JP5852604B2 - Dispersion disk and fluidized chlorination furnace equipped with the same - Google Patents

Dispersion disk and fluidized chlorination furnace equipped with the same Download PDF

Info

Publication number
JP5852604B2
JP5852604B2 JP2013089182A JP2013089182A JP5852604B2 JP 5852604 B2 JP5852604 B2 JP 5852604B2 JP 2013089182 A JP2013089182 A JP 2013089182A JP 2013089182 A JP2013089182 A JP 2013089182A JP 5852604 B2 JP5852604 B2 JP 5852604B2
Authority
JP
Japan
Prior art keywords
bottom plate
dispersion
insulating layer
chlorine gas
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013089182A
Other languages
Japanese (ja)
Other versions
JP2014210689A (en
Inventor
浩士 稗田
浩士 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2013089182A priority Critical patent/JP5852604B2/en
Publication of JP2014210689A publication Critical patent/JP2014210689A/en
Application granted granted Critical
Publication of JP5852604B2 publication Critical patent/JP5852604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

本発明は、流動塩化炉において、金属酸化物を含有する原料を載置し、下方から供給される塩素ガスを分散させて原料に均一に接触させる分散盤に関し、特に、塩素ガスによる劣化が抑制された分散盤に関する。また、本発明は、この分散盤を備え、チタン酸化物を含有する原料から四塩化チタンを製造する金属塩化物の製造装置に関する。   The present invention relates to a dispersion plate in which a raw material containing a metal oxide is placed in a fluidized chlorination furnace, and chlorine gas supplied from below is dispersed to uniformly contact the raw material, and in particular, deterioration due to chlorine gas is suppressed. Related to the disperser. The present invention also relates to an apparatus for producing a metal chloride, which is provided with this dispersion disk and produces titanium tetrachloride from a raw material containing titanium oxide.

金属チタンの原料として使用される四塩化チタン(TiCl4)は、チタン酸化物を含有するチタン鉱石を原料とし、流動塩化炉においてこの原料とコークスと塩素ガスとを接触させ、反応させることにより製造される。 Titanium tetrachloride (TiCl 4 ) used as a raw material for titanium metal is manufactured by using titanium ore containing titanium oxide as a raw material, and contacting and reacting this raw material with coke and chlorine gas in a fluid chlorination furnace. Is done.

図1は、従来の流動塩化炉の構成図であり、同図(a)は要部を示す図、同図(b)は分散盤近傍の部分拡大図である。流動塩化炉は、本体1の側面の下部にガス導入口2を備え、ガス導入口2の上部に本体1の内部を上下に仕切るように分散盤3を備える。分散盤3の上部には、原料であるチタン鉱石の粒子とコークスの粒子からなる流動層10が載置される。900〜1100℃に保持された本体1内部にガス導入口2から吹き込まれた塩素ガスは、分散盤3を通過して、流動層10内で原料と接触し、チタン酸化物の塩素化による四塩化チタンの生成が進行する。   FIG. 1 is a configuration diagram of a conventional fluidized chlorination furnace, in which FIG. 1 (a) is a diagram showing a main part, and FIG. 1 (b) is a partially enlarged view in the vicinity of a dispersion disc. The fluidized chlorination furnace includes a gas inlet 2 at the lower portion of the side surface of the main body 1 and a disperser 3 at the upper portion of the gas inlet 2 so as to partition the inside of the main body 1 vertically. A fluidized bed 10 made of titanium ore particles and coke particles, which are raw materials, is placed on the upper part of the dispersion plate 3. Chlorine gas blown from the gas introduction port 2 into the main body 1 held at 900 to 1100 ° C. passes through the dispersion plate 3 and comes into contact with the raw material in the fluidized bed 10, and is produced by chlorination of titanium oxide. Production of titanium chloride proceeds.

分散盤3は、多数の通気孔5が設けられた鉄等の金属製の底板4と、その上面に配置された分散層9を備える。分散層9は、シリカ(SiO2)、アルミナ(Al23)、窒化ケイ素(Si34)等の耐塩素性を有する不活性な物質の粒子(以下「不活性粒子」という。)からなる。また、底板4の通気孔5には、通気孔の直径を調整するためのオリフィス6が必要に応じて設けられる。 The dispersion plate 3 includes a bottom plate 4 made of metal such as iron provided with a large number of air holes 5, and a dispersion layer 9 disposed on the upper surface thereof. The dispersion layer 9 is made of particles of an inert substance having chlorine resistance such as silica (SiO 2 ), alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ) (hereinafter referred to as “inactive particles”). Consists of. In addition, the vent hole 5 of the bottom plate 4 is provided with an orifice 6 for adjusting the diameter of the vent hole as required.

底板4の下方から通気孔5を通じて分散層9に進入した塩素ガスは、図1(b)中の矢印で示すように、不活性粒子の空隙を拡散しながら上昇し、分散層9の上面から流動層10中に均一に放出される。これにより、原料に塩素ガスが均一に接触し、原料と塩素ガスの反応を偏りなく進行させることができる。   Chlorine gas that has entered the dispersion layer 9 from below the bottom plate 4 through the ventilation holes 5 rises while diffusing through the voids of the inert particles, as indicated by the arrows in FIG. It is uniformly discharged into the fluidized bed 10. Thereby, chlorine gas contacts a raw material uniformly and the reaction of a raw material and chlorine gas can be advanced evenly.

