、誘電損失ピークの位置(発現周波数)を利用できることを突き止めた。具体的には、誘電緩和測定装置によって得られた、イオン直流電導成分起因の誘電損失ピーク上において、その縦軸の値(誘電損失)が0.81±0.05(0.76〜0.86)となる横軸の値(周波数)が25Hzであると、HAST試験評価の200時間に相当することを突き止めた。しかも、上記誘電緩和測定装置による測定は数分で行うことができることから、従来のHAST試験よりも短時間で耐湿信頼性の評価を行うことができる。これらのことから、誘電緩和測定装置よって得られた誘電損失ピーク上の誘電損失が0.81±0.05(0.76〜0.86)となる周波数を読み取り、その周波数から上記半導体装置の耐湿信頼性を評価すると、HAST試験と同様の信頼性を保持しつつ、従来のHAST試験よりも短時間で耐湿信頼性の評価を行うことができることを本発明者は見いだし、本発明に到達した。   That is, the present inventor has intensively studied to solve the above problems. In the course of the research, the present inventor firstly, based on the knowledge that the ionic impurities contained in the sealing resin of the semiconductor device are the cause of disconnection, the ionic impurity concentration in the sealing resin is Experiments were conducted to verify that there was a high correlation with the HAST test characteristics. However, as a result of the above experiment, such a correlation was not recognized so much, so the present inventors sought another evaluation method. In the process, the present inventor conducted an experiment focusing on the fact that the ion mobility of the ionic impurities in the resin increases when the sealing resin absorbs moisture. As a result, the corrosion speed of the wiring on the semiconductor element is naturally related to the ionic impurity concentration in the sealing resin, but rather than the ionic mobility of the ionic impurity in the sealing resin. Was found to be an effective factor in the corrosion speed. In addition, the present inventor also provides a sample of sealing resin that has been subjected to moisture absorption treatment under conditions equivalent to the environmental conditions of the HAST test in order to quantitatively evaluate the ion mobility of ionic impurities in the sealing resin. On the other hand, a dielectric relaxation measuring device is used for measurement, and the position of the dielectric loss peak due to ion polarization obtained at that time, that is, the average ion mobility in the resin, and the HAST test characteristics are very high in correlation. I found out that there was a relationship. Then, by comparing the measurement result by the dielectric relaxation measuring apparatus with the HAST test characteristics, the position (expression frequency) of the dielectric loss peak is used as an index corresponding to the minimum required measurement time (200 hours) in the HAST test evaluation. I found it available. Specifically, the value (dielectric loss) on the vertical axis on the dielectric loss peak attributed to the ion direct current conduction component obtained by the dielectric relaxation measuring device is 0.81 ± 0.05 (0.76 to 0.00). 86) The horizontal axis value (frequency) of 25 Hz was found to correspond to 200 hours of HAST test evaluation. Moreover, since the measurement by the dielectric relaxation measuring apparatus can be performed in a few minutes, the moisture resistance reliability can be evaluated in a shorter time than the conventional HAST test. From these, the frequency at which the dielectric loss on the dielectric loss peak obtained by the dielectric relaxation measuring device becomes 0.81 ± 0.05 (0.76 to 0.86) is read, and the frequency of the semiconductor device is read from the frequency. When evaluating the moisture resistance reliability, the present inventors have found that the moisture resistance reliability can be evaluated in a shorter time than the conventional HAST test while maintaining the same reliability as the HAST test, and the present invention has been achieved. .

このように、本発明の半導体装置の耐湿信頼性評価方法は、半導体素子をエポキシ樹脂組成物で封止してなる半導体装置の、上記封止に用いられるエポキシ樹脂組成物から、特定条件で円板状樹脂硬化体サンプルを作製し、上記サンプルを特定条件で吸湿処理した後、上記サンプルに対して、誘電緩和測定装置を用い、誘電損失ピーク上の誘電損失が0.81±0.05となる周波数を読み取り、その周波数から上記半導体装置の耐湿信頼性を評価するものである。そのため、短時間で、従来のHAST試験と同様の耐湿信頼性の評価を行うことができる。また、本発明の半導体装置の耐湿信頼性評価方法は、半導体装置そのものを測定評価せずとも、上記サンプルに対して試験を行えばよいことから、従来よりも容易に評価を行うことができる。   As described above, the moisture resistance reliability evaluation method for a semiconductor device according to the present invention is based on a specific condition from the epoxy resin composition used for the sealing of a semiconductor device in which a semiconductor element is sealed with an epoxy resin composition. After preparing a plate-shaped resin cured body sample and subjecting the sample to moisture absorption treatment under specific conditions, the dielectric loss on the dielectric loss peak was 0.81 ± 0.05 with respect to the sample using a dielectric relaxation measuring device. And the humidity resistance reliability of the semiconductor device is evaluated from the frequency. Therefore, the moisture resistance reliability evaluation similar to that of the conventional HAST test can be performed in a short time. Moreover, the moisture resistance reliability evaluation method for a semiconductor device according to the present invention can be evaluated more easily than the conventional method because it is sufficient to test the sample without measuring and evaluating the semiconductor device itself.

特に、誘電緩和測定装置による測定を、誘電緩和測定装置の電極間に載置された上記サンプルに対し電極を押圧しながら行うと、より正確な測定結果を得ることができる。   In particular, when the measurement by the dielectric relaxation measuring device is performed while pressing the electrode against the sample placed between the electrodes of the dielectric relaxation measuring device, a more accurate measurement result can be obtained.

