JP5864368B2 - Particulate matter detection element and manufacturing method thereof - Google Patents

Particulate matter detection element and manufacturing method thereof Download PDF

Info

Publication number
JP5864368B2
JP5864368B2 JP2012140653A JP2012140653A JP5864368B2 JP 5864368 B2 JP5864368 B2 JP 5864368B2 JP 2012140653 A JP2012140653 A JP 2012140653A JP 2012140653 A JP2012140653 A JP 2012140653A JP 5864368 B2 JP5864368 B2 JP 5864368B2
Authority
JP
Japan
Prior art keywords
layer
insulating
detection
sheet
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012140653A
Other languages
Japanese (ja)
Other versions
JP2014006103A (en
Inventor
原田 敏彦
敏彦 原田
真哉 寺西
真哉 寺西
則明 木原
則明 木原
岳人 木全
岳人 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2012140653A priority Critical patent/JP5864368B2/en
Publication of JP2014006103A publication Critical patent/JP2014006103A/en
Application granted granted Critical
Publication of JP5864368B2 publication Critical patent/JP5864368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車用内燃機関の排気系等に使用され、被測定ガス中に含まれるカーボンからなる煤を主成分とする粒子状物質を検出する粒子状物質検出素子とその製造方法に関する。   The present invention relates to a particulate matter detection element that is used in an exhaust system of an internal combustion engine for automobiles and the like and detects particulate matter mainly composed of soot composed of carbon contained in a gas to be measured, and a manufacturing method thereof.

自動車用ディーゼルエンジン等において、燃焼排気に含まれる環境汚染物質、特に煤粒子(Soot)及び可溶性有機成分(SOF)を主体とする粒子状物質(Particulate Matter;以下、PMと称する。)を捕集するために、排気通路にディーゼルパティキュレートフィルタ(以下、DPFと称する。)を設置することが行われている。DPFは、耐熱性に優れる多孔質セラミックスからなり、多数の細孔を有する隔壁に燃焼排気を通過させてPMを捕捉する。
DPFは、PM捕集量が許容量を超えると、目詰まりが生じて圧力損失が増大したり、過剰に堆積したPMを燃焼したときに発生する熱によりDPFが破損してPMのすり抜けを生じたりする虞があり、定期的に再生処理を行って捕集能力を回復させている。
In automobile diesel engines and the like, environmental pollutants contained in combustion exhaust, particularly particulate matter (hereinafter referred to as PM) mainly composed of soot particles and soluble organic components (SOF) are collected. For this purpose, a diesel particulate filter (hereinafter referred to as DPF) is installed in the exhaust passage. The DPF is made of porous ceramics having excellent heat resistance, and traps PM by allowing combustion exhaust gas to pass through partition walls having a large number of pores.
If the amount of collected PM exceeds the allowable amount, the DPF will become clogged and the pressure loss will increase, or the DPF will be damaged by the heat generated when burning excessively accumulated PM, causing the PM to pass through. The collection ability is restored by periodically performing a regeneration process.

DPFの再生時期の適切な判断や、PMのすり抜け等の異常を早期に検出すべく、被測定ガス中のPMを検出するPM検出センサについて種々提案されている。
例えば、特許文献1には、板状の素子基材、素子基材に配設された一対の計測電極を備え、それぞれの計測電極は、平面的に配列された複数の櫛歯部と、各計測電極の複数の櫛歯部をその一端で連結する櫛骨部とを有する櫛歯状の電極であり、それぞれの計測電極の櫛歯部が、隙間を空けて相互にかみ合わされるように配置されてなり、且つ、少なくとも一方の計測電極の櫛骨部は、誘電体からなる櫛骨被覆部によって被覆され、一対の計測電極及びその周囲に粒子状物質を付着させ、一対の計測電極間の電気的特性の変化を測定することにより粒子状物質の検出を行う粒子状物質検出装置が開示されている。
Various PM detection sensors for detecting PM in the gas to be measured have been proposed in order to appropriately detect the DPF regeneration timing and to detect abnormalities such as PM slipping at an early stage.
For example, Patent Document 1 includes a plate-shaped element base material and a pair of measurement electrodes arranged on the element base material. Each measurement electrode includes a plurality of comb-tooth portions arranged in a plane, Comb-like electrode having a comb-bone part connecting a plurality of comb-teeth parts of measurement electrodes at one end thereof, and arranged so that the comb-teeth parts of each measurement electrode are interdigitated with a gap. The comb bone portion of at least one measurement electrode is covered with a comb bone coating portion made of a dielectric material, and a particulate substance is adhered to the pair of measurement electrodes and the periphery thereof, and the gap between the pair of measurement electrodes is A particulate matter detection device that detects particulate matter by measuring changes in electrical characteristics is disclosed.

また、特許文献2には、一方の端部に二以上の貫通孔が形成された一方向に長い検出装置本体と、貫通孔を形成する壁の内部に埋設され、誘電体で覆われた少なくとも一対の電極とを備え、前記貫通孔内に流入する流体に含有される荷電された粒子状物質、又は、前記一対の電極に電圧を印加することにより前記貫通孔内に生じる放電により荷電された、前記貫通孔内に流入する流体に含有される粒子状物質を、貫通孔の壁面に電気的に吸着させることが可能であり、貫通孔を形成する壁の電気的な特性の変化を測定することにより貫通孔の壁面に吸着された粒子状物質を検出することが可能な粒子状物質検出装置が開示されている。   Further, Patent Document 2 discloses at least a detection device body that is long in one direction in which two or more through-holes are formed at one end, and at least a dielectric that is embedded in a wall that forms the through-holes and covered with a dielectric. A pair of electrodes, and charged by a charged particulate matter contained in the fluid flowing into the through hole, or by a discharge generated in the through hole by applying a voltage to the pair of electrodes The particulate matter contained in the fluid flowing into the through hole can be electrically adsorbed on the wall surface of the through hole, and the change in the electrical characteristics of the wall forming the through hole is measured. Thus, there is disclosed a particulate matter detection device capable of detecting particulate matter adsorbed on the wall surface of the through hole.

ところが、特許文献1にあるように、いわゆる櫛歯状電極を厚膜印刷やメッキ等の方法によって形成した場合、電極間の隙間は、30μm以下に設定するのは極めて困難である。このため、ナノメートル級の極めて小さいPMが検出電極層間に堆積して、電気的特性の検出が可能となるまでの不感質量が大きく、始動直後にPMの排出を検知できない虞がある。
また、絶縁性基板の表面に印刷形成した櫛歯状の検出電極層対をさらに絶縁層又は誘電層で覆い、検出面に堆積したPM量に応じて変化する、検出電極層間の静電容量を計測するようにした場合、静電容量の変化が小さく、検出精度が低いことが判明した。
However, as described in Patent Document 1, when so-called comb-like electrodes are formed by a method such as thick film printing or plating, it is extremely difficult to set the gap between the electrodes to 30 μm or less. For this reason, extremely small PM of nanometer level is deposited between the detection electrode layers, and there is a large dead mass until electric characteristics can be detected, and there is a possibility that PM discharge cannot be detected immediately after starting.
In addition, the comb-like detection electrode layer pair printed on the surface of the insulating substrate is further covered with an insulating layer or a dielectric layer, and the capacitance between the detection electrode layers varies depending on the amount of PM deposited on the detection surface. When measured, it was found that the change in capacitance was small and the detection accuracy was low.

さらに、特許文献2にあるように、誘電体で覆われた一対の平板電極間に区画した貫通孔内にPMを導入して、PM量に応じて変化する平板電極間の静電容量を計測するようにした場合、平板電極間の距離は、貫通孔を区画するための誘電層の厚みと、平板電極を覆う誘電層の厚みに依存し、平板電極間の距離が長いと、もともとの平板電極間に形成される静電容量が小さくなり、検出が困難である上に、貫通孔内にPMが導入されたときの静電容量の変化も小さく、検出精度が低いことが判明した。   Furthermore, as disclosed in Patent Document 2, PM is introduced into a through-hole partitioned between a pair of plate electrodes covered with a dielectric, and the capacitance between the plate electrodes that changes according to the amount of PM is measured. In this case, the distance between the plate electrodes depends on the thickness of the dielectric layer for partitioning the through holes and the thickness of the dielectric layer covering the plate electrodes. If the distance between the plate electrodes is long, the original plate It has been found that the capacitance formed between the electrodes is small and difficult to detect, and that the change in capacitance when PM is introduced into the through hole is small and the detection accuracy is low.

そこで、本発明は、かかる実情に鑑み、被測定ガス中に含まれる粒子状物質の検出部への堆積量に応じて変化する電気的特性を測定して被測定ガス中の粒子状物質の量を検出する粒子状物質検出素子であって、不感質量が少なく、測定バラツキも少なく検出精度の高い粒子状物質検出素子とその製造方法を提供することを目的とする。   Accordingly, in view of such circumstances, the present invention measures the electrical characteristics that change according to the amount of particulate matter contained in the measurement gas deposited on the detection unit, and thereby determines the amount of particulate matter in the measurement gas. It is an object of the present invention to provide a particulate matter detection element for detecting a particulate matter detection element that has a low insensitive mass, little measurement variation, and high detection accuracy, and a method for manufacturing the same.

請求項1の発明では、少なくとも、検出部として、一定の間隙を隔てて対向する一対の検出電極層(10A、10B)と、該検出電極層の表面を覆う絶縁層(20)と、を具備し、上記検出部(2)を略平板状の基板部(40)の先端に固定して被測定ガス中に配設せしめて、上記検出電極層(10A、10B)の周辺に存在する粒子状物質の量に応じて変化する上記検出電極層(10A、10B)間の静電容量、又は、交流インピーダンスを計測して被測定ガス中に含まれる粒子状物質を検出する粒子状物質検出素子であって、
上記一対の検出電極層(10A、10B)が上記基板部(40)の厚み方向に起立する略平板状であると共に、
上記絶縁層(20)を介して対向する上記一対の検出電極層(10A、10B)間に被測定ガス中の粒子状物質を捕集する捕集空間(30)を具備し、
上記粒子状物質検出素子の長手方向である素子長手方向における上記捕集空間(30)の幅(L CMB )が、上記厚み方向における上記検出電極層(10A、10B)の高さ(T CUT )よりも短く形成されていることを特徴とする。
According to the first aspect of the present invention, at least the detection unit includes a pair of detection electrode layers (10A, 10B) facing each other with a certain gap, and an insulating layer (20) covering the surface of the detection electrode layer. Then, the detection part (2) is fixed to the tip of the substantially flat substrate part (40) and disposed in the gas to be measured, and the particulates present around the detection electrode layers (10A, 10B). A particulate matter detection element that detects the particulate matter contained in the gas to be measured by measuring the capacitance between the detection electrode layers (10A, 10B) that changes according to the amount of the substance or AC impedance. There,
The pair of detection electrode layers (10A, 10B) has a substantially flat plate shape standing in the thickness direction of the substrate portion (40), and
A collection space (30) for collecting particulate matter in the gas to be measured is provided between the pair of detection electrode layers (10A, 10B) opposed via the insulating layer (20) ,
The width (L CMB ) of the collection space (30) in the longitudinal direction of the element, which is the longitudinal direction of the particulate matter detection element, is the height (T CUT ) of the detection electrode layer (10A, 10B) in the thickness direction. It is characterized by being formed shorter.

請求項の発明では、上記検出部(2)が、略平板状に形成した上記検出電極層(10A、10B)と、略平板状に形成した上記絶縁層(200A、200B)と、上記捕集空間(30)を区画した捕集空間形成層(202)とを積み重ねた積層構造である。 In the invention of claim 2, the detection part (2) includes the detection electrode layer (10A, 10B) formed in a substantially flat plate shape, the insulating layer (200A, 200B) formed in a substantially flat plate shape, and the trapping. It is the laminated structure which accumulated the collection space formation layer (202) which divided the collection space (30).

