JP5860734B2 - Hard coating member and method for producing the same - Google Patents

Hard coating member and method for producing the same Download PDF

Info

Publication number
JP5860734B2
JP5860734B2 JP2012056101A JP2012056101A JP5860734B2 JP 5860734 B2 JP5860734 B2 JP 5860734B2 JP 2012056101 A JP2012056101 A JP 2012056101A JP 2012056101 A JP2012056101 A JP 2012056101A JP 5860734 B2 JP5860734 B2 JP 5860734B2
Authority
JP
Japan
Prior art keywords
hard film
film
hard
gas
coated member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012056101A
Other languages
Japanese (ja)
Other versions
JP2013189674A (en
Inventor
三喜男 野田
三喜男 野田
渉 榊原
渉 榊原
清水 雄一郎
雄一郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2012056101A priority Critical patent/JP5860734B2/en
Publication of JP2013189674A publication Critical patent/JP2013189674A/en
Application granted granted Critical
Publication of JP5860734B2 publication Critical patent/JP5860734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、硬質皮膜被覆部材およびその製造方法に関し、特に、窒素とホウ素を含む硬質皮膜が基材上に形成された硬質皮膜被覆部材およびその製造方法に関する。   The present invention relates to a hard coating member and a method for producing the same, and more particularly to a hard coating member having a hard coating containing nitrogen and boron formed on a substrate and a method for producing the same.

従来、耐摩耗性や耐焼き付き性が必要とされる自動車などの摺動部品や機械部材の他、高面圧下で使用される金型などの表面に、スパッタリングなどの物理的蒸着によって窒素含有クロム皮膜を形成して、耐摩耗性や耐焼き付き性を向上させる方法が知られている(例えば、特許文献1参照)。また、高硬度で耐摩耗性や摺動性に優れた立方晶窒化ホウ素(BN)により基材を被覆する方法も提案されている(例えば、特許文献2参照)。   Conventionally, nitrogen-containing chromium is produced by physical vapor deposition such as sputtering on the surfaces of sliding parts and machine parts such as automobiles that require wear resistance and seizure resistance, as well as dies used under high surface pressure. A method of forming a film to improve wear resistance and seizure resistance is known (see, for example, Patent Document 1). In addition, a method of coating a base material with cubic boron nitride (BN) having high hardness and excellent wear resistance and slidability has been proposed (see, for example, Patent Document 2).

特開平11−217666号公報(段落番号0008−0010)JP 11-217666 A (paragraph number 0008-0010) 特開2010−99916号公報(段落番号0002、0012)JP 2010-99916 A (paragraph numbers 0002 and 0012)

しかし、特許文献1の方法のように、スパッタリングなどの物理的蒸着によって窒素含有クロム皮膜のような硬質皮膜を金属基材上に形成すると、皮膜自体の圧縮応力により皮膜を厚くするのが困難であり、皮膜の内部応力が大きくなって基材への密着性が悪くなるおそれがある。   However, when a hard film such as a nitrogen-containing chromium film is formed on a metal substrate by physical vapor deposition such as sputtering as in the method of Patent Document 1, it is difficult to increase the film thickness due to the compressive stress of the film itself. There is a possibility that the internal stress of the film is increased and the adhesion to the substrate is deteriorated.

また、特許文献2の方法のように、BN皮膜で基材を被覆する場合、耐久性を高くするためには、BN皮膜を厚くする必要があるが、BN皮膜を1μm以上に厚くすると、BN皮膜の内部応力が大きくなって、基材との密着強度が悪くなるという問題がある。また、このようなBN皮膜で金型などの基材の表面を被覆すると、BN皮膜の表面が相手部材と繰り返し接触することにより、温度の上昇および下降が繰り返されるので、耐熱衝撃性(相手部材との接触による熱サイクルに耐えること)が良好でなければBN皮膜が容易に破壊される可能性があるため、耐熱衝撃性が良好であることが必要になる。また、耐熱衝撃性に優れたBN皮膜で基材を被覆するためには、BN皮膜のヤング率(縦弾性係数)が低いことが必要になる。   Further, when the base material is coated with a BN film as in the method of Patent Document 2, it is necessary to increase the thickness of the BN film in order to increase the durability. However, if the BN film is increased to 1 μm or more, the BN film There is a problem that the internal stress of the film is increased and the adhesion strength with the substrate is deteriorated. Further, when the surface of a base material such as a mold is coated with such a BN film, the surface of the BN film repeatedly comes into contact with the mating member, so that the temperature rises and falls repeatedly. If it is not good), the BN film can be easily broken, so that it is necessary to have good thermal shock resistance. Moreover, in order to coat a base material with a BN film having excellent thermal shock resistance, the Young's modulus (longitudinal elastic modulus) of the BN film needs to be low.

したがって、本発明は、このような従来の問題点に鑑み、ヤング率(縦弾性係数)が低く、熱衝撃性に優れた硬質皮膜で基材が被覆された硬質皮膜被覆部材およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention provides a hard film-coated member having a low Young's modulus (longitudinal elastic modulus) and a hard film excellent in thermal shock resistance and a method for producing the same. The purpose is to provide.

本発明者らは、上記課題を解決するために鋭意研究した結果、NとCとBとSiからなり、ビッカース硬さHVが800以上であり且つ縦弾性係数が100GPa以下である硬質皮膜を基材上に形成することにより、ヤング率(縦弾性係数)が低く、熱衝撃性に優れた硬質皮膜で基材が被覆された硬質皮膜被覆部材を製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention are based on a hard coating composed of N, C, B, and Si, having a Vickers hardness HV of 800 or more and a longitudinal elastic modulus of 100 GPa or less. Found that by forming on a material, it is possible to produce a hard-coated member having a low Young's modulus (longitudinal elastic modulus) and a base material coated with a hard film excellent in thermal shock, and completed the present invention. It came to do.