特許文献1では、流動塩化炉の分散盤の充填層および充填層の容器壁の、塩素ガスによる腐食損耗を抑制するため、充填層を構成するシリカを高純度かつ低気孔率の溶融シリカとし、容器壁の内面に耐塩素部材を配置する技術が開示されている。また、同文献には、底板の上面をシリカまたはアルミナを溶射してコーティングして、耐塩素ガス性を向上させ、塩化炉の寿命延長を図る技術が開示されている。   In Patent Document 1, in order to suppress corrosion wear caused by chlorine gas on the packed bed of the dispersion plate of the fluidized chlorination furnace and the container wall of the packed bed, the silica constituting the packed bed is made of fused silica with high purity and low porosity, A technique for disposing a chlorine-resistant member on the inner surface of a container wall is disclosed. Further, this document discloses a technique for improving the chlorine gas resistance and extending the life of the chlorination furnace by coating the upper surface of the bottom plate by spraying silica or alumina.

しかし、本発明者らが検討した結果、特許文献1に記載の技術を適用した流動塩化炉であっても、操業中に底板の腐食が進行し、腐食が著しい場合には、通気孔が拡大したり、通気孔以外の部分において通気孔よりも大きな貫通孔が形成されたりすることがあった。この場合、これらの拡大した通気孔や形成された貫通孔(以下「貫通孔」と総称する。)から集中的に塩素ガスが吹き出すため、操業を緊急停止させなければならず、生産に大きな影響を及ぼすこととなる。特に、TiCl4の生産速度を高める目的で流動塩化炉への塩素ガス投入速度を高めた際、この問題の発生頻度が顕著に増加する。 However, as a result of the study by the present inventors, even in a fluid chlorination furnace to which the technique described in Patent Document 1 is applied, if the bottom plate is corroded during operation and the corrosion is significant, the vent hole is enlarged. In some cases, a through hole larger than the air hole is formed in a portion other than the air hole. In this case, since chlorine gas is intensively blown out from these enlarged vent holes and formed through holes (hereinafter collectively referred to as “through holes”), the operation must be stopped urgently, which greatly affects production. Will be affected. In particular, when the rate of introducing chlorine gas into the fluidized chlorination furnace is increased for the purpose of increasing the production rate of TiCl 4, the frequency of occurrence of this problem is remarkably increased.

特許第4904152号公報Japanese Patent No. 4904152

本発明者らは、この底板の貫通孔の形成機構について調査した。その結果、流動塩化炉の操業中に、流動層中の高温のチタン鉱石の粒子が、分散層の不活性粒子の隙間から底板の近傍まで落下し、その後底板の下部から供給される塩素ガスによって再び流動層まで上昇する現象が確認された。すなわち、分散層の内部で高温のチタン鉱石が鉛直方向に循環している状態であることが確認された。   The present inventors investigated the formation mechanism of the through hole of this bottom plate. As a result, during operation of the fluidized chlorination furnace, the high-temperature titanium ore particles in the fluidized bed fall from the gap between the inert particles in the dispersed layer to the vicinity of the bottom plate, and then the chlorine gas supplied from the bottom of the bottom plate. The phenomenon of rising to the fluidized bed was confirmed again. That is, it was confirmed that the high-temperature titanium ore was circulated in the vertical direction inside the dispersion layer.

高温のチタン鉱石粒子が分散層の内部で落下することにより、底板の周辺の分散層が高温となり、その熱が徐々に底板に伝導し、さらに底板の下面に接する塩素ガスにも伝導する。そして、加熱された塩素ガスが底板と反応し、底板が塩素化され、腐食して貫通孔が形成されるに至ることがわかった。   When the high-temperature titanium ore particles fall inside the dispersion layer, the dispersion layer around the bottom plate becomes a high temperature, and the heat is gradually conducted to the bottom plate and further to chlorine gas in contact with the lower surface of the bottom plate. And it turned out that the heated chlorine gas reacts with a bottom plate, a bottom plate is chlorinated, and it corrodes and a through-hole is formed.

また、この貫通孔は、底板の下面に突出するようにオリフィスが設けられている場合には、オリフィス周辺で形成されやすいことが確認された。これは、底板の下面では、オリフィス周辺で塩素ガスが滞留しやすく、塩素ガスによる底板下面の冷却効果が小さいためであると考えられる。   Further, it was confirmed that the through hole is easily formed around the orifice when the orifice is provided so as to protrude from the lower surface of the bottom plate. This is considered to be because chlorine gas tends to stay around the orifice on the lower surface of the bottom plate, and the cooling effect of the lower surface of the bottom plate by the chlorine gas is small.

特許文献1に記載の技術では、耐塩素ガス性の向上は流動塩化炉内部の分散盤よりも上側だけを対象としている。また、同文献に記載の、耐塩素ガス性の向上させる程度の厚さのシリカ等のコーティングでは底板の温度上昇は抑制できない。これらの理由から、同文献に記載の技術では、底板の下面の塩素ガスによる腐食は抑制できない。   In the technique described in Patent Document 1, the improvement in chlorine gas resistance is targeted only on the upper side of the dispersion plate inside the fluidized chlorination furnace. In addition, the temperature increase of the bottom plate cannot be suppressed by the coating of silica or the like having a thickness that improves the chlorine gas resistance described in the same document. For these reasons, the technique described in this document cannot suppress corrosion by chlorine gas on the lower surface of the bottom plate.

本発明は、この課題に鑑みてなされたものであり、塩素ガスによる底板の腐食を抑制することが可能な塩素ガスの分散盤、およびこの分散盤を備える流動塩化炉を提供することを目的とする。   The present invention has been made in view of this problem, and an object of the present invention is to provide a chlorine gas disperser capable of suppressing corrosion of the bottom plate due to chlorine gas, and a fluidized chlorination furnace equipped with the disperser. To do.

上記の課題を解決する方法として、底板の下面に保護層を形成する方法と、底板の温度上昇を抑制する方法とが考えられる。このうち、底板の下面に保護層を形成する方法では、底板は通気孔の周辺等で複雑な凹凸を有するため均一に保護層を形成するのが困難であり、また、保護層を設けても通気孔の直径を調整するためのオリフィスの交換によって剥離が進行する。そのため、保護層を形成する方法では、長期間にわたって安定して塩素ガスによる底板の腐食を抑制することは困難である。   As a method for solving the above problems, a method of forming a protective layer on the bottom surface of the bottom plate and a method of suppressing the temperature rise of the bottom plate are conceivable. Of these, in the method of forming a protective layer on the bottom surface of the bottom plate, it is difficult to form a protective layer uniformly because the bottom plate has complex irregularities around the vents, etc. Separation proceeds by exchanging the orifice to adjust the diameter of the vent. Therefore, in the method of forming the protective layer, it is difficult to stably suppress corrosion of the bottom plate due to chlorine gas over a long period of time.

そこで、本発明者らは、底板の温度上昇を抑制する方法について検討した。その結果、不定形耐火物を底板の上面に施工することにより、流動塩化炉の操業中における底板の温度上昇と、これに伴う塩素ガスによる底板の腐食とを抑制できることを知見した。   Therefore, the present inventors examined a method for suppressing the temperature rise of the bottom plate. As a result, it was found that by applying an irregular refractory to the top surface of the bottom plate, the temperature rise of the bottom plate during operation of the fluidized chlorination furnace and the corrosion of the bottom plate caused by chlorine gas can be suppressed.

本発明は、この知見に基づいてなされたものであり、その要旨は下記の分散盤および流動塩化炉にある。   This invention is made | formed based on this knowledge, The summary exists in the following dispersion disk and a fluid chlorination furnace.

金属酸化物を含有する原料とコークスが上部に載置され、下部から供給される塩素ガスを前記原料に接触させる塩素ガスの分散盤であって、底板と、前記底板の上面に配置され、非水系の不定形耐火物からなり、厚さが10mm以上の断熱層と、前記断熱層の上部に配置された耐塩素性を有する不活性粒子からなる分散層とを備え、前記非水系の不定形耐火物は、耐火骨材と耐火粘土粉末とを含み、前記底板と前記断熱層には塩素ガスを通過させる複数のガス流路であって、各ガス流路が前記不活性粒子の直径より小さい直径を有する複数のガス流路が設けられていることを特徴とする分散盤。 A raw material containing metal oxide and coke are placed on the upper part, and a chlorine gas dispersion plate for bringing chlorine gas supplied from the lower part into contact with the raw material, disposed on the bottom plate and the upper surface of the bottom plate, It consists monolithic refractory aqueous, and the heat insulating layer of 10mm or more thick, and a dispersion layer composed of inert particles having a chlorine resistance arranged on top of the insulation layer, amorphous of the non-aqueous The refractory includes a refractory aggregate and a refractory clay powder, and a plurality of gas passages for allowing chlorine gas to pass through the bottom plate and the heat insulating layer, each gas passage being smaller than the diameter of the inert particles. A disperser having a plurality of gas flow paths having a diameter.

本発明の分散盤では、前記断熱層の厚さが500mm未満であることが望ましい。また、前記ガス流路にNiまたはNi基合金からなるガス供給管が、前記底板に接するように配置されていることが望ましい。
The distributor of the present invention, it is desirable that the thickness of the heat insulating layer is less than 5 300 mm. Moreover, it is desirable that a gas supply pipe made of Ni or a Ni-based alloy is disposed in the gas flow path so as to be in contact with the bottom plate.

本発明の流動塩化炉は、上記の分散盤を備え、チタン酸化物を含有する前記原料とコークスと塩素ガスから四塩化チタンを製造することを特徴とする。   The fluidized chlorination furnace of the present invention is provided with the above-mentioned dispersion plate, and is characterized by producing titanium tetrachloride from the raw material containing titanium oxide, coke and chlorine gas.

本発明の分散盤および流動塩化炉によれば、流動塩化炉の操業中における、塩素ガスによる分散盤の底板の腐食を抑制でき、長期間にわたって安定して金属塩化物の生産を行うことが可能である。   According to the dispersion plate and the fluidized chlorination furnace of the present invention, it is possible to suppress the corrosion of the bottom plate of the dispersion plate by chlorine gas during the operation of the fluidized chlorination furnace, and to produce metal chloride stably over a long period of time. It is.

従来の流動塩化炉の構成図であり、同図(a)は要部を示す図、同図(b)は分散盤近傍の部分拡大図である。It is a block diagram of the conventional fluid chlorination furnace, The figure (a) is a figure which shows the principal part, The figure (b) is the elements on larger scale of the dispersion disk vicinity. 本発明の流動塩化炉の構成図であり、同図(a)は要部を示す図、同図(b)は分散盤近傍の部分拡大図である。It is a block diagram of the fluid chlorination furnace of this invention, the figure (a) is a figure which shows the principal part, and the figure (b) is the elements on larger scale of the dispersion disk vicinity. 試験に用いた分散盤の模式図であり、同図(a)は断熱層を設けなかった場合、同図(b)は断熱層が薄い場合、同図(c)は断熱層が厚い場合を示す。It is the schematic diagram of the dispersion disk used for the test, The figure (a) when a heat insulation layer is not provided, The figure (b) when a heat insulation layer is thin, The figure (c) shows the case where a heat insulation layer is thick. Show.

図2は、本発明の流動塩化炉の構成図であり、同図(a)は要部を示す図、同図(b)は分散盤近傍の部分拡大図である。同図に示す流動塩化炉は、分散盤の構成が異なること以外は前記図1に示す流動塩化炉と同様の構成であり、実質的に同一の部分には同一の符号を付している。   2A and 2B are configuration diagrams of the fluidized chlorination furnace of the present invention, in which FIG. 2A is a diagram showing the main part, and FIG. 2B is a partially enlarged view in the vicinity of the dispersion disc. The fluidized chlorinating furnace shown in the figure has the same configuration as that of the fluidized chlorinating furnace shown in FIG. 1 except that the configuration of the dispersion plate is different, and substantially the same parts are denoted by the same reference numerals.

本発明の分散盤は、図2に示すように、下方から順に、多数の通気孔5が設けられた鉄等の金属製の底板4と、不定形耐火物からなる断熱層8と、不活性粒子からなる分散層9とを備える。底板4の通気孔5には、通気孔の直径を調整し、分散盤3の下方と上方における塩素ガスの圧力差を調整するためのオリフィス6が必要に応じて設けられる。分散盤3の上部には、原料である金属酸化物の粒子とコークスの粒子からなる流動層10が載置される。   As shown in FIG. 2, the disperser of the present invention comprises, in order from the bottom, a bottom plate 4 made of metal such as iron provided with a large number of air holes 5, a heat insulating layer 8 made of an amorphous refractory, and inert. And a dispersion layer 9 made of particles. The vent hole 5 of the bottom plate 4 is provided with an orifice 6 for adjusting the diameter of the vent hole and adjusting the pressure difference of the chlorine gas below and above the disperser 3, if necessary. A fluidized bed 10 made of metal oxide particles and coke particles, which are raw materials, is placed on the upper part of the dispersion plate 3.

断熱層8には、底板4の通気孔5から分散層9方向に貫通するガス流路を設ける。ガス流路の閉塞を抑制するため、ガス流路の直径は、分散層9の不活性粒子の直径よりも小さくする。ガス流路には、図2に示すようにガス供給管7を設けてもよい。ガス供給管7を設けることにより、設けていない場合と比べてガス流路の閉塞が抑制され、長期間にわたって安定した流動塩化炉の操業が可能となる。
The heat insulating layer 8 is provided with a gas flow path penetrating from the vent hole 5 of the bottom plate 4 in the direction of the dispersion layer 9. To suppress the clogging of the gas flow path, the diameter of the gas passage, you smaller than the diameter of the inert particles in the dispersion layer 9. A gas supply pipe 7 may be provided in the gas flow path as shown in FIG. By providing the gas supply pipe 7, the blockage of the gas flow path is suppressed as compared with the case where the gas supply pipe 7 is not provided, and the stable operation of the fluidized chlorination furnace can be performed over a long period.

900〜1100℃に保持された本体1内部にガス導入口2から吹き込まれた塩素ガスは、分散盤3のガス流路を通過して、流動層10内で原料と接触する。原料として、チタン鉱石を使用した場合、チタン鉱石に含まれるチタン酸化物が塩素化され、四塩化チタンの生成が進行する。   Chlorine gas blown from the gas inlet 2 into the main body 1 held at 900 to 1100 ° C. passes through the gas flow path of the dispersion plate 3 and comes into contact with the raw material in the fluidized bed 10. When titanium ore is used as a raw material, titanium oxide contained in the titanium ore is chlorinated, and production of titanium tetrachloride proceeds.