請求項の発明では、少なくとも、上記絶縁層(20)において、上記一対の検出電極層(10A、10B)が互いに対向する表面を覆う方向(200A、200B)の膜厚(TDE )が3μm以上、50μm以下であると共に、
上記捕集空間(30)の素子長手方向の幅(LCMB)が3μm以上、50μm以下であり、
上記厚み方向における上記検出電極層(10A、10B)の高さ(T CUT )が100μm以上、2000μm以下である。
In the invention of claim 3 , at least in the insulating layer (20), the film thickness (T DE L ) in the direction (200A, 200B) covering the surfaces of the pair of detection electrode layers (10A, 10B) facing each other. 3 μm or more and 50 μm or less,
The width (L CMB ) in the element longitudinal direction of the collection space (30) is 3 μm or more and 50 μm or less,
The height (T CUT ) of the detection electrode layers (10A, 10B) in the thickness direction is 100 μm or more and 2000 μm or less.

請求項の発明では、上記電極層(10A、10B)が、MCrO、MMnO、MCoO(但し、Mは、La、又は、Gdのいずれか)のいずれかから選択したペロブスカイト系の導電性セラミックであり、上記絶縁層(20)が、アルミナ、ジルコニア、マグネシア、チタニア、シリカ、セリアのいずれかから選択した絶縁性セラミックである。 In the invention of claim 4, the electrode layer (10A, 10B) is a perovskite-based conductive material selected from any one of MCrO 3 , MMnO 3 , and MCoO 3 (where M is either La or Gd). The insulating layer (20) is an insulating ceramic selected from alumina, zirconia, magnesia, titania, silica, and ceria.

請求項の発明では、請求項1ないしのいずれか一項に記載の粒子状物質検出素子の製造方法であって、
少なくとも、導電性セラミック材料をシート状にした電極層シート(10G)を形成する電極層シート形成工程と、焼成によって焼失する焼失材料をシート状にした焼失層シート(30G)を形成する焼失層シート形成工程と、絶縁性セラミック材料をシート状にした絶縁性厚肉シート(200TKG)を形成する絶縁性厚肉シート形成工程と、上記絶縁性セラミック材料からなり上記絶縁性厚肉シート(200TKG)よりも薄い絶縁性薄肉シート(200TNG)を形成する絶縁性薄肉シート形成工程と、
上記電極層シート(10G)と、上記絶縁性厚肉シート(200TKG)とを重ね合わせて、所定形状の金型で同時に打ち抜くことにより、上記電極層シート(10G)内に所定形状に切り抜いた上記絶縁性厚肉シート(200TKG)を埋設させた埋設電極層シートを形成する電極層内絶縁層埋設工程と、
上記焼失層シート(30G)に、上記セラミック材料からなり所定形状に切り抜かれた絶縁膜を埋設させた埋設焼失層シートを形成する埋設焼失層シート形成工程と、
上記埋設電極層シートと、上記埋設焼失層シートと、上記絶縁性薄肉シート(200TNG)とを所定の積層パターンで重ね合わせて、少なくとも一対の電極層(A層、B層)と、これらを覆う絶縁層(I層)と、焼失層(V層)とが積層された積層構造の検出部積層体未焼成体(2G)を形成する積層工程と、
該積層工程によって得られた検出部積層体未焼成体(2G)を焼成して、上記検出電極層(10A、10B)、絶縁層(20)、捕集空間(30)とが一体の積層構造の検出部積層体(2)を形成する積層体焼成工程と、
積層体焼成工程を経て、得られた検出部積層体(2)を、外部との接続を図る一対の検出リード部(50A、50B)を設けた略平板状の基板部(40)の所定位置に実装、固定する検出部実装工程とを具備する。
In invention of Claim 5 , it is a manufacturing method of the particulate matter detection element as described in any one of Claims 1 thru | or 4 , Comprising:
At least an electrode layer sheet forming step for forming an electrode layer sheet (10G) in the form of a conductive ceramic material, and a burned layer sheet for forming a burned layer sheet (30G) in the form of a burned material that is burned off by firing. A forming step, an insulating thick sheet forming step for forming an insulating thick sheet (200 TKG) in the form of a sheet of insulating ceramic material, and the insulating thick sheet (200 TKG) made of the insulating ceramic material. An insulating thin sheet forming step for forming a thin insulating thin sheet (200TNG);
The electrode layer sheet (10G) and the insulating thick sheet (200TKK) are overlapped and punched out simultaneously with a mold having a predetermined shape to cut out the electrode layer sheet (10G) into a predetermined shape. An insulating layer embedding step in the electrode layer for forming an embedded electrode layer sheet in which an insulating thick sheet (200 TKG) is embedded;
An embedded burned layer sheet forming step of forming an embedded burned layer sheet in which an insulating film made of the ceramic material and cut into a predetermined shape is embedded in the burned layer sheet (30G);
The embedded electrode layer sheet, the embedded burned layer sheet, and the insulating thin sheet (200TNG) are stacked in a predetermined laminated pattern to cover at least a pair of electrode layers (A layer, B layer). A laminating step for forming a non-fired body (2G) having a laminated structure in which an insulating layer (I layer) and a burned-out layer (V layer) are laminated;
The detection unit laminate green body (2G) obtained by the lamination step is fired, and the detection electrode layer (10A, 10B), the insulating layer (20), and the collection space (30) are integrated in a laminated structure. A laminate firing step for forming the detector laminate (2) of
Through the laminate baking step, resulting detector laminate (2), a predetermined pair of detection lead to achieve a connection with the external (50A, 50B) substantially flat substrate portion provided with (40) And a detector mounting process for mounting and fixing at a position.

請求項1ないしの発明によれば、上記検出電極(10A、10B)間に形成される静電容量が大きく、粒子状物質が上記捕集空間(30)内に取り込まれたときの静電容量の変化が大きくなり、不感質量が存在せず、極めて高精度に被測定ガス中のPM量を検出できる。
また、請求項の発明によれば、検出電極(10A、10B)間の距離を上記焼失層(V層)の膜厚によって任意に設定することが可能となり、請求項1ないしの発明に係る検出精度の高い粒子上物質検出素子が実現できる。
According to invention of Claim 1 thru | or 4, the electrostatic capacitance formed between the said detection electrodes (10A, 10B) is large, and when a particulate matter is taken in in the said collection space (30), it is electrostatic. The change in capacity becomes large, there is no dead mass, and the amount of PM in the gas to be measured can be detected with extremely high accuracy.
Further, according to the invention of claim 5, the detection electrodes (10A, 10B) the distance between it is possible to arbitrarily set by the thickness of the burned layer (V layer), the invention of claims 1 to 4 Such an on-particle substance detection element with high detection accuracy can be realized.

A発明の第1の実施形態における粒子状物質検出素子の要部を示し、図1B中A−Aに沿った断面図。1A is a cross-sectional view taken along line AA in FIG. 1B, showing a main part of a particulate matter detection element in a first embodiment of the invention. 本発明の第1の実施形態における粒子状物質検出素子の図1A中C方向から見た表面を示し、段階的に一部を切り欠いて内部構造を示すC矢視平面図。The C arrow top view which shows the surface seen from C direction in FIG. 1A of the particulate-material detection element in the 1st Embodiment of this invention, and notches one part in steps and shows an internal structure. 本発明の第1の実施形態における粒子状物質検出素子の全体概要を示す一部切り欠き展開斜視図。FIG. 2 is a partially cut-out developed perspective view showing an overall outline of the particulate matter detection element according to the first embodiment of the present invention. 第1の実施形態における粒子状物質検出素子に用いられる検出部積層体の製造方法について工程順を追って示し、電極層内に絶縁層を埋め込む電極層内絶縁層埋め込み工程を示す斜視図。The perspective view which shows the manufacturing method of the detection part laminated body used for the particulate matter detection element in 1st Embodiment later on in order of a process, and shows the insulating layer embedding process in an electrode layer which embeds an insulating layer in an electrode layer. 図2Aの断面図。FIG. 2B is a cross-sectional view of FIG. 2A. 電極層内に絶縁層が埋め込まれた状態を示す斜視図。The perspective view which shows the state by which the insulating layer was embedded in the electrode layer. 埋め込み工程中における図2Cの断面図。2C is a cross-sectional view of FIG. 2C during the embedding process. 絶縁層の埋め込まれた状態の電極層の断面図。Sectional drawing of the electrode layer of the state with which the insulating layer was embedded. 焼失層内に絶縁層を埋め込む焼失層内絶縁層埋め込み工程を示す斜視図。The perspective view which shows the insulating layer embedding process in a burning layer which embeds an insulating layer in a burning layer. 図3Aの断面図。FIG. 3B is a cross-sectional view of FIG. 焼失層内に絶縁層が埋め込まれた状態を示す斜視図。The perspective view which shows the state by which the insulating layer was embedded in the burning layer. 埋め込み工程中における図3Cの断面図。FIG. 3C is a cross-sectional view of FIG. 3C during the embedding process. 絶縁層の埋め込まれた状態の焼失層の断面図。Sectional drawing of the burning layer of the state embedded with the insulating layer. 第1の積層ユニットの概要を示す斜視図。The perspective view which shows the outline | summary of a 1st lamination | stacking unit. 図4Aに続く工程を示し、第2の積層ユニットの概要を示す斜視図。The perspective view which shows the process following FIG. 4A and shows the outline | summary of a 2nd lamination | stacking unit. 図4Aに続く工程を示し、図2Aと図2Bとに示した積層ユニットを交互に積層する工程を示す斜視図。The perspective view which shows the process of following FIG. 4A, and shows the process of laminating | stacking alternately the lamination | stacking unit shown to FIG. 2A and FIG. 2B. 図4Cの工程を経て得られた積層体を個別の検出部積層体に分割する第1の分割工程の概要を示す斜視図。The perspective view which shows the outline | summary of the 1st division | segmentation process which divides | segments the laminated body obtained through the process of FIG. 4C into an individual detection part laminated body. 図5Aに続く工程を示し、検出部積層体の端部を調整する第2の分割工程の概要を示す斜視図。The perspective view which shows the process following FIG. 5A and shows the outline | summary of the 2nd division | segmentation process which adjusts the edge part of a detection part laminated body. 図5Bに続く焼成工程を経て得られた検出部積層体を裏面側から見た斜視図。The perspective view which looked at the detection part laminated body obtained through the baking process following FIG. 5B from the back surface side. 図6Aの表面側から見た斜視図。The perspective view seen from the surface side of FIG. 6A. 図6B中A−A平面に沿った断面図。Sectional drawing along the AA plane in FIG. 6B. 比較例1として示す、基板表面に一対の櫛歯状電極を印刷形成して、誘電層で覆った粒子状物質検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate matter detection element which printed and formed a pair of comb-like electrode on the substrate surface shown as the comparative example 1, and was covered with the dielectric layer. 比較例2として示す、誘電層を介して対向する一対の平行平板間に貫通孔によって捕集空間を区画した粒子状物質検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate matter detection element which partitioned off the collection space by the through-hole between a pair of parallel flat plates which are shown as the comparative example 2 through a dielectric layer. 本発明における電極間に形成される電界分布を示す断面模式図。The cross-sectional schematic diagram which shows the electric field distribution formed between the electrodes in this invention. 比較例1における電極間に形成される電界分布を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing an electric field distribution formed between electrodes in Comparative Example 1. 比較例2における電極間に形成される電界分布を示す断面模式図。FIG. 5 is a schematic cross-sectional view showing an electric field distribution formed between electrodes in Comparative Example 2. 比較例と共に本発明の効果を示し、検出部に堆積する煤量を変化させたときに検出される静電容量の変化を示す特性図。The characteristic view which shows the effect of this invention with a comparative example, and shows the change of the electrostatic capacitance detected when the amount of soot deposited on a detection part is changed. 図9A中2点破線囲み部を拡大した特性図。FIG. 9B is an enlarged characteristic diagram of a portion surrounded by a two-dot broken line in FIG. 9A. 本発明の実施形態において、煤堆積量と検出される静電容量に対して捕集空間の幅を変化させたときの影響を示す特性図。The characteristic view which shows the influence when changing the width | variety of a collection space with respect to the amount of soot deposits and the electrostatic capacitance detected in embodiment of this invention. 本発明の第2の実施形態における粒子状物質検出素子の概要を示し、図8B中A―Aに沿った断面図。Sectional drawing which shows the outline | summary of the particulate matter detection element in the 2nd Embodiment of this invention, and followed AA in FIG. 8B. 図8A中c方向から見た表面を示し、段階的に一部を切り欠いて内部構造を示すC矢視平面図。FIG. 8B is a plan view as viewed in the direction of arrow C, showing the surface viewed from the c direction in FIG. 第2の実施形態における粒子状物質検出素子の製造方法の概要について工程順を追って示す斜視図。The perspective view which shows the order of a process later about the outline | summary of the manufacturing method of the particulate matter detection element in 2nd Embodiment. 図11Aに続く工程を示す斜視図。FIG. 11B is a perspective view showing a step following FIG. 11A. 図11Bに続く焼成工程を経て得られた検出部積層体を裏面側から見た斜視図。The perspective view which looked at the detection part laminated body obtained through the baking process following FIG. 11B from the back surface side. 図12Aの表面側から見た斜視図。The perspective view seen from the surface side of FIG. 12A. 図12B中A−A平面に沿った断面図。Sectional drawing along the AA plane in FIG. 12B. 本発明の第3の実施形態における粒子状物質検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate matter detection element in the 3rd Embodiment of this invention.