すなわち、本発明による硬質皮膜被覆部材は、NとCとBとSiからなる硬質皮膜が基材上に形成され、硬質皮膜のビッカース硬さHVが800以上であり且つ縦弾性係数が100GPa以下であることを特徴とする。この硬質皮膜被覆部材において、硬質皮膜のビッカース硬さHVが1000以上であるのが好ましく、硬質皮膜の縦弾性係数が95GPa以下であるのが好ましい。また、硬質皮膜のスクラッチ強度が40N以上であるのが好ましい。   That is, in the hard coating member according to the present invention, a hard coating composed of N, C, B, and Si is formed on a substrate, the Vickers hardness HV of the hard coating is 800 or more, and the longitudinal elastic modulus is 100 GPa or less. It is characterized by being. In this hard film-coated member, the hard film preferably has a Vickers hardness HV of 1000 or more, and the hard film preferably has a longitudinal elastic modulus of 95 GPa or less. Moreover, it is preferable that the scratch strength of a hard film is 40 N or more.

また、本発明による硬質皮膜被覆部材の製造方法は、プラズマCVD法により600℃以下の温度でNとCとBとSiからなる硬質皮膜を基材上に形成することを特徴とする。この硬質皮膜被覆部材の製造方法において、原料ガスとして、N源ガスとC源ガスとB源ガスとSi源ガスを使用し、ガス圧力を300〜10000Paとするのが好ましい。この場合、N源ガスがNガスおよびNHガスの少なくとも一方であり、C源ガスがCH、C、C、モノメチルシラン(MMS)およびトリメチルボロン(TMB)からなる群から選ばれる少なくとも1種のガスであり、B源ガスがトリメチルボロン(TMB)、三フッ化ホウ素(BF)、ジボランおよびホウ酸からなる群から選ばれる少なくとも1種のガスであり、Si源ガスがモノメチルシラン(MMS)、シラン、ジシランおよびトリメチルシランからなる群から選ばれる少なくとも1種のガスであるのが好ましい。また、原料ガスとしてHガスを使用してもよい。また、上記の硬質皮膜被覆部材の製造方法において、原料ガスとして、HとNとモノメチルシランとトリメチルボロンを含むガスを使用するのが好ましく、原料ガスがCHを含んでもよい。また、プラズマCVD法が、パルス放電プラズマCVD法であるのが好ましい。 The method for producing a hard film-coated member according to the present invention is characterized in that a hard film composed of N, C, B, and Si is formed on a substrate at a temperature of 600 ° C. or less by a plasma CVD method. In this method for producing a hard coating member, it is preferable to use N source gas, C source gas, B source gas, and Si source gas as the source gas, and to set the gas pressure to 300 to 10,000 Pa. In this case, the N source gas is at least one of N 2 gas and NH 3 gas, and the C source gas is composed of CH 4 , C 2 H 2 , C 3 H 8 , monomethylsilane (MMS), and trimethylboron (TMB). At least one gas selected from the group, and the B source gas is at least one gas selected from the group consisting of trimethylboron (TMB), boron trifluoride (BF 3 ), diborane and boric acid, and Si The source gas is preferably at least one gas selected from the group consisting of monomethylsilane (MMS), silane, disilane, and trimethylsilane. It may also be used H 2 gas as a material gas. In the above-described method for fabricating the hard coating covering member, as a source gas, it is preferable to use a gas containing H 2 and N 2 and monomethyl silane and trimethyl boron source gas may include CH 4. The plasma CVD method is preferably a pulse discharge plasma CVD method.

本発明によれば、ヤング率(縦弾性係数)が低く、熱衝撃性に優れた硬質皮膜で基材が被覆された硬質皮膜被覆部材を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hard film coating | coated member with which the base material was coat | covered with the hard film with a low Young's modulus (longitudinal elastic modulus) and excellent thermal shock property can be manufactured.

実施例1で得られた硬質皮膜被覆部材のスクラッチ試験における垂直荷重に対する摩擦係数を示す図である。It is a figure which shows the friction coefficient with respect to the vertical load in the scratch test of the hard film coating | coated member obtained in Example 1. FIG. 実施例2で得られた硬質皮膜被覆部材のスクラッチ試験における垂直荷重に対する摩擦係数を示す図である。It is a figure which shows the friction coefficient with respect to the vertical load in the scratch test of the hard film coating | coated member obtained in Example 2. FIG. 実施例3で得られた硬質皮膜被覆部材のスクラッチ試験における垂直荷重に対する摩擦係数を示す図である。It is a figure which shows the friction coefficient with respect to the perpendicular | vertical load in the scratch test of the hard film coating | coated member obtained in Example 3. FIG.

本発明による硬質皮膜被覆部材の製造方法の実施の形態では、プラズマCVD法により600℃以下の温度でNとCとBとSiからなる硬質皮膜を基材上に形成して硬質皮膜被覆部材を製造する。   In the embodiment of the method for producing a hard film covering member according to the present invention, a hard film made of N, C, B and Si is formed on a substrate at a temperature of 600 ° C. or less by a plasma CVD method. To manufacture.