また、誘電緩和測定装置による測定を、125〜135℃雰囲気下で行うと、より正確な測定結果を得ることができる。   Further, when the measurement by the dielectric relaxation measuring device is performed in an atmosphere of 125 to 135 ° C., a more accurate measurement result can be obtained.

また、誘電緩和測定装置による測定を、2〜6分間行うと、短時間でかつ正確な測定結果を得ることができる。   Moreover, when the measurement by the dielectric relaxation measuring apparatus is performed for 2 to 6 minutes, an accurate measurement result can be obtained in a short time.

さらに、誘電緩和測定装置が、誘電率測定用インターフェースを有するインピーダンス測定装置と動的粘弾性測定装置との組み合わせからなると、より適正な測定を行うことができる。   Furthermore, if the dielectric relaxation measuring device is a combination of an impedance measuring device having a dielectric constant measuring interface and a dynamic viscoelasticity measuring device, more appropriate measurement can be performed.

そして、誘電緩和測定装置による発現周波数の測定結果が25Hz以下のものに対し、耐湿信頼性が良好であるとの評価を行うと、より適正な評価結果を下すことができる。   And if the measurement result of the expression frequency by a dielectric relaxation measuring device is 25 Hz or less and it is evaluated that the moisture resistance reliability is good, a more appropriate evaluation result can be obtained.

本発明の評価方法に用いられる誘電緩和測定装置の一例を示す概略図である。It is the schematic which shows an example of the dielectric relaxation measuring apparatus used for the evaluation method of this invention. 誘電緩和測定での既定の周波数K(Hz)の逆数1/Kと、Cu−HAST信頼性(時間)との関係を示すグラフである。It is a graph which shows the relationship between the reciprocal 1 / K of the predetermined frequency K (Hz) in a dielectric relaxation measurement, and Cu-HAST reliability (time).

つぎに、本発明の実施の形態について詳しく説明する。   Next, embodiments of the present invention will be described in detail.

本発明の半導体装置の耐湿信頼性評価方法は、先に述べたように、半導体素子をエポキシ樹脂組成物で封止してなる半導体装置の、上記封止に用いられるエポキシ樹脂組成物から、円板状樹脂硬化体サンプル(以下、必要に応じ、単に「サンプル」と略記する)を作製し、上記サンプルを特定条件で吸湿処理した後、上記サンプルに対して、誘電緩和測定装置を用い、誘電損失ピーク上の誘電損失が0.81±0.05となる周波数を読み取り、その周波数から上記半導体装置の耐湿信頼性を評価するものである。   The moisture resistance reliability evaluation method for a semiconductor device according to the present invention includes, as described above, a semiconductor device in which a semiconductor element is sealed with an epoxy resin composition. A cured plate-shaped resin sample (hereinafter simply abbreviated as “sample” as necessary) is prepared, and the sample is subjected to moisture absorption treatment under specific conditions. The frequency at which the dielectric loss on the loss peak is 0.81 ± 0.05 is read, and the moisture resistance reliability of the semiconductor device is evaluated from the frequency.

上記エポキシ樹脂組成物としては、半導体素子の封止用に用いられるものであればよく、エポキシ樹脂の他、フェノール樹脂、無機質充填剤(シリカ等)、硬化促進剤等を適宜含むものである。また、必要に応じ、シリコーン化合物、シランカップリング剤、難燃剤、難燃助剤、離型剤、イオントラップ剤、カーボンブラック等の顔料や着色料、低応力化剤、粘着付与剤等の他の添加剤を適宜配合することもできる。   Any epoxy resin composition may be used as long as it is used for sealing a semiconductor element. The epoxy resin composition suitably contains an epoxy resin, a phenol resin, an inorganic filler (such as silica), and a curing accelerator. In addition, if necessary, other pigments and colorants such as silicone compounds, silane coupling agents, flame retardants, flame retardant aids, mold release agents, ion trapping agents, carbon black, low stress agents, tackifiers, etc. These additives can also be appropriately blended.

上記エポキシ樹脂組成物は、例えば、エポキシ樹脂をはじめとする上記各材料を配合し混合した後、ミキシングロール機等の混練機にかけ加熱状態で溶融混練し、ついで、これを室温に冷却固化させた後、公知の手段によって粉砕し、必要に応じて打錠するという一連の工程により、製造することができる。   The epoxy resin composition is prepared by mixing and mixing the above-mentioned materials including, for example, an epoxy resin, then melt-kneading in a heated state in a kneading machine such as a mixing roll machine, and then cooling and solidifying it to room temperature. Then, it can manufacture by a series of processes of grind | pulverizing by a well-known means and tableting as needed.

上記エポキシ樹脂組成物を用いてなるサンプルの作製条件は、熱硬化条件が、175±10℃×120±40秒間の加熱硬化の後、175±10℃×3±2時間のアフターキュア(後硬化)の条件で行われ、寸法条件が、誘電緩和測定装置の電極の直径以上、厚み1±0.6mmの条件で行われる。なお、上記寸法条件は、誘電緩和測定装置の電極間距離および電極の直径に依存するものであり、電極の直径以上の直径を有するサンプルが必要であるということを意味する。   Samples prepared using the epoxy resin composition were prepared under the following conditions: thermosetting conditions were 175 ± 10 ° C. × 120 ± 40 seconds after heat curing, and 175 ± 10 ° C. × 3 ± 2 hours after cure (post-curing). The dimensional condition is equal to or larger than the diameter of the electrode of the dielectric relaxation measuring apparatus and the thickness is 1 ± 0.6 mm. The above dimensional condition depends on the distance between electrodes of the dielectric relaxation measuring apparatus and the diameter of the electrode, and means that a sample having a diameter larger than the diameter of the electrode is required.