図1A、図1B、図1Cを参照して、本発明の第1の実施形態における粒子状物質検出素子1の概要について説明する。
なお、以下の説明に用いる図において、略長尺平板状に形成した粒子状物質検出素子1に対して素子長手方向をL方向、横幅方向をW方向、厚み方向をH方向として図中に矢印で示してある。
本発明の粒子状物質検出素子1は、検出部2として、一定の間隙を隔てて対向する一対の検出電極層10A、10Bと、検出電極層10A、10Bの表面を覆う絶縁層20とを具備し、検出部2を略平板状の基板部40の先端に固定して被測定ガス中に配設し、検出電極層10A、10Bの周辺に存在する粒子状物質の量に応じて変化する静電容量、又は、交流インピーダンスを計測して被測定ガス中に含まれる粒子状物質を検出するものである。
With reference to FIG. 1A, FIG. 1B, and FIG. 1C, the outline | summary of the particulate matter detection element 1 in the 1st Embodiment of this invention is demonstrated.
In the drawings used for the following description, the element longitudinal direction is L direction, the width direction is W direction, and the thickness direction is H direction with respect to the particulate matter detection element 1 formed in a substantially long flat plate shape. It is shown by.
The particulate matter detection element 1 of the present invention includes, as the detection unit 2, a pair of detection electrode layers 10A and 10B that are opposed to each other with a certain gap, and an insulating layer 20 that covers the surfaces of the detection electrode layers 10A and 10B. Then, the detector 2 is fixed to the tip of the substantially flat substrate portion 40 and disposed in the gas to be measured, and the static electricity changes according to the amount of particulate matter present around the detection electrode layers 10A and 10B. The particulate matter contained in the gas to be measured is detected by measuring the electric capacity or the AC impedance.

粒子状物質検出素子1は、一対の検出電極層10A、10Bが基板部40に対して直交方向に起立すると共に、絶縁層20を介して対向する一対の検出電極層10A、10B間に被測定ガス中の粒子状物質を捕集する捕集空間30を具備することを特徴とする。
本発明において、被測定ガス中に載置される検出部2は、後述する製造方法によって形成された積層構造を有する検出部積層体2によって構成されている。
検出部積層体2は、略平板状に形成された検出電極層10A、10Bが交互に並び一対の検出電極層を構成し、検出電極層10A、10Bは、その表面が、絶縁層20によって覆われ、絶縁層20には、検出電極層10A、10Bの互いに対向する面の間に煤捕集空間30が区画されている。
The particulate matter detection element 1 has a pair of detection electrode layers 10A, 10B standing upright in a direction orthogonal to the substrate portion 40, and is measured between a pair of detection electrode layers 10A, 10B facing each other with an insulating layer 20 therebetween. A collection space 30 for collecting particulate matter in the gas is provided.
In this invention, the detection part 2 mounted in to-be-measured gas is comprised by the detection part laminated body 2 which has the laminated structure formed by the manufacturing method mentioned later.
The detection unit laminate 2 includes a pair of detection electrode layers in which detection electrode layers 10A and 10B formed in a substantially flat plate are alternately arranged, and the surfaces of the detection electrode layers 10A and 10B are covered with an insulating layer 20. In addition, in the insulating layer 20, a soot collection space 30 is defined between the surfaces of the detection electrode layers 10A and 10B facing each other.

検出電極層10A、10Bは、MCrO、MMnO、MCoO(但し、Mは、La、Gdのいずれかを選択できる。)のいずれかから選択したペロブスカイト系の導電性セラミックによって形成されている。
さらに、絶縁層20は、アルミナ、ジルコニア、マグネシア、チタニア、シリカ、セリアのいずれかから選択した絶縁性セラミックによって形成されている。
The detection electrode layers 10A and 10B are formed of a perovskite-based conductive ceramic selected from one of MCrO 3 , MMnO 3 , and MCoO 3 (where M can be selected from either La or Gd). .
Furthermore, the insulating layer 20 is formed of an insulating ceramic selected from any of alumina, zirconia, magnesia, titania, silica, and ceria.

検出電極層10A、10Bは、電極L方向幅LEL(電極層膜厚tEL)が、100μm以上、300μm以下、電極高さHEL(切削厚tCUT)が、0.1mm以上、2mm以下、電極幅WELが、2mm以上、30mm以下に形成されている。
本発明の検出電極層10A、10Bは、100μm以上の厚肉に形成されているので、電極層自体の電気抵抗が低く、検出精度を高くできる。
また、検出電極層10A、10Bは機械的強度の高い導電性セラミックによって形成されており、構造体としての強度を確保する役割を担っている。
The detection electrode layers 10A and 10B have an electrode L direction width L EL (electrode layer film thickness t EL ) of 100 μm or more and 300 μm or less, and an electrode height H EL (cutting thickness t CUT ) of 0.1 mm or more and 2 mm or less. The electrode width W EL is 2 mm or more and 30 mm or less.
Since the detection electrode layers 10A and 10B of the present invention are formed with a thickness of 100 μm or more, the electrical resistance of the electrode layer itself is low, and the detection accuracy can be increased.
Further, the detection electrode layers 10A and 10B are formed of a conductive ceramic having a high mechanical strength, and play a role of ensuring the strength as a structure.

絶縁層20は、検出電極層10A、10Bのそれぞれを覆う絶縁層20A、20Bと、絶縁層20Aと絶縁層20Bとの間に介挿され、捕集空間30を区画する捕集空間形成層202とによって形成され、絶縁層20A、20Bは、検出電極層10A、10Bの互いに対向する面側を覆う素子L方向絶縁層200A、200Bと、検出電極層10A、10Bの素子平面に平行な面を覆う素子平面方向側絶縁層201A、201Bと、検出電極層10A、10Bの一方の端面を覆う端面側絶縁層203A、203Bとによって形成されている。
絶縁層20で覆われた検出電極層10A、10Bの対向する表面間の距離によって規定される捕集空間30の素子L方向の幅LCMBが、捕集空間30の高さHCMBを規定する絶縁層20で覆われた検出電極層10A、10Bの高さ(TCUT)よりも短く形成されている。
The insulating layer 20 is interposed between the insulating layers 20A and 20B that cover the detection electrode layers 10A and 10B, and the insulating layer 20A and the insulating layer 20B, and the collection space forming layer 202 that partitions the collection space 30. Insulating layers 20A and 20B are formed of element L-direction insulating layers 200A and 200B that cover the opposing surfaces of detection electrode layers 10A and 10B, and surfaces parallel to the element plane of detection electrode layers 10A and 10B. The element plane direction insulating layers 201A and 201B to be covered and the end face side insulating layers 203A and 203B covering one end face of the detection electrode layers 10A and 10B are formed.
The width L CMB in the element L direction of the collection space 30 defined by the distance between the opposing surfaces of the detection electrode layers 10A and 10B covered with the insulating layer 20 defines the height H CMB of the collection space 30. The detection electrode layers 10A and 10B covered with the insulating layer 20 are formed shorter than the height (T CUT ).

絶縁層20の内、素子L方向絶縁層200A、200Bの厚み(素子L方向誘電層厚TDEL)は、3μm以上、50μm以下に形成され、素子H方向側絶縁層201A、201Bの厚み(素子H方向誘電層厚TDEH)は、10μm以上、100μm以下に形成され、捕集層形成層202の厚み(捕集層形成層厚tCMB)は、3μm以上、50μm以下に形成され、端面側絶縁層203A、203Bの厚みは、10μm以上、100μm以下に形成されている。 Of the insulating layer 20, the thicknesses of the element L direction insulating layers 200A and 200B (element L direction dielectric layer thickness T DE L) are 3 μm or more and 50 μm or less, and the thicknesses of the element H direction side insulating layers 201A and 201B ( The element H direction dielectric layer thickness T DE H) is formed to be 10 μm or more and 100 μm or less, and the thickness of the collection layer formation layer 202 (collection layer formation layer thickness t CMB ) is formed to be 3 μm or more and 50 μm or less. The thickness of the end face side insulating layers 203A and 203B is 10 μm or more and 100 μm or less.

基板部40は、アルミナ、ジルコニア、マグネシア、チタニア、シリカ、セリアのいずれかから選択した絶縁性セラミックを略平板状に形成した絶縁層400、401によって構成されている。
基板部40の表面には、検出部積層体2を固定すると共に、検出電極層10A、10Bとの導通を図るべく印刷形成された一対の検出リード部50A、50Bと、検出リード部50A、50Bの一方の端に設けられ外部との接続を図る一対の検出端子51A、51Bが形成されている。
基板部40の内側には、通電により発熱する発熱体41が埋設され、発熱体41と外部との接続を図るべく、一対の発熱体リード部42A、42Bが形成され、一対のスルーホール電極44A、44Bを介して、基板部41の裏面側に形成した一対の端子部43A、43Bと接続されている。
リード部42A、42B、端子部43A、43B、スルーホール電極44A、44Bには、Pt、Au、Ag、Pd、Rh等の公知の導電性材料が用いられている。
発熱体41には、Pt、Au、W、Rh、Mo等の公知の抵抗発熱材料が用いられている。
The substrate portion 40 is constituted by insulating layers 400 and 401 in which an insulating ceramic selected from any of alumina, zirconia, magnesia, titania, silica, and ceria is formed in a substantially flat plate shape.
The detection unit laminate 2 is fixed to the surface of the substrate unit 40, and a pair of detection lead units 50A and 50B and a detection lead unit 50A and 50B, which are printed to be electrically connected to the detection electrode layers 10A and 10B. A pair of detection terminals 51 </ b> A and 51 </ b> B that are provided at one end of the terminal and are connected to the outside are formed.
A heating element 41 that generates heat when energized is embedded inside the substrate 40, and a pair of heating element leads 42A and 42B are formed to connect the heating element 41 to the outside, and a pair of through-hole electrodes 44A. , 44B are connected to a pair of terminal portions 43A, 43B formed on the back side of the substrate portion 41.
For the lead portions 42A and 42B, the terminal portions 43A and 43B, and the through-hole electrodes 44A and 44B, a known conductive material such as Pt, Au, Ag, Pd, and Rh is used.
For the heating element 41, a known resistance heating material such as Pt, Au, W, Rh, or Mo is used.