基材として、熱間ダイス鋼(例えばSKD61)、冷間ダイス鋼(例えばSKD11)、高速度工具鋼(例えばSKH51)などを使用することができる。   As the base material, hot die steel (for example, SKD61), cold die steel (for example, SKD11), high speed tool steel (for example, SKH51), or the like can be used.

プラズマCVD法としては、減圧下(または大気圧下)で反応性ガスのプラズマ放電分解によって薄膜を形成することができる方法であればよいが、パルス放電プラズマCVD法であるのが好ましい。この場合、原料ガスとしてN源、C源、B源およびSi源となるガスをパルス放電プラズマCVD装置に供給して、600℃以下の温度でNとCとBとSiからなる硬質皮膜を基材上に形成することができる。N源としては、NやNHなどを使用することができる。Si源としては、モノメチルシラン(MMS)、シラン、ジシラン、トリメチルシランなどを使用することができる。B源としては、トリメチルボロン(TMB)、三フッ化ホウ素(BF)、ジボラン、ホウ酸などを使用することができる。C源としては、CH、C、C、MMS、TMBなどを使用することができる。また、原料ガスにHガスを添加してもよい。 The plasma CVD method may be any method that can form a thin film by plasma discharge decomposition of a reactive gas under reduced pressure (or atmospheric pressure), but is preferably a pulse discharge plasma CVD method. In this case, N source, C source, B source, and Si source gas are supplied to the pulse discharge plasma CVD apparatus as source gases, and a hard film composed of N, C, B, and Si is formed at a temperature of 600 ° C. or lower. It can be formed on a material. As the N source, N 2 , NH 3 or the like can be used. As the Si source, monomethylsilane (MMS), silane, disilane, trimethylsilane, or the like can be used. As the B source, trimethylboron (TMB), boron trifluoride (BF 3 ), diborane, boric acid, or the like can be used. As the C source, CH 4 , C 2 H 2 , C 3 H 8 , MMS, TMB, and the like can be used. It may also be added H 2 gas as a source gas.

パルス放電プラズマCVD法によって硬質皮膜を形成する場合、例えば、パルス放電プラズマCVD装置の真空チャンバ内に基材をセットし、真空チャンバ内を10Pa以下まで排気した後、N源ガスを流量1〜1000ccm(cc/分)、好ましくは80〜400ccm、Si源ガスを流量0.05〜100ccm、好ましくは0.1〜5ccm、B源ガスを流量0.1〜100ccm、好ましくは1〜10ccm、C源ガスを流量0.05〜200ccm、好ましくは0.1〜100ccmで供給し、ガス圧力Pgを300〜10000Pa、好ましくは500〜2000Pa、基材温度Tsを200〜600℃、好ましくは380〜500℃、処理時間DTを10〜120分間、好ましくは20〜80分間、パルス周波数fを0.1〜10kHz、好ましくは0.5〜5kHz、パルスデューティ比DRを2〜30%、好ましくは3〜25%として、パルス放電プラズマCVD法により基材上に硬質皮膜を形成して硬質皮膜被覆部材を得ることができる。なお、C源ガスとしてCHガスを使用する場合には、流量100ccm以下、好ましくは20ccm以下で供給し、CガスやCガスなどを使用する場合には、流量200ccm以下、好ましくは10〜100ccmで供給する。また、原料ガスにHガスを添加する場合には、流量1〜1000ccmで供給するのが好ましい。 When forming a hard film by the pulse discharge plasma CVD method, for example, after setting the substrate in the vacuum chamber of the pulse discharge plasma CVD apparatus and exhausting the vacuum chamber to 10 Pa or less, the N source gas is supplied at a flow rate of 1 to 1000 ccm. (Cc / min), preferably 80-400 ccm, Si source gas flow rate 0.05-100 ccm, preferably 0.1-5 ccm, B source gas flow rate 0.1-100 ccm, preferably 1-10 ccm, C source The gas is supplied at a flow rate of 0.05 to 200 ccm, preferably 0.1 to 100 ccm, the gas pressure Pg is 300 to 10000 Pa, preferably 500 to 2000 Pa, and the substrate temperature Ts is 200 to 600 ° C., preferably 380 to 500 ° C. The treatment time DT is 10 to 120 minutes, preferably 20 to 80 minutes, and the pulse frequency f is 0.1. A hard coating member is obtained by forming a hard coating on a substrate by pulse discharge plasma CVD method at 10 kHz, preferably 0.5 to 5 kHz, and a pulse duty ratio DR of 2 to 30%, preferably 3 to 25%. be able to. When CH 4 gas is used as the C source gas, it is supplied at a flow rate of 100 ccm or less, preferably 20 ccm or less, and when C 2 H 2 gas or C 3 H 8 gas is used, the flow rate is 200 ccm or less. , Preferably 10 to 100 ccm. Further, in the case of adding H 2 gas to the source gas is preferably supplied at a flow rate 1~1000Ccm.

このようにして得られた硬質皮膜被覆部材では、NとCとBとSiからなる硬質皮膜が基材上に形成され、硬質皮膜のビッカース硬さHVが800以上、好ましくは1000以上と高く、ヤング率(縦弾性係数)が100GPa以下、好ましくは95GPa以下と低く、スクラッチ強度が好ましくは40N以上である。このように低ヤング率(低縦弾性係数)であることから、耐熱衝撃性に優れた硬質皮膜を基材上に形成することができる。   In the thus obtained hard coating member, a hard coating composed of N, C, B and Si is formed on the substrate, and the Vickers hardness HV of the hard coating is 800 or higher, preferably 1000 or higher, The Young's modulus (longitudinal elastic modulus) is as low as 100 GPa or less, preferably 95 GPa or less, and the scratch strength is preferably 40 N or more. Thus, since it has a low Young's modulus (low longitudinal elastic modulus), a hard coating excellent in thermal shock resistance can be formed on the substrate.