上記のようにして作製されたサンプルの吸湿処理条件は、130℃、湿度85%の雰囲気下で、80±30時間行われる。すなわち、本発明の評価方法が、HAST試験の代替方法であることから、HAST試験の環境条件と同等の条件下で吸湿処理を施す必要があるからである。   The sample manufactured as described above is subjected to moisture absorption treatment conditions in an atmosphere of 130 ° C. and humidity of 85% for 80 ± 30 hours. That is, since the evaluation method of the present invention is an alternative method of the HAST test, it is necessary to perform a moisture absorption treatment under conditions equivalent to the environmental conditions of the HAST test.

そして、本発明では、上記吸湿処理後のサンプルに対する、誘電緩和測定装置を用いて誘電損失が0.81±0.05となるイオン分極起因の誘電損失ピークの発現周波数を測定し、その周波数から上記半導体装置の耐湿信頼性を評価する。   And in this invention, the expression frequency of the dielectric loss peak resulting from the ionic polarization at which the dielectric loss becomes 0.81 ± 0.05 is measured using the dielectric relaxation measuring device for the sample after the moisture absorption treatment, and from the frequency The moisture resistance reliability of the semiconductor device is evaluated.

特に、誘電緩和測定装置による測定において、誘電緩和測定装置の電極間に載置された上記サンプルに対し電極を押圧しながら行うことにより、サンプルと電極との接触が良好となり、より正確な測定結果を得ることができる。なお、上記押圧は、例えば、100〜500gの荷重で行われる。   In particular, in the measurement by the dielectric relaxation measuring device, the contact between the sample and the electrode is improved by pressing the electrode against the sample placed between the electrodes of the dielectric relaxation measuring device, and the more accurate measurement result Can be obtained. In addition, the said press is performed by the load of 100-500g, for example.

また、正確な測定結果を考慮した場合、誘電緩和測定装置による測定は、125〜135℃雰囲気下で行うことが好ましい。より好ましくは、129〜131℃雰囲気下での測定である。   Moreover, when an accurate measurement result is considered, it is preferable to perform the measurement by a dielectric relaxation measuring apparatus in 125-135 degreeC atmosphere. More preferably, the measurement is performed in an atmosphere of 129 to 131 ° C.

そして、HAST試験と同様の信頼性を保持しつつ、短時間でかつ正確な測定結果が得られるという点から、誘電緩和測定装置による測定は、2〜6分間にて行うことが好ましい。   And it is preferable to perform the measurement by a dielectric relaxation measuring apparatus in 2 to 6 minutes from the point that an accurate measurement result is obtained in a short time while maintaining the same reliability as the HAST test.

さらに、誘電緩和測定装置としては、例えば、誘電率測定用インターフェースを有するインピーダンス測定装置と動的粘弾性測定装置との組み合わせからなる構成があげられ、このような構成により適正な測定を行うことができる。図1は、本発明の評価方法に用いられる誘電緩和測定装置の一例を示す概略図であり、1aが誘電率測定用インターフェース、1bがインピーダンス測定装置、2が動的粘弾性測定装置、2aが測定用電極を示す。すなわち、この誘電緩和測定装置においては、インピーダンス測定装置1b上に接続され配置された誘電率測定用インターフェース1aが動的粘弾性測定装置2に接続されており、動的粘弾性測定装置2に測定用電極2aが取り付けられている。そして、上記測定用電極2a間に、測定対象となるサンプルを挟持させ測定に供する。なお、誘電率測定用インターフェース1aとしては、例えば、英国ソーラトロン社製の1296型誘電率測定インターフェースが用いられ、インピーダンス測定装置1bとしては、例えば、英国ソーラトロン社製の1255B型インピーダンスアナライザーが用いられる。また、動的粘弾性測定装置2としては、例えば、TAインスツルメント社製のARESが用いられる。   Furthermore, as the dielectric relaxation measuring device, for example, a configuration comprising a combination of an impedance measuring device having a dielectric constant measuring interface and a dynamic viscoelasticity measuring device can be mentioned, and appropriate measurement can be performed with such a configuration. it can. FIG. 1 is a schematic view showing an example of a dielectric relaxation measuring device used in the evaluation method of the present invention. 1a is a dielectric constant measuring interface, 1b is an impedance measuring device, 2 is a dynamic viscoelasticity measuring device, and 2a is The measurement electrode is shown. That is, in this dielectric relaxation measuring device, the dielectric constant measuring interface 1a connected and arranged on the impedance measuring device 1b is connected to the dynamic viscoelasticity measuring device 2 and measured by the dynamic viscoelasticity measuring device 2. A working electrode 2a is attached. And the sample used as a measuring object is pinched | interposed between the said electrodes 2a for a measurement, and it uses for a measurement. As the dielectric constant measuring interface 1a, for example, a 1296 type dielectric constant measuring interface manufactured by Solartron, UK is used, and as the impedance measuring apparatus 1b, for example, a 1255B type impedance analyzer manufactured by Solartron, UK is used. As the dynamic viscoelasticity measuring device 2, for example, ARES manufactured by TA Instruments is used.