検出部積層体2の裏面側に露出する検出電極層10A、10Bの一方の端を接続端部101A、101Bとして、それぞれ、検出リード部50A、50Bに接続され一対の櫛歯状電極を構成している。
接続端子51A、51B間に交流電流を流すと、検出電極層10A、10Bの対向する平面間に電界が形成され、煤捕集空間30内に被測定ガス中のPMが引き込まれると、検出電極層10A、10B間の静電容量Cが変化する。このときに検出される静電容量の変化から、捕集空間内に存在するPM量を算出することが可能となる。
One end of the detection electrode layers 10A and 10B exposed on the back side of the detection unit laminate 2 is connected to the detection lead units 50A and 50B as one end of the connection end portions 101A and 101B, thereby forming a pair of comb-like electrodes. ing.
When an alternating current is passed between the connection terminals 51A and 51B, an electric field is formed between the opposing planes of the detection electrode layers 10A and 10B, and when PM in the gas to be measured is drawn into the soot collection space 30, the detection electrode The capacitance C between the layers 10A and 10B changes. From the change in capacitance detected at this time, the amount of PM existing in the collection space can be calculated.

ここで、図2A〜図6Cを参照して、本実施形態における粒子状物質検出素子1の製造方法について、工程順を追って説明する。
先ず、概略を説明する。本発明の粒子状物質検出素子1の製造方法においては、少なくとも、上述のMCrO3等の導電性セラミック材料をシート状に形成する電極層シート成形工程と、カーボン等の焼成によって焼失する焼失材料をシート状に形成する焼失層シート成形工程と、ジルコニア等の絶縁性セラミック材料をシート状、又は、膜状に形成する絶縁層シート形成工程、又は、絶縁層膜形成工程と、これらの工程によって得られた電極層シート(10G)、焼失層シート(30G)、絶縁層シート/絶縁層膜(200TNG)を所定の積層パターンで重ね合わせ、電極層(A層、B層)、絶縁層(I層)、焼失層(V層)とが積層された検出部積層体未焼成体2Gを形成する積層工程と、得られた検出部積層体未焼成体2Gを焼成して、電極層10A、10B、絶縁層20、捕集空間30とが一体の積層構造となった検出部積層体2を形成する積層体焼成工程と、該焼成工程を経て、得られた検出部積層体2を、外部との接続を図る一対の検出リード部50A、50Bを設けた略平板状の基板部40の所定位置に実装、固定する検出部実装工程とを具備する。以下、具体的な製造方法について説明する。
Here, with reference to FIG. 2A-FIG. 6C, the manufacturing method of the particulate matter detection element 1 in this embodiment is demonstrated later on in order of a process.
First, an outline will be described. In the method for manufacturing the particulate matter detection element 1 of the present invention, at least the electrode layer sheet forming step for forming the conductive ceramic material such as MCrO3 described above into a sheet shape, and the burned-out material that is burned down by firing such as carbon sheet It is obtained by these steps, a burnt-out layer sheet forming step to be formed into a shape, an insulating layer sheet forming step in which an insulating ceramic material such as zirconia is formed into a sheet shape or a film shape, or an insulating layer film forming step. The electrode layer sheet (10G), the burnt-out layer sheet (30G), and the insulating layer sheet / insulating layer film (200TNG) are laminated in a predetermined lamination pattern, and the electrode layers (A layer, B layer), insulating layer (I layer) The stacking step of forming the detection part laminate unfired body 2G in which the burned-out layer (V layer) is laminated, and the obtained detection part laminate unfired body 2G are fired to form the electrode layers 10A, 10 The laminate firing process for forming the detection part laminate 2 in which the insulating layer 20 and the collection space 30 have an integrated laminate structure, and the detection part laminate 2 obtained through the firing process, And a detecting portion mounting step of mounting and fixing at a predetermined position of a substantially flat substrate portion 40 provided with a pair of detecting lead portions 50A and 50B. Hereinafter, a specific manufacturing method will be described.

先ず、例えば、ランタンクロマイト(La0.7Ca0.3CrO2.85、以下、LCCと略す。)等の導電性セラミック材料を主原料とし、8%イットリア安定化ジルコニア(以下、8YSZと略す。)を助剤とし、エタノール、酢酸イソペンチル、2-ブタノール等の分散媒と、ソルビタントリオレート等の分散剤、ポリビニルブチラール等の結合材、ブチルベンジルテレフタレート等の可塑剤を、遊星ボールミル等で粉砕混合し、導電層用スラリーを作製し、公知のドクターブレード法等によってシート状に成形して、導電シート10Gを得る。
このとき、導電シート10Gのシート厚tELは、焼成後に、100μm以上、300μm以下となるように調整する。
なお、符号に付したGは、グリーンシートを意味し、焼成前の状態であることを示し、以下の構成においても同様である。
First, for example, a conductive ceramic material such as lanthanum chromite (La 0.7 Ca 0.3 CrO 2.85 , hereinafter abbreviated as LCC) is used as a main raw material, and 8% yttria-stabilized zirconia (hereinafter abbreviated as 8YSZ). )) Is used as an auxiliary agent, and a dispersion medium such as ethanol, isopentyl acetate and 2-butanol, a dispersant such as sorbitan trioleate, a binder such as polyvinyl butyral, and a plasticizer such as butylbenzyl terephthalate are pulverized with a planetary ball mill or the like. Mixing is performed to prepare a slurry for the conductive layer, which is then formed into a sheet shape by a known doctor blade method or the like to obtain a conductive sheet 10G.
At this time, the sheet thickness t EL of the conductive sheet 10G is adjusted to be 100 μm or more and 300 μm or less after firing.
In addition, G attached | subjected to a code | symbol means a green sheet, shows the state before baking, and is the same also in the following structures.

また、8YSZ等の絶縁性セラミックを主原料とし、焼成時の収縮調整及び密着性向上のために、LCCを助剤として添加し、エタノール、酢酸イソペンチル、2-ブタノール等の分散媒と、ソルビタントリオレート等の分散剤、ポリビニルブチラール等の結合材、ブチルベンジルテレフタレート等の可塑剤を、遊星ボールミル等で粉砕混合し、絶縁層用スラリーを作製し、公知のドクターブレード法等によってシート状に成形して、絶縁性厚肉シート200TKGと絶縁性薄肉シート200TNGを得る。
絶縁厚肉シート200TKGは、導電シート10Gと同じ膜厚に形成し、絶縁性薄肉シート200TNGは、3μm以上、50μm以下の膜厚に形成する。また、絶縁性薄肉シート200TNGは、ドクターブレード法によらず、同種の絶縁性セラミック材料等を用いて印刷用ペーストを作成し、厚膜印刷によって形成するようにしても良い。
In addition, an insulating ceramic such as 8YSZ is used as a main raw material, and LCC is added as an auxiliary agent for adjusting shrinkage and improving adhesion during firing, and a dispersion medium such as ethanol, isopentyl acetate and 2-butanol, and sorbitan trio. A dispersing agent such as a rate, a binder such as polyvinyl butyral, and a plasticizer such as butylbenzyl terephthalate are pulverized and mixed with a planetary ball mill or the like to produce a slurry for an insulating layer, which is formed into a sheet by a known doctor blade method or the like. Thus, the insulating thick sheet 200TKG and the insulating thin sheet 200TNG are obtained.
The insulating thick sheet 200TKG is formed to the same film thickness as the conductive sheet 10G, and the insulating thin sheet 200TNG is formed to a film thickness of 3 μm or more and 50 μm or less. The insulating thin sheet 200TNG may be formed by thick film printing by creating a printing paste using the same kind of insulating ceramic material or the like without depending on the doctor blade method.

さらに、カーボン等の焼成により焼失する焼失材とエタノール、酢酸イソペンチル、2-ブタノール等の分散媒と、ソルビタントリオレート等の分散剤、ポリビニルブチラール等の結合材、ブチルベンジルテレフタレート等の可塑剤を、遊星ボールミル等で粉砕混合し、焼失層用スラリーを作製し、公知のドクターブレード法等によってシート状に成形して、焼失層シート30Gを得る。
なお、焼失層シート30Gは、3μm以上、50μm以下の膜厚のものを用意する。また、焼失層シート30Gの膜厚を30μm以下に設定する場合には、同種の焼失材等を用いて印刷用ペーストを作成し、印刷形成するようにしても良い。
Furthermore, a burned-out material that burns down by firing such as carbon, a dispersion medium such as ethanol, isopentyl acetate, 2-butanol, a dispersant such as sorbitan trioleate, a binder such as polyvinyl butyral, a plasticizer such as butylbenzyl terephthalate, By grinding and mixing with a planetary ball mill or the like, a burnt layer slurry is prepared and formed into a sheet by a known doctor blade method or the like to obtain a burned layer sheet 30G.
The burned-out layer sheet 30G is prepared with a film thickness of 3 μm or more and 50 μm or less. Further, when the film thickness of the burnt layer sheet 30G is set to 30 μm or less, a printing paste may be created using the same kind of burnt material and the like may be printed.

電極層内絶縁層埋設工程では、上述の工程を経て得られた絶縁性厚肉シート200TKGと導電シート10Gとを図2A、図2Bに示すように重ね合わせ、所定形状の打ち抜きパターンを施した金型M1、M2を用いて、図2C、図2Dに示すように導電シート10G内に、絶縁性厚肉シート200TKGを所定の形状(201AG、203AG)に切り抜きつつ埋め込み、図2C、図2Eに示すような、検出電極層10Aとなるパターンを形成したA層を得ることができる。
なお、本実施形態においては、最終的に4個の検出部積層体2が得られるパターンを例示してある。
In the insulating layer embedding process in the electrode layer, the insulating thick sheet 200TKG obtained through the above-described process and the conductive sheet 10G are overlapped as shown in FIGS. 2A and 2B, and a punched pattern having a predetermined shape is applied. As shown in FIGS. 2C and 2D, using the molds M1 and M2, the insulating thick sheet 200TKG is embedded in the conductive sheet 10G while being cut into a predetermined shape (201AG and 203AG), as shown in FIGS. 2C and 2E. A layer in which a pattern to be the detection electrode layer 10A is formed can be obtained.
In addition, in this embodiment, the pattern from which the four detection part laminated bodies 2 are finally obtained is illustrated.

次いで、図3A、図3Bに示すように、絶縁性薄肉シート200TNGと焼失層シート30Gとを重ね合わせ、所定の打ち抜きパターンを施した金型M3、M4を用いて、図3C、図3Dに示すように焼失層シート30G内に、絶縁性薄肉シート200TNGを所定の形状(202G)に切り抜きつつ埋め込み、図3C、図3Eに示すような、捕集層形成層202となるパターンを形成したV層を得ることができる。   Next, as shown in FIGS. 3A and 3B, the insulating thin sheet 200TNG and the burnt-out layer sheet 30G are overlaid and shown in FIGS. 3C and 3D using molds M3 and M4 that have been subjected to a predetermined punching pattern. In this manner, the insulating thin sheet 200TNG is embedded in the burnt-out layer sheet 30G while being cut into a predetermined shape (202G), and a pattern serving as the collection layer forming layer 202 as shown in FIGS. 3C and 3E is formed. Can be obtained.