本発明の分散盤は、断熱層8を備えるため、操業中における底板4および底板4の下面に接する塩素ガスの温度上昇を抑制することができる。そのため、底板4が塩素ガスによって塩素化反応を起こし、下面から腐食して貫通孔が形成されるのを抑制することができる。   Since the disperser according to the present invention includes the heat insulating layer 8, it is possible to suppress the temperature rise of the chlorine gas in contact with the bottom plate 4 and the lower surface of the bottom plate 4 during operation. Therefore, it can suppress that the bottom plate 4 raise | generates a chlorination reaction with chlorine gas, and corrodes from a lower surface, and a through-hole is formed.

本発明の分散盤において、断熱層8の厚さは10mm以上であり、500mm以下とすることが望ましい。これは、以下の理由による。
In the disperser of the present invention, the thickness of the heat insulating layer 8 is 10 mm or more and desirably 500 mm or less. This is due to the following reason.

鉄と塩素ガスとが接触して生じる塩素化反応は、塩素ガスが完全に乾燥している場合には250℃以上で生じ、塩素ガスが水分を含有する場合には約135℃以上で生じる。本発明者らが検討した結果、断熱層8の厚さを10mm以上とすることにより、流動塩化炉の操業中における底板4の下面の温度を135℃未満に保持できることが明らかとなった。そのため、断熱層8の厚さを10mm以上とする。これにより、底板4が鉄からなる場合において、流動塩化炉の操業中に底板4が塩素ガスによって腐食して貫通孔が形成されるのをより確実に抑制することができる。
The chlorination reaction caused by contact between iron and chlorine gas occurs at 250 ° C. or higher when the chlorine gas is completely dry, and occurs at about 135 ° C. or higher when the chlorine gas contains moisture. As a result of investigations by the present inventors, it has been clarified that the temperature of the lower surface of the bottom plate 4 during operation of the fluidized chlorination furnace can be kept below 135 ° C. by setting the thickness of the heat insulating layer 8 to 10 mm or more. Therefore, you the thickness of the heat insulating layer 8 and above 10 mm. Thereby, in the case where the bottom plate 4 is made of iron, it is possible to more reliably suppress the bottom plate 4 from being corroded by chlorine gas during the operation of the fluidized chlorination furnace and forming a through hole.

また、断熱層8の厚さが過大である場合には、底板4の温度上昇を抑制する効果が飽和するとともに、底板4上面への断熱層8の施工費用が嵩むため、断熱層8の厚さは500mm以下が望ましい。断熱層8の厚さは、20mm以上、350mm以下がより望ましい。   Moreover, when the thickness of the heat insulation layer 8 is excessive, the effect of suppressing the temperature rise of the bottom plate 4 is saturated, and the construction cost of the heat insulation layer 8 on the top surface of the bottom plate 4 increases. The length is desirably 500 mm or less. As for the thickness of the heat insulation layer 8, 20 mm or more and 350 mm or less are more desirable.

ガス流路に設けられるガス供給管7の材質は、耐塩素ガス性に優れたNiまたはNi基合金が望ましい。使用可能なNi基合金としては、例えばInconel(登録商標)やハステロイ(登録商標)が挙げられる。   The material of the gas supply pipe 7 provided in the gas flow path is preferably Ni or Ni-based alloy having excellent chlorine gas resistance. Examples of Ni-based alloys that can be used include Inconel (registered trademark) and Hastelloy (registered trademark).

ガス供給管7は、底板4の通気孔5に接続させることが望ましい。底板4と断熱層8との接触界面に塩素ガスが侵入した場合には、塩素ガスがこの界面の隙間から断熱層8の外周方向に移動して外周部で噴出し、塩素ガスの流量が不均一になる等、操業が不安定になるおそれがある。しかし、ガス供給管7を、底板4の通気孔5に接続させることにより、底板4と断熱層8との接触界面に塩素ガスが侵入するのを防止できるため、長期間にわたって安定した流動塩化炉の操業が可能となる。   The gas supply pipe 7 is preferably connected to the vent hole 5 of the bottom plate 4. When chlorine gas enters the contact interface between the bottom plate 4 and the heat insulating layer 8, the chlorine gas moves from the gap between the interfaces to the outer peripheral direction of the heat insulating layer 8 and is ejected from the outer peripheral portion. Operation may become unstable, such as becoming uniform. However, by connecting the gas supply pipe 7 to the vent hole 5 of the bottom plate 4, it is possible to prevent chlorine gas from entering the contact interface between the bottom plate 4 and the heat insulating layer 8. Can be operated.

また、ガス供給管7は、その上端が、断熱層8の上面と同じ高さまたは分散層9内に位置するように配置することが望ましい。ガス供給管7は、底板4に断熱層8を施工した後でガス流路を設けて挿入してもよいし、底板4に断熱層8を施工する前に、底板4の通気孔5に接続してもよい。   Further, it is desirable that the gas supply pipe 7 is arranged so that the upper end thereof is located at the same height as the upper surface of the heat insulating layer 8 or within the dispersion layer 9. The gas supply pipe 7 may be inserted by providing a gas flow path after the heat insulating layer 8 is applied to the bottom plate 4, or connected to the vent hole 5 of the bottom plate 4 before the heat insulating layer 8 is applied to the bottom plate 4. May be.

断熱層8を構成する不定形耐火物は、底板4上面への施工の際に多量の水分を添加する必要のない、非水系のものを用いる。非水系の不定形耐火物は、施工後に乾燥させることにより内部の水分も十分に低減できるため、底板4を腐食させることがない。
Monolithic refractory constituting the heat-insulating layer 8 is not necessary to add a large amount of water during construction of the bottom plate 4 upper surface, used as the nonaqueous. The non-aqueous amorphous refractory can sufficiently reduce the internal moisture by drying after construction, so that the bottom plate 4 is not corroded.

一方、モルタルのように、施工時に多量の水分を添加する不定形耐火物では、施工後に乾燥させても内部に水分が残存するため、底板4の上面が腐食するおそれがある。また、操業中に不定形耐火物から発生した水分が流動層10に移動すると、流動層10で生成した四塩化チタンがその水分によって元のチタン鉱石中のチタン酸化物に戻ることにもなり、金属塩化物の生産量を低下させることとなる。チタン酸化物は急速に生成するため、チタン酸化物によってガス流路が閉塞するおそれもある。   On the other hand, in the case of an amorphous refractory to which a large amount of moisture is added at the time of construction, such as mortar, moisture remains inside even after drying after construction, and therefore the upper surface of the bottom plate 4 may be corroded. In addition, when the moisture generated from the amorphous refractory during operation moves to the fluidized bed 10, the titanium tetrachloride generated in the fluidized bed 10 will return to the titanium oxide in the original titanium ore due to the moisture, This will reduce the production of metal chlorides. Since titanium oxide is rapidly generated, the gas flow path may be blocked by the titanium oxide.

非水系の不定形耐火物は、施工前の水分含有率が6質量%以下のプラスチック耐火物が望ましい。プラスチック耐火物とは、耐火骨材と耐火粘土粉末を混合し、さらに水とバインダーを加えた練り土状の不定形耐火物である。プラスチック耐火物としては、例えば組成がSiO2:58質量%、Al23:36質量%、残部が水分等からなるものが使用できる。 The non-aqueous amorphous refractory is preferably a plastic refractory having a moisture content of 6% by mass or less before construction. The plastic refractory is a kneaded earth-shaped refractory material in which a refractory aggregate and a refractory clay powder are mixed and water and a binder are further added. As the plastic refractory, for example, a composition having a composition of SiO 2 : 58% by mass, Al 2 O 3 : 36% by mass and the balance being moisture or the like can be used.

本発明の効果を確認するため、分散盤を備える流動塩化炉を用いた以下の試験を行い、その結果を評価した。   In order to confirm the effect of the present invention, the following tests using a fluidized chlorination furnace equipped with a dispersion plate were conducted and the results were evaluated.

1.試験条件
流動塩化炉は、前記図1に示すものを用いた。分散盤は、底板を厚さ20mmの鉄板とし、断熱層を構成する不定形耐火物として、SiO2を60質量%、Al23を40質量%含有するプラスチック耐火物を使用した。断熱層の上部に配置した分散層はSiO2の粒子からなるものとした。
1. Test conditions The fluidized chlorination furnace shown in FIG. 1 was used. The disperser used was a plastic refractory containing 60% by mass of SiO 2 and 40% by mass of Al 2 O 3 as an indeterminate refractory constituting the heat insulating layer with an iron plate having a thickness of 20 mm as the bottom plate. The dispersion layer disposed on the heat insulating layer was made of SiO 2 particles.

図3は、試験に用いた分散盤の模式図であり、同図(a)は断熱層を設けなかった場合(厚さ0)、同図(b)は断熱層が薄い場合、同図(c)は断熱層が厚い場合を示す。同図に示す断熱層8の厚さは、表1に示すとおり、試験番号1〜8の0〜200mmの範囲とした。また、同図に示すように、断熱層8と分散層9を合わせた厚さは1000mmと一定にした。試験番号1は、断熱層の厚さが0mm、すなわち同図(a)に示すように断熱層を設けなかった場合であり、断熱層の厚さが本発明の規定を満たさない比較例である。試験番号2〜8は本発明の規定を満たす本発明例である。   FIG. 3 is a schematic diagram of a dispersion disc used in the test. FIG. 3A shows a case where a heat insulating layer is not provided (thickness 0), and FIG. 3B shows a case where the heat insulating layer is thin. c) shows the case where the heat insulating layer is thick. As shown in Table 1, the thickness of the heat insulating layer 8 shown in FIG. Further, as shown in the figure, the total thickness of the heat insulating layer 8 and the dispersion layer 9 was kept constant at 1000 mm. Test No. 1 is a comparative example in which the thickness of the heat insulating layer is 0 mm, that is, when the heat insulating layer is not provided as shown in FIG. . Test numbers 2 to 8 are examples of the present invention that satisfy the provisions of the present invention.

Figure 0005852604
Figure 0005852604

各試験番号の分散盤を備える流動塩化炉を10時間操業し、底板の下面の温度を測定した。   A fluidized chlorination furnace equipped with a dispersion plate of each test number was operated for 10 hours, and the temperature of the lower surface of the bottom plate was measured.

2.試験結果
表1には、断熱層の厚さと併せて底板の下面の温度および評価を示した。評価は、底板の下面の温度が120℃未満の場合を○(良)、120℃以上、133℃未満の場合を△(可)、133℃以上の場合を×(不可)とした。
2. Test results Table 1 shows the temperature and evaluation of the bottom surface of the bottom plate together with the thickness of the heat insulating layer. In the evaluation, a case where the temperature of the lower surface of the bottom plate was less than 120 ° C. was evaluated as “good”, a case where it was 120 ° C. or higher and lower than 133 ° C.

表1から、断熱層が厚いほど底板の下面の温度が低くなることがわかる。断熱層を設けなかった比較例である試験番号1では、評価が×であり、底板の下面の温度が154℃と、塩素ガスと底板の鉄板とが反応を生ずる温度となった。   From Table 1, it can be seen that the thicker the heat insulating layer, the lower the temperature of the bottom surface of the bottom plate. In test number 1, which is a comparative example in which the heat insulating layer was not provided, the evaluation was x, the temperature of the lower surface of the bottom plate was 154 ° C., and the temperature at which chlorine gas and the iron plate of the bottom plate reacted.

一方、本発明例である試験番号2〜8では、評価が△または○で、いずれも底板の下面の温度が131℃以下であり、塩素ガスと底板の鉄板との反応を抑制可能な温度であった。   On the other hand, in test numbers 2 to 8 which are examples of the present invention, the evaluation is Δ or ○, and the temperature of the lower surface of the bottom plate is 131 ° C. or less, and the temperature at which the reaction between chlorine gas and the iron plate of the bottom plate can be suppressed. there were.

特に、断熱層の厚さが20mm以上である試験番号3〜8では、いずれも評価が○であり、底板の下面の温度が116℃以下と、塩素ガスと底板の鉄板との反応が生じない温度であった。   In particular, in test numbers 3 to 8 in which the thickness of the heat insulating layer is 20 mm or more, the evaluations are all good, and the reaction between the chlorine gas and the iron plate of the bottom plate does not occur when the temperature of the bottom surface of the bottom plate is 116 ° C. or lower. It was temperature.

本発明の分散盤および流動塩化炉によれば、流動塩化炉の操業中における、塩素ガスによる分散盤の底板の腐食を抑制でき、長期間にわたって安定して金属塩化物の生産を行うことが可能である。したがって、本発明は、流動塩化炉を用いた金属塩化物の生産の分野において有用な技術である。   According to the dispersion plate and the fluidized chlorination furnace of the present invention, it is possible to suppress the corrosion of the bottom plate of the dispersion plate by chlorine gas during the operation of the fluidized chlorination furnace, and to produce metal chloride stably over a long period of time. It is. Therefore, the present invention is a useful technique in the field of metal chloride production using a fluidized chlorination furnace.

1:本体、 2:ガス導入口、 3:分散盤、 4:底板、 5:通気孔、
6:オリフィス、 7:ガス供給管、 8:断熱層、 9:分散層、 10:流動層
1: Main body, 2: Gas inlet, 3: Dispersion board, 4: Bottom plate, 5: Ventilation hole,
6: Orifice, 7: Gas supply pipe, 8: Heat insulation layer, 9: Dispersion bed, 10: Fluidized bed

Claims (4)

金属酸化物を含有する原料とコークスが上部に載置され、下部から供給される塩素ガスを前記原料に接触させる塩素ガスの分散盤であって、
底板と、前記底板の上面に配置され、非水系の不定形耐火物からなり、厚さが10mm以上の断熱層と、前記断熱層の上部に配置された耐塩素性を有する不活性粒子からなる分散層とを備え、
前記非水系の不定形耐火物は、耐火骨材と耐火粘土粉末とを含み、
前記底板と前記断熱層には塩素ガスを通過させる複数のガス流路であって、各ガス流路が前記不活性粒子の直径より小さい直径を有する複数のガス流路が設けられていることを特徴とする分散盤。
A raw material containing metal oxide and coke are placed on the upper part, and a chlorine gas dispersion plate for contacting chlorine gas supplied from the lower part with the raw material,
A bottom plate, disposed on the top surface of the bottom plate, made of a non-aqueous amorphous refractory, a heat insulating layer having a thickness of 10 mm or more, and an inert particle having chlorine resistance disposed on the heat insulating layer A dispersion layer,
The non-aqueous amorphous refractory includes a refractory aggregate and a refractory clay powder,
The bottom plate and the heat insulating layer are provided with a plurality of gas passages for allowing chlorine gas to pass therethrough, each gas passage having a diameter smaller than the diameter of the inert particles. Dispersion board featuring.
前記断熱層の厚さが500mm未満であることを特徴とする請求項1に記載の分散盤。   The dispersion plate according to claim 1, wherein a thickness of the heat insulating layer is less than 500 mm. 前記ガス流路にNiまたはNi基合金からなるガス供給管が、前記底板に接するように配置されていることを特徴とする請求項1または2に記載の分散盤。   The disperser according to claim 1 or 2, wherein a gas supply pipe made of Ni or a Ni-based alloy is disposed in the gas flow path so as to contact the bottom plate. 請求項1〜3のいずれかに記載の分散盤を備え、チタン酸化物を含有する前記原料とコークスと塩素ガスから四塩化チタンを製造することを特徴とする流動塩化炉。
A fluidized chlorination furnace comprising the dispersion plate according to any one of claims 1 to 3, wherein titanium tetrachloride is produced from the raw material containing titanium oxide, coke and chlorine gas.
JP2013089182A 2013-04-22 2013-04-22 Dispersion disk and fluidized chlorination furnace equipped with the same Active JP5852604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013089182A JP5852604B2 (en) 2013-04-22 2013-04-22 Dispersion disk and fluidized chlorination furnace equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089182A JP5852604B2 (en) 2013-04-22 2013-04-22 Dispersion disk and fluidized chlorination furnace equipped with the same

Publications (2)

Publication Number Publication Date
JP2014210689A JP2014210689A (en) 2014-11-13
JP5852604B2 true JP5852604B2 (en) 2016-02-03

Family

ID=51930751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089182A Active JP5852604B2 (en) 2013-04-22 2013-04-22 Dispersion disk and fluidized chlorination furnace equipped with the same

Country Status (1)

Country Link
JP (1) JP5852604B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105236477B (en) * 2015-11-02 2017-07-25 攀钢集团攀枝花钢铁研究院有限公司 Low-temperature boiling chlorination furnace continuous deslagging device
JP6898128B2 (en) * 2017-03-29 2021-07-07 東邦チタニウム株式会社 Titanium tetrachloride manufacturing equipment and method for manufacturing titanium tetrachloride using this
JP6831304B2 (en) * 2017-07-06 2021-02-17 東邦チタニウム株式会社 Titanium tetrachloride manufacturing equipment and method for manufacturing titanium tetrachloride using this
KR102044989B1 (en) * 2018-03-14 2019-11-14 재단법인 포항산업과학연구원 Manufacturing apparatus of titanium tetrachloride and manufacturing method of the same
JP7200041B2 (en) * 2019-04-26 2023-01-06 東邦チタニウム株式会社 Distributor, chlorination furnace, and method for producing metal chloride

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115802B (en) * 1982-02-25 1984-12-12 Tioxide Group Plc Refractory lined vessel and method of use
JPS63115435U (en) * 1987-01-19 1988-07-25
JPH068974Y2 (en) * 1988-06-24 1994-03-09 大阪チタニウム製造株式会社 Fluidized bed chlorination furnace
JPH11190591A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Fluidized-bed furnace
JP2000109322A (en) * 1998-10-01 2000-04-18 Sumitomo Sitix Amagasaki:Kk Production of titanium tetrachloride
US20070178028A1 (en) * 2004-02-23 2007-08-02 Eiichi Fukasawa Apparatus for production of metal chloride
JP2010001207A (en) * 2008-05-19 2010-01-07 Toho Titanium Co Ltd Device and method for manufacturing metal chloride

Also Published As

Publication number Publication date
JP2014210689A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP5852604B2 (en) Dispersion disk and fluidized chlorination furnace equipped with the same
JP4904152B2 (en) Metal chloride production equipment
JP4751485B2 (en) Stopper rod
JP2007277349A (en) Alumina-silica brick for cdq
TW201429906A (en) Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product
CN105819875A (en) Refractory castable for Ausmelt copper smelting furnace flue and preparation method thereof
KR102585512B1 (en) Fluidized bed reaction apparatus and method for producing trichlorosilane
WO2019098347A1 (en) Reactor and production method of trichlorosilane
WO2020170307A1 (en) Particulate material and thermally conductive substance
JP7200041B2 (en) Distributor, chlorination furnace, and method for producing metal chloride
JP6831304B2 (en) Titanium tetrachloride manufacturing equipment and method for manufacturing titanium tetrachloride using this
KR101185300B1 (en) Method for estimating position bordered to furnace wall of softening zone
JP5180504B2 (en) Method for manufacturing precast block for metal melting furnace ceiling and precast block for metal melting furnace ceiling
JP2014148430A (en) Refractory, manufacturing method of refractory, and immersion nozzle for continuous molding
JP2018167997A (en) Apparatus for producing titanium tetrachloride and method for producing titanium tetrachloride using the same
JP5048928B2 (en) Breathable refractory material for continuous casting
KR101764894B1 (en) Apparatus for measuring thickness of slag
JP7284706B2 (en) Fluidized bed reactor and method for producing trichlorosilane
JP7529186B1 (en) Pellet manufacturing method
JPH11292624A (en) Porous refractory
JP2017177217A (en) Dissipation pattern casting method
Ko et al. The thermal behavior analysis in tap-hole area
JP4790575B2 (en) Temperature probe for molten metal
CN205057030U (en) Compound disperse air brick of big throughput
JP2008013796A (en) Immersion tube for treating molten metal and manufacturing method thereof, and vacuum-degassing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5852604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250