JP5860500B2 - High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same - Google Patents

High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same Download PDF

Info

Publication number
JP5860500B2
JP5860500B2 JP2014097389A JP2014097389A JP5860500B2 JP 5860500 B2 JP5860500 B2 JP 5860500B2 JP 2014097389 A JP2014097389 A JP 2014097389A JP 2014097389 A JP2014097389 A JP 2014097389A JP 5860500 B2 JP5860500 B2 JP 5860500B2
Authority
JP
Japan
Prior art keywords
strength
molten metal
steel sheet
plated steel
metal embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014097389A
Other languages
Japanese (ja)
Other versions
JP2014169503A (en
Inventor
智郎 山本
智郎 山本
健太郎 平田
健太郎 平田
藤本 延和
延和 藤本
藤原 進
進 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2014097389A priority Critical patent/JP5860500B2/en
Publication of JP2014169503A publication Critical patent/JP2014169503A/en
Application granted granted Critical
Publication of JP5860500B2 publication Critical patent/JP5860500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

自動車部品や建材等の構造部材として使用される耐食性、耐溶融金属脆化特性および局部延性に優れる高強度Zn−Al−Mg系めっき鋼板およびその製造方法に関する。   The present invention relates to a high-strength Zn—Al—Mg-based plated steel sheet excellent in corrosion resistance, molten metal embrittlement characteristics and local ductility and used as a structural member such as automobile parts and building materials, and a method for producing the same.

自動車部材や建材をはじめとする構造部材は、めっき鋼板を溶接して組み立てられる場合が多い。この場合、溶接時にめっき層が鋼素地の一部とともに溶融する。一般的な亜鉛めっき鋼板に比べ、Zn−Al−Mg系めっき鋼板を使用した場合、溶接熱影響部に粒界割れを生じる場合がある。この粒界割れは溶接時の加熱・冷却に伴う鋼の膨張・収縮によって生じる引張応力に起因するもので、溶融金属脆化割れと呼ばれる現象であり、Zn−Al−Mg系めっきの成分が、一般のZnめっきの場合よりも溶融金属脆化割れの感受性を増大させているものと考えられる。   Structural members such as automobile members and building materials are often assembled by welding plated steel sheets. In this case, the plating layer melts together with a part of the steel base during welding. When a Zn-Al-Mg plated steel sheet is used as compared with a general galvanized steel sheet, grain boundary cracking may occur in the weld heat affected zone. This intergranular crack is caused by the tensile stress generated by the expansion and contraction of steel accompanying heating and cooling during welding, and is a phenomenon called molten metal embrittlement cracking, and the component of the Zn-Al-Mg plating is It is considered that the sensitivity of molten metal embrittlement cracking is increased compared to the case of general Zn plating.

本願の出願人は、Zn−Al−Mg系めっき鋼板の溶融金属脆化割れを抑制する方策について種々の検討を行い、特許文献1、2を発明した。特許文献1、2は、主に溶融めっきによる耐食性の改善と、Ti,B,CrおよびNb等による溶接時の溶融金属脆化割れの抑制を目的としてなされた発明である。   The applicant of the present application has made various studies on measures for suppressing molten metal embrittlement cracking of Zn—Al—Mg based plated steel sheets and invented Patent Documents 1 and 2. Patent Documents 1 and 2 are inventions made mainly for the purpose of improving corrosion resistance by hot dipping and suppressing molten metal embrittlement cracking during welding with Ti, B, Cr, Nb, and the like.

一方、自動車用鋼板では、地球環境の改善、CO2排出量の削減等を目的として高張力鋼板を活用した車体の軽量化が図られているが、とくに引張強度で590MPa以上の強度を有する高強度を有するZn−Al−Mg系鋼板を得る方法に関する知見は多くない。   On the other hand, in the case of steel sheets for automobiles, the weight reduction of the vehicle body using high-tensile steel sheets has been achieved for the purpose of improving the global environment and reducing CO2 emissions, but in particular, the high strength has a tensile strength of 590 MPa or more. There are not many findings regarding a method for obtaining a Zn—Al—Mg based steel sheet having slag.

例えば、特許文献3では、引張強度で590MPa以上の強度を有する溶融Zn−Al−Mgめっき鋼板の製造方法が開示されている。しかし、フェライト+マルテンサイトを主組織とする複合組織が得られるもののフェライトとマルテンサイトの強度差が大きすぎるため、局部延性能に劣る問題があった。また、同時に耐溶融金属脆化割れを抑制する方法に関しては、何の知見も開示されていなかった。   For example, Patent Document 3 discloses a method for producing a hot-dip Zn—Al—Mg plated steel sheet having a tensile strength of 590 MPa or more. However, although a composite structure having ferrite + martensite as a main structure can be obtained, the strength difference between ferrite and martensite is too large, resulting in a problem of poor local elongation performance. At the same time, no knowledge has been disclosed regarding a method for suppressing the resistance to molten metal embrittlement cracking.

特開2003−3238号公報JP 2003-3238 A 特開2008−184685号公報JP 2008-184665A 特開2006−97063号公報JP 2006-97063 A

このように、前記文献では、個別に耐溶融金属脆化特性の改善方策や、フェライト+マルテンサイトを主組織とする高強度鋼板の製造方法に関する知見は得られるものの、590MPa以上の高強度を有し、耐溶融金属脆化特性および局部延性のいずれにも優れたZn−Al−Mg系めっき鋼板およびその製造方法に関する知見は得られていない。
本発明では、590MPa以上の高強度を有し、耐溶融金属脆化特性および局部延性のいずれにも優れた特性を有するZn−Al−Mg系めっき鋼板およびその製造方法を提供する事を目的とする。
Thus, in the above-mentioned document, although there are obtained individual measures for improving the resistance to embrittlement of molten metal and a method for producing a high-strength steel sheet mainly composed of ferrite + martensite, it has a high strength of 590 MPa or more. However, no knowledge has been obtained regarding the Zn—Al—Mg-based plated steel sheet excellent in both the molten metal embrittlement resistance and the local ductility and the manufacturing method thereof.
The object of the present invention is to provide a Zn-Al-Mg-based plated steel sheet having a high strength of 590 MPa or more and having excellent properties both in resistance to molten metal embrittlement and local ductility, and a method for producing the same. To do.