次いで、図4Aに示すように、絶縁性薄肉シート200TNGを所定の形状に打ち抜いたI層と、上述の工程を経て得られたA層と、I層と、上述の工程を経て得られたV層とを重ね合わせることで、検出電極層10Aの周りを絶縁層が覆い、焼成後に捕集空間30となる焼失層30Gが配設された第1の積層ユニットU1を形成することができる。
同様にして、図4Bに示すように、検出電極層10Bの周りを絶縁層が覆い、焼成後に捕集空間30となる焼失層30Gが配設された第2の積層ユニットU2を形成することができる。なお、A層とB層、及び、第1の積層ユニットU1と第2の積層ユニットU2とは、平面方向に180度回転した関係となっている。
Next, as shown in FIG. 4A, the I layer obtained by punching the insulating thin sheet 200TNG into a predetermined shape, the A layer obtained through the above steps, the I layer, and the V layer obtained through the above steps. By superimposing the layers, an insulating layer covers the detection electrode layer 10A, and a first stacked unit U1 in which a burned-out layer 30G that becomes the collection space 30 after firing is disposed can be formed.
Similarly, as shown in FIG. 4B, the second laminated unit U2 in which the insulating layer covers the detection electrode layer 10B and the burnt layer 30G that becomes the collection space 30 after firing is disposed may be formed. it can. In addition, the A layer and the B layer, and the first stacked unit U1 and the second stacked unit U2 are in a relationship rotated 180 degrees in the planar direction.

このようにして得られた第1の積層ユニットU1と第2の積層ユニットU2とを図4Cに示すように交互に積み重ね、最上端に絶縁性厚肉シート200TKGからなるI層を重ね、加熱圧着することで、積層体モジュールSTMが形成される。
得られた積層体モジュールSTM1を図5A、図5Bに示すように、ダイシングソー6を用いて、端部DM1、DM2を切断除去すると共に、個々の検出部積層体未焼成体2Gに切断する。
なお、本実施形態においては、積層、乾燥後に切断する例を示したが、個片への切断は、焼成後に行っても良い。
The first laminated unit U1 and the second laminated unit U2 thus obtained are alternately stacked as shown in FIG. 4C, and an I layer made of an insulating thick sheet 200TKG is stacked on the uppermost end, and thermocompression bonding is performed. By doing so, the laminated body module STM is formed.
As shown in FIG. 5A and FIG. 5B, the obtained laminated body module STM1 is cut using a dicing saw 6 to cut and remove the end portions DM1 and DM2, and cut into individual detecting portion laminated body unfired bodies 2G.
In the present embodiment, an example of cutting after lamination and drying is shown, but cutting into pieces may be performed after firing.

得られた検出部積層体未焼成体2Gを所定の温度で加熱処理することにより、図6A、図6B、図6Cに示すように、検出部積層体2を得ることができる。
具体的な加熱処理方法としては、例えば600℃で脱脂後、1500℃で焼成する。
By subjecting the obtained detection unit laminate unfired body 2G to heat treatment at a predetermined temperature, the detection unit laminate 2 can be obtained as shown in FIGS. 6A, 6B, and 6C.
As a specific heat treatment method, for example, after degreasing at 600 ° C., baking is performed at 1500 ° C.

検出部積層体2は、検出電極層10A、10Bが交互に並び、検出部積層体2の左右両側に向かって交互に分かれて検出電極層10A、10Bの一方の端が接続端部101A、101Bとなり、検出電極層10A、10Bの他方の端が絶縁端部102A、102Bとして、電極端部絶縁層203A、203Bに覆われている。
本発明の要部である検出部積層体2は、上記のような積層構造を用いて、各層の積層方向の膜厚によって、各層の素子L方向の幅を決定しているため、極めて高い精度で調整が可能である上に、積層数を変えることによって櫛歯状電極の歯数を任意に変えることが可能で、極めて自由度が高い。
In the detection unit laminate 2, the detection electrode layers 10A and 10B are alternately arranged and alternately divided toward the left and right sides of the detection unit laminate 2, and one end of the detection electrode layers 10A and 10B is connected to the connection end portions 101A and 101B. Thus, the other ends of the detection electrode layers 10A and 10B are covered with electrode end insulating layers 203A and 203B as insulating end portions 102A and 102B.
The detection unit laminate 2 that is a main part of the present invention uses the above-described laminated structure, and the width in the element L direction of each layer is determined by the film thickness in the lamination direction of each layer. In addition, the number of teeth of the comb-like electrode can be arbitrarily changed by changing the number of layers, and the degree of freedom is extremely high.

基板部40は、アルミナ等の絶縁性セラミックを用いてドクターブレード法等の公知の製造方法によってシート状に形成した絶縁シート400、401の内側に、Pt等の公知の抵抗発熱材料及び導電性材料を用いて、発熱体41と一対の発熱リード部42A、42Bとが厚膜印刷等により形成され、一体となっている。
基板部40の裏面側には、発熱体リード部42A、42Bにスルーホール電極44A、44Bを介して接続する通電端子部43A、43Bが形成されている。
基板部40の表面には、厚膜印刷等の公知の製造方法によって一対の検出リード部50A、50B及び外部との接続を図る検出端子部51A、51Bが形成されている。
検出電極層10A、10Bのそれぞれの接続端部101A、101Bと検出リード部50A、50Bとを、ハンダ付け、ロウ付け、一体焼成等の方法により接続して、電気的導通を図ると共に、基板部40と検出部積層体2との接合を図ることにより、本発明の粒子状物質検出素子1が完成する。
なお、検出部積層体2と基板部40とを強固に接合するため、検出部積層体2を構成する絶縁材料と基板部40を構成する絶縁材料との中間的な組成の絶縁材料を用いて形成したシートを出部積層体2の両側側面と基板部40の両側側面とを跨ぐように貼り付け、検出部積層体2と基板部40とを一体に焼成するようにしても良い。
The substrate part 40 has a known resistance heating material such as Pt and a conductive material inside the insulating sheets 400 and 401 formed in a sheet shape by a known manufacturing method such as a doctor blade method using an insulating ceramic such as alumina. The heating element 41 and the pair of heating lead portions 42A and 42B are formed by thick film printing or the like and integrated.
On the back side of the substrate part 40, energization terminal parts 43A and 43B are formed which are connected to the heating element lead parts 42A and 42B via the through-hole electrodes 44A and 44B.
A pair of detection lead portions 50A and 50B and detection terminal portions 51A and 51B for connection to the outside are formed on the surface of the substrate portion 40 by a known manufacturing method such as thick film printing.
The connection end portions 101A and 101B of the detection electrode layers 10A and 10B and the detection lead portions 50A and 50B are connected to each other by a method such as soldering, brazing, or integral firing to achieve electrical conduction, and the substrate portion. By joining 40 and the detection part laminated body 2, the particulate matter detection element 1 of the present invention is completed.
In order to firmly bond the detection unit laminate 2 and the substrate unit 40, an insulating material having an intermediate composition between the insulating material constituting the detection unit laminate 2 and the insulating material constituting the substrate unit 40 is used. The formed sheet may be attached so as to straddle both side surfaces of the output laminate 2 and both side surfaces of the substrate unit 40, and the detection unit laminate 2 and the substrate unit 40 may be fired integrally.

検出電極層10A、10Bの高さHELは、積層体モジュールSTMから検出部積層体未焼成体2Gを切り出すときの切り出し厚TCUTを変えることによって、例えば、100μm以上、2000μm以下の範囲で調整可能であり、好ましくは、100μm以上、500μm以下に設定するのが良い。
また、検出電極層10A、10Bの互いに対向表面を覆う、電極L方向絶縁層200A、200Bの厚みTDELは、絶縁性薄肉シート200TNGのシート厚を変更することによって3μm以上、50μm以下の範囲で調整可能であり、好ましくは、5μm以上、20μm以下とするのが良い。
さらに、捕集空間30の素子L方向の幅LGPは、焼失層30Gのシート厚TBNT(捕集空間形成層202Gのシート厚に等しい。)によって決まり、3μm以上、50μm以下の範囲で調整可能であり、好ましくは、5μm以上、20μm以下とするのが良い。
検出電極層10A、10Bの素子L方向の幅LELは、導電性厚肉シート200TKGのシート厚TELによって決まり、100μm以上、300μm以下の範囲で調整可能であり、好ましくは、100μm以上、200μm以下とするのが良い。
Detection electrode layer 10A, the height H EL and 10B, by changing the cut thickness T CUT when cutting out the detecting unit laminate green body 2G a laminate module STM, for example, 100 [mu] m or more, prepared by the following range 2000μm It is possible to set it to 100 μm or more and 500 μm or less.
Further, the thickness T DE L of the electrode L direction insulating layers 200A and 200B covering the opposing surfaces of the detection electrode layers 10A and 10B is in a range of 3 μm or more and 50 μm or less by changing the sheet thickness of the insulating thin sheet 200TNG. Can be adjusted, and preferably 5 μm or more and 20 μm or less.
Furthermore, the width L GP in the element L direction of the collection space 30 is determined by the sheet thickness T BNT of the burned-out layer 30G (equal to the sheet thickness of the collection space forming layer 202G), and is adjusted in the range of 3 μm or more and 50 μm or less. Preferably, the thickness is 5 μm or more and 20 μm or less.
Detection electrode layer 10A, the element L direction width L EL and 10B is determined by the sheet thickness T EL of the conductive thick sheet 200TKG, 100 [mu] m or more, is adjustable in the range 300 [mu] m, preferably, 100 [mu] m or more, 200 [mu] m The following is good.

検出電極層10A、10Bの被測定ガス側の表面を覆う素子H方向絶縁層201A、201Bの厚みTDEHは、絶縁層打ち込み電極層シート(A層、B層)を形成する際に金型M1、M2によって形成されるパターン及び、積層体モジュールSTMから個片を切り出すときの切断位置によって任意に調整することができる。
本発明においては、素子L方向絶縁層200A、200Bを介して、互いに対向する検出電極層10A、10Bによって捕集空間30内に形成される静電容量を検出し、捕集空間30内に取り込まれたPM量に応じて検出される静電容量の変化に基づいて、被測定ガス中のPM量を算出するものであるから、素子H方向絶縁層201A、201Bの厚みTDEHの多寡による検出結果への影響は少なく、検出電極層10Aと検出電極層10Bとの間の絶縁性を確保できれば良く、素子H方向絶縁層201A、201Bの厚みTDEHは、適宜変更可能である。
The thickness T DE H of the element H-direction insulating layers 201A and 201B covering the surfaces of the detection electrode layers 10A and 10B on the gas to be measured is determined when the insulating layer implantation electrode layer sheets (A layer and B layer) are formed. It can be arbitrarily adjusted according to the pattern formed by M1 and M2 and the cutting position when cutting out the individual piece from the laminate module STM.
In the present invention, the capacitance formed in the collection space 30 by the detection electrode layers 10A and 10B facing each other is detected and taken into the collection space 30 via the element L-direction insulating layers 200A and 200B. Since the amount of PM in the gas to be measured is calculated based on the change in capacitance detected according to the amount of PM measured, depending on the thickness T DE H of the element H direction insulating layers 201A and 201B The influence on the detection result is small, and it is only necessary to ensure insulation between the detection electrode layer 10A and the detection electrode layer 10B, and the thicknesses T DE H of the element H direction insulating layers 201A and 201B can be changed as appropriate.