なお、本発明による硬質皮膜被覆部材の硬質皮膜上にさらにBNやDLC(ダイヤモンドライクカーボン)などの高硬度の皮膜を形成してもよい。このように、本発明による硬質皮膜被覆部材の硬質皮膜をBNやDLCの下地膜として用いると、高硬度の皮膜と低い硬度の基材との間に生じる応力を緩和することができる。   Note that a hard film such as BN or DLC (diamond-like carbon) may be further formed on the hard film of the hard film-coated member according to the present invention. As described above, when the hard film of the hard film-coated member according to the present invention is used as a base film of BN or DLC, the stress generated between the high-hardness film and the low-hardness base material can be relaxed.

以下、本発明による硬質皮膜被覆部材およびその製造方法の実施例について詳細に説明する。   Examples of the hard film-coated member and the manufacturing method thereof according to the present invention will be described in detail below.

[実施例1]
基材としてSKD61を用意し、パルス放電プラズマCVD装置の真空チャンバ内に基材をセットし、容積0.17mの真空チャンバ内を10Pa以下まで排気した後、Nガスを流量100ccm、Hで希釈した10%のCHガスを流量10ccm、Hで希釈した5%のモノメチルシラン(MMS)を流量10ccm、Hで希釈した10%のトリメチルボロン(TMB)を流量25ccmで供給し、ガス圧力Pgを750Pa、基材温度Tsを400℃、処理時間DTを30分間、パルス周波数fを1kHz、パルスデューティ比DRを20%、ピーク電流Apを1A、ピーク電圧Vpを4.5kV、電極間距離を150mmとして、パルス放電プラズマCVD法により基材上に硬質皮膜を形成して硬質皮膜被覆部材を得た。
[Example 1]
SKD61 is prepared as a base material, the base material is set in a vacuum chamber of a pulse discharge plasma CVD apparatus, the inside of a vacuum chamber having a volume of 0.17 m 3 is evacuated to 10 Pa or less, N 2 gas is supplied at a flow rate of 100 ccm, and H 2. in supplying 10% of CH 4 gas diluted flow 10 ccm, 5% of the monomethyl silane diluted with H 2 (MMS) flow rate 10 ccm, 10% of trimethyl boron diluted with H 2 (TMB) at a flow rate 25Ccm, Gas pressure Pg is 750 Pa, substrate temperature Ts is 400 ° C., processing time DT is 30 minutes, pulse frequency f is 1 kHz, pulse duty ratio DR is 20%, peak current Ap is 1 A, peak voltage Vp is 4.5 kV, electrode A hard film coating member was obtained by forming a hard film on a substrate by a pulse discharge plasma CVD method with an interval of 150 mm.

このようにして得られた硬質皮膜被覆部材について、断面を走査電子顕微鏡(SEM)で観察したところ、厚さ1〜2μm程度の薄皮状の皮膜が形成され、微細欠陥が少ないことが確認された。また、この硬質皮膜被覆部材の基材上に形成された硬質皮膜は、マーカス型高周波グロー放電発光表面分析装置(GD−OES)により、NとCとBとSiからなる皮膜であることが確認された。   The hard film-coated member thus obtained was observed with a scanning electron microscope (SEM), and it was confirmed that a thin film having a thickness of about 1 to 2 μm was formed and there were few fine defects. . In addition, the hard film formed on the base material of the hard film coating member is confirmed to be a film composed of N, C, B, and Si by a Marcus type high-frequency glow discharge luminescence surface analyzer (GD-OES). It was done.

また、得られた硬質皮膜被覆部材のビッカース硬さ、ヤング率およびスクラッチ強度を求めた。   Further, the Vickers hardness, Young's modulus, and scratch strength of the obtained hard film-coated member were determined.

ビッカース硬さおよびヤング率は、フィッシャー硬度計(超微小硬さ試験機)(株式会社フィッシャー・インストルメント製のFISCHERSCOPEH100Cxy−p)を使用して、バーコビッチ圧子により測定荷重10mN/10sを加えて室温で測定した塑性変形硬さに基づいて算出した。その結果、塑性変形硬さは14.7GPa(最大値15.8GPa、最小値9.4GPa)、ビッカース硬さHVは1085であり、ヤング率(縦弾性係数)は79GPaと低かった。 The Vickers hardness and Young's modulus were measured using a Fischer hardness tester (ultra-micro hardness tester) (FISCHERSCOPEH100C xy-p manufactured by Fischer Instrument Co., Ltd.), with a measurement load of 10 mN / 10 s applied by a Berkovich indenter. Calculation was based on the plastic deformation hardness measured at room temperature. As a result, the plastic deformation hardness was 14.7 GPa (maximum value 15.8 GPa, minimum value 9.4 GPa), the Vickers hardness HV was 1085, and the Young's modulus (longitudinal elastic modulus) was as low as 79 GPa.