そして、誘電緩和測定装置による上記既定したところの周波数の測定結果が25Hz以下のものに対し、耐湿信頼性が良好であるとの評価を行うことにより、HAST試験と同様の信頼性を保持しつつ、より適正な評価結果を下すことができる。すなわち、上記エポキシ樹脂組成物の硬化物が、上記物性(誘電緩和測定装置を用いてイオン分極起因の誘電損失ピーク上の誘電損失が0.81±0.05となる周波数が25Hz以下)を備えることが、従来の高温高湿信頼性特性(HAST特性)における同等の吸湿処理を施して評価試験を行なった際に200時間を超える評価結果と同等となる。なお、上記周波数の下限は、通常、0.01Hzである。   Then, by evaluating that the humidity measurement reliability is good with respect to a frequency measurement result of 25 Hz or less by the dielectric relaxation measuring device, while maintaining the same reliability as the HAST test. A more appropriate evaluation result can be obtained. That is, the cured product of the epoxy resin composition has the above physical properties (the frequency at which the dielectric loss on the dielectric loss peak due to ion polarization is 0.81 ± 0.05 using a dielectric relaxation measuring device is 25 Hz or less). This is equivalent to an evaluation result exceeding 200 hours when an evaluation test is performed by performing an equivalent moisture absorption treatment in the conventional high temperature and high humidity reliability characteristic (HAST characteristic). Note that the lower limit of the frequency is usually 0.01 Hz.

つぎに、実施例について説明する。ただし、本発明は、その要旨を超えない限り、これら実施例に限定されるものではない。   Next, examples will be described. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.

まず、実施例に先立ち、下記に示す各材料を準備した。   First, prior to the examples, the following materials were prepared.

〔エポキシ樹脂a1〕
ビフェニル型エポキシ樹脂(三菱化学社製、YX4000H)
〔エポキシ樹脂a2〕
トリフェニルメタン型エポキシ樹脂(日本化薬社製、EPPN−501HY)
[Epoxy resin a1]
Biphenyl type epoxy resin (Mitsubishi Chemical Corporation YX4000H)
[Epoxy resin a2]
Triphenylmethane type epoxy resin (Nippon Kayaku Co., Ltd., EPPN-501HY)

〔フェノール樹脂b1〕
フェノールビフェニレン樹脂(明和化成社製、MEH−7851SS)
〔フェノール樹脂b2〕
フェノールノボラック樹脂(三井化学社製、VR8210)
〔フェノール樹脂b3〕
トリフェニルメタン型フェノール樹脂(明和化成社製、MEH−7500)
〔フェノール樹脂b4〕
フェノールノボラック樹脂(群栄化学工業社製、GS180)
[Phenolic resin b1]
Phenol biphenylene resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
[Phenolic resin b2]
Phenol novolac resin (VR8210, manufactured by Mitsui Chemicals)
[Phenolic resin b3]
Triphenylmethane type phenolic resin (Maywa Kasei Co., Ltd., MEH-7500)
[Phenolic resin b4]
Phenol novolac resin (manufactured by Gunei Chemical Industry Co., Ltd., GS180)

〔硬化促進剤c1〕
2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(四国化成工業社製、2P4MHZ)
〔硬化促進剤c2〕
リン系硬化促進剤(北興化学工業社製、TPP−MK)
〔硬化促進剤c3〕
リン系硬化促進剤(北興化学工業社製、TPP)
〔硬化促進剤c4〕
リン系硬化促進剤(北興化学工業社製、TPP−S)
[Curing accelerator c1]
2-Phenyl-4-methyl-5-hydroxymethylimidazole (manufactured by Shikoku Chemicals Co., 2P4MHZ)
[Curing accelerator c2]
Phosphorus curing accelerator (manufactured by Hokuko Chemical Co., Ltd., TPP-MK)
[Curing accelerator c3]
Phosphorus curing accelerator (manufactured by Hokuko Chemical Co., Ltd., TPP)
[Curing accelerator c4]
Phosphorus curing accelerator (manufactured by Hokuko Chemical Co., Ltd., TPP-S)

〔添加剤e1〕
アルコキシ基非含有シラノール基含有シリコーン化合物(東レ・ダウコーニング社製、217FLAKE)
〔添加剤e2〕
アルコキシ基非含有シラノール基含有シリコーン化合物(東レ・ダウコーニング社製、SH6018FLAKE)
〔添加剤e3〕
アルコキシ基非含有シラノール基含有シリコーン化合物(東レ・ダウコーニング社製、220FLAKE)
〔添加剤e4〕
アルコキシ基非含有シラノール基含有シリコーン化合物(東レ・ダウコーニング社製、255FLAKE)
〔添加剤e5〕
シラノール基非含有アルコキシ基含有シリコーン化合物(東レ・ダウコーニング社製、3074INTERMEDIATE)
〔添加剤e6〕
シラノール基非含有アルコキシ基含有シリコーン化合物(東レ・ダウコーニング社製、SR2402)
〔添加剤e7〕
シラノール基非含有アルコキシ基含有シリコーン化合物(東レ・ダウコーニング社製、AY42−163)
〔添加剤e8〕
シラノール基非含有アルコキシ基含有シリコーン化合物(東レ・ダウコーニング社製、3037INTERMEDIATE)
〔添加剤e9〕
シラノール基非含有アルコキシ基含有シリコーン化合物(モメンティブ・パフォーマンス・マテリアルズ社製、TSR165)
〔添加剤e10〕
シラノール基非含有アルコキシ基含有シリコーン化合物(モメンティブ・パフォーマンス・マテリアルズ社製、XR31−B2733)
〔添加剤e11〕
シラノール基非含有アルコキシ基含有シリコーン化合物(信越化学工業社製、KR−500)
〔添加剤e12〕
シラノール基非含有アルコキシ基含有シリコーン化合物(信越化学工業社製、KR−9218)
〔添加剤e13〕
シラノール基非含有アルコキシ基含有シリコーン化合物(小西化学工業社製、SR−23)
[Additive e1]
Alkoxy group-free silanol group-containing silicone compound (Toray Dow Corning, 217FLAKE)
[Additive e2]
Alkoxy group-free silanol group-containing silicone compound (manufactured by Toray Dow Corning, SH6018FLAKE)
[Additive e3]
Non-alkoxy group-containing silanol group-containing silicone compound (Toray Dow Corning, 220FLAKE)
[Additive e4]
Alkoxy group-free silanol group-containing silicone compound (manufactured by Dow Corning Toray, 255FLAKE)
[Additive e5]
Silanol group-free alkoxy group-containing silicone compound (Toray Dow Corning, 3074 INTERMEDIATE)
[Additive e6]
Silanol group-free alkoxy group-containing silicone compound (Toray Dow Corning, SR2402)
[Additive e7]
Silanol group-free alkoxy group-containing silicone compound (Toy Dow Corning AY42-163)
[Additive e8]
Silanol group-free silicone group-containing silicone compound (manufactured by Dow Corning Toray, 3037 INTERMEDIATE)
[Additive e9]
Silanol group-free alkoxy group-containing silicone compound (Momentive Performance Materials, TSR165)
[Additive e10]
Silanol group-free alkoxy group-containing silicone compound (Momentive Performance Materials, XR31-B2733)
[Additive e11]
Silanol group-free silicone group-containing silicone compound (manufactured by Shin-Etsu Chemical Co., Ltd., KR-500)
[Additive e12]
Silanol group-free alkoxy group-containing silicone compound (manufactured by Shin-Etsu Chemical Co., Ltd., KR-9218)
[Additive e13]
Silanol group-free alkoxy group-containing silicone compound (manufactured by Konishi Chemical Industries, SR-23)

〔無機質充填剤〕
球状溶融シリカ粉末(平均粒径13μm)
[Inorganic filler]
Spherical fused silica powder (average particle size 13μm)

〔顔料〕
カーボンブラック
[Pigment]
Carbon black

〔難燃剤〕
水酸化マグネシウム
〔Flame retardants〕
Magnesium hydroxide

〔シランカップリング剤〕
3−メタクリロキシプロピルトリメトキシシラン
〔Silane coupling agent〕
3-Methacryloxypropyltrimethoxysilane

〔離型剤〕
酸化ポリエチレンワックス(酸価10〜70mgKOH/g)
〔Release agent〕
Oxidized polyethylene wax (acid value 10-70 mgKOH / g)

〔エポキシ樹脂組成物の調製〕
上記各材料を、後記の表1〜表3に示す各成分を同表に示す割合で配合し、ミキサーにて充分混合した後、2軸混練機を用い100℃にて2分間溶融混練した。つぎに、この溶融物を冷却した後、固体状になったものを粉末状に粉砕することにより目的とする粉末状エポキシ樹脂組成物(No,1〜28)を調製した。
[Preparation of epoxy resin composition]
Each component shown in Tables 1 to 3 below was blended in the proportions shown in the same table and mixed sufficiently with a mixer, and then melt-kneaded at 100 ° C. for 2 minutes using a biaxial kneader. Next, after the melt was cooled, the solid powder was pulverized into a powdery epoxy resin composition (No. 1-28).

このようにして得られた各エポキシ樹脂組成物(No,1〜28)を用い、下記に示す方法に従って、測定,評価した。これらの結果を後記の表1〜表3に併せて示す。   Each epoxy resin composition (No, 1-28) thus obtained was used for measurement and evaluation according to the following method. These results are also shown in Tables 1 to 3 below.

〔誘電緩和測定における周波数物性(本発明の測定評価方法)〕
1)サンプルの作製
上記調製の各エポキシ樹脂組成物を用い、金型を用いて175℃で120秒間のプレス成型を行い、さらに175℃で3時間の後硬化を行うことにより、直径50mmで厚み1mmの円板状樹脂硬化体サンプルを作製した。
[Frequency properties in dielectric relaxation measurement (measurement evaluation method of the present invention)]
1) Preparation of sample Using each epoxy resin composition prepared above, press molding is performed at 175 ° C for 120 seconds using a mold, and further post-curing is performed at 175 ° C for 3 hours, so that the thickness is 50 mm. A 1 mm disk-shaped resin cured body sample was prepared.

2)吸湿処理
上記サンプルに、130℃×85%RHでの80時間の吸湿処理条件にて吸湿処理を施した。
2) Moisture absorption treatment The sample was subjected to moisture absorption treatment under conditions of moisture absorption treatment at 130 ° C x 85% RH for 80 hours.