ここで、本発明の効果を確認するために行った試験について説明する。図7Aに比較例1として示す粒子状物質検出素子1zと、図7Bに比較例2として粒子状物質検出素子1yとを用意し、本発明の実施形態における粒子状物質検出素子1との比較を行った。
なお、比較例1、比較例2において、本発明と同一の構成については同じ符号を付し、相違点のある構成について、対応する構成の符号に枝番としてそれぞれz、yの符号を付した。比較例1、比較例2は、いずれも、基板部40に発熱体41を内蔵する点は、本発明と同様である。
比較例1として示す粒子状物質検出素子1zは、図7Aに示すように、発熱体41を内蔵する絶縁基板部40の表面に一対の櫛歯状電極10zA、10zB、検出リード部51zA、52zA、検出端子51zB、52zBを厚膜印刷形成し、これを膜厚tDEが10μmの誘電体層200zで覆ってある。
比較例2として示す粒子状物質検出素子1yは、図7Bに示すように、絶縁性基板の側面方向に貫通する捕集空間30zを区画し、それぞれ、膜厚tDEが250μmの誘電体層200yA、200yBを介して捕集空間30yに対向する一対の平行平板電極10yA、10yBを形成し、その表面を絶縁層201yA、201yBで覆ってある。
比較例1において、一対の櫛歯状電極を構成するそれぞれの検出電極層10Az、10Bzは、膜厚tELが約10μm、電極面積Sが0.25cm(例えば、2.5mm幅×10mm長)に形成され、電極間距離LGPは、50μmに設定されている。
比較例2においては、一対の平行平板電極10Ay、10Byは、電極面積Sが0.5cm2に設定され、平行平板間距離は、1000μmとなっている。
Here, the test performed in order to confirm the effect of this invention is demonstrated. A particulate matter detection element 1z shown as Comparative Example 1 in FIG. 7A and a particulate matter detection element 1y as Comparative Example 2 are prepared in FIG. 7B, and the comparison with the particulate matter detection element 1 in the embodiment of the present invention is made. went.
In Comparative Example 1 and Comparative Example 2, the same components as those of the present invention are denoted by the same reference numerals, and the components having different points are denoted by z and y as branch numbers, respectively. . Both Comparative Example 1 and Comparative Example 2 are similar to the present invention in that the heating element 41 is built in the substrate part 40.
As shown in FIG. 7A, the particulate matter detection element 1z shown as the comparative example 1 has a pair of comb-like electrodes 10zA and 10zB, detection lead portions 51zA and 52zA on the surface of the insulating substrate portion 40 in which the heating element 41 is embedded. detection terminal 51ZB, the 52zB thick film printing form, which thickness t DE is are covered with 10μm dielectric layer 200z.
Particulate matter detection device 1y as a comparative example 2, as shown in FIG. 7B, penetrating the side surface direction of the insulating substrate defines a collecting space 30z, respectively, the thickness t DE is 250μm dielectric layer 200yA A pair of parallel plate electrodes 10yA and 10yB facing the collection space 30y through 200yB are formed, and the surfaces thereof are covered with insulating layers 201yA and 201yB.
In Comparative Example 1, each of the detection electrode layers 10Az and 10Bz constituting the pair of comb-like electrodes has a film thickness t EL of about 10 μm and an electrode area S of 0.25 cm 2 (for example, 2.5 mm width × 10 mm length). ) And the interelectrode distance L GP is set to 50 μm.
In Comparative Example 2, the electrode area S of the pair of parallel plate electrodes 10Ay and 10By is set to 0.5 cm2, and the distance between the parallel plates is 1000 μm.

図8A、図8B、図8Cは、それぞれ、本発明の実施例1、比較例1、比較例2において、検出電極層間に交流を印加したときに形成される電界の違いを模式的に示すものである。
本発明の粒子状物質検出素子1においては、一対の検出電極層10A、10Bが基板部40に対して直交方向に起立する略平板状であると共に、絶縁層20を介して対向する一対の検出電極層10A、10B間に被測定ガス中の粒子状物質を捕集する捕集空間30が区画されているので、図8Aに示すように、検出電極層10A、10Bの間に形成される静電容量を計測するために検出電極層10A、10B間に電圧を印加すると、検出電極層10A、10Bの互いに対向する表面間に強い電界Eが形成され、捕集空間30内に粒子状物質PMが引き込まれる。
また、本発明の粒子状物質検出素子1において、検出電極層10A、10B間に形成される静電容量は、検出電極層10A、10Bの対向する表面の面積Sに比例し、検出電極層10A、10B間の距離に反比例するので捕集空間30の高さHCMBに比べて捕集空間30の幅LCMBが短いので、検出電極を印刷形成した場合に比べ遥かに大きな静電容量となり、捕集空間30内にPMが取り込まれたときの静電容量の変化も大きくなる。
なお、検出電極10A、10B間で計測される静電容量は、捕集空間30の空気層(被測定ガス)の静電容量と検出電極層10A、10Bの対抗する表面を覆う絶縁層200A、200Bの比誘電率によって決まる絶縁層の静電容量との合成容量によって決まり、捕集空間30内に存在するPM量に応じて変化する。
8A, FIG. 8B, and FIG. 8C schematically show the difference in the electric field formed when alternating current is applied between the detection electrode layers in Example 1, Comparative Example 1, and Comparative Example 2 of the present invention, respectively. It is.
In the particulate matter detection element 1 of the present invention, the pair of detection electrode layers 10 </ b> A and 10 </ b> B has a substantially flat plate shape that stands in a direction orthogonal to the substrate portion 40 and is opposed to the pair of detection electrodes via the insulating layer 20. Since the collection space 30 for collecting the particulate matter in the gas to be measured is defined between the electrode layers 10A and 10B, as shown in FIG. 8A, static electricity formed between the detection electrode layers 10A and 10B. When a voltage is applied between the detection electrode layers 10A and 10B to measure the capacitance, a strong electric field E is formed between the opposing surfaces of the detection electrode layers 10A and 10B, and the particulate matter PM is formed in the collection space 30. Is drawn.
In the particulate matter detection element 1 of the present invention, the capacitance formed between the detection electrode layers 10A and 10B is proportional to the area S of the opposing surfaces of the detection electrode layers 10A and 10B, and the detection electrode layer 10A. Since the width L CMB of the collection space 30 is shorter than the height H CMB of the collection space 30 because it is inversely proportional to the distance between 10B, the capacitance becomes much larger than when the detection electrode is printed and formed. The change in capacitance when PM is taken into the collection space 30 also increases.
The capacitance measured between the detection electrodes 10A and 10B is the insulating layer 200A covering the surface of the collection space 30 facing the capacitance of the air layer (gas to be measured) and the detection electrode layers 10A and 10B. It is determined by the combined capacitance with the capacitance of the insulating layer determined by the relative dielectric constant of 200B, and changes according to the amount of PM present in the collection space 30.

一方、比較例1においては、検出電極層10Az、10Bz間に形成される電界Ezは、図8Bに示すように、平面的に形成された検出電極層10Az、10Bz間において、絶縁層200zをアーチ状に広がりをもって橋渡しするように形成されるため、本発明のような高い電界密度は得られない。さらに、比較例1においては、検出電極10Az、10Bz間には、絶縁層200zが充填され、PMが捕集される空間が存在せず、素子表面への堆積となるため、被測定ガスの流れによっては、素子表面に堆積したPMが流されてしまう虞があり、検出結果が安定しない虞もある。   On the other hand, in Comparative Example 1, the electric field Ez formed between the detection electrode layers 10Az and 10Bz arches the insulating layer 200z between the two-dimensional detection electrode layers 10Az and 10Bz as shown in FIG. 8B. Therefore, a high electric field density as in the present invention cannot be obtained. Furthermore, in Comparative Example 1, since the insulating layer 200z is filled between the detection electrodes 10Az and 10Bz, there is no space for collecting PM, and deposition is performed on the element surface. Depending on the case, PM deposited on the element surface may flow away, and the detection result may not be stable.

また、比較例2においては、本発明と同様、互いに対向する検出電極層10Ay、10By間に電界Eyが作用するが、電極間距離(例えば、250μm+500μm+250μm=1mm)が長く、検出電極層10Ay、10By間に検出される静電容量は、本発明の粒子状物質検出素子1に比べ遥かに小さい。   In Comparative Example 2, as in the present invention, the electric field Ey acts between the detection electrode layers 10Ay and 10By facing each other, but the distance between the electrodes (for example, 250 μm + 500 μm + 250 μm = 1 mm) is long, and the detection electrode layers 10Ay, 10By. The capacitance detected in the meantime is much smaller than that of the particulate matter detection element 1 of the present invention.

本発明の効果を確認するために、本発明の粒子状物質検出素子1(実施例1)と、従来の印刷形成された一対の櫛歯状電極の表面を誘電体で覆った粒子状物質検出素子1z(比較例1)と、誘電体で覆われた一対の平行平板電極間に基体の側面方向に貫通孔を設けた粒子状物質検出素子1y(比較例2)を用いて、燃焼排気を模した被測定ガスとして、大気を1m/sのガス流速で流し、PMを模して、カーボンを8μg/sの速度で供給し、粒子状物質検出素子周辺の温度を200℃に調整し、測定周波数を10kHzに設定して、検出電極間の静電容量の変化を計測し、その結果を図9A、図9Bに示す。
また、本発明の粒子状物質検出素子1において、検出電極層10B、10B間に形成された捕集空間30の幅LCMB、即ち、捕集空間形成層(202)の板厚tBNTを5μmから20μmに変化させたときの影響を計測し、その結果を図9Cに示す。
図9A、図9Bに示すように、本発明の粒子状物質検出素子1を用いた実施例1において、比較例1、比較例2に比べ、PM量Qの変化に対して検出される静電容量Cの変化が大きく、PM検出能力が遙かに高いことが分かる。
また、図9Bに示すように、実施例1においては、極めて少量のPMの検出が可能で、従来のような不感期間が全く存在しない。
さらに、図9Cに示すように、捕集空間30の幅LCMBが短い程、即ち、検出電極層10A、10B間の距離が短い程、静電容量の変化が大きく、測定感度を向上できることが判明した。
本発明においては、上述の如く、捕集空間形成層202の厚みを調整することによって、3μmから50μmまで、放電空間30の幅LCMBを任意に調整できるので、センサとしての自由度が極めて高い。
In order to confirm the effect of the present invention, the particulate matter detection element 1 of the present invention (Example 1) and the particulate matter detection in which the surfaces of a pair of conventional comb-like electrodes formed by printing are covered with a dielectric. Combustion exhaust is generated using the element 1z (Comparative Example 1) and the particulate matter detection element 1y (Comparative Example 2) in which a through-hole is provided in the lateral direction of the base between a pair of parallel plate electrodes covered with a dielectric. As the simulated gas to be measured, the atmosphere is flowed at a gas flow rate of 1 m / s, PM is imitated, carbon is supplied at a speed of 8 μg / s, the temperature around the particulate matter detection element is adjusted to 200 ° C., The measurement frequency was set to 10 kHz, and the change in capacitance between the detection electrodes was measured. The results are shown in FIGS. 9A and 9B.
In the particulate matter detection element 1 of the present invention, the width LCMB of the collection space 30 formed between the detection electrode layers 10B and 10B, that is, the plate thickness t BNT of the collection space forming layer (202) is from 5 μm. The effect of changing to 20 μm was measured, and the result is shown in FIG. 9C.
As shown in FIG. 9A and FIG. 9B, in Example 1 using the particulate matter detection element 1 of the present invention, compared to Comparative Example 1 and Comparative Example 2, electrostatic charge detected with respect to a change in PM amount Q is detected. It can be seen that the change in the capacitance C is large and the PM detection capability is much higher.
Further, as shown in FIG. 9B, in Example 1, a very small amount of PM can be detected, and there is no dead period as in the prior art.
Furthermore, as shown in FIG. 9C, the shorter the width L CMB of the collection space 30, that is, the shorter the distance between the detection electrode layers 10A and 10B, the greater the change in capacitance, and the measurement sensitivity can be improved. found.
In the present invention, as described above, the width L CMB of the discharge space 30 can be arbitrarily adjusted from 3 μm to 50 μm by adjusting the thickness of the collection space forming layer 202, so the degree of freedom as a sensor is extremely high. .