スクラッチ強度として、スクラッチ試験機(CSM社製のREVETEST、AEセンサー付スクラッチ試験機)を使用し、最小荷重0.9N、最大荷重150N、荷重速度90.06N/分、スクラッチ速度6.04mm/分、スクラッチ距離10mmとして、0.2mmRのダイヤモンド圧子(型式Rockwell、シリアルNo.N2−3122)によってスクラッチ試験を行い、スクラッチの周辺の皮膜が破壊されたときの荷重(臨界荷重Lc)を測定した。その結果、図1に示すように、スクラッチ強度(スクラッチ摩擦力が大きく変化する荷重(臨界荷重Lc))は約40Nであった。   As a scratch strength, a scratch tester (REVEST made by CSM, scratch tester with AE sensor) is used, minimum load 0.9N, maximum load 150N, load speed 90.06N / min, scratch speed 6.04mm / min A scratch test was conducted with a diamond indenter (model Rockwell, serial No. N2-3122) of 0.2 mmR at a scratch distance of 10 mm, and a load (critical load Lc) when the film around the scratch was broken was measured. As a result, as shown in FIG. 1, the scratch strength (the load at which the scratch friction force greatly changes (critical load Lc)) was about 40 N.

[実施例2]
10%のCHガスを供給せず、ガス圧力Pgを1000Paとし、基材温度Tsを460℃とした以外は、実施例1と同様の方法により、基材上に硬質皮膜を形成して硬質皮膜被覆部材を得た。
[Example 2]
A hard film is formed on the substrate in the same manner as in Example 1 except that 10% CH 4 gas is not supplied, the gas pressure Pg is 1000 Pa, and the substrate temperature Ts is 460 ° C. A film-coated member was obtained.

このようにして得られた硬質皮膜被覆部材について、断面を走査電子顕微鏡(SEM)で観察したところ、厚さ1〜2μm程度の硬質皮膜が形成され、微細欠陥が多いことが確認された。また、この硬質皮膜被覆部材の基材上に形成された硬質皮膜は、GD−OESにより、NとCとBとSiからなる皮膜であることが確認された。   When the cross section of the hard film-coated member thus obtained was observed with a scanning electron microscope (SEM), it was confirmed that a hard film with a thickness of about 1 to 2 μm was formed and there were many fine defects. Moreover, it was confirmed by GD-OES that the hard film formed on the base material of this hard film coating member is a film made of N, C, B, and Si.

また、得られた硬質皮膜被覆部材のビッカース硬さ、ヤング率およびスクラッチ強度を実施例1と同様の方法により求めたところ、塑性変形硬さは11.1GPa(12点の平均値)、ビッカース硬さHVは832であり、ヤング率(縦弾性係数)は90GPaと低く、図2に示すように、スクラッチ強度は約70Nであった。   Further, when the Vickers hardness, Young's modulus, and scratch strength of the obtained hard film-coated member were determined in the same manner as in Example 1, the plastic deformation hardness was 11.1 GPa (average of 12 points), and Vickers hardness The thickness HV was 832, the Young's modulus (longitudinal elastic modulus) was as low as 90 GPa, and the scratch strength was about 70 N as shown in FIG.

[実施例3]
基材としてSKD61を用意し、パルス放電プラズマCVD装置の真空チャンバ内に基材をセットし、容積0.17mの真空チャンバ内を10Pa以下まで排気した後、Hガス流量を400ccm、Nガスを流量360ccm、Hで希釈した5%のモノメチルシラン(MMS)を流量5ccm、Hで希釈した10%のトリメチルボロン(TMB)を流量25ccmで供給し、ガス圧力Pgを1400Pa、基材温度Tsを430℃、処理時間DTを50分間、パルス周波数fを3kHz、パルスデューティ比DRを5%、ピーク電流Apを1A、ピーク電圧Vpを4.5kV、電極間距離を150mmとして、パルス放電プラズマCVD法により基材上に硬質皮膜を形成して硬質皮膜被覆部材を得た。
[Example 3]
SKD61 is prepared as a base material, the base material is set in a vacuum chamber of a pulse discharge plasma CVD apparatus, the inside of a vacuum chamber having a volume of 0.17 m 3 is evacuated to 10 Pa or less, an H 2 gas flow rate is set to 400 ccm, N 2 gas flow 360ccm, 5% of monomethyl silane diluted with H 2 (MMS) flow rate 5 ccm, 10% of trimethyl boron diluted with H 2 and (TMB) was fed at a flow rate 25ccm, 1400Pa gas pressure Pg, the substrate Pulse discharge at a temperature Ts of 430 ° C., a processing time DT of 50 minutes, a pulse frequency f of 3 kHz, a pulse duty ratio DR of 5%, a peak current Ap of 1 A, a peak voltage Vp of 4.5 kV, and a distance between electrodes of 150 mm A hard film was formed on the substrate by plasma CVD to obtain a hard film coated member.

このようにして得られた硬質皮膜被覆部材について、断面を走査電子顕微鏡(SEM)で観察したところ、厚さ1〜2μm程度の皮膜が形成され、微細欠陥がないことが確認された。また、この硬質皮膜被覆部材の基材上に形成された硬質皮膜は、GD−OESにより、NとCとBとSiからなる皮膜であることが確認された。   When the cross section of the hard film-coated member thus obtained was observed with a scanning electron microscope (SEM), a film having a thickness of about 1 to 2 μm was formed, and it was confirmed that there were no fine defects. Moreover, it was confirmed by GD-OES that the hard film formed on the base material of this hard film coating member is a film made of N, C, B, and Si.

また、得られた硬質皮膜被覆部材のビッカース硬さ、ヤング率およびスクラッチ強度を実施例1と同様の方法により求めたところ、塑性変形硬さは16.9GPa(12点の平均値)、ビッカース硬さHVは1220であり、ヤング率(縦弾性係数)は92GPaと低く、図3に示すように、スクラッチ強度は約75Nであった。   Further, when the Vickers hardness, Young's modulus and scratch strength of the obtained hard film-coated member were determined by the same method as in Example 1, the plastic deformation hardness was 16.9 GPa (average value of 12 points), and Vickers hardness The thickness HV was 1220, the Young's modulus (longitudinal elastic modulus) was as low as 92 GPa, and the scratch strength was about 75 N as shown in FIG.

[比較例1]
で希釈した5%のモノメチルシラン(MMS)と、Hで希釈した10%のトリメチルボロン(TMB)を供給せず、処理時間DTを120分間とした以外は、実施例1と同様の方法により、基材上に硬質皮膜を形成して硬質皮膜被覆部材を得た。
[Comparative Example 1]
5% of monomethyl silane diluted with H 2 (MMS), without supplying the diluted 10% trimethyl boron (TMB) in H 2, except that the treatment time DT was set to 120 minutes, in the same manner as in Example 1 By the method, a hard film was formed on the substrate to obtain a hard film-coated member.

このようにして得られた硬質皮膜被覆部材について、断面を走査電子顕微鏡(SEM)で観察したところ、皮膜の形成が明確には確認されなかった。また、この硬質皮膜被覆部材の基材上に形成された硬質皮膜は、GD−OESにより、NとCからなる皮膜であることが確認された。   When the cross section of the hard film-coated member thus obtained was observed with a scanning electron microscope (SEM), the formation of the film was not clearly confirmed. Moreover, it was confirmed that the hard film | membrane formed on the base material of this hard film | membrane coating | coated member is a film | membrane which consists of N and C by GD-OES.

また、得られた硬質皮膜被覆部材のビッカース硬さ、ヤング率およびスクラッチ強度を実施例1と同様の方法により求めたところ、塑性変形硬さは11.6GPa(12点の平均値)、ビッカース硬さHVは877であり、ヤング率(縦弾性係数)は209GPa、スクラッチ強度は約70Nであった。   Further, when the Vickers hardness, Young's modulus, and scratch strength of the obtained hard film-coated member were determined in the same manner as in Example 1, the plastic deformation hardness was 11.6 GPa (an average value of 12 points), and Vickers hardness The HV was 877, the Young's modulus (longitudinal elastic modulus) was 209 GPa, and the scratch strength was about 70N.

[比較例2]
基材としてSKD61を用意し、パルス放電プラズマCVD装置の真空チャンバ内に基材をセットし、真空チャンバ内を10Pa以下まで排気した後、水素ガスを流量150ccmで供給し、ガス圧力Pgを5000Pa、基材温度Tsを390℃、処理時間Tdを20分間、パルス周波数fを3kHz、パルスデューティ比DRを5%、ピーク電流Apを0.9A、ピーク電圧Vpを1.5V、電極間距離を30mmとして、水素プラズマ処理を行った。
[Comparative Example 2]
SKD61 is prepared as a base material, the base material is set in a vacuum chamber of a pulse discharge plasma CVD apparatus, the inside of the vacuum chamber is exhausted to 10 Pa or less, hydrogen gas is supplied at a flow rate of 150 ccm, a gas pressure Pg is 5000 Pa, The substrate temperature Ts is 390 ° C., the processing time Td is 20 minutes, the pulse frequency f is 3 kHz, the pulse duty ratio DR is 5%, the peak current Ap is 0.9 A, the peak voltage Vp is 1.5 V, and the distance between the electrodes is 30 mm. As a result, hydrogen plasma treatment was performed.

このようにして基材の水素プラズマ処理を行った後、真空チャンバ内を10Pa以下まで排気し、その後、水素ガスを流量40ccm、Nガスを流量160ccmで供給し、ガス圧力Pgを5000Pa、基材温度Tsを490℃、処理時間Tdを90分間、パルス周波数fを3kHz、パルスデューティ比DRを5%、ピーク電流Apを1.1A、ピーク電圧Vpを5.2Vとして、プラズマ窒化処理を行った。 After performing the hydrogen plasma treatment of the base material in this way, the inside of the vacuum chamber is evacuated to 10 Pa or less, and then hydrogen gas is supplied at a flow rate of 40 ccm, N 2 gas is supplied at a flow rate of 160 ccm, and the gas pressure Pg is 5000 Pa. Plasma nitriding is performed at a material temperature Ts of 490 ° C., a processing time Td of 90 minutes, a pulse frequency f of 3 kHz, a pulse duty ratio DR of 5%, a peak current Ap of 1.1 A, and a peak voltage Vp of 5.2 V. It was.

このようにして基材のプラズマ窒化処理を行った後、真空チャンバ内を10Pa以下まで排気し、その後、水素ガスを流量400ccm、Nガスを流量360ccm、Hで希釈した10%のトリメチルボロン(TMB)を流量25ccmで供給し、ガス圧力Pgを3000Pa、基材温度Tsを460℃、処理時間Tdを20分間、パルス周波数fを3kHz、パルスデューティ比DRを5%、ピーク電流Apを0.9A、ピーク電圧Vpを4.8Vとして、パルス放電プラズマCVD法により基材上にBN膜を形成して硬質皮膜被覆部材を得た。 After performing the plasma nitriding treatment of the base material in this manner, the inside of the vacuum chamber is exhausted to 10 Pa or less, and then 10% trimethylboron diluted with hydrogen gas at a flow rate of 400 ccm, N 2 gas at a flow rate of 360 ccm, and H 2. (TMB) is supplied at a flow rate of 25 ccm, the gas pressure Pg is 3000 Pa, the substrate temperature Ts is 460 ° C., the processing time Td is 20 minutes, the pulse frequency f is 3 kHz, the pulse duty ratio DR is 5%, and the peak current Ap is 0. The hard film-coated member was obtained by forming a BN film on the base material by a pulse discharge plasma CVD method with a peak voltage Vp of 4.9 V and a peak voltage Vp of 4.8 V.