3)誘電緩和測定
ソーラトロン社製の1296型誘電率測定インターフェースを、ソーラトロン社製の1255B型インピーダンスアナライザーに接続した。つぎに、動的粘弾性測定装置であるTAインスツルメント社製のARESに測定用電極(電極直径30mm)を取り付けた後、動的粘弾性測定装置を上記誘電率測定インターフェースに接続した。このようにして誘電緩和測定装置を完成させた(図1参照)。そして、上記動的粘弾性測定装置の恒温槽の設定温度を130℃にし、ギャップゼロ設定を行った後、恒温槽の扉を開け、測定用電極間に上記作製のサンプルをセットし、恒温槽の扉を閉めた。測定用電極間には荷重を400g程度かけ、サンプルと電極とを充分に接触させた。このようにサンプルをセットしてから5分後、誘電緩和測定を開始した。また、上記サンプルと同一測定ギャップ(1mm)で、別途、空気の誘電率測定も行った。なお、誘電緩和測定条件は、以下の条件で行った。
・AC電圧:1V
・周波数範囲:1000000Hz〜0.01Hz
・積算時間:1秒
3) Dielectric relaxation measurement A 1296 type dielectric constant measurement interface manufactured by Solartron was connected to a 1255B type impedance analyzer manufactured by Solartron. Next, after attaching a measurement electrode (electrode diameter 30 mm) to ARES manufactured by TA Instruments, which is a dynamic viscoelasticity measuring device, the dynamic viscoelasticity measuring device was connected to the dielectric constant measurement interface. In this way, a dielectric relaxation measuring apparatus was completed (see FIG. 1). And after setting the set temperature of the thermostat of the dynamic viscoelasticity measuring apparatus to 130 ° C. and performing the gap zero setting, the thermostat chamber door is opened, the sample prepared above is set between the measurement electrodes, and the thermostat bath Closed the door. A load of about 400 g was applied between the measurement electrodes to bring the sample and the electrode into sufficient contact. Five minutes after setting the sample in this way, dielectric relaxation measurement was started. In addition, the dielectric constant of air was also measured separately with the same measurement gap (1 mm) as the above sample. The dielectric relaxation measurement conditions were as follows.
・ AC voltage: 1V
・ Frequency range: 1000000Hz to 0.01Hz
・ Integrated time: 1 second

4)データ解析
空気の誘電率測定結果から、空気の平均の誘電率を算出した。つぎに、サンプルの誘電緩和測定結果(capacitance realと、capacitance imagenary)から、これらを空気の平均の誘電率で割り算規格化し、サンプルの誘電率と誘電損失を算出した。そして、サンプルの誘電損失を測定周波数に対してプロットし、イオン分極由来のシグナルを確認し、上記シグナルの中で、誘電損失の値が0.812となっているところの周波数(誘電緩和測定での既定の周波数K)(Hz)を読み取った。
4) Data analysis The average dielectric constant of air was calculated from the measurement result of the dielectric constant of air. Next, from the dielectric relaxation measurement results (capacitance real and capacitance imagery) of the sample, these were divided and normalized by the average dielectric constant of air, and the dielectric constant and dielectric loss of the sample were calculated. Then, the dielectric loss of the sample is plotted against the measurement frequency, and a signal derived from ion polarization is confirmed. Among the signals, the frequency at which the dielectric loss value is 0.812 (in the dielectric relaxation measurement). The predetermined frequency K) (Hz) was read.

〔銅ワイヤーに対する高温高湿信頼性の指標(従来の測定評価方法)〕
前記調製の各エポキシ樹脂組成物を用い、半導体素子のトランスファー成形を、成形温度175℃,成形時間120秒間の条件にて行い、後硬化を175℃で3時間の条件にて行う(前記サンプルと同じ熱硬化条件)ことにより、片面樹脂封止型パッケージを作製した。詳しくは、半導体素子搭載基板であるBTレジン(JCI社製)(大きさ:49mm×49mm×厚み0.21mm)上に、半導体素子であるSiチップ(大きさ:30mm×30mm×厚み0.2mm)を搭載して固定し、この搭載面側のみを上記トランスファー成形により樹脂封止(封止樹脂サイズ:49mm×49mm×厚み0.7mm)することにより片面封止タイプの半導体装置を作製した。なお、SiチップとBTレジン上の回路部分との接続には銅製のボンディングワイヤーを用いた。
[High temperature and high humidity reliability index for copper wire (conventional measurement evaluation method)]
Using each of the epoxy resin compositions prepared above, transfer molding of the semiconductor element is performed under conditions of a molding temperature of 175 ° C. and a molding time of 120 seconds, and post-curing is performed at 175 ° C. for 3 hours (the sample and A single-sided resin-encapsulated package was manufactured under the same thermosetting conditions. Specifically, on a BT resin (manufactured by JCI) (size: 49 mm × 49 mm × thickness 0.21 mm) as a semiconductor element mounting substrate, a Si chip (size: 30 mm × 30 mm × thickness 0.2 mm) as a semiconductor element. ) Was mounted and fixed, and only the mounting surface side was resin-sealed by the transfer molding (sealing resin size: 49 mm × 49 mm × thickness 0.7 mm) to produce a single-side sealed type semiconductor device. A copper bonding wire was used for connection between the Si chip and the circuit portion on the BT resin.

このようにして得られた片面樹脂封止型パッケージ(半導体装置)に対し、高温高湿環境下(130℃×85%RH)でのHAST試験(不飽和加圧蒸気試験:バイアス無し)を行った。その後、高温高湿処理後の片面樹脂封止型パッケージの抵抗値測定を行い、抵抗値の上昇率が10%以上となった場合を断線不良(銅ワイヤーに対する)と判断して、この断線不良が発生する高温高湿処理時間を高温高湿信頼性の不良発生時間(Cu−HAST信頼性)(時間)として測定した。   The HAST test (unsaturated pressurized steam test: no bias) in a high-temperature, high-humidity environment (130 ° C. × 85% RH) is performed on the single-sided resin-encapsulated package (semiconductor device) thus obtained. It was. Then, the resistance value of the single-sided resin-encapsulated package after the high temperature and high humidity treatment is measured, and when the increase rate of the resistance value is 10% or more, it is determined that the disconnection is defective (relative to the copper wire). The high-temperature and high-humidity treatment time during which the above occurs is measured as the defect occurrence time (Cu-HAST reliability) (time) of the high-temperature and high-humidity reliability.

Figure 0005867214
Figure 0005867214

Figure 0005867214
Figure 0005867214

Figure 0005867214
Figure 0005867214

上記表の結果をもとに、誘電緩和測定での既定の周波数K(Hz)の逆数である1/Kと、Cu−HAST信頼性(時間)との関係をグラフに示すと、図2のようになる。図より、1/Kと、Cu−HAST信頼性(時間)とは比例関係にあることから、誘電緩和測定での既定の周波数K(Hz)と、Cu−HAST信頼性(時間)には相関関係が認められる。そして、上記表および図2のグラフの結果より、Cu−HAST信頼性において最低限要求される測定時間(200時間以上)に対応する、誘電緩和測定での既定の周波数K(Hz)は、25Hz以下であると認められることから、誘電緩和測定装置による発現周波数の測定結果が25Hz以下のものに対し、耐湿信頼性が良好であるとの評価を行うと、短時間で、従来のHAST試験と同様の耐湿信頼性の評価を行うことができることがわかった。   Based on the results in the above table, the relationship between 1 / K, which is the reciprocal of the predetermined frequency K (Hz) in dielectric relaxation measurement, and Cu-HAST reliability (time) is shown in the graph of FIG. It becomes like this. From the figure, 1 / K and Cu-HAST reliability (time) are in a proportional relationship, so there is a correlation between the predetermined frequency K (Hz) in dielectric relaxation measurement and Cu-HAST reliability (time). Relationship is recognized. From the results of the above table and the graph of FIG. 2, the predetermined frequency K (Hz) in the dielectric relaxation measurement corresponding to the minimum required measurement time (200 hours or more) in the Cu-HAST reliability is 25 Hz. Since it is recognized that the measurement result of the expression frequency by the dielectric relaxation measuring device is 25 Hz or less, when it is evaluated that the moisture resistance reliability is good, the conventional HAST test can be performed in a short time. It was found that the same moisture resistance reliability can be evaluated.

本発明の半導体装置の耐湿信頼性評価方法は、封止用樹脂の硬化体サンプルから、短時間で耐湿信頼性の評価を行うことができ、しかも、半導体装置そのものを測定評価せずとも、上記サンプルに対して試験を行えばよいことから、従来よりも容易に評価を行うことができる。そのため、半導体装置の品質評価の迅速化に大いに活用することができる。   According to the moisture resistance reliability evaluation method for a semiconductor device of the present invention, the moisture resistance reliability can be evaluated in a short time from the cured resin sample of the sealing resin, and the above measurement can be performed without measuring and evaluating the semiconductor device itself. Since it is only necessary to perform a test on the sample, the evaluation can be performed more easily than in the past. Therefore, it can be greatly utilized for speeding up the quality evaluation of the semiconductor device.

1a 誘電率測定用インターフェース
1b インピーダンス測定装置
2 動的粘弾性測定装置
2a 測定用電極
1a Dielectric constant measuring interface 1b Impedance measuring device 2 Dynamic viscoelasticity measuring device 2a Measuring electrode

Claims (6)