図10A、図10Bを参照して、本発明の第2の実施形態における粒子状物質検出素子1aについて説明する。
上記実施形態においては、検出部積層体2内において、検出電極層10A、10Bは、それぞれ独立して設けられ、基板40の表面に設けた検出リード部50A、50Bに接続することによって一対の櫛歯状電極を形成するようにした例を示したが、本実施形態においては、検出部積層体2a内において、検出電極層10A、10Bがそれぞれの接続端部101A、101Bにおいて共通電極12A、12Bに接続され一対の櫛歯状電極を構成し、共通電極12A、12Bが、素子の底面側でそれぞれ検出リード部50A、50Bに接続され、さらに共通電極12A、12Bの外表面が、絶縁層204A、205A、204B、205Bに覆われている点が相違する。本実施形態においても上記実施形態と同様の効果が発揮される。
加えて、上記実施形態においては、複数の検出電極層10A、10Bのそれぞれの接続端101A、101Bの全てを検出リード部50A、50Bに確実に接続する必要があるが、本実施形態においては、検出部積層体2a内において予め、検出電極層10A、10Bと共通電極12A、12Bとが接続されているので、基板部40への実装作業が極めて容易である。
With reference to FIG. 10A and 10B, the particulate matter detection element 1a in the 2nd Embodiment of this invention is demonstrated.
In the above-described embodiment, the detection electrode layers 10A and 10B are provided independently in the detection unit stacked body 2, and are connected to the detection lead units 50A and 50B provided on the surface of the substrate 40, thereby forming a pair of combs. In the present embodiment, the detection electrode layers 10A and 10B are connected to the common electrodes 12A and 12B at the connection end portions 101A and 101B in the detection unit laminate 2a. Are connected to the detection lead portions 50A and 50B on the bottom side of the element, respectively, and the outer surfaces of the common electrodes 12A and 12B are connected to the insulating layer 204A. , 205A, 204B, and 205B are different. Also in this embodiment, the same effect as the above embodiment is exhibited.
In addition, in the above embodiment, it is necessary to securely connect all of the connection ends 101A and 101B of the plurality of detection electrode layers 10A and 10B to the detection lead portions 50A and 50B, but in this embodiment, Since the detection electrode layers 10A and 10B and the common electrodes 12A and 12B are connected in advance in the detection unit laminate 2a, the mounting operation on the substrate unit 40 is extremely easy.

図11A、図11B、図12A、図12B、図12Cを参照して、第2の実施形態における粒子状物質検出素子1aの製造方法について説明する。
本実施形態においては、図2Aから図4B迄に示した工程と同様の工程をへて、積層体モジュールSTMを形成した後、共通電極12A、12Bとして、導電シート10Gを用い、絶縁層204AG、205AG、204BG、205BGとして、絶縁層シート200TNGを用いて、図11A、図11Bに示すように、積層体モジュールSTMの両側から貼り合わせるようにして電極層10A、10Bと共通電極12A、12Bとが接続され、その外側を絶縁層204A、205A、204B、205Bが覆うようにした積層体モジュールSTMaを形成することができる。
これを、第1の実施形態と同様に個々の検出部積層体2aに切り出して、焼成することにより、図12A、図12B、図12Cに示すような内部に一対の櫛歯状電極を形成した検出部積層体2aを形成することができる。
このようにして得られた検出部積層体2aを検出リード部50A、50Bを形成した基板部40に実装することで、第2の実施形態における粒子状物質検出素子1aが完成する。
With reference to FIG. 11A, FIG. 11B, FIG. 12A, FIG. 12B, and FIG. 12C, the manufacturing method of the particulate matter detection element 1a in 2nd Embodiment is demonstrated.
In the present embodiment, the process similar to the process shown in FIGS. 2A to 4B is performed to form the multilayer module STM, and then the conductive sheet 10G is used as the common electrodes 12A and 12B, and the insulating layers 204AG, As shown in FIGS. 11A and 11B, the electrode layers 10 </ b> A and 10 </ b> B and the common electrodes 12 </ b> A and 12 </ b> B are bonded together from both sides of the multilayer module STM as shown in FIGS. 11A and 11B using the insulating layer sheet 200TNG as 205AG, 204BG, and 205BG. It is possible to form a stacked body module STMa that is connected and covered by the insulating layers 204A, 205A, 204B, and 205B.
A pair of comb-like electrodes were formed in the interior as shown in FIGS. 12A, 12B, and 12C by cutting out and firing the individual detector stacks 2a in the same manner as in the first embodiment. The detector stack 2a can be formed.
The particulate matter detection element 1a according to the second embodiment is completed by mounting the detection unit laminate 2a thus obtained on the substrate unit 40 on which the detection lead units 50A and 50B are formed.

図13を参照して、本発明の第3の実施形態における粒子状物質検出素子1cについて説明する。
上記実施形態においては、検出部積層体2を複数同時に成形する方法を示したが、当然のことながら本図に示すように、1つの検出部積層体2cを形成するようにしても良いし、これを基本構成として、多数個を同時に形成できるようにしても良い。
A層は、絶縁性厚肉シート200TKGに検出電極層10Acと、共通電極層121Bcとを埋め込み形成してある。
B層は、A層を平面方向に180度回転させたものであり、絶縁性厚肉シート200TKGに検出電極層10Bcと、共通電極層121Acとを埋め込み形成してある。
C層は、絶縁性薄肉シート200THGに共通電極層120Ac、120Bcを埋め込み形成してある。また、C層は、厚膜印刷によって形成しても良い。
V層は、焼失層シート30Gと共通電極層122Ac、122Bcとが絶縁層200TNGに埋め込み成形してある。また、V層も、厚膜印刷によって形成しても良い。
本図に示すように、A層、C層、V層、C層、B層、C層、V層・・・を繰り返して積層し、終端部に絶縁性厚肉シート200THKからなるE層を積層し、圧着し、焼成することによって検出部積層体2cが完成する。
得られた検出部積層体2cを基板部40に実装することにより、本実施形態における粒子状物質検出素子1cが完成する。
なお、上記の製造方法において、各層を積層する際に、周囲にダミー部を設けて位置決めのためのガイドピンを挿入できるようにしても良い。
また、上記の製造方法においては、加熱圧着を基本として説明してあるが、必要に応じて、上下の層の中間的な材料を含む接着層を塗布して積層するようにしても良い。
With reference to FIG. 13, a particulate matter detection element 1c according to a third embodiment of the present invention will be described.
In the above-described embodiment, the method of simultaneously forming a plurality of detection unit stacks 2 has been shown, but as a matter of course, one detection unit stack 2c may be formed as shown in the figure, Based on this as a basic configuration, a large number may be formed simultaneously.
The A layer is formed by embedding the detection electrode layer 10Ac and the common electrode layer 121Bc in the insulating thick sheet 200TKG.
The B layer is obtained by rotating the A layer 180 degrees in the plane direction, and is formed by embedding the detection electrode layer 10Bc and the common electrode layer 121Ac in an insulating thick sheet 200TKG.
The C layer is formed by embedding the common electrode layers 120Ac and 120Bc in the insulating thin sheet 200THG. The C layer may be formed by thick film printing.
The V layer is formed by embedding the burnt layer sheet 30G and the common electrode layers 122Ac and 122Bc into the insulating layer 200TNG. The V layer may also be formed by thick film printing.
As shown in this figure, the A layer, C layer, V layer, C layer, B layer, C layer, V layer,... Are repeatedly laminated, and the E layer made of the insulating thick sheet 200THK is formed at the terminal portion. The detection unit laminate 2c is completed by laminating, pressing and firing.
By mounting the obtained detection unit laminate 2c on the substrate unit 40, the particulate matter detection element 1c in the present embodiment is completed.
In the above manufacturing method, when the layers are stacked, a dummy portion may be provided around the layers so that guide pins for positioning can be inserted.
In the manufacturing method described above, thermocompression bonding is described as a basis. However, an adhesive layer including an intermediate material between upper and lower layers may be applied and laminated as necessary.

なお、上記の製造方法のように、検出電極層10A、10BのH方向表面を覆う絶縁層201A、201Bを、予め、埋め込んでから各層を積層する方法によらず、絶縁層201A、201Bを埋め込むことなく、単純に、導体層シート10G、I層、V層を繰り返して積層した後、一方の端面に絶縁層を印刷形成し、焼成することによって、焼失層の形成された部分の絶縁層を焼失層と共に焼失させることも考えられるが、捕集空間の開口部を塞ぐように絶縁層が残留したり、電極層表面を覆う絶縁層の剥離を招いたりする虞があり、信頼性に欠けるため妥当ではない。   Note that the insulating layers 201A and 201B are embedded regardless of the method of previously embedding the insulating layers 201A and 201B that cover the H-direction surfaces of the detection electrode layers 10A and 10B as in the above manufacturing method. Without repeating, the conductor layer sheet 10G, the I layer, and the V layer are repeatedly laminated, and then the insulating layer is printed on one end face and fired to form a portion of the insulating layer where the burnt-out layer is formed. Although it may be burned out together with the burned-out layer, the insulating layer may remain so as to block the opening of the collection space, or the insulating layer covering the electrode layer surface may be peeled off, which is not reliable. It is not valid.

1 粒子状物質検出素子
10A、10B 検出電極層
10G 導電シート
101A、101B 接続端部
102A、102B 電極層絶縁端部
2 検出部積層体
20A、20B 絶縁層
200TKG 絶縁性厚肉シート
200TNG 絶縁性薄肉シート
200A、200B 電極対向面側絶縁層
201A、201B 素子平面方向側絶縁層
202 捕集空間形成層
203A、203B 電極端部絶縁層
30 煤捕集空間
30G 焼失層シート
40 基板部
400、401 絶縁性基板
41 発熱体
50A、50B 検出電極層リード部
6 ダイシングソー
A層、B層 絶縁層埋め込み電極層
I層 絶縁層
C層 導体層埋め込み絶縁層
V層 焼失層
STM 積層体モジュール
M1、M2、M3、M4 金型
DESCRIPTION OF SYMBOLS 1 Particulate matter detection element 10A, 10B Detection electrode layer 10G Conductive sheet 101A, 101B Connection end part 102A, 102B Electrode layer insulation end part 2 Detection part laminated body 20A, 20B Insulation layer 200TKG Insulation thick sheet 200TNG Insulation thin sheet 200A, 200B Electrode facing side insulating layer 201A, 201B Element plane direction insulating layer 202 Collection space forming layer 203A, 203B Electrode end insulating layer 30 煤 Collection space 30G Burnt layer sheet 40 Substrate part 400, 401 Insulating substrate 41 Heating element 50A, 50B Detection electrode layer lead part 6 Dicing saw A layer, B layer Insulating layer embedded electrode layer I layer Insulating layer C layer Conductive layer embedded insulating layer V layer Burnout layer STM Multilayer module M1, M2, M3, M4 Mold

特開2012−47596号公報JP 2012-47596 A 特開2009−276151号公報JP 2009-276151 A

Claims (5)