本発明者らの詳細な検討の結果、素地鋼板として、C:0.05〜0.20%で、Si,Mn等を適宜調整した鋼に、0.08〜0.15%のTiを添加し、複合組織強化すると微細なTiC等の析出によってフェライトの強度が高くなってフェライトとマルテンサイトの強度差が小さくなるため、590MPa以上の強度レベルを有する溶融Zn−Al−Mg系めっき鋼板の局部延性が大幅に改善できる事を知見した。また、Ti添加を前提として微量のBやNb,Mo,Crの一種または2種以上を添加することで590MPa以上の強度レベルにおいても耐溶融金属脆化特性が改善できることを知見した。更に、Cu,Niを添加することによって容易にマルテンサイト組織が得られるようになるため、安定して590MPa以上の強度が得られることを知見した。   As a result of detailed investigations by the present inventors, 0.08 to 0.15% Ti is added to steel obtained by appropriately adjusting C, 0.05 to 0.20%, Si, Mn, etc. as a base steel plate. However, when the composite structure is strengthened, the strength of ferrite increases due to precipitation of fine TiC and the like, and the difference in strength between ferrite and martensite decreases. We found that the ductility can be greatly improved. It was also found that the resistance to molten metal embrittlement can be improved even at a strength level of 590 MPa or more by adding a trace amount of one or more of B, Nb, Mo, and Cr on the premise of addition of Ti. Furthermore, it has been found that a martensite structure can be easily obtained by adding Cu and Ni, so that a strength of 590 MPa or more can be stably obtained.

すなわち、本発明によれば、質量%で、Al:3〜22%,Mg:1〜10%,残部は不可避的不純物およびZnからなる溶融めっきを施した鋼板において、素地鋼板を、重量%で、C:0.05〜0.20%,Si:0.05〜1.5%,Mn:1.0〜2.5%,P:0.005〜0.050%,S:0.01%以下,酸可溶Al:0.005〜0.10%,Ti:0.05〜0.15%,B:0.0002〜0.01%を含有し、残部はFeおよび不可避的不純物からなる組成とするとともに、場合によっては、さらにNb:0.005〜0.10%,Mo:0.05〜0.5%,Cr:0.05%〜1.0%の1種または2種以上および/またはCu:0.05〜0.5%,Ni:0.05〜0.5%の1種または2種を含み、金属組織が体積率:50%以上のフェライトおよび体積率が5〜45%のマルテンサイトを含む組織とすることを特徴とする耐溶融金属脆化特性および局部延性に優れたZn−Al−Mg系めっき鋼板およびその製造方法を提供する。   That is, according to the present invention, by mass%, Al: 3 to 22%, Mg: 1 to 10%, the balance being a steel plate that has been subjected to hot dipping consisting of inevitable impurities and Zn, , C: 0.05 to 0.20%, Si: 0.05 to 1.5%, Mn: 1.0 to 2.5%, P: 0.005 to 0.050%, S: 0.01 % Or less, acid-soluble Al: 0.005 to 0.10%, Ti: 0.05 to 0.15%, B: 0.0002 to 0.01%, the balance from Fe and inevitable impurities Depending on the case, Nb: 0.005 to 0.10%, Mo: 0.05 to 0.5%, Cr: 0.05% to 1.0% 1 and 2 or more of the above and / or Cu: 0.05-0.5%, Ni: 0.05-0.5%, a metal Zn-Al-Mg based plating excellent in molten metal embrittlement resistance and local ductility, characterized in that the weaving has a structure containing ferrite with a volume ratio of 50% or more and martensite with a volume ratio of 5 to 45%. A steel sheet and a method for manufacturing the same are provided.

なお、めっき浴における不可避的不純物としては、Ti,B,Si,Feが挙げられるが、これらは、Ti:0.1質量%以下、B:0.05質量%以下、Si:2%以下およびFe:2%以下の範囲で含有しても構わない。   Inevitable impurities in the plating bath include Ti, B, Si, and Fe. These are Ti: 0.1% by mass or less, B: 0.05% by mass or less, Si: 2% or less, and Fe: You may contain in 2% or less of range.

本発明によれば、耐食性に優れるZn−Al−Mg系めっき鋼板を使用した健全な溶接部を有する溶接構造部材が提供される。更に、590MPa以上の高強度でかつ自動車用部材に必要とされる曲げ加工や穴広げ加工に有利となる局部延性を良好とすることが可能であり、自動車用鋼板として車体の軽量化にも有効に適用可能となる   ADVANTAGE OF THE INVENTION According to this invention, the welded structural member which has the sound welding part which uses the Zn-Al-Mg type plated steel plate excellent in corrosion resistance is provided. Furthermore, it has a high strength of 590 MPa or more, and it can improve the local ductility that is advantageous for bending processing and hole expansion processing required for automotive parts, and it is also effective for reducing the weight of the vehicle body as an automotive steel plate. Applicable to

以下に本願発明における素地鋼板の化学成分や金属組織の限定理由およびその金属組織を得るための製造条件の限定理由について説明する。 なお、本願発明では、%は特に断りがない限り、質量%を示す。   The reasons for limiting the chemical components and metal structure of the base steel sheet according to the present invention and the reasons for limiting the manufacturing conditions for obtaining the metal structure will be described below. In the present invention, “%” means “% by mass” unless otherwise specified.

C:0.05〜0.20%
マルテンサイト組織の強度は、C含有量の影響が大きい。本発明で狙いとする590MPa以上の強度レベルを得るためには、最低でも0.05%以上の添加が必要である。しかし、0.20%を超えて含有すると、強度レベルは高くなるものの局部延性が劣るようになる。したがって、本発明では、C:0.05〜0.20%に限定する。
C: 0.05-0.20%
The strength of the martensite structure is greatly influenced by the C content. In order to obtain the strength level of 590 MPa or more targeted in the present invention, at least 0.05% or more must be added. However, if the content exceeds 0.20%, the strength level is increased, but the local ductility is inferior. Therefore, in the present invention, C is limited to 0.05 to 0.20%.

Si:0.05〜1.5%
Siは、固溶強化によってフェライトの強度アップに有効である。その効果を得るためには0.05%以上の添加が必要である。しかし、1.5%を超えて添加すると溶融めっき性が劣化する。したがって、本発明では、Si:0.05〜1.5%に限定する。
Si: 0.05 to 1.5%
Si is effective in increasing the strength of ferrite by solid solution strengthening. In order to obtain the effect, addition of 0.05% or more is necessary. However, if it exceeds 1.5%, the hot dipping property deteriorates. Therefore, in this invention, it is limited to Si: 0.05-1.5%.

Mn:1.0〜2.5%
Mnは、固溶強化でフェライトの高強度化に有効な他、オーステナイトを安定にしてマルテンサイト等の低温変態相の生成を促進させるのに有効に作用する。これらの効果を得るためには、1.0%以上の添加が必要である。しかし、2.5%を超えて添加すると溶融めっき性が劣化する。したがって、本発明では、Mn:1.0〜2.5%に限定する。
Mn: 1.0 to 2.5%
Mn is effective for increasing the strength of ferrite by solid solution strengthening, and also effectively acts to stabilize austenite and promote the formation of low-temperature transformation phases such as martensite. In order to obtain these effects, addition of 1.0% or more is necessary. However, if it exceeds 2.5%, the hot dipping property deteriorates. Therefore, in the present invention, Mn is limited to 1.0 to 2.5%.

P:0.005〜0.05%
Pは、固溶強化でフェライトの高強度化に有効な他、結晶粒界に偏析して溶接時の耐溶融金属脆化の抑制にも有効に作用する。その効果を得るためには、0.005%以上の添加が必要である。しかし、0.05%を超えて添加すると、低温靭性が劣化する。したがって、本発明では、P:0.005〜0.05%に限定する。
P: 0.005 to 0.05%
P is effective in increasing the strength of ferrite by solid solution strengthening, and also acts effectively in suppressing melting metal embrittlement during welding by segregating at grain boundaries. In order to obtain the effect, addition of 0.005% or more is necessary. However, if added over 0.05%, the low temperature toughness deteriorates. Therefore, in this invention, it limits to P: 0.005-0.05%.

S:0.01%以下
Sは、加工性に有害な硫化物を生成するため、できるだけ低減する必要がある。0.01%までは許容できるので、本願発明では、上限を0.01%に限定する。
S: 0.01% or less S generates sulfides that are harmful to processability, and therefore needs to be reduced as much as possible. Since up to 0.01% is acceptable, the upper limit is limited to 0.01% in the present invention.

酸可溶Al:0.005〜0.10%
酸可溶Alは、鋼の脱酸剤として添加する。その効果を得るためには0.005%以上の添加が必要である。しかし、0.1%を超えて添加しても、その効果が飽和するとともに、返って製造コストの上昇を招く。したがって、本発明では、酸可溶Al:0.005〜0.10%に限定する。
Acid-soluble Al: 0.005 to 0.10%
Acid-soluble Al is added as a steel deoxidizer. In order to obtain the effect, addition of 0.005% or more is necessary. However, even if added over 0.1%, the effect is saturated and the manufacturing cost is increased. Therefore, in this invention, it is limited to acid-soluble Al: 0.005-0.10%.

Ti:0.05〜0.15%
Tiは、TiC等としてフェライト中に析出してフェライト組織の強度を高め、局部延性を改善するために有効な元素である。その効果を得るためには、0.05%以上の添加が必要である。しかし、0.15%を超えて添加してもその改善効果が飽和するとともに、返って製造コストの上昇を招く。したがって、本発明では、Ti:0.05〜0.15%に限定する。
Ti: 0.05 to 0.15%
Ti is an effective element for precipitating in the ferrite as TiC or the like to increase the strength of the ferrite structure and improve the local ductility. In order to obtain the effect, addition of 0.05% or more is necessary. However, even if added over 0.15%, the improvement effect is saturated and the manufacturing cost is increased. Therefore, in the present invention, Ti is limited to 0.05 to 0.15%.

B:0.0002〜0.01%
Bは、高温加熱時のオーステナイト粒界に偏析して耐溶融金属脆化特性の改善に有効な元素である。また、オーステナイトからフェライトへの変態を遅らせ、硬質なマルテンサイト組織を得るのにも有効に作用する。0.05%以上のTi添加を前提としている本願発明では、Bによる前記の効果を得るためには少なくとも0.0002%の添加が必要である。しかし、0.01%を超えて添加してもその効果が飽和するとともに、返って製造コストの上昇を招く。したがって、本発明では、B:0.0002〜0.01%に限定する。
B: 0.0002 to 0.01%
B is an element that segregates at austenite grain boundaries during high-temperature heating and is effective in improving the resistance to molten metal embrittlement. It also works effectively to delay the transformation from austenite to ferrite and to obtain a hard martensite structure. In the present invention based on the premise that 0.05% or more of Ti is added, at least 0.0002% of addition is necessary in order to obtain the above-described effect by B. However, even if added over 0.01%, the effect is saturated and the manufacturing cost is increased. Therefore, in the present invention, B is limited to 0.0002 to 0.01%.

Nb:0.005〜0.10%
Mo:0.05〜0.5%
Cr:0.05〜1.0%
Nb,MoおよびCrもBと同様に高温加熱時のオーステナイト粒界に偏析して耐溶融金属脆化特性の改善に有効な元素である。この効果を得るためには、単独添加では、Nb:0.005%以上、Mo:0.05%以上、Cr:0.05%以上が必要である。しかし、Nb:0.10%,Mo:0.5%およびCr:1.0%を超えて添加してもその改善効果が飽和するとともに返って製造コストの上昇を招く。なお、2種以上を複合添加してもその効果は妨げられることなく、同様な効果が得られるが、2種以上を複合添加する場合は、製造コストの観点から、合計で0.5%以下とすることが望ましい。したがって、本発明では、Nb:0.005〜0.10%,Mo:0.05〜0.5%,Cr:0.05〜1.0%の1種または2種以上を添加する。なお、MoおよびCrは、オーステナイトからフェライトへの変態を抑制する作用も有するため、マルテンサイト組織を安定して得るのにも有効である。しかし、製造コストの上昇を招くので、本願発明では前記の耐溶融金属脆化特性を考慮し、必要に応じて選択的に添加されるものである。
Nb: 0.005 to 0.10%
Mo: 0.05-0.5%
Cr: 0.05-1.0%
Similarly to B, Nb, Mo and Cr are segregated at the austenite grain boundaries during high-temperature heating and are effective elements for improving the resistance to molten metal embrittlement. In order to obtain this effect, Nb: 0.005% or more, Mo: 0.05% or more, and Cr: 0.05% or more are necessary when added alone. However, even if Nb: 0.10%, Mo: 0.5% and Cr: 1.0% are added, the improvement effect is saturated and the manufacturing cost is increased. Even if two or more types are added in combination, the same effect can be obtained without impeding the effect. However, when two or more types are added in combination, from the viewpoint of manufacturing cost, the total is 0.5% or less. Is desirable. Therefore, in the present invention, one or more of Nb: 0.005 to 0.10%, Mo: 0.05 to 0.5%, and Cr: 0.05 to 1.0% are added. Since Mo and Cr also have an action of suppressing transformation from austenite to ferrite, they are effective in stably obtaining a martensite structure. However, since this increases the manufacturing cost, the present invention is selectively added as necessary in consideration of the above-described resistance to molten metal embrittlement.

Cu:0.05〜0.5%
Ni:0.05〜0.5%
CuやNiもオーステナイトからフェライトへの変態を抑制する作用も有するため、マルテンサイト組織を安定して得るのにも有効である。この効果を得るためには、いずれも0.05%以上の添加が必要である。しかし、0.5%を超えて添加しても、その効果は飽和するとともに返って製造コストの上昇を招くので、添加量の上限を0.5%とした。なお、単独添加でも複合添加でも同様な効果が得られるが、2種を複合添加する場合は、合計して0.6%以下とすることが製造コストの観点から望ましい。したがって、本発明では、Cu:0.05〜0.5%,Ni:0.05〜0.5%の1種または2種を添加する。
Cu: 0.05 to 0.5%
Ni: 0.05-0.5%
Since Cu and Ni also have an action of suppressing transformation from austenite to ferrite, it is effective in stably obtaining a martensite structure. In order to obtain this effect, it is necessary to add 0.05% or more in any case. However, even if added in excess of 0.5%, the effect is saturated and the manufacturing cost is increased, so the upper limit of the amount added is set to 0.5%. The same effect can be obtained by single addition or combined addition. However, in the case where two types are added together, it is desirable that the total content is 0.6% or less from the viewpoint of manufacturing cost. Therefore, in the present invention, one or two of Cu: 0.05 to 0.5% and Ni: 0.05 to 0.5% are added.

本願発明では、前記の化学成分を有するスラブを通常の熱間圧延条件で熱延すれば良く、特別な制約は必要ないが、熱間圧延における仕上温度は、Ar3点以上でないと熱間変形抵抗の変動が大きくなり、ゲージハンチング等の不良が発生するようになるため、Ar3点以上とすることが望ましい。
巻取温度も必要とされる強度レベルに応じて適宜選択すれば良いが、50%以上のフェライト体積率を確保する観点から、500〜700℃とすることが望ましい。
また、酸洗条件にもとくに制約は無く、熱延で生成したスケールが完全に除去可能な一般的な条件であれば良い。
In the present invention, the slab having the above chemical components may be hot-rolled under normal hot rolling conditions, and there is no special restriction. However, the hot rolling finish temperature is not higher than the Ar3 point. Therefore, it is desirable to set it at Ar3 or higher.
The coiling temperature may be appropriately selected according to the required strength level, but is preferably 500 to 700 ° C. from the viewpoint of securing a ferrite volume ratio of 50% or more.
Moreover, there is no restriction | limiting in particular also in pickling conditions, What is necessary is just the general conditions which can remove the scale produced | generated by hot rolling completely.

本願発明では、熱間圧延、酸洗後、直ちに連続酸洗ラインにて溶融亜鉛めっきを施す事も可能であるが、2.0mm以下の比較的板厚の薄い鋼板とする場合には、めっき前に冷間圧延を施す事ができる。この場合、冷間圧延率もとくに限定する必要は無く、必要に応じて設定すればよいが、30%未満では生産性に劣り、また80%を超える冷間圧延は、1回の冷間圧延での製造が困難になってくるので、30〜80%の冷間圧延率とすることが望ましい。   In the present invention, hot-rolling, pickling, and hot-dip galvanizing can be performed immediately in a continuous pickling line. Cold rolling can be performed before. In this case, the cold rolling rate need not be particularly limited, and may be set as necessary. However, if it is less than 30%, the productivity is inferior, and cold rolling exceeding 80% is a single cold rolling. Therefore, it is desirable that the cold rolling rate is 30 to 80%.

連続溶融めっきラインにおける加熱温度が730℃未満では加熱時のオーステナイト量が十分でなく、冷却後に十分なマルテンサイト量が確保できない。また、加熱温度が高くなるほど加熱時のオーステナイト量が増加し、その後の冷却でマルテンサイトを得易くなるが、900℃を超える温度で通板してもその効果は飽和するとともに、返って製造コストの上昇を招く。   When the heating temperature in the continuous hot dipping line is less than 730 ° C., the amount of austenite at the time of heating is not sufficient, and a sufficient amount of martensite cannot be secured after cooling. In addition, the higher the heating temperature, the more austenite during heating, and it becomes easier to obtain martensite by subsequent cooling, but the effect is saturated even if the plate is passed at a temperature exceeding 900 ° C., and the manufacturing cost is returned. Invite the rise.

めっきラインにおける加熱後の650℃までの平均冷却速度が3℃/秒未満では、フェライト変態だけでなくパーライト変態が生じるため、5%以上のマルテンサイトを確保できなくなる。一方、10℃/秒を超えると、フェライト変態が十分に進行せず、フェライト分率が、50%未満となる場合が有る。したがって、650℃までの平均冷却速度を3〜10℃/秒に限定する。   If the average cooling rate to 650 ° C. after heating in the plating line is less than 3 ° C./second, not only ferrite transformation but also pearlite transformation occurs, so that it becomes impossible to secure 5% or more martensite. On the other hand, if it exceeds 10 ° C./second, the ferrite transformation does not proceed sufficiently and the ferrite fraction may be less than 50%. Therefore, the average cooling rate up to 650 ° C. is limited to 3 to 10 ° C./second.

前記の650℃までの冷却に続き、440℃までの平均冷却速度が10℃/秒未満では、パーライト変態またはベイナイト変態を生じ、5%以上のマルテンサイトが得られなくなる。したがって、650℃から440℃までの平均冷却速度を10℃/秒以上に限定する。   If the average cooling rate to 440 ° C. is less than 10 ° C./second following the cooling to 650 ° C., pearlite transformation or bainite transformation occurs and 5% or more of martensite cannot be obtained. Therefore, the average cooling rate from 650 ° C. to 440 ° C. is limited to 10 ° C./second or more.

本願発明では、前記の冷却が施された後、440℃以下の温度に保持されたZn−Al−Mg系溶融めっき浴に浸漬され溶融めっきが施される。浴温が440℃を超えると、パーライト変態を生じ、マルテンサイト量が減少する。したがって、440℃以下に限定した。   In the present invention, after the cooling described above, immersion plating is performed by immersion in a Zn-Al-Mg-based hot dipping bath maintained at a temperature of 440 ° C or lower. When the bath temperature exceeds 440 ° C., pearlite transformation occurs and the amount of martensite decreases. Therefore, it was limited to 440 ° C. or lower.

なお、溶融めっき浴は、例えばAl:4〜10質量%,Mg:1〜4%,残部はZnおよび不可避的不純物からなる。不可避的不純物としては、0.002〜0.20質量%のTiや0.001〜0.1質量%程度のB等も含まれる。また、めっき付着量は、鋼板片面あたり20〜300g/mの範囲で調整することが望ましい。 The hot dip plating bath is made of, for example, Al: 4 to 10% by mass, Mg: 1 to 4%, and the balance is made of Zn and inevitable impurities. Inevitable impurities include 0.002 to 0.20 mass% Ti, about 0.001 to 0.1 mass% B, and the like. Moreover, it is desirable to adjust the plating adhesion amount in a range of 20 to 300 g / m 2 per one side of the steel plate.

得られためっき鋼板の金属組織は、フェライトの体積率が、50%以上でないと良好な局部延性が得られない。また、マルテンサイトの体積率が5%未満では十分な強度が得られず、45%を超えると局部延性が劣化する。したがって、フェライト体積率は50%以上かつマルテンサイト体積率は5〜45%の範囲に限定する。   As for the metal structure of the obtained plated steel sheet, good local ductility cannot be obtained unless the volume fraction of ferrite is 50% or more. Further, if the volume fraction of martensite is less than 5%, sufficient strength cannot be obtained, and if it exceeds 45%, the local ductility deteriorates. Therefore, the ferrite volume fraction is limited to 50% or more and the martensite volume fraction is limited to a range of 5 to 45%.

表1に示す組成の鋼スラブを1200℃に加熱し、熱間圧延、酸洗を施して板厚3.2mmの熱延鋼板を得た。熱延仕上げ温度は、850℃、巻取り温度は、580℃の条件とした。得られた熱延鋼板の一部は、酸洗後、圧延を施し、板厚1.6mmの冷延鋼板とした。   A steel slab having the composition shown in Table 1 was heated to 1200 ° C., hot-rolled and pickled to obtain a hot-rolled steel sheet having a thickness of 3.2 mm. The hot rolling finishing temperature was 850 ° C., and the winding temperature was 580 ° C. A part of the obtained hot-rolled steel sheet was pickled and then rolled to obtain a cold-rolled steel sheet having a thickness of 1.6 mm.

Figure 0005860500
Figure 0005860500

各鋼板に表2に示す焼鈍条件の熱処理を施した後、Al:6質量%、Mg:3質量%、残部:Znおよび不可避的不純物からなるめっき浴に導入し、片面当たりめっき付着量:45g/mの溶融Zn−Al−Mgめっき鋼板を製造した。めっきした鋼板の表面外観観察を行い、不めっきを生じたものについてはめっき性:×、良好な表面性状のものをめっき性:○として評価した。 Each steel plate was heat-treated under the annealing conditions shown in Table 2, and then introduced into a plating bath composed of Al: 6% by mass, Mg: 3% by mass, balance: Zn and unavoidable impurities, and the amount of plating deposited per side: 45 g / M 2 hot-dip Zn—Al—Mg plated steel sheet was produced. The surface appearance of the plated steel plate was observed, and those with non-plating were evaluated as plating property: x, and those having good surface properties were evaluated as plating property: ◯.

Figure 0005860500
Figure 0005860500

製造しためっき鋼板から圧延方向と平行にJIS5号試験片を切り出し、常温での引張試験に供した。また、局部延性の評価のために、JIS5号試験片の平行部の中間位置の端面に2mmVノッチを付与し、ノッチ部を中心とした評点間距離10mmの破断伸びをElvとして測定した。本発明においては、Elvが10%以上のものを良好と判断した。
また、各めっき鋼板の下地鋼板の金属組織を走査電子顕微鏡にて観察し、1,000倍で10視野の画像解析を行い、フェライト面積率およびマルテンサイト面積率を算出した。
A JIS No. 5 test piece was cut out from the manufactured plated steel plate in parallel with the rolling direction and subjected to a tensile test at room temperature. Further, in order to evaluate local ductility, a 2 mmV notch was given to the end face at the intermediate position of the parallel part of the JIS No. 5 test piece, and the elongation at break with a distance of 10 mm between the scores centered on the notch part was measured as Elv. In the present invention, those having an Elv of 10% or more were judged good.
Moreover, the metal structure of the base steel plate of each plated steel plate was observed with a scanning electron microscope, and image analysis of 10 fields of view was performed at 1,000 times to calculate a ferrite area ratio and a martensite area ratio.

また、得られためっき鋼板から100mm×75mmのサンプルを切り出し、溶融金属脆化に起因する最大割れ深さを評価するための試験片とした。溶接試験は、図1に示す外観のボス溶接材を作成する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片3の板面中央部に直径20mm×長さ25mmの棒鋼からなるボス(突起)1を垂直に立て、このボス1を試験片3にアーク溶接にて接合した。溶接ワイヤーは、YGW12を用い、溶接開始点からボスの周囲を1周して、溶接始点を過ぎた後もさらにビードを重ねて少し溶接を進めたところで溶接を終了とした。溶接条件は、200A,22V,溶接速度0.2m/min、シールドガス:CO、シールドガス流量:20L/minとした。 Moreover, a 100 mm x 75 mm sample was cut out from the obtained plated steel sheet, and it was set as the test piece for evaluating the maximum crack depth resulting from molten metal embrittlement. In the welding test, “boss welding” was performed to create a boss weld material having the appearance shown in FIG. 1, and the cross section of the weld was observed to examine the occurrence of cracks. That is, a boss (projection) 1 made of a steel bar having a diameter of 20 mm and a length of 25 mm was set up vertically at the center of the plate surface of the test piece 3, and the boss 1 was joined to the test piece 3 by arc welding. YGW12 was used as the welding wire, and the circumference of the boss was made one round from the welding start point, and after passing the welding start point, the bead was further piled up and welding was completed when the welding proceeded a little. The welding conditions were 200 A, 22 V, welding speed 0.2 m / min, shielding gas: CO 2 , and shielding gas flow rate: 20 L / min.

溶接に際しては、図2に示すように試験片3を120mm×95mm×板厚4mmの拘束板4の板面中央部に置き、予め試験片3の全周を溶接して接合した。この接合体を水平な試験台5の上にクランプにて固定し、この状態でボス溶接を行った。  At the time of welding, as shown in FIG. 2, the test piece 3 was placed at the center of the plate surface of the restraint plate 4 having a size of 120 mm × 95 mm × plate thickness 4 mm, and the entire circumference of the test piece 3 was previously welded and joined. This joined body was fixed on a horizontal test bench 5 with a clamp, and boss welding was performed in this state.

ボス溶接後、ボス1の中心軸を通り、かつ前記のビードの重なり合う部分8を通る切断面9で、ボス1/試験片3/拘束板4の接合体を切断し、その切断面9について顕微鏡観察を行い、試験片3に観察された割れの最大深さを測定した。最大割れ深さが0.2mm以下を○、0.2mmを超えるものを×として評価した。こうして得られた、引張試験結果、画像解析結果、めっき性評価結果およびボス溶接における最大割れ深さを表2にまとめて示した。   After the boss welding, the boss 1 / test piece 3 / restraint plate 4 joined body is cut at a cut surface 9 passing through the central axis of the boss 1 and passing through the overlapping portion 8 of the beads. Observation was performed, and the maximum depth of cracks observed in the test piece 3 was measured. The maximum crack depth was evaluated as ○ when the maximum crack depth was 0.2 mm or less, and x when the maximum crack depth exceeded 0.2 mm. Table 2 collectively shows the tensile test results, the image analysis results, the plating property evaluation results, and the maximum crack depth in boss welding thus obtained.

表1および表2からわかるように、本発明範囲に従う化学組成や金属組織に従うZn−Al−Mg系めっき鋼板においては、いずれも引張強さ(TS):590MP以上の高強度が得られるとともに、Elvが10%以上と良好な値を示すとともに、めっき性にも優れている。更には、ボス溶接時の最大割れ深さはいずれも0.2mm以下の良好な値を示すことがわかる。   As can be seen from Table 1 and Table 2, in the Zn-Al-Mg-based plated steel sheet according to the chemical composition and metal structure according to the scope of the present invention, all have high tensile strength (TS): 590 MP or higher, Elv shows a good value of 10% or more and is excellent in plating properties. Further, it can be seen that the maximum crack depth during boss welding shows a good value of 0.2 mm or less.

一方、C含有量が少ないK鋼を用いたNo.11では、金属組織に占めるベイナイトの割合が増えた結果としてフェライト、マルテンサイトとも本願発明範囲よりも小さくなり、結果として590MPa以上の強度レベルが得られなくなる。また、Ti含有量が十分ではないL鋼(No.12)では、Elvが10%未満の値を示す。
SiやMn含有量が、本発明範囲を超えて含有するM鋼(No.13)、O鋼(No.15)では、引張特性や耐溶融金属脆化割れ性は良好となるものの、不めっきが発生しめっき性に劣っている。Ti無添加のP鋼(No.16)では、Elvが小さくなるとともにボス溶接によって板厚を貫通する大きな割れを生じた。また、B添加量が本発明範囲より少ないQ鋼(No.17)でも板厚を貫通する溶融金属脆化割れが発生した。
On the other hand, No. using K steel with low C content. 11, both the ferrite and martensite are smaller than the scope of the present invention as a result of an increase in the proportion of bainite in the metal structure, and as a result, a strength level of 590 MPa or more cannot be obtained. Moreover, in L steel (No. 12) with insufficient Ti content, Elv shows a value of less than 10%.
In M steel (No. 13) and O steel (No. 15) containing Si and Mn exceeding the scope of the present invention, although tensile properties and resistance to molten metal embrittlement cracking are good, non-plating is performed. Occurs and the plating property is poor. In the steel P with no Ti added (No. 16), Elv was reduced and a large crack penetrating the plate thickness was formed by boss welding. Further, even in the case of Q steel (No. 17) in which the B addition amount is less than the range of the present invention, molten metal embrittlement cracks penetrating the plate thickness occurred.

鋼成分が本発明の範囲内であるA鋼、G鋼を用いた場合であっても、めっき時の焼鈍加熱温度が低いNo.18、およびNo.21では、再結晶が十分に生じなくなるとともにオーステナイトへの変態量が僅かとなるため、マルテンサイト体積率も小さくなる。その結果として、Elvが大幅に低下した。650℃までの冷却速度が小さいNo.19、22および650℃から440℃までの冷却速度が小さいNo.20、23では、フェライトおよびパーライト変態が進行し、十分なマルテンサイト量が得られない。その結果として590MPa以上の強度レベルの確保ができなくなる。   Even when A steel and G steel whose steel components are within the scope of the present invention are used, No. 2 having a low annealing heating temperature during plating. 18, and no. In No. 21, recrystallization does not occur sufficiently and the amount of transformation to austenite becomes small, so that the martensite volume fraction is also small. As a result, Elv decreased significantly. No. with a small cooling rate to 650 ° C. No. 19, 22 and 650 ° C. to 440 ° C. with a low cooling rate. In 20 and 23, ferrite and pearlite transformation proceeds, and a sufficient amount of martensite cannot be obtained. As a result, it becomes impossible to secure a strength level of 590 MPa or more.

ボス溶接部材の形状を模式的に示した図。The figure which showed typically the shape of the boss | hub welding member. ボス溶接を行う際の試験片の拘束方法を模式的に示した図。The figure which showed typically the restraint method of the test piece at the time of performing boss welding.

1 ボス
2 クランプ
3 試験片
4 拘束板
5 実験台
6 溶接ビード
7 試験片全周溶接部の溶接ビード
8 溶接ビードの重なり部分
9 切断面
DESCRIPTION OF SYMBOLS 1 Boss 2 Clamp 3 Test piece 4 Restraint plate 5 Experimental stand 6 Weld bead 7 Weld bead 8 of a test piece perimeter welding part 8 Overlap part of a weld bead 9 Cut surface

Claims (4)

重量%で、C:0.05〜0.20%,Si:0.05〜1.5%,Mn:1.0〜2.5%,P:0.005〜0.050%,S:0.01%以下,酸可溶Al:0.005〜0.10%,Ti:0.05〜0.15%, B:0.0002〜0.01%を含有し、残部はFeおよび不可避的不純物からなる組成を有するとともに、金属組織が体積率:50%以上のフェライトおよび体積率が5〜45%のマルテンサイトを含む組織であり、引張強さ(TS):590MPa以上、Elv10%以上であることを特徴とする耐溶融金属脆化特性および局部延性に優れた高強度Zn−Al−Mg系めっき鋼板。   C: 0.05-0.20%, Si: 0.05-1.5%, Mn: 1.0-2.5%, P: 0.005-0.050%, S: 0.01% or less, acid-soluble Al: 0.005 to 0.10%, Ti: 0.05 to 0.15%, B: 0.0002 to 0.01%, the balance being Fe and inevitable In addition, the metal structure is a structure containing ferrite with a volume ratio of 50% or more and martensite with a volume ratio of 5 to 45%, and tensile strength (TS): 590 MPa or more, Elv 10% or more. A high-strength Zn-Al-Mg-based plated steel sheet excellent in molten metal embrittlement characteristics and local ductility. 重量%で、Nb:0.005〜0.10%,Mo:0.05〜0.5%,Cr:0.05%〜1.0%の1種または2種以上を含有する事を特徴とする請求項1に記載した耐溶融金属脆化特性および局部延性に優れた高強度Zn−Al−Mg系めっき鋼板。   It is characterized by containing one or more of Nb: 0.005 to 0.10%, Mo: 0.05 to 0.5%, Cr: 0.05% to 1.0% by weight%. A high-strength Zn-Al-Mg-based plated steel sheet having excellent molten metal embrittlement characteristics and local ductility according to claim 1. 重量%で、Cu:0.05〜0.5%,Ni:0.05〜0.5%の1種または2種を含有する事を特徴とする請求項1又は請求項2に記載した耐溶融金属脆化特性および局部延性に優れた高強度Zn−Al−Mg系めっき鋼板。   It contains 1 type or 2 types of Cu: 0.05-0.5% and Ni: 0.05-0.5% by weight%, The resistance-resistance described in Claim 1 or Claim 2 characterized by the above-mentioned. A high-strength Zn-Al-Mg-based plated steel sheet excellent in molten metal embrittlement characteristics and local ductility. 請求項1〜請求項3のいずれかの化学組成を有するスラブを熱間圧延して酸洗後、または酸洗に引き続いて冷間圧延した後、連続溶融めっきラインに通板し、連続溶融めっきラインの還元焼鈍炉にて730℃〜900℃の温度域に加熱した後、平均冷却速度3〜10℃/秒で650℃まで冷却し、更に平均冷却速度:10℃/秒以上で440℃の温度域まで冷却後、浴温:440℃以下の溶融Zn−Al−Mg系めっき浴に導入、引き上げる事を特徴とする金属組織が体積率:50%以上のフェライトおよび体積率が5〜45%のマルテンサイトを含む組織であり、引張強さ(TS):590MPa以上、Elv10%以上であることを特徴とする耐溶融金属脆化特性および局部延性に優れた高強度Zn−Al−Mg系めっき鋼板の製造方法。 The slab having the chemical composition according to any one of claims 1 to 3 is hot-rolled and pickled, or cold-rolled following pickling, and then passed through a continuous hot-dip plating line. After heating to a temperature range of 730 ° C. to 900 ° C. in a line reduction annealing furnace, it is cooled to 650 ° C. at an average cooling rate of 3 to 10 ° C./s, and further, an average cooling rate: After cooling to a temperature range, the bath temperature is introduced into a molten Zn-Al-Mg plating bath having a temperature of 440 ° C or lower, and the metal structure is characterized by a volume ratio: ferrite with a volume ratio of 50% or more and a volume ratio of 5-45%. High-strength Zn-Al-Mg-based plating excellent in molten metal embrittlement characteristics and local ductility, characterized by having a martensite structure and tensile strength (TS): 590 MPa or more and Elv 10% or more Steel plate manufacturing method
JP2014097389A 2014-05-09 2014-05-09 High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same Active JP5860500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097389A JP5860500B2 (en) 2014-05-09 2014-05-09 High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097389A JP5860500B2 (en) 2014-05-09 2014-05-09 High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009083717A Division JP2010235989A (en) 2009-03-30 2009-03-30 High strength zn-al-mg based plated steel sheet excellent in liquid metal embrittlement resistant characteristics and production method therefor

Publications (2)

Publication Number Publication Date
JP2014169503A JP2014169503A (en) 2014-09-18
JP5860500B2 true JP5860500B2 (en) 2016-02-16

Family

ID=51692071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097389A Active JP5860500B2 (en) 2014-05-09 2014-05-09 High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same

Country Status (1)

Country Link
JP (1) JP5860500B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209175B2 (en) * 2015-03-03 2017-10-04 日新製鋼株式会社 Manufacturing method of hot-dip Zn-Al-Mg-based plated steel sheet with excellent plating surface appearance and burring properties
CN108642493B (en) * 2018-05-15 2021-02-19 首钢集团有限公司 Method for improving surface color difference defect of zinc-aluminum-magnesium alloy coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004018A (en) * 2000-06-22 2002-01-09 Nippon Steel Corp High strength hot-dip galvanized steel sheet having good corrosion resistance after coating and good press- workability, and coated steel sheet
JP4843981B2 (en) * 2004-03-31 2011-12-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4544579B2 (en) * 2004-09-29 2010-09-15 日新製鋼株式会社 Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet
JP5478804B2 (en) * 2006-12-28 2014-04-23 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JP5264235B2 (en) * 2008-03-24 2013-08-14 日新製鋼株式会社 High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same

Also Published As

Publication number Publication date
JP2014169503A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US10787727B2 (en) Steel sheet
KR102400445B1 (en) High-strength galvanized steel sheet, high-strength member and manufacturing method thereof
JP6524810B2 (en) Steel plate excellent in spot weld resistance and its manufacturing method
KR102402864B1 (en) High-strength galvanized steel sheet and manufacturing method thereof
JP6049516B2 (en) High-strength plated steel sheet for welded structural members and its manufacturing method
KR102099588B1 (en) STEEL SHEET HOT-DIP-COATED WITH Zn-Al-Mg-BASED SYSTEM, AND PROCESS OF MANUFACTURING SAME
JP5704721B2 (en) High strength steel plate with excellent seam weldability
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
WO2016199922A1 (en) Galvannealed steel sheet and method for manufacturing same
JP5641741B2 (en) High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance
JP6296215B1 (en) Thin steel plate and manufacturing method thereof
JP6308333B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
CA2786381C (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
JPWO2019106894A1 (en) High strength galvanized steel sheet and manufacturing method thereof
JP5907287B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP4676923B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same
JP4495064B2 (en) Steel sheet for hot press
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP2010235989A (en) High strength zn-al-mg based plated steel sheet excellent in liquid metal embrittlement resistant characteristics and production method therefor
JP5860500B2 (en) High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same
JP2016188395A (en) High strength cold rolled steel sheet excellent in weldability and workability and production method therefor
JP2019504203A (en) High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in ductility, hole workability, and surface treatment characteristics, and methods for producing them
JP2004211158A (en) Galvanized steel for welding, and electric resistance welded tube thereof
JP6275560B2 (en) Super high strength steel plate with excellent impact characteristics
WO2022249919A1 (en) High-strength alloyed hot-dip galvanized steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350