半導体素子をエポキシ樹脂組成物で封止してなる半導体装置の耐湿信頼性評価方法であって、上記エポキシ樹脂組成物を用いて下記(X)に示す熱硬化条件および寸法条件で円板状樹脂硬化体サンプルを作製し、上記サンプルに対して、下記(Y)に示す吸湿処理条件で吸湿させた後、誘電緩和測定装置を用いてイオン分極起因の誘電損失ピークを測定し、ピーク上の誘電損失が0.81±0.05となる周波数を読み取り、その周波数から上記半導体装置の耐湿信頼性を評価することを特徴とする半導体装置の耐湿信頼性評価方法。
(X)熱硬化条件:175±10℃×120±40秒間の加熱硬化の後、175±10℃×3±2時間のアフターキュア。
寸法条件:誘電緩和測定装置の電極の直径以上で、厚み1±0.6mm。
(Y)吸湿処理条件:130℃、湿度85%の雰囲気下で、80±30時間。
A method for evaluating the reliability of moisture resistance of a semiconductor device in which a semiconductor element is encapsulated with an epoxy resin composition, wherein the epoxy resin composition is used to form a disc-shaped resin under the thermosetting conditions and dimensional conditions shown in (X) below. A cured body sample was prepared, and the sample was absorbed under the moisture absorption treatment conditions shown in (Y) below, and then a dielectric loss peak due to ion polarization was measured using a dielectric relaxation measuring device, and the dielectric on the peak was measured. A method for evaluating moisture resistance reliability of a semiconductor device, comprising: reading a frequency at which a loss is 0.81 ± 0.05, and evaluating the moisture resistance reliability of the semiconductor device from the frequency.
(X) Thermal curing conditions: 175 ± 10 ° C. × 120 ± 40 seconds after heat curing, 175 ± 10 ° C. × 3 ± 2 hours after cure.
Dimensional condition: The diameter is equal to or larger than the electrode diameter of the dielectric relaxation measuring apparatus, and the thickness is 1 ± 0.6 mm.
(Y) Hygroscopic treatment conditions: 80 ± 30 hours in an atmosphere of 130 ° C. and 85% humidity.
誘電緩和測定装置による測定を、誘電緩和測定装置の電極間に載置された上記サンプルに対し電極を押圧しながら行う、請求項1記載の半導体装置の耐湿信頼性評価方法。   The moisture resistance reliability evaluation method for a semiconductor device according to claim 1, wherein the measurement by the dielectric relaxation measuring device is performed while pressing the electrodes against the sample placed between the electrodes of the dielectric relaxation measuring device. 誘電緩和測定装置による測定を、125〜135℃雰囲気下で行う、請求項1または2記載の半導体装置の耐湿信頼性評価方法。   The moisture resistance reliability evaluation method for a semiconductor device according to claim 1 or 2, wherein the measurement by the dielectric relaxation measuring device is performed in an atmosphere of 125 to 135 ° C. 誘電緩和測定装置による測定を、2〜6分間行う、請求項1〜3のいずれか一項に記載の半導体装置の耐湿信頼性評価方法。   The moisture resistance reliability evaluation method for a semiconductor device according to any one of claims 1 to 3, wherein the measurement by the dielectric relaxation measuring device is performed for 2 to 6 minutes. 誘電緩和測定装置が、誘電率測定用インターフェースを有するインピーダンス測定装置と動的粘弾性測定装置との組み合わせからなる、請求項1〜4のいずれか一項に記載の半導体装置の耐湿信頼性評価方法。   The method of evaluating moisture resistance reliability of a semiconductor device according to any one of claims 1 to 4, wherein the dielectric relaxation measuring device comprises a combination of an impedance measuring device having a dielectric constant measuring interface and a dynamic viscoelasticity measuring device. . 誘電緩和測定装置によりイオン分極起因の誘電損失ピークを測定し、その周波数の測定結果が25Hz以下のものに対し、耐湿信頼性が良好であるとの評価を行う、請求項1〜5のいずれか一項に記載の半導体装置の耐湿信頼性評価方法。   6. A dielectric loss measurement device is used to measure a dielectric loss peak due to ion polarization, and for a frequency measurement result of 25 Hz or less, evaluation is made that moisture resistance reliability is good. A method for evaluating moisture resistance reliability of a semiconductor device according to one item.
JP2012065124A 2012-03-22 2012-03-22 Method for evaluating moisture resistance reliability of semiconductor devices Active JP5867214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065124A JP5867214B2 (en) 2012-03-22 2012-03-22 Method for evaluating moisture resistance reliability of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065124A JP5867214B2 (en) 2012-03-22 2012-03-22 Method for evaluating moisture resistance reliability of semiconductor devices

Publications (2)

Publication Number Publication Date
JP2013195329A JP2013195329A (en) 2013-09-30
JP5867214B2 true JP5867214B2 (en) 2016-02-24

Family

ID=49394443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065124A Active JP5867214B2 (en) 2012-03-22 2012-03-22 Method for evaluating moisture resistance reliability of semiconductor devices

Country Status (1)

Country Link
JP (1) JP5867214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990959B2 (en) * 2012-03-22 2016-09-14 日立化成株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP6038056B2 (en) * 2014-01-30 2016-12-07 三菱電機株式会社 Electrode moisture resistance evaluation method and evaluation apparatus used therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088911A (en) * 1998-09-14 2000-03-31 Showa Electric Wire & Cable Co Ltd Diagnostic method for degradation of water tree of insulator
JP3560858B2 (en) * 1999-07-12 2004-09-02 株式会社東芝 Resin casting machine
JP3720291B2 (en) * 2001-10-18 2005-11-24 三菱電機株式会社 Degradation diagnosis method for solid insulation materials
JP2003215084A (en) * 2002-01-23 2003-07-30 Olympus Optical Co Ltd Test method for evaluating hydrophilic property or hygroscopic property in substance

Also Published As

Publication number Publication date
JP2013195329A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP2013159746A (en) Epoxy resin composition for sealing electronic component and electronic component device using the same
JP5867214B2 (en) Method for evaluating moisture resistance reliability of semiconductor devices
JP6036054B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5990959B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP6885068B2 (en) Encapsulating resin composition and semiconductor device
KR100739363B1 (en) Epoxy resin for packaging semiconductor device
JP6028356B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
KR100599865B1 (en) Epoxy resin composition for sealing Semiconductor device
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP3811154B2 (en) Resin composition for sealing and resin-sealed semiconductor device
JP2001106768A (en) Epoxy resin composition and semiconductor sealed device
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
CN109135181A (en) High-thermal-conductivity epoxy resin composite material and preparation method
JP2000248153A (en) Epoxy resin composition and ferroelectric memory device
KR0185210B1 (en) Encapsulating epoxy resin composition for semiconductor
JP2003277590A (en) Sealing resin composition and resin-sealed semiconductor device
JP3093051B2 (en) Epoxy resin composition
JPH0193155A (en) Resin-sealed semiconductor device
KR950000217B1 (en) Epoxy resin composition for encapsulating semiconductor parts
JP2016138287A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2009127011A (en) Epoxy resin composition for sealing and semiconductor device
KR100413356B1 (en) Epoxy molding composition for encapsulating semiconductor device
JPH11130941A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH11121658A (en) Sealing resin composition and semiconductor sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801