このようにして得られた硬質皮膜被覆部材について、断面を走査電子顕微鏡で観察したところ、厚さ1〜2μm程度の硬質皮膜が形成され、微細欠陥がないことが確認された。また、この硬質皮膜被覆部材の基材上に形成された硬質皮膜は、GD−OESにより、NとCとBからなる皮膜であることが確認された。   When the cross section of the hard film-coated member thus obtained was observed with a scanning electron microscope, it was confirmed that a hard film having a thickness of about 1 to 2 μm was formed and there were no fine defects. Moreover, it was confirmed that the hard film | membrane formed on the base material of this hard film | membrane covering member is a film | membrane which consists of N, C, and B by GD-OES.

また、得られた硬質皮膜被覆部材のビッカース硬さおよびヤング率を実施例1と同様の方法により求めたところ、塑性変形硬さは3.15GPa(10点の平均値)、ビッカース硬さHVは約220、ヤング率(縦弾性係数)は358GPaであった。   Further, when the Vickers hardness and Young's modulus of the obtained hard film-coated member were obtained by the same method as in Example 1, the plastic deformation hardness was 3.15 GPa (10-point average value), and the Vickers hardness HV was The Young's modulus (longitudinal elastic modulus) was about 358 GPa.

[実施例4]
基材としてSKD61を用意し、パルスプラズマCVD装置の真空チャンバ内に基材をセットし、容積0.17mの真空チャンバ内を10Pa以下まで排気した後、Hガスを流量400ccm、Nガスを流量360ccm、Hで希釈した5%のモノメチルシラン(MMS)を流量5ccm、Hで希釈した10%のトリメチルボロン(TMB)を25ccmで供給し、ガス圧力Pgを1500Pa、基材温度Tsを400℃、処理時間DTを60分間、パルス周波数fを1kHz、パルスデューティ比DRを5%、ピーク電流Apを1A、ピーク電圧Vpを0.75kV、電極間距離を30mmとして、パルス放電プラズマCVD法により基材上に硬質皮膜を形成して硬質皮膜被覆部材を得た。
[Example 4]
SKD61 is prepared as a base material, the base material is set in a vacuum chamber of a pulse plasma CVD apparatus, the inside of a vacuum chamber having a volume of 0.17 m 3 is evacuated to 10 Pa or less, H 2 gas is supplied at a flow rate of 400 ccm, and N 2 gas. the flow 360Ccm, supplying 5% of monomethyl silane diluted with H 2 (MMS) flow rate 5 ccm, 10% of the trimethyl boron diluted with H 2 and (TMB) in 25ccm, 1500Pa gas pressure Pg, the substrate temperature Ts Pulse discharge plasma CVD with 400 ° C., processing time DT 60 minutes, pulse frequency f 1 kHz, pulse duty ratio DR 5%, peak current Ap 1 A, peak voltage Vp 0.75 kV, and interelectrode distance 30 mm A hard film was formed on the substrate by the method to obtain a hard film-coated member.

このようにして得られた硬質皮膜被覆部材について、断面をSEMで観察したところ、厚さ3.5μm程度の被膜が形成され、微細欠陥がないことが確認された。また、この硬質皮膜被覆部材の基材上に形成された硬質皮膜は、GD−OESにより、NとCとBとSiからなる皮膜であることが確認された。   When the cross section of the hard film-coated member thus obtained was observed with an SEM, it was confirmed that a film having a thickness of about 3.5 μm was formed and there were no fine defects. Moreover, it was confirmed by GD-OES that the hard film formed on the base material of this hard film coating member is a film made of N, C, B, and Si.

また、得られた硬質皮膜被覆部材のビッカース硬さおよびヤング率を実施例1と同様の方法により求めたところ、ビッカース硬さHVは1067であり、ヤング率は79.8GPaと低かった。   Further, when the Vickers hardness and Young's modulus of the obtained hard film-coated member were determined by the same method as in Example 1, the Vickers hardness HV was 1067 and the Young's modulus was as low as 79.8 GPa.

本発明による硬質皮膜被覆部材は、自動車などの摺動部品や機械部材、金型の表面の部材などの様々な部材として利用することができる。   The hard coating member according to the present invention can be used as various members such as sliding parts such as automobiles, mechanical members, and members on the surface of a mold.

Claims (7)

NとCとBとSiからなる硬質皮膜が基材上に形成され、前記硬質皮膜のビッカース硬さHVが800以上であり且つ縦弾性係数が100GPa以下であることを特徴とする、硬質皮膜被覆部材。 A hard film coating comprising a hard film composed of N, C, B and Si formed on a substrate, wherein the hard film has a Vickers hardness HV of 800 or more and a longitudinal elastic modulus of 100 GPa or less. Element. 前記硬質皮膜のビッカース硬さHVが1000以上であることを特徴とする、請求項1に記載の硬質皮膜被覆部材。 The hard film-coated member according to claim 1, wherein the hard film has a Vickers hardness HV of 1000 or more. 前記硬質皮膜の縦弾性係数が95GPa以下であることを特徴とする、請求項1または2に記載の硬質皮膜被覆部材。 The hard film-coated member according to claim 1, wherein a longitudinal elastic modulus of the hard film is 95 GPa or less. 前記硬質皮膜のスクラッチ強度が40N以上であることを特徴とする、請求項1乃至3のいずれかに記載の硬質皮膜被覆部材。 The hard film-coated member according to any one of claims 1 to 3, wherein the hard film has a scratch strength of 40 N or more. 原料ガスとして、H とN とモノメチルシランとトリメチルボロンを含むガスを使用して、プラズマCVD法により600℃以下の温度でNとCとBとSiからなる硬質皮膜を基材上に形成することを特徴とする、硬質皮膜被覆部材の製造方法。 Using a gas containing H 2 , N 2 , monomethylsilane, and trimethylboron as a source gas, a hard film composed of N, C, B, and Si is formed on a substrate at a temperature of 600 ° C. or less by a plasma CVD method. A manufacturing method of a hard coat covering member characterized by performing. 前記原料ガスがCHを含むことを特徴とする、請求項に記載の硬質皮膜被覆部材の製造方法。 The method for manufacturing a hard film-coated member according to claim 5 , wherein the source gas contains CH 4 . 前記プラズマCVD法が、パルス放電プラズマCVD法であることを特徴とする、請求項5または6に記載の硬質皮膜被覆部材の製造方法。 The plasma CVD method, characterized in that it is a pulsed discharge plasma CVD method, a manufacturing method of the hard-coated member according to claim 5 or 6.
JP2012056101A 2012-03-13 2012-03-13 Hard coating member and method for producing the same Active JP5860734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056101A JP5860734B2 (en) 2012-03-13 2012-03-13 Hard coating member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056101A JP5860734B2 (en) 2012-03-13 2012-03-13 Hard coating member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013189674A JP2013189674A (en) 2013-09-26
JP5860734B2 true JP5860734B2 (en) 2016-02-16

Family

ID=49390231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056101A Active JP5860734B2 (en) 2012-03-13 2012-03-13 Hard coating member and method for producing the same

Country Status (1)

Country Link
JP (1) JP5860734B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536492B2 (en) * 1986-09-04 1996-09-18 日新電機株式会社 Tool material
JPH0672303B2 (en) * 1987-05-29 1994-09-14 日本電気株式会社 Hard amorphous carbon film
JP2001277250A (en) * 2000-03-29 2001-10-09 Bridgestone Corp Thin film for molding mold, and mold
JP2001277251A (en) * 2000-03-29 2001-10-09 Bridgestone Corp Thin film for molding mold, and mold
JP2005282668A (en) * 2004-03-29 2005-10-13 Rikogaku Shinkokai Fastening tool member with fastening sliding face covered with hard coating, fastener mounted therewith and fastening tool member manufacturing method
JP4380622B2 (en) * 2005-11-04 2009-12-09 日立ツール株式会社 Multilayer coating member and method for producing the same
EP2443267B1 (en) * 2009-06-18 2020-01-08 Oerlikon Surface Solutions AG, Pfäffikon Protective coating, a coated member having a protective coating as well as method for producing a protective coating
JP5656010B2 (en) * 2009-12-04 2015-01-21 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated Method for forming hard mask film and apparatus for forming hard mask film

Also Published As

Publication number Publication date
JP2013189674A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US6331332B1 (en) Process for depositing diamond-like carbon films by cathodic arc evaporation
KR101338059B1 (en) Method for coating basic material of mold
JP4653964B2 (en) DLC film forming method and DLC film-formed product
Capote et al. Improvement of the properties and the adherence of DLC coatings deposited using a modified pulsed-DC PECVD technique and an additional cathode
Capote et al. Influence of acetylene precursor diluted with argon on the microstructure and the mechanical and tribological properties of aC: H films deposited via the modified pulsed-DC PECVD method
US11091367B2 (en) Vanadium silicon carbonitride film, vanadium silicon carbonitride film coated member, and method for manufacturing the same
JP4076169B2 (en) Piston ring, piston, cylinder, piston pin with amorphous hard carbon film
US20130017412A1 (en) Covered member and process for production thereof
Song et al. Effect of W-doping on the structure and properties of DLC films prepared by combining physical and chemical vapor deposition
JP2009062206A (en) Hydrogenated amorphous carbon film
US8252388B2 (en) Method and apparatus for high rate, uniform plasma processing of three-dimensional objects
KR101360416B1 (en) Coating layer with low-friction for vehicle component and method for producing the same
JP5860734B2 (en) Hard coating member and method for producing the same
JP2009525397A (en) Thin film multilayer structure, component including the structure, and method for depositing the structure
JP5772757B2 (en) Method and apparatus for forming amorphous hard carbon film
JP5463216B2 (en) Chromium hard coating, mold having chromium hard coating formed on the surface, and method for producing chromium hard coating
Trava-Airoldi et al. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge
JP6875886B2 (en) Vanadium nitride film coating member and its manufacturing method
US20220411271A1 (en) Vanadium silicon carbide film, vanadium silicon carbide film coated member, and manufacturing method of vanadium silicon carbide film coated member
Roth et al. Large area and three-dimensional deposition of diamond-like carbon films for industrial applications
Jing et al. Nanomechanical and electrochemical properties of diamond-like carbon (DLC) films deposited by plasma enhanced chemical vapor deposition (PECVD) technique
Martí-González et al. Mechanical and surface characterization of diamond-like carbon coatings onto polymeric substrate
TWI554633B (en) A diamond-like carbon film and manufacturing method thereof
WO2022215651A1 (en) Vanadium silicon carbide film coated member and method for manufacturing same, and vanadium silicon carbide film-forming substrate and method for manufacturing same
JP2013104107A (en) Hard film-coated member and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5860734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250