少なくとも、検出部として、一定の間隙を隔てて対向する一対の検出電極層(10A、10B)と、該検出電極層の表面を覆う絶縁層(20)と、を具備し、上記検出部(2)を略平板状の基板部(40)の先端に固定して被測定ガス中に配設せしめて、上記検出電極層(10A、10B)の周辺に存在する粒子状物質の量に応じて変化する上記検出電極層(10A、10B)間の静電容量、又は、交流インピーダンスを計測して被測定ガス中に含まれる粒子状物質を検出する粒子状物質検出素子であって、
上記一対の検出電極層(10A、10B)が上記基板部(40)の厚み方向に起立する略平板状であると共に、
上記絶縁層(20)を介して対向する上記一対の検出電極層(10A、10B)間に被測定ガス中の粒子状物質を捕集する捕集空間(30)を具備し、
上記粒子状物質検出素子の長手方向である素子長手方向における上記捕集空間(30)の幅(L CMB )が、上記厚み方向における上記検出電極層(10A、10B)の高さ(T CUT )よりも短く形成されていることを特徴とする粒子状物質検出素子。
At least, the detection unit includes a pair of detection electrode layers (10A, 10B) facing each other with a certain gap, and an insulating layer (20) covering the surface of the detection electrode layer, and the detection unit (2 ) Is fixed to the tip of the substantially flat substrate portion (40) and disposed in the gas to be measured, and changes according to the amount of particulate matter existing around the detection electrode layer (10A, 10B). A particulate matter detection element for measuring a capacitance between the detection electrode layers (10A, 10B) or an alternating current impedance to detect particulate matter contained in the gas to be measured,
The pair of detection electrode layers (10A, 10B) has a substantially flat plate shape standing in the thickness direction of the substrate portion (40), and
A collection space (30) for collecting particulate matter in the gas to be measured is provided between the pair of detection electrode layers (10A, 10B) opposed via the insulating layer (20) ,
The width (L CMB ) of the collection space (30) in the longitudinal direction of the element, which is the longitudinal direction of the particulate matter detection element, is the height (T CUT ) of the detection electrode layer (10A, 10B) in the thickness direction. A particulate matter detection element characterized by being formed shorter than the above.
上記検出部(2)が、
略平板状に形成した上記検出電極層(10A、10B)と、
略平板状に形成した上記絶縁層(200A、200B)と、
上記捕集空間(30)を区画した捕集空間形成層(202)と、を積み重ねた積層構造である請求項1に記載の粒子状物質検出素子。
The detection unit (2)
The detection electrode layer (10A, 10B) formed in a substantially flat plate shape;
The insulating layer (200A, 200B) formed in a substantially flat plate shape;
2. The particulate matter detection element according to claim 1, wherein the particulate matter detection element has a stacked structure in which collection space forming layers (202) dividing the collection space (30) are stacked.
少なくとも、上記絶縁層(20)において、上記一対の検出電極層(10A、10B)が互いに対向する表面を覆う方向(200A、200B)の膜厚(TDE )が3μm以上、50μm以下であると共に、
上記捕集空間(30)の素子長手方向の幅(LCMB)が3μm以上、50μm以下であり、
上記厚み方向における上記検出電極層(10A、10B)の高さ(T CUT )が100μm以上、2000μm以下である請求項1又は請求項2に記載の粒子状物質検出素子。
At least in the insulating layer (20), the thickness (T DE L ) in the direction (200A, 200B) covering the surfaces of the pair of detection electrode layers (10A, 10B) facing each other is 3 μm or more and 50 μm or less. With
The width (L CMB ) in the element longitudinal direction of the collection space (30) is 3 μm or more and 50 μm or less,
The particulate matter detection element according to claim 1 or 2 , wherein a height (T CUT ) of the detection electrode layer (10A, 10B) in the thickness direction is 100 µm or more and 2000 µm or less.
上記電極層(10A、10B)が、MCrO、MMnO、MCoO(但し、Mは、La、又は、Gdのいずれか)のいずれかから選択したペロブスカイト系の導電性セラミックであり、
上記絶縁層(20)が、アルミナ、ジルコニア、マグネシア、チタニア、シリカ、セリアのいずれかから選択した絶縁性セラミックである請求項1〜請求項3のいずれか一項に記載の粒子状物質検出素子。
The electrode layer (10A, 10B) is a perovskite-based conductive ceramic selected from any one of MCrO 3 , MMnO 3 , and MCoO 3 (where M is either La or Gd),
The particulate matter detection element according to any one of claims 1 to 3, wherein the insulating layer (20) is an insulating ceramic selected from alumina, zirconia, magnesia, titania, silica, and ceria. .
請求項1ないしのいずれか一項に記載の粒子状物質検出素子の製造方法であって、
少なくとも、導電性セラミック材料をシート状にした電極層シート(10G)を形成する電極層シート形成工程と、焼成によって焼失する焼失材料をシート状にした焼失層シート(30G)を形成する焼失層シート形成工程と、絶縁性セラミック材料をシート状にした絶縁性厚肉シート(200TKG)を形成する絶縁性厚肉シート形成工程と、上記絶縁性セラミック材料からなり上記絶縁性厚肉シート(200TKG)よりも薄い絶縁性薄肉シート(200TNG)を形成する絶縁性薄肉シート形成工程と、
上記電極層シート(10G)と、上記絶縁性厚肉シート(200TKG)とを重ね合わせて、所定形状の金型で同時に打ち抜くことにより、上記電極層シート(10G)内に所定形状に切り抜いた上記絶縁性厚肉シート(200TKG)を埋設させた埋設電極層シートを形成する電極層内絶縁層埋設工程と、
上記焼失層シート(30G)に、上記セラミック材料からなり所定形状に切り抜かれた絶縁膜を埋設させた埋設焼失層シートを形成する埋設焼失層シート形成工程と、
上記埋設電極層シートと、上記埋設焼失層シートと、上記絶縁性薄肉シート(200TNG)とを所定の積層パターンで重ね合わせて、少なくとも一対の電極層(A層、B層)と、これらを覆う絶縁層(I層)と、焼失層(V層)とが積層された積層構造の検出部積層体未焼成体(2G)を形成する積層工程と、
該積層工程によって得られた検出部積層体未焼成体(2G)を焼成して、上記検出電極層(10A、10B)、絶縁層(20)、捕集空間(30)とが一体の積層構造の検出部積層体(2)を形成する積層体焼成工程と、
積層体焼成工程を経て、得られた検出部積層体(2)を、外部との接続を図る一対の検出リード部(50A、50B)を設けた略平板状の基板部(40)の所定位置に実装、固定する検出部実装工程とを具備することを特徴とする粒子状物質検出素子の製造方法。
It is a manufacturing method of the particulate matter detection element according to any one of claims 1 to 4 ,
At least an electrode layer sheet forming step for forming an electrode layer sheet (10G) in the form of a conductive ceramic material, and a burned layer sheet for forming a burned layer sheet (30G) in the form of a burned material that is burned off by firing. A forming step, an insulating thick sheet forming step for forming an insulating thick sheet (200 TKG) in the form of a sheet of insulating ceramic material, and the insulating thick sheet (200 TKG) made of the insulating ceramic material. An insulating thin sheet forming step for forming a thin insulating thin sheet (200TNG);
The electrode layer sheet (10G) and the insulating thick sheet (200TKK) are overlapped and punched out simultaneously with a mold having a predetermined shape to cut out the electrode layer sheet (10G) into a predetermined shape. An insulating layer embedding step in the electrode layer for forming an embedded electrode layer sheet in which an insulating thick sheet (200 TKG) is embedded;
An embedded burned layer sheet forming step of forming an embedded burned layer sheet in which an insulating film made of the ceramic material and cut into a predetermined shape is embedded in the burned layer sheet (30G);
The embedded electrode layer sheet, the embedded burned layer sheet, and the insulating thin sheet (200TNG) are stacked in a predetermined laminated pattern to cover at least a pair of electrode layers (A layer, B layer). A laminating step for forming a non-fired body (2G) having a laminated structure in which an insulating layer (I layer) and a burned-out layer (V layer) are laminated;
The detection unit laminate green body (2G) obtained by the lamination step is fired, and the detection electrode layer (10A, 10B), the insulating layer (20), and the collection space (30) are integrated in a laminated structure. A laminate firing step for forming the detector laminate (2) of
Through the laminate baking step, resulting detector laminate (2), a predetermined pair of detection lead to achieve a connection with the external (50A, 50B) substantially flat substrate portion provided with (40) A method for producing a particulate matter detection element, comprising: a detection unit mounting step for mounting and fixing at a position.
JP2012140653A 2012-06-22 2012-06-22 Particulate matter detection element and manufacturing method thereof Expired - Fee Related JP5864368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140653A JP5864368B2 (en) 2012-06-22 2012-06-22 Particulate matter detection element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140653A JP5864368B2 (en) 2012-06-22 2012-06-22 Particulate matter detection element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014006103A JP2014006103A (en) 2014-01-16
JP5864368B2 true JP5864368B2 (en) 2016-02-17

Family

ID=50103960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140653A Expired - Fee Related JP5864368B2 (en) 2012-06-22 2012-06-22 Particulate matter detection element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5864368B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016002629B4 (en) * 2015-06-09 2020-10-08 Amotech Co., Ltd. Particle sensor and emission control system with the same
KR101547446B1 (en) * 2015-06-09 2015-08-26 주식회사 아모텍 Particular matter sensor and exhaust gas purification system using the same
WO2017090434A1 (en) * 2015-11-25 2017-06-01 京セラ株式会社 Sensor substrate and sensor device
KR102267063B1 (en) * 2019-08-02 2021-06-21 재단법인 구미전자정보기술원 A manufacturing method of a flexible acid sensor and a computer-readable recording medium recording the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668124B2 (en) * 1988-07-14 1997-10-27 マツダ株式会社 Exhaust gas sensor
JP2005114557A (en) * 2003-10-08 2005-04-28 Ngk Insulators Ltd Soot measuring apparatus
JP5223125B2 (en) * 2006-08-25 2013-06-26 謙治 佐藤 Wireless tag type sensor
US20090021270A1 (en) * 2007-07-19 2009-01-22 International Business Machines Corporation Capacitive detection of dust accumulation in a heat sink
DE102007047078A1 (en) * 2007-10-01 2009-04-02 Robert Bosch Gmbh Sensor element for use in e.g. garage for emission investigation, has protective layers designed congruently to surfaces of electrodes of system, where upper surfaces of electrodes face surfaces of electrodes are arranged on isolation layer
JP5010530B2 (en) * 2008-05-13 2012-08-29 日本碍子株式会社 Particulate matter detector
JP5542006B2 (en) * 2010-08-26 2014-07-09 日本碍子株式会社 Particulate matter detector
JP5500028B2 (en) * 2010-09-30 2014-05-21 株式会社デンソー Method for manufacturing particulate matter detection sensor
JP2013205028A (en) * 2012-03-27 2013-10-07 Ngk Insulators Ltd Particulate substance detector

Also Published As

Publication number Publication date
JP2014006103A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5500028B2 (en) Method for manufacturing particulate matter detection sensor
JP5634433B2 (en) Particulate matter detection element, manufacturing method thereof, and particulate matter detection sensor
JP5709808B2 (en) Particulate matter detection element manufacturing method and particulate matter detection sensor
JP4880581B2 (en) Ceramic honeycomb structure
JP5864368B2 (en) Particulate matter detection element and manufacturing method thereof
JP6228018B2 (en) Particulate matter detection element, particulate matter detection sensor, and method for manufacturing particulate matter detection element
KR20090125114A (en) Particulate matter detection device and particulate matter detection method
JP4104627B2 (en) Plasma generating electrode, plasma generating apparatus, and exhaust gas purification apparatus
JP5010530B2 (en) Particulate matter detector
JP3597234B2 (en) Planar type electrochemical sensor for measuring gas component in gas mixture and method of manufacturing the same
JP2008008151A (en) Honeycomb structure for particulate sensor
JP6626901B2 (en) Part for measuring device of particulate matter and method for producing the same
US10301992B2 (en) Heater and honeycomb structure including heater
JP2008063985A (en) Honeycomb structure for fine particle sensor
JP6406237B2 (en) Sensor element
JP4189260B2 (en) Manufacturing method of ceramic heater structure and ceramic heater structure
JP3874690B2 (en) Multilayer gas sensor element, method for manufacturing the same, and gas sensor
JP3873381B2 (en) Stacked air-fuel ratio sensor
JP2003294697A (en) Stacked gas sensor element, its manufacturing method, and gas sensor
JP4061125B2 (en) Method for manufacturing oxygen sensor element
WO2017115617A1 (en) Component for device for measuring particulate matter
JP4084593B2 (en) Oxygen sensor element
JP6511304B2 (en) Particulate matter detection sensor
JP6542913B2 (en) Parts for measuring particulate matter
JP4426065B2 (en) Gas sensor element and gas sensor including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5864368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees