JP2014148430A - Refractory, manufacturing method of refractory, and immersion nozzle for continuous molding - Google Patents

Refractory, manufacturing method of refractory, and immersion nozzle for continuous molding Download PDF

Info

Publication number
JP2014148430A
JP2014148430A JP2013017011A JP2013017011A JP2014148430A JP 2014148430 A JP2014148430 A JP 2014148430A JP 2013017011 A JP2013017011 A JP 2013017011A JP 2013017011 A JP2013017011 A JP 2013017011A JP 2014148430 A JP2014148430 A JP 2014148430A
Authority
JP
Japan
Prior art keywords
mass
refractory
secondary particles
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013017011A
Other languages
Japanese (ja)
Other versions
JP6021667B2 (en
Inventor
Atsuichiro Kataoka
厚一郎 片岡
Tadashi Ikemoto
正 池本
Hiroshi Imawaka
寛 今若
Masahito Shiokawa
将人 塩川
Tamotsu Wakita
保 脇田
Taijiro Matsui
泰次郎 松井
Katsumi Morikawa
勝美 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp, Nippon Steel and Sumitomo Metal Corp filed Critical Krosaki Harima Corp
Priority to JP2013017011A priority Critical patent/JP6021667B2/en
Publication of JP2014148430A publication Critical patent/JP2014148430A/en
Application granted granted Critical
Publication of JP6021667B2 publication Critical patent/JP6021667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refractory for an aeration of an immersion nozzle inhibiting changes of aeration property with molding time passage, stabilizing aeration property during molding and capable of preventing damage accidents during molding around a powder part.SOLUTION: There is provided a refractory containing a secondary particles having length of over 0.05 mm and 2 mm or less formed by aggregating a primary particles which are flat shape alumina particles having an aspect ratio of 5 to 50, and containing 55 mass% to 90 mass% of the secondary particles after a heating treatment in a non-oxidation atmosphere at 1500°C for 3 hours, AlOof 98 mass% or more as a component excluding carbon in the secondary particles, and as chemical components, free carbon of 3 mass% to 45 mass%, SiC of 1 mass% to 10 mass%, and having the total content of single compounds SiO, an alkali metal oxide, an alkaline earth metal oxide, TiOand other inevitable components from a production view point of 2 mass% or less.

Description

本発明は,鋼の連続鋳造用,特に,アルミニウムを含有する鋼等の連続鋳造における浸漬ノズル内孔への介在物の付着ないし閉塞防止等を図るための,通気用として使用できる耐火物,耐火物の製造方法,及びその通気用耐火物を使用した連続鋳造用浸漬ノズルに関する。   The present invention relates to a refractory material that can be used for ventilation, for preventing the attachment or blockage of inclusions in the bore of an immersion nozzle in continuous casting of steel, particularly in continuous casting of steel containing aluminum. The present invention relates to a manufacturing method of a product, and a continuous casting immersion nozzle using the refractory material for ventilation.

タンディッシュからモールドへ溶鋼を注入する連続鋳造用浸漬ノズルは,注入の際に空気との接触による溶鋼の酸化を防ぐともに,溶鋼の飛散防止を図るために用いられる。さらに,連続鋳造用浸漬ノズルは,注湯を整流化することにより,非金属介在物及びモールドの浮遊物等の鋳片内への巻き込みを防止している。
連続鋳造用浸漬ノズルは,主として黒鉛(約20質量%),酸化アルミニウム(50〜70質量%)からなり,更に,酸化ケイ素(10〜25質量%)及び少量の炭化ケイ素等を含む材質から構成されている。(以下,「シリカ含有アルミナ黒鉛質」ともいう。)
しかしながら,アルミキルド鋼等を鋳造する場合は,鋼中のアルミニウムが酸化し,これにより生成したアルミナ(Al)が浸漬ノズル内壁に付着し,浸漬ノズル閉塞が生じ易い。
生産性向上等の点から鋳造の多連鋳化が進められているが,アルミナ付着による浸漬ノズル閉塞が生じると,溶鋼の流量制御が不可能となり,多連鋳造の継続が困難となる。
また,鋳造途中に閉塞物が溶鋼の流れによって剥離する場合がある。剥離した閉塞物がモールド内の溶鋼中に混入して,鋳片中に取り込まれることが,鋳片の欠陥を生成する要因の1つとなっている。
A continuous casting immersion nozzle that injects molten steel from the tundish into the mold is used to prevent the molten steel from being oxidized by contact with air during injection and to prevent the molten steel from scattering. In addition, the continuous casting immersion nozzle prevents entanglement of non-metallic inclusions and mold floats into the slab by rectifying the pouring.
The continuous casting immersion nozzle is mainly composed of graphite (about 20% by mass) and aluminum oxide (50 to 70% by mass), and further composed of a material containing silicon oxide (10 to 25% by mass) and a small amount of silicon carbide. Has been. (Hereafter, also referred to as “silica-containing alumina graphite”.)
However, when casting aluminum killed steel or the like, aluminum in the steel is oxidized, and alumina (Al 2 O 3 ) generated thereby adheres to the inner wall of the immersion nozzle, and the immersion nozzle is likely to be blocked.
Casting of multiple castings is being promoted from the standpoint of productivity improvement, but if the immersion nozzle is clogged due to adhesion of alumina, the flow control of the molten steel becomes impossible and it becomes difficult to continue the multiple casting.
In addition, obstructions may peel off due to the flow of molten steel during casting. One of the factors that cause defects in the slab is that the peeled blockage is mixed into the molten steel in the mold and taken into the slab.

シリカ含有アルミナ黒鉛質ノズルの閉塞メカニズムは,特許文献1に開示されているように以下の内容が知られている。
シリカ含有アルミナ黒鉛質ノズルの材質中のシリカは,熱衝撃抵抗性を確保するために低熱膨張性骨材である非晶質の溶融シリカ(SiO)として10〜30%添加される。
しかし,シリカは溶鋼と濡れ易くFeO,MnO等の鋼中成分との間で低融点化合物を生成し,カーボンの溶鋼中への溶失と相俟って,骨材部分の溶出を引き起こし溶損を著しく助長する。
また,鋳造中(熱間)での耐火物中での次式1〜3に示す反応により,SiO(g)が揮散消失し,浸漬ノズルの表面に空孔を生じて組織を脆弱化するとともに,面荒れを助長して表面の平滑性が失われ,物理的に付着物が堆積する。
As disclosed in Patent Document 1, the following contents are known for the clogging mechanism of the silica-containing alumina graphite nozzle.
Silica in the material of the silica-containing alumina graphite nozzle is added in an amount of 10 to 30% as amorphous fused silica (SiO 2 ), which is a low thermal expansion aggregate, in order to ensure thermal shock resistance.
However, silica easily wets the molten steel and forms a low melting point compound between the steel components such as FeO and MnO, combined with the loss of carbon into the molten steel, causing the elution of the aggregate part and causing damage. Is significantly encouraged.
In addition, SiO (g) volatilizes and disappears due to the reaction shown in the following formulas 1 to 3 in the refractory during casting (hot), creating voids on the surface of the immersion nozzle and weakening the structure. , Surface roughness is promoted, surface smoothness is lost, and deposits physically accumulate.

2C(S)+O(g)→ 2CO(g) ……… 式1
SiC(S)+2CO(g)→SiO(S)+3C ……… 式2
SiO(S)+C(S)→ SiO(g)+CO(g) ……… 式3
さらに,生成物SiO(g),CO(g)は,鋼中の次式4〜5の反応により,アルミナの析出・生成の原因ともなり,浸漬ノズル表面へのアルミナ付着が進行する。
3SiO(g)+2Al→Al(S)+3Si ……… 式4
3CO(g)+2Al→ Al(S)+3C ……… 式5
2C (S) + O 2 (g) → 2CO (g) ……… Formula 1
SiC (S) + 2CO (g) → SiO 2 (S) + 3C ( 2 )
SiO 2 (S) + C (S) → SiO (g) + CO (g) ……… Formula 3
Further, the products SiO (g) and CO (g) cause precipitation and generation of alumina by the reaction of the following formulas 4 to 5 in the steel, and the alumina adheres to the surface of the immersion nozzle.
3SiO (g) + 2Al → Al 2 O 3 (S) + 3Si (4)
3CO (g) + 2Al → Al 2 O 3 (S) + 3C

一方,連続鋳造においては浸漬ノズルの内壁から不活性ガスを供給し続けて,内孔壁へのアルミナ等介在物の付着防止を行う方法がある。
このガス吹き込み方法では,前述したメカニズムによるシリカの消失により,耐火物内の空隙が大きくなってその量も多くなり,ガスの通過抵抗が小さくなってガスの圧力(背圧)が低下すると共に,通気用耐火物のごく一部の狭い領域から大きな気泡として溶鋼中に吐出することになる。
このように通気特性が劣化すると,内孔壁への前記付着防止効果等も低下する。
このガス吹き込み方式におけるガス供給及び管理に関する設備では,浸漬ノズルへの吹込みガス圧力を監視しており,一定の圧力以下になると鋳片品質が低下するので,鋳片品質を維持するために,鋳造(操業)を停止することになる。
このように,シリカ成分は高級清浄鋼の鋳造においては,ガスの通気特性及びそれがもたらす鋳片の品質低下の観点から好ましくない機能をも有しており,浸漬ノズルの材料構成としてはシリカ含有量を低減する又はシリカを含有させない方向での改善が多く試みられている。
On the other hand, in continuous casting, there is a method in which an inert gas is continuously supplied from the inner wall of the immersion nozzle to prevent adhesion of inclusions such as alumina to the inner hole wall.
In this gas blowing method, due to the disappearance of silica due to the mechanism described above, the voids in the refractory increase and the amount increases, the gas passage resistance decreases, and the gas pressure (back pressure) decreases. It will be discharged into the molten steel as a large bubble from a small part of the refractory material for ventilation.
When the ventilation characteristics are deteriorated as described above, the effect of preventing the adhesion to the inner hole wall is also reduced.
The equipment related to gas supply and management in this gas blowing method monitors the pressure of the gas blown into the submerged nozzle. When the pressure falls below a certain level, the slab quality deteriorates. To maintain the slab quality, Casting (operation) will be stopped.
In this way, the silica component also has an undesirable function in the casting of high-grade clean steel from the viewpoint of gas aeration characteristics and the resulting deterioration in the quality of the slab. Many attempts have been made to reduce the amount or to prevent the silica from being contained.

例えば,特許文献2では,内孔体のSiO含有率を5%以下にし,かつ内孔体通気部下端を吐出孔上部の10〜80mmの位置に相当する溶鋼の淀み部からArガス吹き込み,ノズル閉塞を防止する方法が開示されている。
また,特許文献3には,メソフェーズカーボンが有する粘弾性,亀裂進展防止効果,耐酸化性等の特性を活用した,シリカを含有しない連続鋳造用ノズル用ガス吹き込み用通気用耐火物の組成が開示されている。
これらの非晶質のシリカ含有量を低減する又は非晶質のシリカを含有させない場合は,当該通気用耐火物自体がシリカ含有する系と比較して一般的に高膨張化するため,当該通気材自体の応力緩和能が低下して,鋳造中に当該内孔体自体又は浸漬ノズル本体が破壊したり,溶鋼耐摩耗性の低下により通気材の穴あきトラブル等の事故を招来することがある。
さらには,長時間の鋳造に伴い溶損が進行して残厚が小さくなったパウダーライン付近のZrO−黒鉛質耐火物(以下「ZG」ともいう。)部分に亀裂や折損等が生じやすくなる,という問題をも有することが知られている。(例えば非特許文献1)。
このパウダーライン付近の損傷事故は長時間に亘って連続的に通気用耐火物及び浸漬ノズル本体の耐火物内に応力が発生すること,及びその緩和能が十分でないことが主たる原因である。
前記のような鋳造操業中の事故は,鋳片の生産計画〜生産性及び鋳片品質に著しい損害を生じさせるので,まずはこれら事故を防止することが優先される。しかしながら,非晶質のシリカを含有させないで十分な事故防止対策を採る方法は提案されていない。
このため,やむを得ず低膨張化を目的に非晶質のシリカを或る程度含有させたり,さらには鋼への悪影響をもたらしかねない多量の黒鉛等炭素成分を含有させる等の手段を講じるにとどまっており,シリカを含有させないガス通気用耐火物系で,生産性や鋳片品質低下防止にとって満足できる方法は提供されていない。
For example, in Patent Document 2, Ar gas is blown from the stagnation part of the molten steel corresponding to the position of 10 to 80 mm above the discharge hole at the lower end of the inner hole body ventilation portion with the SiO 2 content of the inner hole body being 5% or less, A method for preventing nozzle blockage is disclosed.
Patent Document 3 discloses a composition of a gas refractory for gas blowing for a continuous casting nozzle that does not contain silica, utilizing the properties of mesophase carbon such as viscoelasticity, crack growth prevention effect, and oxidation resistance. Has been.
When these amorphous silica contents are reduced or amorphous silica is not contained, the ventilation refractory itself is generally highly expanded as compared with a system containing silica. The stress relaxation ability of the material itself may be reduced, and the inner hole body itself or the immersion nozzle itself may be destroyed during casting, or an accident such as a hole in the ventilation material may be caused due to a decrease in molten steel wear resistance. .
Furthermore, cracks and breakage are likely to occur in the ZrO 2 -graphitic refractory (hereinafter also referred to as “ZG”) portion in the vicinity of the powder line, where the melt thickness has progressed due to long-time casting and the remaining thickness has decreased. It is also known to have the problem of becoming. (For example, Non-Patent Document 1).
The damage accident near the powder line is mainly caused by the fact that stress is continuously generated in the refractory for ventilation and the refractory of the submerged nozzle body over a long period of time, and its relaxation ability is not sufficient.
Since accidents during casting operations as described above cause significant damage to the slab production plan to productivity and slab quality, priority is given to preventing these accidents first. However, a method for preventing accidents without containing amorphous silica has not been proposed.
For this reason, it is unavoidable to take measures such as containing a certain amount of amorphous silica for the purpose of lowering the expansion, and further containing a large amount of carbon components such as graphite that may adversely affect the steel. However, there is no satisfactory method for productivity and prevention of deterioration of slab quality in a refractory system for gas ventilation that does not contain silica.

特開2000−42696号公報JP 2000-42696 A 特開平05−285613号公報JP 05-285613 A 特開平05−097506号公報JP 05-097506 A

鉄と鋼, vol.81(1995),P−535Iron and steel, vol. 81 (1995), P-535

本発明が解決しようとする課題は,鋳造時間の経過に伴う通気特性の変化(背圧の低下)を抑制して鋳造中の通気特性を安定化すると共に,パウダー部付近の折損等の,浸漬ノズルの鋳造中の損傷事故を防止することのできる通気用として使用できる耐火物,耐火物の製造方法,及びその耐火物を配設した浸漬ノズルを提供することにある。   The problem to be solved by the present invention is to stabilize the air permeability during casting by suppressing the change in air permeability (lowering of back pressure) with the lapse of casting time, and to submerge the powder near the powder. An object of the present invention is to provide a refractory material that can be used for ventilation, which can prevent a damage accident during casting of the nozzle, a method for manufacturing the refractory material, and an immersion nozzle provided with the refractory material.

本発明の耐火物は,通気用耐火物に関し,通気特性の劣化を抑制ないしは防止するために,非晶質のシリカ粒子を含有しないことを基本とする。
さらに本発明の通気用の耐火物は,非晶質のシリカ粒子を含有させないことに伴ってZG部を含む浸漬ノズル本体の損傷事故に対する抵抗性が低下することを防止するために,この耐火物内部で発生応力を緩和することを基本とする。
The refractory of the present invention relates to a refractory for ventilation, and is based on the fact that it does not contain amorphous silica particles in order to suppress or prevent the deterioration of the ventilation characteristics.
Furthermore, the refractory material for ventilation of the present invention is provided with the refractory material in order to prevent the resistance to the damage accident of the submerged nozzle body including the ZG portion from being lowered due to the absence of amorphous silica particles. The basic principle is to relieve the stress generated inside.

鋳造途中のガス流量が一定の条件下での背圧変動は,ガスが通過する通気用耐火物中のシリカ粒子が同耐火物中に併存する炭素による還元反応(ガス化)により消失し,そのシリカ粒子が消失した部分が空洞化することにより耐火物内のガスの通過経路が増加することで発生する。
このようなメカニズムによる通気特性の劣化を抑制ないしは防止するために,通気用耐火物内のシリカ粒子の含有量を低減する,又は含有しないこととする方法がある。しかし,通気用耐火物内のシリカ粒子は,低膨張性を目的として非晶質のシリカ粒子として存在している。このような低膨張性のシリカを含まない通気用耐火物では,通気用耐火物からなる内孔体自体又は浸漬ノズル本体を押し割る等の問題点がある。
非晶質のシリカ粒子を含有する以外のこの問題解決策として,黒鉛粒子の多量添加で課題解決を図る方法もある。しかし,黒鉛粒子を多量に添加すると,通気用耐火物自体については通気特性が低下する,耐摩耗性や耐食性,耐酸化性が低下する等の問題を生じ,さらに溶鋼への炭素の多量溶出等の問題も生じる。
The fluctuation of back pressure under the condition of constant gas flow rate during casting disappears due to the reduction reaction (gasification) by the silica particles in the refractory for ventilation through which the gas passes. It is generated by increasing the passage route of the gas in the refractory by hollowing out the portion where the silica particles have disappeared.
In order to suppress or prevent the deterioration of the ventilation characteristics due to such a mechanism, there is a method in which the content of silica particles in the refractory for ventilation is reduced or not contained. However, the silica particles in the refractory for ventilation exist as amorphous silica particles for the purpose of low expansion. Such a refractory material for ventilation that does not contain low-expansion silica has a problem that the inner hole body itself or the immersion nozzle body made of the refractory material for ventilation is cracked.
As a solution to this problem other than containing amorphous silica particles, there is a method of solving the problem by adding a large amount of graphite particles. However, if a large amount of graphite particles is added, the refractory material for ventilation itself has problems such as a decrease in ventilation characteristics, wear resistance, corrosion resistance, and oxidation resistance, and a large amount of carbon elution into molten steel. The problem also arises.

本発明の耐火物は,シリカ粒子を含有せず,かつ黒鉛を多量に含有しないアルミナ−黒鉛系の通気用の耐火物であって,通気用耐火物自体からなる内孔体の割れ,内孔体と浸漬ノズル本体の熱膨張差等に起因する浸漬ノズル本体の押し割り,及び,背圧変動の課題を解決するものである。すなわち,内孔体内部に発生する応力を低減させ,かつ操業途中のガス流量一定下での背圧変動を抑制することを可能にするものである。   The refractory of the present invention is an alumina-graphite-based ventilation refractory that does not contain silica particles and does not contain a large amount of graphite. This solves the problems of the splitting of the submerged nozzle body and back pressure fluctuation caused by the difference in thermal expansion between the body and the submerged nozzle body. That is, it is possible to reduce the stress generated in the inner hole body and to suppress the back pressure fluctuation under a constant gas flow rate during operation.

本発明は,次の1から2に記載の耐火物及び3から4に記載の連続鋳造用浸漬ノズルである。   The present invention is the refractory described in 1 to 2 below and the immersion nozzle for continuous casting described in 3 to 4.

アスペクト比が5以上50以下の偏平状のアルミナ粒子を一次粒子とし,前記一次粒子複数個を無機質結合材により集合させて形成した,長さが0.05mm超2mm以下の二次粒子を含有する耐火物であって,
前記耐火物は,1500℃非酸化雰囲気中で3時間熱処理した後において,
前記二次粒子が55質量%以上90質量%以下含有され,
前記二次粒子内の炭素を除く成分は,Alが98質量%以上であり,
化学成分として,フリーの炭素を3質量%以上45質量%以下,SiCを1質量%以上10質量%以下含有し,単一化合物のSiO,アルカリ金属酸化物,アルカリ土類金属酸化物,TiO,及び,その他製造上不可避の成分の合計含有量が2質量%以下であることを特徴とする,耐火物。
Flat particles having an aspect ratio of 5 or more and 50 or less are used as primary particles, and secondary particles having a length of more than 0.05 mm and 2 mm or less are formed by assembling a plurality of the primary particles with an inorganic binder. Refractory,
After the refractory was heat treated in a non-oxidizing atmosphere at 1500 ° C. for 3 hours,
The secondary particles are contained in an amount of 55% by weight to 90% by weight,
The component excluding carbon in the secondary particles is 98% by mass or more of Al 2 O 3 ,
As chemical components, free carbon is contained in an amount of 3% by mass to 45% by mass, SiC is contained in an amount of 1% by mass to 10% by mass, and a single compound SiO 2 , alkali metal oxide, alkaline earth metal oxide, TiO 2 and a total content of other components inevitable in production is 2% by mass or less.

(1)
アスペクト比が5以上50以下の偏平状のアルミナ粒子を一次粒子とし,前記一次粒子複数個を無機質結合材により集合させて形成した,長さが0.05mm超2mm以下の二次粒子を含有する耐火物であって,
前記耐火物は,1500℃非酸化雰囲気中で3時間熱処理した後において,
前記二次粒子が55質量%以上90質量%以下含有され,
前記二次粒子内の炭素を除く成分は,Alが98質量%以上であり,
化学成分として,フリーの炭素を3質量%以上45質量%以下,SiCを1質量%以上10質量%以下含有し,単一化合物のSiO,アルカリ金属酸化物,アルカリ土類金属酸化物,TiO,及び,その他製造上不可避の成分の合計含有量が2質量%以下であることを特徴とする,耐火物。
(1)
Flat particles having an aspect ratio of 5 or more and 50 or less are used as primary particles, and secondary particles having a length of more than 0.05 mm and 2 mm or less are formed by assembling a plurality of the primary particles with an inorganic binder. Refractory,
After the refractory was heat treated in a non-oxidizing atmosphere at 1500 ° C. for 3 hours,
The secondary particles are contained in an amount of 55% by weight to 90% by weight,
The component excluding carbon in the secondary particles is 98% by mass or more of Al 2 O 3 ,
As chemical components, free carbon is contained in an amount of 3% by mass to 45% by mass, SiC is contained in an amount of 1% by mass to 10% by mass, and a single compound SiO 2 , alkali metal oxide, alkaline earth metal oxide, TiO 2 and a total content of other components inevitable in production is 2% by mass or less.

(2)
耐火物を非酸化雰囲気1500℃中3時間熱処理した後の見掛け気孔率が30%以上50%以下,耐火物を非酸化雰囲気の拘束条件下で室温から1500℃まで昇温する間の最大発生応力値が18MPa以下であることを特徴とする,前記(1)に記載の耐火物。
(2)
The apparent porosity after heat-treating refractory for 3 hours in non-oxidizing atmosphere at 1500 ° C. Maximum stress generated during heating of refractory from room temperature to 1500 ° C under restraint conditions in non-oxidizing atmosphere The refractory according to (1) above, wherein the value is 18 MPa or less.

(3)
非酸化雰囲気1500℃中で3時間熱処理した後の化学成分として,Alを54質量%以上90質量%以下,フリーの炭素を3質量%以上45質量%以下,SiCを1質量%以上10質量%以下含有し,単一化合物のSiO,アルカリ金属酸化物,アルカリ土類金属酸化物,TiO,及び,その他製造上不可避の成分の合計含有量が2質量%以下である耐火物の製造方法であって,偏平状のアルミナの一次粒子の粉体に無機質結合材を加えて混和する混和工程と,得られた混和物を混練し,一次粒子の集合体である二次粒子の造粒物を形成させる造粒工程と,得られた造粒物を分級して,長さが0.05mm超2mm以下の複数の二次粒子とする分級工程と,得られた複数の二次粒子をAl成分となる配合原料とし,SiC成分となる配合原料,及び,フリーの炭素となる配合原料と共に,結合材を添加して混練し,成形用のはい土を得る成形用はい土の生成工程と,前記はい土をCIP成形するCIP成形工程と,得られた成形物を焼成する焼成工程を有し,前記混和工程では,前記造粒工程で生成される二次粒子の炭素を除く成分が,Al98質量%以上となるように,前記無機質結合材を加え,前記成形用はい土の生成工程では,成形用のはい土中に,前記複数の二次粒子を55質量%以上90質量%以下の割合で存在するように配合することを特徴とする,耐火物の製造方法。
(3)
As chemical components after heat treatment in a non-oxidizing atmosphere at 1500 ° C. for 3 hours, Al 2 O 3 is 54 mass% to 90 mass%, free carbon is 3 mass% to 45 mass%, and SiC is 1 mass% or more. Refractory containing 10% by mass or less and having a total content of SiO 2 , alkali metal oxides, alkaline earth metal oxides, TiO 2 , and other components inevitable in production, of 2% by mass or less. A mixing step in which an inorganic binder is added to a powder of primary particles of flat alumina and kneaded, and the resulting mixture is kneaded to form secondary particles that are aggregates of primary particles. A granulating step for forming a granulated product, a classification step for classifying the obtained granulated product into a plurality of secondary particles having a length of more than 0.05 mm and not more than 2 mm, and a plurality of obtained secondary The particles are used as a raw material for Al 2 O 3 component, A compounding raw material for forming SiC, and a compounding raw material for forming free carbon, together with a binder, kneading to obtain a forming soil for forming, and CIP forming the above-mentioned soil. A CIP molding step and a firing step of firing the resulting molded product, and in the mixing step, the components excluding carbon of the secondary particles produced in the granulation step are 98 mass% or more of Al 2 O 3 The inorganic binder is added so that the plurality of secondary particles are present in a proportion of 55% by mass or more and 90% by mass or less in the molding soil in the forming earth forming step. A method for producing a refractory, characterized by being formulated as follows.

(4)前記(1)又は前記(2)に記載の耐火物を溶鋼と接触する面の少なくとも一部の層として配設した連続鋳造用浸漬ノズルであって,前記耐火物層とその背後の連続鋳造用浸漬ノズル本体耐火物との間には,ガスが通過することのできる空間を配設しており,前記空間は連続鋳造用浸漬ノズル外部のガス供給設備と連通するためのガス導入孔に連通していることを特徴とする,連続鋳造用浸漬ノズル。   (4) An immersion nozzle for continuous casting in which the refractory according to (1) or (2) is disposed as at least a part of a surface in contact with molten steel, the refractory layer and a backside thereof A space through which gas can pass is arranged between the continuous casting immersion nozzle body and the refractory, and the space is a gas introduction hole for communicating with a gas supply facility outside the continuous casting immersion nozzle. An immersion nozzle for continuous casting, characterized by communicating with

(5)前記(1)又は前記(2)に記載の耐火物を配設した領域が,連続鋳造用浸漬ノズルの内孔側の直胴部壁面の一部若しくは全部,又は吐出孔内壁面の一部若しくは全部のいずれか1以上を含む領域である,前記(4)に記載の連続鋳造用浸漬ノズル。   (5) The region where the refractory according to (1) or (2) above is disposed is a part or all of the wall surface of the straight barrel portion on the inner hole side of the continuous casting immersion nozzle, or the inner wall surface of the discharge hole. The immersion nozzle for continuous casting according to the above (4), which is a region including one or more of some or all of them.

なお,本発明において「フリーの炭素」とは,化合物以外の炭素をいい,具体的には,黒鉛,カーボンブラック,結合機能を担う炭素(例えば,樹脂,ピッチ等から残留した炭素)等をいう。   In the present invention, “free carbon” refers to carbon other than compounds, and specifically, graphite, carbon black, carbon having a binding function (for example, carbon remaining from resin, pitch, etc.) and the like. .

本発明の耐火物,耐火物の製造方法,及び浸漬ノズルの適用により,鋳造時間の経過に伴う通気特性の変化(背圧の低下)を抑制して鋳造中の通気特性を安定化することができる。また,パウダー部付近の折損等の,浸漬ノズルの鋳造中の損傷事故を防止することができる。
ひいては,連続鋳造操業の意図した鋳造時間を阻害せずに,即ち生産性の低下を抑制すると共に,鋳片の品質低下を抑制することも可能となる。
By applying the refractory, the refractory manufacturing method, and the immersion nozzle of the present invention, it is possible to stabilize the ventilation characteristics during casting by suppressing changes in the ventilation characteristics (reduction of back pressure) with the lapse of casting time. it can. In addition, it is possible to prevent damage accidents during casting of the immersion nozzle, such as breakage near the powder part.
As a result, the casting time intended for the continuous casting operation is not hindered, that is, it is possible to suppress the decrease in productivity and the deterioration of the quality of the slab.

偏平状(板状)アルミナのイメージ図Image of flat (plate) alumina 偏平状(板状)アルミナのSEM写真SEM photo of flat (plate) alumina 実施例に用いた偏平状(板状)アルミナの粒度分布(日本軽金属(株)社製,「A21」の例)Particle size distribution of flat (plate-like) alumina used in Examples (Nippon Light Metal Co., Ltd., “A21” example) 二次粒子のSEM写真SEM photograph of secondary particles 二次粒子のSEM写真(図4の約5倍の拡大)SEM photograph of secondary particles (enlarged about 5 times that of Fig. 4) 本発明の耐火物組織の例示するEPMA写真EPMA photo illustrating the refractory structure of the present invention 発生応力測定装置のイメージ図Image of the generated stress measurement device 本発明の耐火物を配設した浸漬ノズルの例Example of immersion nozzle provided with the refractory of the present invention 本発明の耐火物を,吐出孔横の柱部にも配設した浸漬ノズルの例An example of an immersion nozzle in which the refractory material of the present invention is also disposed in the column next to the discharge hole 本発明の耐火物を,吐出孔周囲にも配設した浸漬ノズルの例Example of immersion nozzle in which the refractory of the present invention is also provided around the discharge hole

以下,本発明の耐火物の実施の形態について,作用等を含めて詳述する。   Hereinafter, embodiments of the refractory according to the present invention will be described in detail including actions and the like.

本発明の耐火物は,Al成分,C成分,SiC成分を含み,揮発ないしは消失する成分としてのSiOを含まず(製造工程で混入する不可避的不純物を除く),かつ,連続鋳造のノズル内にガスを吐出する操業に十分な程度のガスが通過するための空間を備えた組織構造を主とすることに第一の特徴がある。
揮発ないしは消失する成分としてのSiOを含まないとは,例えばAl等他の成分との化合物としての形態以外の,連続鋳造操業に供される浸漬ノズルのように還元雰囲気かつ高温度域中で還元されて揮発する形態の,非晶質シリカ(溶融シリカ粒等)に代表されるような,SiO成分からなる粒子を殆ど含まないことを意味する。SiOがAlとの化合物としての形態の場合は,例えばムライト鉱物粒子として含まれる場合は,このSiO成分が揮発ないしは消失することはない。
このような組織構造自体は,空間が多く存在している等の理由から,一定の応力緩和機能もある。しかし,耐火物全体にこのような組織を一体的又は連続的に存在させる場合には,一般的に低熱膨張化を目的として含有させる低膨張性の溶融シリカ等を含まないこともあって,耐火物の主として耐割れ性が低下する可能性が高くなる。
そこで本発明は,前記組織を長さが0.05mm超2mm以下の単一の構造体として,すなわち二次粒子を形成して,その二次粒子間に応力緩和能を備えた黒鉛,炭素結合組織等を存在させて,耐火物としての耐割れ性を確保し,かつ溶鋼又は溶鋼由来のスラグ成分に対する耐食性や耐浸潤性をも確保するものである。さらにはこの空間を多く備えた組織の構成物すなわち一次粒子は偏平状(板状とほぼ同義)とする。
このような偏平状の単一粒子である一次粒子が複数集合してなす構造は,一定方向に配向せずに不規則な多くの方向に,しかも相互に複雑に絡み合った構造であることが,応力の分散効果を高め,機械的物性の均一性と安定性を得るためには好ましい。
本発明の二次粒子内部においても一次粒子の集合体は前述の構造を有し,一次粒子相互が不規則な多数の点で接合して,又は重なり合った層状を含む複合的な構造をなし,一次粒子相互の間には多くの空間をも形成する(図4,図5)。この多くの空間を含む複合的な構造により,この二次粒子内部に発生する応力を緩和する役割をも果たす。
The refractory of the present invention contains Al 2 O 3 component, C component, SiC component, does not contain SiO 2 as a component that volatilizes or disappears (except for inevitable impurities mixed in the manufacturing process), and is continuously cast. The first feature is that the main structure is a structure having a space for allowing a sufficient amount of gas to pass through the nozzle.
It does not contain SiO 2 as a component that volatilizes or disappears, for example, in a reducing atmosphere and at a high temperature, such as an immersion nozzle used for continuous casting operations, other than in the form of a compound with other components such as Al 2 O 3. It means that it contains almost no particles composed of SiO 2 components, such as amorphous silica (fused silica particles, etc.), which is reduced and volatilized in the region. When SiO 2 is in the form of a compound with Al 2 O 3 , for example, when it is contained as mullite mineral particles, this SiO 2 component will not volatilize or disappear.
Such a tissue structure itself also has a certain stress relaxation function due to a large amount of space. However, in the case where such a structure exists integrally or continuously in the entire refractory material, it may not contain low-expansion fused silica that is generally included for the purpose of lowering the thermal expansion, so that the refractory There is a high possibility that the crack resistance of the product will be reduced.
Therefore, the present invention provides a graphite or carbon bond in which the structure is formed as a single structure having a length of more than 0.05 mm and not more than 2 mm, that is, secondary particles are formed and stress relaxation is provided between the secondary particles. The presence of a structure, etc. ensures crack resistance as a refractory and also ensures corrosion resistance and infiltration resistance against molten steel or slag components derived from molten steel. Furthermore, the structure of the tissue having many spaces, that is, the primary particles are flat (substantially synonymous with plate shape).
The structure formed by the aggregation of a plurality of primary particles, which are flat single particles like this, is a structure that is irregularly oriented in many directions without being oriented in a certain direction, and complicatedly entangled with each other. It is preferable for increasing the stress dispersion effect and obtaining uniformity and stability of mechanical properties.
Even within the secondary particles of the present invention, the aggregate of primary particles has the above-mentioned structure, and the primary particles have a complex structure including a plurality of irregularly joined or overlapping layers. Many spaces are also formed between the primary particles (FIGS. 4 and 5). This complex structure including many spaces also plays a role in relieving the stress generated in the secondary particles.

一般的なアルミナ骨材である単一粒子,言い換えると,外面が多角形であるか曲面〜球形に近い形状であるかにかかわらず,これをアスペクト比で表すと1前後の一体構造のアルミナ粒子の場合は,この単一粒子内部が緻密でほとんど変形能や応力緩和能がない。
これに比較して本発明の二次粒子は,一次粒子相互が外力に対しフレキシブルに変形又は移動することが可能であり,これにより二次粒子内部に発生する応力を緩和する能力が高い。
二次粒子は0.05mm超2mm以下とし,かつできるだけ球状に近いことが応力緩和能,充填性,組織の均一性等の観点から好ましい。
二次粒子のサイズを0.05mm超2mm以下とする理由は,均一で欠陥の少ない耐火物組織を得るためである。本発明の耐火物の応力緩和特性及び通気特性に関しては,二次粒子の組織構造が大きな影響を及ぼす。したがって,耐火物全体に均一性を高めてこの二次粒子を分散させることが重要である。二次粒子のサイズが2mmより大きいとこの均一性が低下して,耐火物の局部的な損傷を来しやすくなる。二次粒子のサイズが0.05mm以下だと,複数個の一次粒子相互が不規則な点で接合して又は重なり合った層状を含む複合的な構造を理想とする二次粒子の構造が得難くなって,空隙の割合が少なく密な組織の通気性に乏しい二次粒子になりやすい。
A single particle that is a general alumina aggregate, in other words, regardless of whether the outer surface is a polygon or a shape that is close to a curved surface to a sphere, when expressed in terms of an aspect ratio, it is a monolithic alumina particle of around 1 In the case of, the inside of this single particle is dense and has almost no deformability or stress relaxation ability.
Compared to this, the secondary particles of the present invention are capable of flexibly deforming or moving between primary particles with respect to external force, and thereby have a high ability to relieve stress generated in the secondary particles.
The secondary particles are preferably more than 0.05 mm and 2 mm or less, and are as close to spherical as possible from the viewpoints of stress relaxation ability, filling properties, tissue uniformity, and the like.
The reason why the size of the secondary particles is more than 0.05 mm and 2 mm or less is to obtain a uniform refractory structure with few defects. The structural structure of the secondary particles has a great influence on the stress relaxation characteristics and ventilation characteristics of the refractory according to the present invention. Therefore, it is important to disperse these secondary particles with increasing uniformity throughout the refractory. If the size of the secondary particles is larger than 2 mm, this uniformity is reduced and local damage to the refractory tends to occur. When the size of the secondary particles is 0.05 mm or less, it is difficult to obtain a secondary particle structure ideally having a composite structure including a layered structure in which a plurality of primary particles are joined at irregular points or overlapped. As a result, secondary particles with a small void ratio and poor air permeability of a dense structure are likely to be formed.

また他の理由は,耐火物を浸漬ノズルの内孔側の層としてCIP(Cold Isostatic Press)成形する際に,モールド内に充填する際の偏析等を防止して均一な耐火物組織を得るためでもある。二次粒子のサイズが0.05mm未満の場合は前述したように不均一な組織になることから成形体に亀裂が生じやすくなり,2mmを超えると偏析が多くなって組織が不均一な部分が生じやすくなり,層自体の破壊の原因ともなる虞がある。   Another reason is to obtain a uniform refractory structure by preventing segregation and the like when filling the mold when CIP (Cold Isostatic Press) molding is performed as a layer on the inner hole side of the immersion nozzle. But there is. If the size of the secondary particles is less than 0.05 mm, it becomes a non-uniform structure as described above, so that the molded body is liable to crack, and if it exceeds 2 mm, segregation increases and the structure is non-uniform. It tends to occur and may cause destruction of the layer itself.

二次粒子に対する一次粒子である偏平状の単一粒子の形状は,最大長さが二次粒子の大きさの約1/2以下であることが好ましく,約1/4以下であることがより好ましい。この理由は,二次粒子内で一次粒子が多方向にかつ相互にランダムに絡み合って,相互に結合点を多数有している,理想的な構造体とするためには,一次粒子を,二次粒子内部空間を大きく分断しないような小さな最大長さにする必要がある。そのためには,二次粒子を球と見なした場合に,一次粒子の最大長さは幾何学的にその球の直径の約1/2以下である必要がある。その球の直径の約1/2以下である場合でも球体内部での存在位置によっては内部空間の大きな分断が生じ易いので,約1/4以下であることがさらに好ましい。約1/4以下であれば,内部空間を大きく分断する確率が著しく減少する。
このような幾何学的な要素を考慮すると,本発明の耐火物の一次粒子の大きさ,すなわち最大長さは1mm以下が好ましく,0.5mm以下がさらに好ましいことになる。
最小長さは,特定の値である必要性はない。しかし,この偏平状の粒子の大きさは小さくなるにしたがい偏平状であることによる作用が低下して球状に近い挙動となっていくので,使用条件等に応じて設定する二次粒子の気孔率,気孔径,強度等を任意の範囲に調整するために必要最小限の大きさ及び含有量に適宜調整すればよい。
なお,二次粒子内の一次粒子を結合する無機質結合材が形成する一次粒子周囲の被膜厚さは,その無機質結合材の性状,二次粒子の製造方法等によって変動するが,無機質結合材の被膜を含んだ一次粒子のアスペクト比を5以上にするためには,一次粒子の最小長さは無機質結合材の被膜の厚さの10倍以上にすることが必要である。
本発明では,最小の大きさが1μm程度までであれば,無機質結合材の被膜を含んだ一次粒子のアスペクト比を5以上に保ちつつ,本発明の効果が得られることを確認している。
The shape of the flat single particle, which is the primary particle relative to the secondary particle, preferably has a maximum length of about ½ or less of the size of the secondary particle, more preferably about ¼ or less. preferable. The reason for this is that in order to obtain an ideal structure in which the primary particles are entangled randomly in multiple directions in the secondary particles and have a large number of bonding points, It is necessary to make the maximum length small so as not to divide the interior space of the next particle greatly. For this purpose, when the secondary particle is regarded as a sphere, the maximum length of the primary particle needs to be geometrically about ½ or less of the diameter of the sphere. Even when the diameter is about ½ or less of the diameter of the sphere, depending on the position within the sphere, the internal space is likely to be largely divided, so it is more preferably about ¼ or less. If it is about 1/4 or less, the probability of dividing the internal space significantly decreases.
Considering such geometric factors, the size of the primary particles of the refractory according to the present invention, that is, the maximum length is preferably 1 mm or less, and more preferably 0.5 mm or less.
The minimum length need not be a specific value. However, as the size of the flat particles becomes smaller, the action due to the flat shape decreases and the behavior becomes almost spherical, so the porosity of the secondary particles set according to the use conditions etc. In order to adjust the pore diameter, strength, etc. to an arbitrary range, the minimum size and content may be appropriately adjusted.
The film thickness around the primary particles formed by the inorganic binder that binds the primary particles in the secondary particles varies depending on the properties of the inorganic binder, the manufacturing method of the secondary particles, etc. In order to increase the aspect ratio of the primary particles including the coating to 5 or more, the minimum length of the primary particles needs to be 10 times or more the coating thickness of the inorganic binder.
In the present invention, when the minimum size is up to about 1 μm, it has been confirmed that the effect of the present invention can be obtained while maintaining the aspect ratio of the primary particles including the inorganic binder coating film at 5 or more.

ここで一次粒子,二次粒子の最大長さとは,JIS Z 8815「ふるい分け試験方法通則」,JIS Z 8801−1「試験用ふるい−第1部:金属製網ふるい」に準拠した方法による。
例えば,一次粒子が1μmを超え1mm以下の場合は,1μmの開き目(篩等。湿式での分級方法等も採り得る。)を通過せず,1mmの開き目(篩等)を通過する大きさに相当する大きさをいう。また例えば,二次粒子が0.05mmを超え2mm以下の場合は,開き目が0.05mmの網(篩等)を通過せず,開き目が2mmの網(篩等)を通過する大きさ,という意味である。
Here, the maximum lengths of the primary particles and the secondary particles are based on a method based on JIS Z 8815 “General Rules for Screening Test Methods” and JIS Z 8801-1 “Sieving for Testing—Part 1: Metal Mesh Screen”.
For example, when the primary particle exceeds 1 μm and is 1 mm or less, it does not pass through a 1 μm opening (such as a sieve; a wet classification method can also be used), and passes through a 1 mm opening (such as a sieve). The size corresponding to the size. Also, for example, when the secondary particle is larger than 0.05 mm and not larger than 2 mm, the opening does not pass through a 0.05 mm mesh (such as a sieve) and the opening passes through a 2 mm mesh (such as a sieve). , Meaning.

一次粒子の偏平性は,アスペクト比が5以上50以下の板状の形状であることが必要である。   The flatness of the primary particles needs to be a plate shape having an aspect ratio of 5 to 50.

ここでアスペクト比が5以上50以下とは,単一粒子ごとにその長さの最大部(図1のa)と板状の平面とはほぼ垂直方向の長さ(以下,「厚さ」ともいう。)の最小部(図1のb)との比をいう。
すなわち偏平状の粒子の形状は,模式的に平面的部分を「長さ」×「幅」,その平面的部分にほぼ垂直方向の長さを「厚さ」として,この3つの要素で構成されるとみなした場合,アスペクト比は長さ/厚さの比となる。
この最大長さとアスペクト比は,本発明の耐火物の製造においては,予め最大長さが1mm以下,アスペクト比が5以上50以下に製造及び整粒された原料を使用すればよい。
Here, the aspect ratio of 5 to 50 means that the maximum length of each single particle (a in FIG. 1) and the plate-like plane are substantially perpendicular to each other (hereinafter referred to as “thickness”). The ratio of the minimum portion to the minimum portion (b in FIG. 1).
In other words, the shape of a flat particle is composed of these three elements, where the planar part is “length” × “width” and the length in the direction substantially perpendicular to the planar part is “thickness”. The aspect ratio is the ratio of length / thickness.
In the production of the refractory according to the present invention, the maximum length and aspect ratio may be obtained by using raw materials that have been manufactured and sized in advance so that the maximum length is 1 mm or less and the aspect ratio is 5 or more and 50 or less.

本発明は,この特徴を有する偏平状のアルミナを一次粒子として使用することをまた基本的な特徴とする。
しかもこの一次粒子及びその無機質結合材からなる集合体は,化学成分としてAlが98質量%以上からなる。
The basic feature of the present invention is that flat alumina having this feature is used as primary particles.
Moreover, this primary particles and aggregates consisting of the inorganic binder, Al 2 O 3 consists of more than 98 wt% as chemical components.

本発明の耐火物における上述の二次粒子においては,二次粒子内の炭素を除く成分,すなわち一次粒子とそれらを集合体とするための無機質結合材(炭素を除く)の合計成分が,1500℃非酸化雰囲気中で3時間熱処理した後の耐火物内でAlとして98質量%以上であることで,過度な軟化や溶融等を生じることなく一次粒子の原形をほぼ保持しながら,二次粒子内部の応力緩和能とガスの通過能とを維持することが可能となる。Alが98質量%以上であることはまた,溶鋼中の介在物との反応も起こりにくいので,このような反応に起因する溶損や摩耗も生じにくい。 In the above-mentioned secondary particles in the refractory of the present invention, the component excluding carbon in the secondary particles, that is, the total component of the primary particles and the inorganic binder (except for carbon) for making them an aggregate is 1500. By maintaining 98% by mass or more as Al 2 O 3 in the refractory after heat treatment in a non-oxidizing atmosphere at 3 ° C., while maintaining the original shape of the primary particles without causing excessive softening or melting, It becomes possible to maintain the stress relaxation ability and gas passage ability inside the secondary particles. When Al 2 O 3 is 98% by mass or more, reaction with inclusions in the molten steel is unlikely to occur, so that melting or wear due to such reaction is unlikely to occur.

この理由は,一次粒子としても純度が98質量%以上のアルミナ即ちコランダム(α−Al)を使用することを意味し,コランダム自体の硬度及び強度は極めて大きく,また溶鋼由来の成分がアルミナを主体とすることから,軟化や溶融を生じるような反応が生じる可能性が小さいからである。Al以外の成分の種類によっては溶鋼由来の介在物及び付着物等との反応による溶損等が生じる又は増大する虞があり,また例えば,一次粒子及び無機質結合材が、Alとの化合物ではないSiO成分を多量に含む場合は,使用中(熱間)にムライト化等の鉱物変化を来たし,一次粒子ないしは二次粒子自体が大きく膨張をして応力緩和機能を低下する,又は耐火物自体を破壊する虞がある。
また,この一次粒子及び無機質結合材の成分がコランダムからなるAl純度が98質量%以上であることは,シリカ成分に観られる還元雰囲気での消失ないしは耐火物組織の劣化等を防止することにもつながる。
なお,偏平状ではあるが,低アルミナ純度である,例えばβ−Al,マイカ等のいわゆる粘土鉱物等では,熱間における軟化や溶融が生じて,耐食性,耐摩耗性等が著しく低いので,連続鋳造用ノズル用の耐火物用の構成物としては採用することができない。
The reason for this is that alumina having a purity of 98% by mass or more, that is, corundum (α-Al 2 O 3 ) is used as the primary particles, and the hardness and strength of the corundum itself is extremely large, and the components derived from the molten steel are This is because the main component is alumina, so there is little possibility of a reaction that causes softening or melting. Depending on the types of components other than Al 2 O 3 , there is a risk of causing or increasing melting damage due to reaction with inclusions and deposits derived from molten steel. For example, primary particles and inorganic binders may contain Al 2 O When a large amount of SiO 2 component that is not a compound with No. 3 is included, mineral changes such as mullite formation occur during use (hot), and the primary particles or secondary particles themselves expand greatly, reducing the stress relaxation function. Or destroy the refractory itself.
The purity of Al 2 O 3 composed of corundum as the primary particle and inorganic binder component is 98% by mass or more to prevent disappearance in a reducing atmosphere or deterioration of the refractory structure observed in the silica component. It also leads to things.
In addition, although it is flat, low alumina purity, for example, so-called clay minerals such as β-Al 2 O 3 , mica, etc., softening or melting occurs hot, and corrosion resistance, wear resistance, etc. are extremely low. Therefore, it cannot be adopted as a refractory component for a continuous casting nozzle.

前記の一次粒子である偏平状のアルミナ単一粒子は,例えば, バイヤー法によって,製造することができる。   The flat alumina single particles as the primary particles can be produced by, for example, the Bayer method.

また,前記の一次粒子である偏平状のアルミナ単一粒子は,市販品も使用することができ,例えば,日本軽金属(株)社製の商品名「A11」,「A21」,キンセイマテック社製の商品名「セラフ」等を用いることができる。前者の商品は,長さがほぼ1μm超300μm以下,アスペクト比が5以上50以下,化学成分がAl98質量%以上のコランダム質(α−Al)であり,本発明における偏平状のアルミナ一次粒子の条件を満たす。 In addition, the flat alumina single particles, which are the primary particles, may be commercially available products. For example, trade names “A11” and “A21” manufactured by Nippon Light Metal Co., Ltd., manufactured by Kinsei Matech Corporation. The product name “Seraph” can be used. The former product is a corundum material (α-Al 2 O 3 ) having a length of about 1 μm to 300 μm or less, an aspect ratio of 5 to 50 and a chemical composition of Al 2 O 3 of 98% by mass or more. Satisfy the requirements for flat alumina primary particles.

一次粒子を結合する無機質結合材としては,約1000℃以上の熱処理後に保形能を与え,また浸漬ノズルとして使用中の熱間での応力及び外力に耐えることができる程度の強度を発現することが可能な,各種の無機系の溶液,エマルジョン,サスペンジョン等,例えばアルミナゾル,等を使用することができる。中でも,アルミナゾルが強度発現能が高いこと,分散性が高いこと,及び一次粒子との間で低融物を生成することがない等の理由から,好適である。
また,例えばシリカゾルや珪酸塩等のSiO系の無機質結合材等も使用することは可能であるが,これらの場合は一次粒子と無機質結合材との合量の成分として,Alが98質量%以上となるように,使用量を調整する必要がある。
As an inorganic binder that binds primary particles, shape retention ability should be provided after heat treatment at about 1000 ° C or higher, and it should be strong enough to withstand the stress and external force during use as an immersion nozzle. It is possible to use various inorganic solutions, emulsions, suspensions, etc., such as alumina sol. Among these, alumina sol is preferable because it has high strength development ability, high dispersibility, and does not generate a low-melting material with primary particles.
In addition, for example, SiO 2 inorganic binders such as silica sol and silicate can be used. In these cases, Al 2 O 3 is used as a component of the total amount of primary particles and inorganic binder. It is necessary to adjust the amount of use so that it may become 98 mass% or more.

なお,本発明の二次粒子においては積極的に炭素成分を含有させるものではない。二次粒子に有機質結合材を被覆して本発明の耐火物を成形する際に,その有機質結合材や微細炭素粒子等が二次粒子内に浸透又は付着することがあり,二次粒子内に存在する炭素成分はこのような炭素に由来する。このような二次粒子内の炭素量及び存在形態は本発明の効果に影響を及ぼす程度ではない。したがって,本発明の二次粒子は炭素を除く成分を特定する。   The secondary particles of the present invention do not actively contain a carbon component. When forming the refractory of the present invention by covering the secondary particles with an organic binder, the organic binder, fine carbon particles, etc. may permeate or adhere into the secondary particles. The carbon component present is derived from such carbon. Such a carbon amount and existence form in the secondary particles do not affect the effect of the present invention. Therefore, the secondary particles of the present invention specify components other than carbon.

本発明の耐火物は,通気に伴うガスの流動・排出に伴い発生する応力の影響を受けること,及び特に浸漬ノズル内孔に配設される際には溶鋼流の衝撃等の機械的な外力の影響をも受ける。また本発明の耐火物は,溶鋼又は溶鋼由来の介在物等との反応等による,溶損等の生じ易い環境に晒されることもある。
そこで,このような条件下でも必要かつ十分な耐用性を有する耐火物を得るには,二次粒子は,耐火物中に55質量%以上90質量%以下含有する。55質量%未満の場合,二次粒子以外のマトリクス組織の性状が耐火物全体の性状に対し支配的になって二次粒子が有する応力緩和能や通気特性等が低下する。90質量%を超える場合は,二次粒子以外のマトリクス組織が相対的に過少になり,マトリクス組織における二次粒子間の結合機能が低下し,耐火物としての強度不足ないしは耐摩耗性の低下等を来す虞がある。
The refractory material of the present invention is affected by the stress generated by the flow and discharge of gas accompanying ventilation, and mechanical external force such as impact of molten steel flow when it is installed in the immersion nozzle bore. Also affected by. Further, the refractory of the present invention may be exposed to an environment in which melting damage or the like is likely to occur due to reaction with molten steel or inclusions derived from molten steel.
Therefore, in order to obtain a refractory having necessary and sufficient durability even under such conditions, the secondary particles are contained in the refractory by 55 to 90% by mass. When the amount is less than 55% by mass, the properties of the matrix structure other than the secondary particles are dominant with respect to the properties of the entire refractory, and the stress relaxation ability and air permeability characteristics of the secondary particles are reduced. When it exceeds 90% by mass, the matrix structure other than the secondary particles becomes relatively small, the bonding function between the secondary particles in the matrix structure is lowered, the strength as a refractory is insufficient, or the wear resistance is lowered. There is a risk of coming.

二次粒子の含有量を本発明の範囲とするには,本発明の耐火物を製造する際には,予め製造した二次粒子を,約1500℃非酸化雰囲気で熱処理した後の耐火物成分内で,当該二次粒子の質量割合が他の成分に対し55質量%以上90質量%以下になるように配合すればよい。
また、二次粒子の含有量は,耐火物を、600℃且つ酸化雰囲気下で加熱して脱炭処理し(炭素原料およびバインダーに由来するカーボンを除去したものは結合が無くなり粒子の状態に戻る)、それを色彩選別装置でアルミナの二次粒子と炭化珪素を分別して,二次粒子の重量測定し,初期の試料重量から消失したカーボン重量と炭化珪素の重量を引くことで、算出することもできる。
In order to make the content of secondary particles within the scope of the present invention, when producing the refractory of the present invention, the refractory component after heat-treating the previously produced secondary particles in a non-oxidizing atmosphere at about 1500 ° C. Among them, the secondary particles may be blended so that the mass ratio of the secondary particles is 55% by mass or more and 90% by mass or less with respect to other components.
The content of secondary particles is such that the refractory is heated at 600 ° C. in an oxidizing atmosphere and decarburized (the carbon material and the carbon derived from the binder are removed so that the bonds are lost and the particles return to the state of particles. ), Separating the alumina secondary particles and silicon carbide with a color sorter, measuring the weight of the secondary particles, and subtracting the weight of the lost carbon and silicon carbide from the initial sample weight. You can also.

また、二次粒子内の炭素を除く成分中のAl含有量は、上記選別後のアルミナの二次粒子において,耐火物技術協会の標準試料を用いて,JIS R2216「耐火物製品の蛍光X線分析方法」に準じて測定することができる。 In addition, the content of Al 2 O 3 in the components excluding carbon in the secondary particles is determined by using JIS R2216 “Refractory Products It can be measured according to the “X-ray fluorescence analysis method”.

本発明の耐火物の化学成分は,当該耐火物を1500℃で3時間還元焼成した後の試料について,JIS R2216「耐火物製品の蛍光X線分析方法」に準拠した方法で測定した値とする。この理由は,約1500℃前後の溶鋼の鋳造に使用される本発明の耐火物は,この鋳造中の状態を基準として評価する必要があるからである。本発明の耐火物を配設した連続鋳造用浸漬ノズル等は,製品として操業に供される段階では約1100℃以下での熱処理を経ている。この熱処理温度では当該耐火物中に含有する成分の変化が完了していない等により,鋳造中の状態である約1500℃の熱処理を経た状態の化学成分とは異なる。   The chemical composition of the refractory according to the present invention is a value measured by a method in accordance with JIS R2216 “Fluorescence X-ray analysis method for refractory products” of the sample after reducing and firing the refractory at 1500 ° C. for 3 hours. . This is because the refractory of the present invention used for casting molten steel at about 1500 ° C. needs to be evaluated based on the state during the casting. The continuous casting immersion nozzle or the like provided with the refractory according to the present invention undergoes a heat treatment at about 1100 ° C. or less when it is put into operation as a product. This heat treatment temperature is different from the chemical component in the state of being subjected to the heat treatment at about 1500 ° C., which is in the casting state, because the change of the component contained in the refractory is not completed.

本発明の耐火物中のAl含有量はほぼ二次粒子の含有割合によって決定される。すなわちこれは前述の二次粒子の必要量に対応するものであって,それを二次粒子のAl含有量に換算した値にほぼ一致する。
なお,耐火物全体中のAlが54質量%(二次粒子のAl成分量の下限値98質量%に二次粒子含有量の下限値55質量%を乗じた値を四捨五入した値)未満の場合にはAlに代えて炭素基質材料を増加させることになるが,その場合,耐摩耗性や耐食性等が低下し易くなる等の問題もある。
そのような場合には操業条件又は必要な耐食性や耐摩耗性等の特性に合致させる目的で,二次粒子の外部すなわち耐火物のマトリックス組織中にコランダムとしてのAl成分を含有させてもよい。言い換えると本発明の耐火物中のAl成分量は,後述のSiC,フリーの炭素,及び,製造上不可避の成分の合計値に対する残部とすることができる。
The Al 2 O 3 content in the refractory according to the present invention is substantially determined by the content ratio of secondary particles. That is, this corresponds to the necessary amount of the secondary particles described above, and almost coincides with the value converted into the Al 2 O 3 content of the secondary particles.
In addition, 54% by mass of Al 2 O 3 in the whole refractory (rounded to the value obtained by multiplying the lower limit of 98% by mass of the Al 2 O 3 component amount of the secondary particles by the lower limit of 55% by mass of the secondary particle content. If the value is less than the above value), the carbon substrate material is increased instead of Al 2 O 3 , but in that case, there is a problem that wear resistance, corrosion resistance, etc. are likely to be lowered.
In such a case, Al 2 O 3 as corundum is included outside the secondary particles, that is, in the matrix structure of the refractory, for the purpose of meeting the operating conditions or the required properties such as corrosion resistance and wear resistance. Also good. In other words, the amount of the Al 2 O 3 component in the refractory according to the present invention can be the balance with respect to the total value of SiC, free carbon, and components that are unavoidable in production.

耐火物中には,SiCを1質量%以上10質量%以下含有する。SiCは主として,
1. フリーの炭素としての炭素基質材料の酸化を防止する(以下,単に「酸化防止機能」という。),
2. 溶鋼流に対する耐火物の耐摩耗性を向上させる(以下,単に「耐摩耗性向上機能」という。),
の役割を果たす。
SiCが1質量%未満では炭素基質材料の酸化防止機能及び耐摩耗性向上機能が十分ではなく,すなわち耐火物中の炭素基質材料の部分的な酸化や,耐火物組織の部分的な摩耗等が生じて,本発明の耐火物層の崩壊等を生じる虞がある。
SiCは耐火物組織中の結合炭素の中に,又は炭素基質材料に接して,結合機能や炭素基質材料自体を補強するように分布して存在している。SiCが1質量%未満の場合はこの分布状態の不均一性が増し,炭素基質材料に対してSiCが存在しない部位が生じる虞がある。
耐火物の酸化は主として予熱中の高温度の空気(酸素ガス)や,鋳造中にも溶鋼由来のFeO等の酸化性の介在物により生じ,炭素基質材料の中でも特に結合材としての炭素基質材料が先行する。すると,結合機能が低下して脆弱化した部分から組織崩壊を生じることになる。
また,SiCが10質量%を超えると,SiC自体が酸化してSiO,SiOとなり,そのSiOが耐火物中のAl等と反応して新たな鉱物を生成して耐火物を膨張させ,破壊する虞があり,また耐火物中のAl及び溶鋼由来の酸化物と低融物を生成して,耐火物層の軟化,ないしは耐食性の低下,破壊等を惹き起こす虞がある。さらに二次SiC(原料として存在せず,熱処理中に生成するSiCをいう。)が相対的に多い場合には特に,硬質(高弾性率)の結合部分が増加して,耐熱衝撃性や耐押し割り性が低下する虞がある。
The refractory contains 1 mass% or more and 10 mass% or less of SiC. SiC is mainly
1. Prevents oxidation of carbon substrate material as free carbon (hereinafter simply referred to as “antioxidation function”).
2. To improve the wear resistance of the refractory against the molten steel flow (hereinafter simply referred to as “wear resistance improving function”),
To play a role.
When SiC is less than 1% by mass, the carbon matrix material has insufficient anti-oxidation function and wear resistance improving function, ie, partial oxidation of the carbon matrix material in the refractory and partial wear of the refractory structure. This may cause collapse of the refractory layer of the present invention.
SiC is distributed in the bonded carbon in the refractory structure or in contact with the carbon matrix material so as to reinforce the bonding function and the carbon matrix material itself. When SiC is less than 1% by mass, the non-uniformity of the distribution state increases, and there is a possibility that a site where SiC does not exist is generated with respect to the carbon substrate material.
Oxidation of refractories is mainly caused by high-temperature air (oxygen gas) during preheating and oxidizing inclusions such as FeO derived from molten steel during casting. Precedes. Then, tissue collapse occurs from the weakened part of the bond function.
Moreover, when SiC exceeds 10 mass%, SiC itself will oxidize to become SiO and SiO 2 , and the SiO 2 reacts with Al 2 O 3 and the like in the refractory to produce new minerals to form the refractory. There is a risk of expansion and destruction, and there is a risk of causing Al 2 O 3 and molten steel-derived oxides and low melts in the refractory to cause softening of the refractory layer, deterioration of corrosion resistance, destruction, etc. There is. Furthermore, especially when there is a relatively large amount of secondary SiC (which does not exist as a raw material and refers to SiC formed during heat treatment), the number of hard (high elastic modulus) bonded portions increases, resulting in improved thermal shock resistance and resistance. There is a possibility that the splitting property is lowered.

フリーの炭素は3質量%以上45質量%以下含有するが,これは前記のAl及びSiC等の必要成分量,並びに不可避成分(後述)の残部としての含有量である。本発明で炭素基質材料とは,主として二次粒子間の結合を担う結合炭素,主として二次粒子間の結合炭素と混在する状態で存在して応力緩和能を有する最大粒子サイズが約500μm以下程度の黒鉛や,非晶質の微細(最大粒子サイズ0.5μm程度以下)のいわゆるカーボンブラック等をいう。ここで結合機能を担う炭素としては,耐火物の組織を形成ないし維持するために3質量%以上の含有量が必要である。フリーの炭素が45質量%を超えると、耐摩耗性および耐食性が低下する虞がある。この原因として,炭素成分の硬度が小さいことに起因する機械的な摩耗損耗,酸化や溶鋼内への溶出等による化学反応的な消失が進むことが考えられる。
なお,フリーの炭素の測定は,JIS R2011「炭化及び炭化珪素含有耐火物の化学分析方法」に準拠した方法にて行う。
Free carbon is contained in an amount of 3% by mass to 45% by mass, which is the amount of necessary components such as Al 2 O 3 and SiC, and the content of the inevitable components (described later) as the balance. In the present invention, the carbon matrix material is a bond carbon mainly responsible for bonding between secondary particles, and is present in a state where it is mixed with bond carbon mainly between secondary particles and has a maximum particle size of about 500 μm or less having stress relaxation ability. Graphite, amorphous fine particles (maximum particle size of about 0.5 μm or less), so-called carbon black, and the like. Here, the carbon having a binding function needs to contain 3% by mass or more in order to form or maintain a refractory structure. When free carbon exceeds 45 mass%, there exists a possibility that abrasion resistance and corrosion resistance may fall. The cause of this is thought to be the disappearance of chemical reaction due to mechanical wear and wear due to the low hardness of the carbon component, oxidation, and elution into the molten steel.
Free carbon is measured by a method based on JIS R2011 “Method for chemical analysis of refractories containing carbonized and silicon carbide”.

前記の他,本発明の耐火物には、単一化合物のSiO,アルカリ金属酸化物,アルカリ土類金属酸化物,TiO,及び,その他製造上不可避の成分が混入することがある。これらの製造上不可避の成分等の合計含有量は,2質量%以下にする必要がある。2質量%を超えると,特に炭素基質材料が下限に近くの少ない領域で,耐火物の結合強度を低下させたり,二次粒子内のAlすなわち一次粒子との間で反応を生じて,一次粒子の焼結,低融物生成ないしは二次粒子構造の一部の崩壊等を惹き起こす虞がある。
ここで、本発明における単一化合物のSiOとは、非晶質シリカ等の金属元素としてSiしか含まないSiOのことであり、ムライト等のSi以外の金属元素を含むSiO化合物(複合化合物のSiO)と区別される。
また、二次粒子内の炭素を除く成分中における単一化合物のSiO含有量は、以下の方法で評価できる。
先ずは、上述の二次粒子の含有量の算出方法で説明したように、耐火物を、600℃且つ酸化雰囲気下で加熱して脱炭処理し、それを色彩選別装置でアルミナの二次粒子と炭化珪素を分別する。その後、当該分別後の二次粒子において,全SiO量を耐火物技術協会の標準試料を用いて,JIS R2216「耐火物製品の蛍光X線分析方法」に準じて測定する。次いで,リートベルト法による粉末X線回折により,ムライト量を定量し,その数値を基に化学量論比からムライト中のSiO量を測定する。最後に、蛍光X線によって定量した全SiO量から粉末X線回折より算出したムライト中のSiO量を引いた数値が、単一化合物のSiO量として同定される。ムライト以外にも他の複合化合物のSiOが含まれる場合は、それらの複合化合物中のSiO量を測定して、同様に、全SiO量から当該SiO量も引いて同定される。
In addition to the above, the refractory of the present invention may contain a single compound of SiO 2 , alkali metal oxide, alkaline earth metal oxide, TiO 2 , and other components inevitable in production. The total content of these inevitable components must be 2% by mass or less. If it exceeds 2% by mass, particularly in the region where the carbon substrate material is near the lower limit, the bond strength of the refractory is lowered, or a reaction occurs between Al 2 O 3 in the secondary particles, that is, the primary particles. , There is a risk of causing sintering of primary particles, formation of a low-melting material, or partial collapse of the secondary particle structure.
Here, the SiO 2 of a single compound in the present invention is a SiO 2 containing only Si as metal elements such as amorphous silica, SiO 2 compound containing a metal element other than Si, such as mullite (complex It is distinguished from the compound SiO 2 ).
Further, SiO 2 content of a single compound in the component except for the carbon in the secondary particles may be evaluated by the following methods.
First, as described in the method for calculating the content of secondary particles described above, the refractory is heated at 600 ° C. in an oxidizing atmosphere to decarburize it, and then the secondary particles of alumina are processed by a color sorter. And silicon carbide. Thereafter, in the secondary particles after the separation, the total amount of SiO 2 is measured according to JIS R2216 “Fluorescence X-ray analysis method for refractory products” using a standard sample of the refractory technical association. Next, the amount of mullite is quantified by powder X-ray diffraction by the Rietveld method, and the amount of SiO 2 in mullite is measured from the stoichiometric ratio based on the numerical value. Finally, a numerical value obtained by subtracting the amount of SiO 2 in mullite calculated from powder X-ray diffraction from the total amount of SiO 2 determined by fluorescent X-rays is identified as the amount of SiO 2 of a single compound. If it contains SiO 2 in other complex compounds other than mullite measures the amount of SiO 2 in these complex compounds, likewise, is identified from the total amount of SiO 2 is also pulled the SiO 2 amount.

本発明の耐火物には,単一化合物のSiO、すなわち、非晶質シリカに代表されるような,他の成分との化合物としての形態以外の,還元雰囲気かつ高温度域で揮発するSiO成分を,殆ど含まないことから,鋳造時間の経過に伴う通気特性の変動はほとんど生じない。また、ムライト等の複合化合物中のSiOはそれ以外の成分と結合しているため、少量含有されていても、揮発し難く通気特性の変動は殆ど生じない。 The refractory material of the present invention includes a single compound SiO 2 , that is, SiO that volatilizes in a reducing atmosphere and in a high temperature range other than a form as a compound with other components such as amorphous silica. Since almost no two components are contained, there is almost no variation in the air permeability characteristics with the lapse of casting time. In addition, since SiO 2 in the composite compound such as mullite is bonded to other components, even if it is contained in a small amount, it is difficult to volatilize and hardly changes the air permeability.

しかし,このような系であっても見掛け気孔率,すなわち開放気孔の体積割合に相当する値が極端に低い場合又は極端に高い場合には,個別の操業上の条件に応じて設定した通気特性を得難い場合がある。通気特性は,個別の操業条件,すなわち,設備の規模,鋳造速度,投入するガス量・速度,ガスの圧力,浸漬ノズルの通気対象部位の面積,等の多くの要素によって決定付けられる。このように個別の条件にしたがって変動させるべきものであり,耐火物の気孔率もこれらの条件に応じて変動させることができる要素である。
このようなことから,耐火物の気孔率が特定範囲でなければ課題が解決できないということはなく,一般的な操業条件を考慮した場合の好ましい範囲を示すことが妥当である。
本発明の耐火物は,非酸化雰囲気1500℃中3時間熱処理した後のJIS R2205の方法に準ずる見掛け気孔率が30%以上50%以下であることが好ましい。
見掛け気孔率が30%未満の場合には背圧が高くなって通気量が低下する傾向にあり,見掛け気孔率が50%を超える場合には背圧が大きく低下して通気量が多過ぎて,また吐出するガスの大きさが大きくなって溶鋼中の吐出状態が不均一なる傾向がある。
However, even in such a system, if the apparent porosity, that is, the value corresponding to the volume ratio of open pores is extremely low or extremely high, the ventilation characteristics set according to the individual operating conditions. It may be difficult to obtain. The ventilation characteristics are determined by many factors such as individual operating conditions, that is, the size of the equipment, the casting speed, the amount and speed of gas to be introduced, the pressure of the gas, the area of the portion to be vented of the immersion nozzle, and the like. Thus, it should be changed according to individual conditions, and the porosity of the refractory is an element that can be changed according to these conditions.
For this reason, the problem cannot be solved unless the porosity of the refractory is in a specific range, and it is reasonable to show a preferable range in consideration of general operating conditions.
The refractory according to the present invention preferably has an apparent porosity of 30% or more and 50% or less according to the method of JIS R2205 after heat treatment in a non-oxidizing atmosphere at 1500 ° C. for 3 hours.
If the apparent porosity is less than 30%, the back pressure tends to increase and the ventilation rate tends to decrease. If the apparent porosity exceeds 50%, the back pressure decreases greatly and the ventilation rate is too high. In addition, the discharge gas in the molten steel tends to be non-uniform because the size of the discharged gas becomes large.

本発明の耐火物はさらに,熱間での発生応力を抑制することができることを特徴としうる。
具体的には,当該耐火物を非酸化雰囲気の拘束条件下で室温から1500℃まで昇温する間の最大発生応力値が18MPa以下であることを特徴とする。
この発生応力の測定方法は次の通りである。
当該耐火物を直径30mm×高さ30mmの円柱状に成形又は切り出して測定用の試料とし,その試料上下の平面にカーボン板を置き,そのカーボン板に応力測定装置に連通したカーボンロッドで0.2MPaの荷重を印加する。この状態で,N2ガス雰囲気中5℃/分の昇温速度で室温から1500℃まで昇温する際に発生する最大応力値を測定する。
本発明の耐火物は,この測定方法による最大発生応力値が18MPa以下である。この最大発生応力値が18MPa以下である場合は耐火物の破壊が生じないことを本発明者らは知見している(後記実施例A参照)。
The refractory according to the present invention may further be characterized by being able to suppress the generated stress during the heat.
Specifically, the maximum generated stress value during heating of the refractory from room temperature to 1500 ° C. under a restraint condition in a non-oxidizing atmosphere is 18 MPa or less.
The method for measuring the generated stress is as follows.
The refractory is formed or cut into a cylindrical shape having a diameter of 30 mm and a height of 30 mm to obtain a measurement sample. A carbon plate is placed on the upper and lower surfaces of the sample, and a carbon rod connected to a stress measuring device is placed on the carbon plate with a thickness of 0. A load of 2 MPa is applied. In this state, the maximum stress value generated when the temperature is raised from room temperature to 1500 ° C. at a rate of temperature rise of 5 ° C./min in an N 2 gas atmosphere is measured.
The refractory of the present invention has a maximum generated stress value of 18 MPa or less by this measuring method. The present inventors have found that destruction of the refractory does not occur when the maximum generated stress value is 18 MPa or less (see Example A below).

次に,本発明の耐火物を製造する方法及び本発明の耐火物を配設した浸漬ノズルを製造する方法について述べる。
本発明の耐火物は,次の工程を含む,一般的な浸漬ノズルの製造方法に準じて得ることができる。
1. 混和工程:例えば純度98質量%以上である偏平状のアルミナの一次粒子を,適量の無機質結合材と混合し,できるだけ剪断力が加わらない方式の混和装置を使用して,均一に混和する。
この混和においては,計量した一次粒子の粉体に,無機質結合材を徐々に加えて,一次粒子の周囲に無機質結合材が偏析することなく均一に分散させることが好ましい。
無機質結合材としては,アルミナゾル等の約1000℃以上の加熱後にAlを主成分として残留するものが好ましい。
また,本工程では,下記の造粒工程で生成される二次粒子の炭素を除く成分が,Al98質量%以上となるように,無機質結合材の種類と添加量を調整して加える。
2. 造粒工程:前記混和工程で得られた混和物を回転させながら流動させる等の造粒機能を備えた混練装置で混練して,混和物を粒状に造粒する,すなわち一次粒子の集合体である二次粒子を形成させる。
この造粒工程において,二次粒子のJIS R2205の方法に準ずる見掛け気孔率が,40%以上80%以下になるように調整することが好ましい。この理由は,CIP成形等の加圧処理を経ても二次粒子内部の前述の構造が崩壊せずに維持できる範囲にしておくためである。なお,この二次粒子の見掛け気孔率の範囲はCIP成形時の圧力やノズルにおける本発明の耐火物の配設構造等に応じて適正に調整することができる。
この二次粒子の見掛け気孔率の調整は,一次粒子と無機質結合材の比,または無機質結合材を水等の熱処理により消失する溶媒等を加える等により,また混和装置及び混練装置での流動速度や流動形態(撹拌方法)を変化・調整する等によって行うことができる。
3. 分級工程:前記造粒工程で得られた造粒物を分級して,長さが0.05mm超2mm以下の複数の二次粒子(二次粒子群)とする。具体的な手段としては,例えば,篩分けを行えばよく,造粒物を2mmの篩いで篩分けして篩下を回収し,当該回収したものを0.05mmの篩いで篩分けして篩上を回収することで,0.05mm超2mm以下の大きさの二次粒子を得ることができる。
4. 成形用はい土の生成工程:前記分級工程により得た二次粒子群をAl成分の配合原料とし,更に,SiC成分となる配合原料,フリーの炭素となる配合原料(粒子状の炭素基質材料等。例えば黒鉛。)と共に混和する。また,必要に応じて,本発明の課題解決の作用効果を阻害しないその他原料を加えても構わない。
なお,SiCの一部又は全部は,最大粒径約10μm以下のSiO,又は金属Si等をSiC化した際の質量に換算して,1500℃中3時間還元焼成後の耐火物内に1質量%以上10質量%以下の含有量になるように添加してもよい。
最大粒径10μm以下のSiOは,耐火物中において黒鉛等の炭素原料あるいはバインダーに由来するカーボンによって還元され,SiO+3C=SiC+2COの反応が進み,安定な凝縮相である二次SiCを生成することから、このように粒径の小さなSiOを原料に配合する分には、1500℃中3時間還元焼成後の耐火物内に単一化合物のSiOは殆ど残らないことから問題無い。同様に、金属Siも,耐火物中において黒鉛等の炭素原料あるいはバインダーに由来するカーボンと反応して,安定な凝縮相である二次SiCを生成する。
そして,これらの混和物に,熱処理後に炭素結合を形成することのできる,例えばフェノール樹脂,ピッチ等の有機質の結合材を添加して混練し,成形用のはい土を得る。
また,本工程では,成形用のはい土中に,前記二次粒子群を,1500℃非酸化雰囲気中で3時間熱処理した後の耐火物内で55質量%以上90質量%以下の割合で存在するように配合する。
5. CIP成形工程:前記成形用はい土の生成工程により得たはい土を,ガス通過経路たる空間とするための有機質の仕切り板や本体となるはい土と共にCIP成形用のモールド内の空間に充填して,加圧成形する。
この成形圧等の条件は,浸漬ノズルの形状,構造や,設定した耐火物層又は成形体に求める物性等を得るために,それら個別の条件に応じた最適な設定を行うことができる。
6. 焼成工程:前記CIP成形工程により得た成形体を,例えば800℃〜1200℃等の温度での所定の熱処理(焼成処理)を行った後,ガス導入孔及びその接合構造体の設置,表面研削,酸化防止材塗布等の加工を行う。
Next, a method for producing the refractory according to the present invention and a method for producing an immersion nozzle provided with the refractory according to the present invention will be described.
The refractory of the present invention can be obtained according to a general method for manufacturing an immersion nozzle including the following steps.
1. Mixing step: For example, primary particles of flat alumina having a purity of 98% by mass or more are mixed with an appropriate amount of an inorganic binder, and uniformly mixed using a mixing apparatus that applies as little shearing force as possible.
In this mixing, it is preferable that an inorganic binder is gradually added to the weighed primary particle powder to uniformly disperse the inorganic binder around the primary particles without segregation.
As the inorganic binder, an alumina sol or the like that remains with Al 2 O 3 as a main component after heating at about 1000 ° C. or higher is preferable.
Also, in this step, the type and amount of the inorganic binder are adjusted so that the components excluding carbon in the secondary particles produced in the following granulation step are 98% by mass or more of Al 2 O 3. Add.
2. Granulation step: The mixture obtained in the blending step is kneaded with a kneading apparatus having a granulation function such as rotating and flowing, and the mixture is granulated into particles, that is, an aggregate of primary particles. Some secondary particles are formed.
In this granulation step, it is preferable to adjust the secondary porosity so that the apparent porosity according to the method of JIS R2205 is 40% or more and 80% or less. This is because the above-mentioned structure inside the secondary particles can be maintained without collapsing even after a pressure treatment such as CIP molding. The range of the apparent porosity of the secondary particles can be appropriately adjusted according to the pressure during CIP molding, the arrangement structure of the refractory of the present invention in the nozzle, and the like.
The apparent porosity of the secondary particles can be adjusted by adding the ratio of the primary particles to the inorganic binder or adding a solvent that dissolves the inorganic binder by heat treatment such as water, and the flow velocity in the mixing device and kneading device. Or by changing / adjusting the flow form (stirring method).
3. Classification step: The granulated product obtained in the granulation step is classified into a plurality of secondary particles (secondary particle group) having a length of more than 0.05 mm and 2 mm or less. As a specific means, for example, sieving may be performed, and the granulated product is sieved with a 2 mm sieve, and the bottom of the sieve is collected, and the collected material is sieved with a 0.05 mm sieve. By collecting the top, secondary particles having a size of more than 0.05 mm and 2 mm or less can be obtained.
4). Forming step for forming earth: The secondary particle group obtained in the classification step is used as a raw material of Al 2 O 3 component, and further, a raw material of SiC component, a raw material of free carbon (particulate carbon Mix with substrate material, eg graphite. Moreover, you may add the other raw material which does not inhibit the effect of the subject solution of this invention as needed.
Part or all of SiC is converted into the mass when SiO 2 having a maximum particle size of about 10 μm or less, or metal Si or the like is converted into SiC, and 1 in the refractory after reduction firing at 1500 ° C. for 3 hours. You may add so that it may become content of 10 mass% or less of the mass%.
SiO 2 with a maximum particle size of 10 μm or less is reduced by carbon materials such as graphite or carbon derived from binders in the refractory, and the reaction of SiO 2 + 3C = SiC + 2CO proceeds to produce secondary SiC that is a stable condensed phase. Therefore, there is no problem because SiO 2 having a small particle diameter is blended with the raw material in this way because almost no single compound SiO 2 remains in the refractory after reduction firing at 1500 ° C. for 3 hours. Similarly, metal Si reacts with carbon derived from a carbon raw material such as graphite or carbon derived from a binder in a refractory material to generate secondary SiC which is a stable condensed phase.
Then, an organic binder such as phenol resin or pitch, which can form a carbon bond after heat treatment, is added to these blends and kneaded to obtain a molding clay.
Further, in this step, the secondary particles are present in the molding soil in a proportion of 55% by mass or more and 90% by mass or less in the refractory after heat treatment in a non-oxidizing atmosphere at 1500 ° C. for 3 hours. Formulate as follows.
5. CIP molding process: Fills the space in the mold for CIP molding with the organic partition plate used as the gas passage path and the soil to be the main body from the soil obtained by the molding soil generation process. And press-mold.
The conditions such as the molding pressure can be optimally set according to the individual conditions in order to obtain the shape and structure of the immersion nozzle, the physical properties required of the set refractory layer or molded body, and the like.
6). Firing step: The molded body obtained by the CIP molding step is subjected to a predetermined heat treatment (firing treatment) at a temperature of 800 ° C. to 1200 ° C., for example, and then the gas introduction hole and its joining structure are installed, and surface grinding is performed.・ Processing such as application of antioxidants.

本発明の耐火物を通気用耐火物層として浸漬ノズルの内孔に配設する場合について,図8〜図10を用いて以下に述べる。
本発明の耐火物である当該通気用耐火物13層と,その背後の浸漬ノズル本体耐火物との間には,ガス供給設備(図示せず)に連通するためのガス導入孔16に連通している,ガスが通過することのできる空間(ガス通過経路14)を配設する。ガスはこの空間から本発明の耐火物13層に供給され,この層を通過して浸漬ノズルの内孔面から溶鋼中に吐出する。また,ガス通過経路14の外側におけるパウダーと接触する部位には,ジルコニア−黒鉛質耐火物15が配設される。
この層としての配設領域を決定するために考慮すべき要素の一つとして,浸漬ノズルの溶鋼と接触する面への溶鋼由来のアルミナ等介在物付着防止がある。
このような前記介在物の付着状況や程度は,個別の操業設備の仕様,鋳造対象の溶鋼種類,操業方法等に依存するので,本発明の通気用耐火物13を浸漬ノズルに配設する領域や方法については,各々の操業等の条件や状況に応じた適正化が必要である。
The case where the refractory according to the present invention is disposed in the inner hole of the immersion nozzle as a refractory layer for ventilation will be described below with reference to FIGS.
A gas introduction hole 16 for communicating with a gas supply facility (not shown) communicates between the 13 layers of the refractory material for ventilation which is the refractory material of the present invention and the refractory material of the immersion nozzle body behind the refractory material. A space (gas passage 14) through which gas can pass is disposed. The gas is supplied from this space to the refractory 13 layer of the present invention, passes through this layer, and is discharged from the inner hole surface of the immersion nozzle into the molten steel. Further, a zirconia-graphite refractory 15 is disposed at a site in contact with the powder outside the gas passage 14.
One of the factors to be considered in determining the arrangement area as this layer is prevention of inclusions such as alumina derived from molten steel on the surface of the immersion nozzle in contact with the molten steel.
Since the state and degree of such inclusions attached depend on the specifications of the individual operating equipment, the type of molten steel to be cast, the operating method, etc., the region where the ventilated refractory 13 of the present invention is disposed in the immersion nozzle. The methods and methods need to be optimized according to the conditions and circumstances of each operation.

本発明の耐火物13は,連続鋳造用浸漬ノズルの溶鋼と接触する面の少なくとも一部に層として配設する。さらにこの配設する領域は,連続鋳造用浸漬ノズルの内孔側の直胴部壁面の一部若しくは全部,又は吐出孔23内壁面の一部若しくは全部のいずれか1以上を含む領域とすることができる。
すなわち,介在物が付着し易い領域に本発明の通気用耐火物13を配設することが必要である場合,個別の付着状況に応じて本発明の耐火物13を最適な領域に設定することができる。
なお前記各領域に加え,底部(吐出孔周囲22,等)に配設してもよい。この場合,吐出孔横の柱部21を設けてもよい。
The refractory 13 of the present invention is disposed as a layer on at least a part of the surface of the continuous casting immersion nozzle that contacts the molten steel. Further, the region to be disposed is a region including one or more of the wall surface of the straight barrel part on the inner hole side of the immersion nozzle for continuous casting, or part or all of the inner wall surface of the discharge hole 23. Can do.
That is, when it is necessary to dispose the ventilation refractory 13 of the present invention in an area where inclusions are likely to adhere, the refractory 13 of the present invention is set to an optimum area according to the individual adhesion situation. Can do.
In addition to the above-described regions, they may be disposed at the bottom (the discharge hole periphery 22, etc.). In this case, the column part 21 beside the discharge hole may be provided.

一般的なメニスカスから浸漬ノズルの下方の領域の配設対象部分の縦方向長さが約100mm以上であるので,ほぼ直線であるこの縦方向の長さに対しては,本発明の通気用耐火物の強度等を考慮すると,このような場合には層の厚さが5mm未満になるとこの層自体に亀裂や剥離等を生じ易くなる。
一方,ガス導入孔からのガスの通過経路が長くなるのに伴い,その位置からのガスの流出量が漸減する傾向がある。特に一般的な浸漬ノズル内孔直胴部長さ約400mm以上の場合には,通気用耐火物層の厚さが15mmを超えるとこの傾向が顕著になる。
したがって,本発明の通気用耐火物の配設厚さは5mm以上15mm以下の層として配設することが好ましい(図8〜10参照)。
Since the vertical length of the portion to be arranged in the region below the submerged nozzle from the general meniscus is about 100 mm or more, the vertical fire length of the present invention is not necessary for this vertical length. Considering the strength of the object, in such a case, if the thickness of the layer is less than 5 mm, the layer itself tends to crack or peel off.
On the other hand, as the gas passage from the gas introduction hole becomes longer, the amount of gas flowing out from that position tends to decrease gradually. In particular, when the length of a general immersion nozzle inner hole straight body portion is about 400 mm or more, this tendency becomes remarkable when the thickness of the refractory layer for ventilation exceeds 15 mm.
Therefore, it is preferable to arrange the ventilation refractory according to the present invention as a layer having a thickness of 5 mm or more and 15 mm or less (see FIGS. 8 to 10).

次に,本発明の耐火物及び連続鋳造用ノズルを,実施例を挙げて説明する。   Next, the refractory and continuous casting nozzle of the present invention will be described with reference to examples.

[実施例A]
実施例Aは,一次粒子及びその無機質結合材の化学成分が本発明の耐火物に及ぼす影響を調査した例である。
偏平状(板状)の一次粒子としては,日本軽金属(株)社製の「A21」を用いた。この一次粒子はAl純度が98質量%以上のコランダムからなり,粒子の大きさはレーザー回折式による測定値でほぼ1μm〜262μmの範囲,平均値が約80μmであり(図3の粒度分布図参照),アスペクト比が5以上50以下である。
偏平状のアルミナ粒子のAl純度自体を調整することは困難なので,ここでは本発明の偏平状のアルミナ粒子にβ−Alを併用することで,耐火物としてのAl含有量を調整した。偏平状のアルミナ粒子は,選別により,相対的に高純度(99質量%)品と通常品(98質量%)とを試験に供した。
この一次粒子をアルミナゾルを無機質結合材として用いて,前記製造方法に準じて作製した。これを110℃で乾燥して水分を除去した後,下記実施例各々に応じた所定の篩いで分級して二次粒子を得た。前記の二次粒子に,下記実施例各々に応じた所定のシリカ粉末,金属シリコン粉末等の原料粒子並びに鱗状黒鉛,カーボンブラック等の炭素質原料を混和し,その混和物に熱処理後に炭素結合を形成するフェノール樹脂を添加しながら混練して成形用のはい土を得た。
このはい土を鋳造用ノズルの成形に一般的に用いられるCIPにより,外径φ150mm内径φ50mm×高さ300mmの円筒状に成形し,乾燥処理及び最高温度約1000℃の窒素雰囲気中にて熱処理(焼成処理)を行って試料を得た。
[Example A]
Example A is an example in which the influence of the primary particles and the chemical components of the inorganic binder on the refractory of the present invention was investigated.
As the flat (plate-like) primary particles, “A21” manufactured by Nippon Light Metal Co., Ltd. was used. The primary particles are made of corundum having an Al 2 O 3 purity of 98% by mass or more, and the particle size is measured by a laser diffraction method in the range of about 1 μm to 262 μm, and the average value is about 80 μm (the particle size shown in FIG. 3). The aspect ratio is 5 or more and 50 or less.
Since it is difficult to adjust the Al 2 O 3 purity itself of flat alumina particles, wherein the By combining the β-Al 2 O 3 in the flat alumina particles of the present invention, Al 2 O as a refractory 3 content was adjusted. The flat alumina particles were subjected to a test with a relatively high purity (99% by mass) product and a normal product (98% by mass) by sorting.
The primary particles were produced according to the above production method using alumina sol as an inorganic binder. This was dried at 110 ° C. to remove moisture, and then classified with a predetermined sieve according to each of the following examples to obtain secondary particles. The above-mentioned secondary particles are mixed with raw material particles such as silica powder and metal silicon powder according to each of the following examples, and carbonaceous raw materials such as scaly graphite and carbon black, and carbon bonds are bonded to the mixture after heat treatment. While adding the phenol resin to be formed, kneading was performed to obtain a molding earth.
This soil is formed into a cylindrical shape with an outer diameter of 150 mm, an inner diameter of 50 mm, and a height of 300 mm by CIP generally used for forming a casting nozzle, and is subjected to drying treatment and heat treatment in a nitrogen atmosphere having a maximum temperature of about 1000 ° C. A sample was obtained by performing a baking treatment.

各例についての本発明の効果は,通気特性変化率,発生応力,耐摩耗性,耐食性について,従来技術による代表的な耐火物との相対的な評価を行った。
具体的には,通気特性変化率は本発明の主たる課題に関する項目であり,背圧の低下現象の程度を示す。本発明の耐火物は,通気特性変化率は従来技術による耐火物と比較して相対的に顕著に優れる必要がある。
通気特性変化率に関し良好な結果を得ても,操業に供することができる条件としては,破壊,摩耗,浸食に対する各抵抗性が,従来技術による耐火物が現に使用されていることから,従来技術による耐火物と比較して相対的に同等又は優れることを基準とした。これらの評価に関しては,従来技術同等程度の特性が認められるものの例を本発明の効果を認める耐火物(合格例)とした。
効果を判断するための基準とする比較例は,いずれも従来技術による耐火物で定常的に操業に供されているものを選択した。通気特性変化率及び破壊,摩耗に対する抵抗性に関しては,非晶質シリカ(溶融シリカ)を10質量%含む表1に示す比較例1とした。浸食に対する抵抗性に関しては非晶質シリカ(溶融シリカ)を19質量%含む表1に示す比較例2とした。
The effects of the present invention for each example were evaluated relative to the typical refractories according to the prior art with respect to the rate of change in ventilation characteristics, the generated stress, the wear resistance, and the corrosion resistance.
Specifically, the rate of change in ventilation characteristics is an item relating to the main problem of the present invention, and indicates the degree of the back pressure reduction phenomenon. The refractory according to the present invention is required to have a remarkably superior ventilation characteristic change rate as compared with the refractory according to the prior art.
Even if good results are obtained regarding the rate of change in ventilation characteristics, the conditions that can be used for operation are resistance to destruction, wear, and erosion. Based on the relative or better than the refractory by. With respect to these evaluations, an example in which characteristics comparable to those of the prior art were recognized was used as a refractory (accepted example) that recognized the effect of the present invention.
The comparative examples used as criteria for judging the effects were all selected from refractories according to the prior art that are regularly operated. With respect to the rate of change in air permeability and resistance to breakage and abrasion, Comparative Example 1 shown in Table 1 containing 10% by mass of amorphous silica (fused silica) was used. Regarding resistance to erosion, Comparative Example 2 shown in Table 1 containing 19% by mass of amorphous silica (fused silica) was used.

これらの評価方法と基準は次の通りである。
通気特性変化率は,耐火物の熱間でのガス背圧の変化を測定するための特開2010−112945で開示されている試験方法であり,概説すると,次の1〜4のステップを含む方法である。1.上下端が閉じられ,内部に中空部を有する管状の試料体の管壁の一部に実施例又は比較例の耐火物を配置し,2.この耐火物を溶融金属浴に浸漬し,3.溶融金属浴の温度(1500℃)を高周波加熱によって制御しつつ,試料体の中空部にガスを導入し,4.当該試料体の管壁に配置した耐火物の外周面から溶融金属浴中にガスを吹き出させる。
通気特性変化率は,ガス流量を一定にした状態での最大背圧から最小背圧を引いた数値をガス流通(試験)時間(3時間)で除した単位時間当りの背圧変化率の値とする。この変化率が小さい程鋳造時の背圧低下が起こり難く,通気安定性に優れていることを示す。この通気特性変化率は比較例1の通気特性変化率を100とする指数で評価し,これよりも顕著に変化率が低下する例につき,本発明の効果が認められる例とした。
破壊に対する抵抗性に関しては,発生応力の相対的な値,具体的には当該耐火物を非酸化雰囲気の拘束条件下で室温から1500℃まで昇温する間の最大発生応力値を相対的に評価した。
この最大発生応力値の測定方法は次の通りである。
当該耐火物を直径30mm×高さ30mmの円柱状に成形又は切り出して測定用の試料とし,その試料上下の平面にカーボン板を置き,そのカーボン板に応力測定装置に連通したカーボンロッドで0.2MPaの荷重を印加する。この状態で,N2ガス雰囲気中5℃/分の昇温速度で室温から1500℃まで昇温する際に発生する最大応力値を測定する。
この測定方法による比較例1の最大発生応力値が18MPaであって,この最大発生応力値が18MPa以下である例につき,本発明の耐火物の合格範囲とした。
摩耗に対する抵抗性である耐摩耗性は,高周波誘導炉内で溶解した銑鉄(1500℃)内に50×80×25mmのサンプルを浸漬して熱負荷を与えた後BS法による摩耗試験を行い,その損耗量の測定値を相対的に評価した。
比較例1のこの損耗量を指数100とし,<98(98は比較例2の指数):◎(改善効果あり),98〜100:○(従来技術と同等),>100:×(従来技術より劣る)として評価した。
浸食に対する抵抗性である耐食性は,高周波誘導炉内で浸食材としてFeOスラグを添加(溶鋼に対して2%)して1550℃に溶解した状態の溶鋼に,□20mmの角柱状サンプルを1時間浸漬した後の最大溶損寸法を計測した。比較例2のこの最大溶損寸法を100とし,<86(86は比較例1の指数):◎(改善効果あり),86〜100:○(従来技術と同等),>100:×(従来技術より劣る)として評価した。
総合評価として,通気特性変化率の改善効果が顕著であり,最大発生応力値,耐摩耗性,耐食性の全てが前記基準に対し同等以上の特性を示す例を,本発明の効果を認める耐火物(合格例)とした。
なお,偏平状(板状)の一次粒子その他の各原料,試料の作製方法,評価方法等は,以下の実施例B〜Hにおいても同様である。
These evaluation methods and criteria are as follows.
The rate of change in aeration characteristics is a test method disclosed in Japanese Patent Application Laid-Open No. 2010-112945 for measuring a change in gas back pressure between refractories during heat. In summary, the following steps 1 to 4 are included. Is the method. 1. 1. Place the refractory of the example or comparative example on a part of the tube wall of the tubular sample body whose upper and lower ends are closed and have a hollow portion inside; 2. immerse this refractory in a molten metal bath; 3. Gas is introduced into the hollow part of the sample body while controlling the temperature (1500 ° C) of the molten metal bath by high frequency heating. Gas is blown into the molten metal bath from the outer peripheral surface of the refractory disposed on the tube wall of the sample body.
The rate of change in ventilation characteristics is the value of the rate of change of back pressure per unit time obtained by dividing the value obtained by subtracting the minimum back pressure from the maximum back pressure with the gas flow rate constant, by the gas flow (test) time (3 hours). And The smaller the rate of change, the less the back pressure is reduced during casting and the better the airflow stability. This rate of change in ventilation characteristics was evaluated by an index where the rate of change in ventilation characteristics of Comparative Example 1 was set to 100, and an example in which the effect of the present invention was observed was an example in which the rate of change was significantly lower than this.
Regarding resistance to fracture, relative values of the generated stress, specifically, the maximum generated stress value during the temperature rise of the refractory from room temperature to 1500 ° C under the restraint condition of non-oxidizing atmosphere, are relatively evaluated. did.
The method for measuring the maximum generated stress value is as follows.
The refractory is formed or cut into a cylindrical shape having a diameter of 30 mm and a height of 30 mm to obtain a measurement sample. A carbon plate is placed on the upper and lower surfaces of the sample, and a carbon rod connected to a stress measuring device is placed on the carbon plate with a thickness of 0. A load of 2 MPa is applied. In this state, the maximum stress value generated when the temperature is raised from room temperature to 1500 ° C. at a rate of temperature rise of 5 ° C./min in an N 2 gas atmosphere is measured.
An example in which the maximum generated stress value of Comparative Example 1 by this measuring method is 18 MPa and the maximum generated stress value is 18 MPa or less was set as the acceptable range of the refractory of the present invention.
Wear resistance, which is the resistance to abrasion, is determined by immersing a 50 x 80 x 25 mm sample in pig iron (1500 ° C) melted in a high-frequency induction furnace and applying a thermal load, and then performing a wear test by the BS method. The measured value of the amount of wear was relatively evaluated.
The amount of wear in Comparative Example 1 is taken as an index of 100, <98 (98 is an index of Comparative Example 2): ◎ (with improvement effect), 98 to 100: ◯ (equivalent to conventional technology),> 100: × (conventional technology) It was evaluated as inferior).
Corrosion resistance, which is resistance to erosion, is the addition of FeO slag as an erosion material in a high-frequency induction furnace (2% with respect to molten steel) and molten steel at 1550 ° C. The maximum erosion dimension after immersion was measured. The maximum erosion dimension of Comparative Example 2 is set to 100, <86 (86 is an index of Comparative Example 1): ◎ (there is an improvement effect), 86 to 100: ○ (equivalent to the prior art),> 100: × (conventional Inferior to technology).
As a comprehensive evaluation, the refractory that recognizes the effect of the present invention is an example in which the improvement effect of the rate of change in ventilation characteristics is remarkable and the maximum generated stress value, wear resistance, and corrosion resistance all exhibit the same or better characteristics than the above standards. (Passed example).
The flat (plate-like) primary particles and other raw materials, the method for preparing the sample, the evaluation method, and the like are the same in the following Examples B to H.

本実施例Aの詳細を表1に示す。
Details of Example A are shown in Table 1.

なお,表1中の「二次粒子」における「Al(質量%)」の表記は,二次粒子の炭素を除く成分中におけるAlの割合を示す。以下,表2〜8まで同様である。 In addition, the notation of “Al 2 O 3 (mass%)” in “secondary particles” in Table 1 indicates the proportion of Al 2 O 3 in the components excluding carbon of the secondary particles. Hereinafter, the same applies to Tables 2-8.

この結果から,偏平状の粒子である一次粒子とその無機質結合材の合計Al純度が98質量%以上であって溶融シリカを含まない実施例1,実施例2ではいずれも,通気特性変化率が溶融シリカを含む従来技術の比較例1,比較例2に対し,顕著に低い値を得ることができ,最大発生応力値,耐摩耗性,耐食性の全てが前記基準に対し改善することがわかる。一次粒子とその無機質結合材の合計Al純度が96質量%の場合である比較例4は,通気特性変化率は比較例1よりも顕著に低くなるものの実施例1,実施例2よりはやや高くなり,耐食性が比較例より低下することがわかる。したがって,偏平状の粒子である一次粒子とその無機質結合材の合計Al純度は98質量%以上であることが必要である。
これらに対し,緻密質の非偏平状単粒子を使用した比較例3はAl純度が98質量%であっても,耐摩耗性が比較例1及び比較例2よりも劣る結果となり,さらには発生応力が増大した。なお比較例3の通気特性変化率は測定しないこととした。
From this result, the total Al 2 O 3 purity of primary particles which are flat particles and the inorganic binder thereof is 98% by mass or more, and in both Examples 1 and 2 which do not contain fused silica, the air permeability characteristics The rate of change is significantly lower than that of the comparative examples 1 and 2 of the prior art including fused silica, and the maximum stress value, wear resistance, and corrosion resistance are all improved with respect to the above standards. I understand. In Comparative Example 4 where the total Al 2 O 3 purity of the primary particles and the inorganic binder is 96% by mass, the rate of change in air permeability characteristics is significantly lower than that in Comparative Example 1, but from Examples 1 and 2. It can be seen that the corrosion resistance is lower than that of the comparative example. Therefore, the total Al 2 O 3 purity of the primary particles which are flat particles and the inorganic binder thereof needs to be 98% by mass or more.
On the other hand, Comparative Example 3 using dense non-flat single particles resulted in inferior wear resistance to Comparative Example 1 and Comparative Example 2 even though the Al 2 O 3 purity was 98% by mass, Furthermore, the generated stress increased. It should be noted that the rate of change in ventilation characteristics of Comparative Example 3 was not measured.

[実施例B]
実施例Bは,偏平状のアルミナ粒子のアスペクト比の効果を調査した例である。
[Example B]
Example B is an example in which the effect of the aspect ratio of flat alumina particles was investigated.

表2に詳細を示す。
Details are shown in Table 2.

この結果から,アスペクト比が5以上50以下の場合である実施例3〜実施例6では通気特性変化率が,比較例1に対し19〜35と顕著に低下していること,及び,発生応力値も比較例1より小さく,他の評価項目も全て「◎」又は「○」であることがわかる。
これに対しアスペクト比が5未満(≦4)の場合の比較例5では,発生応力が比較例1よりも大きくなっており,応力緩和能が十分でないことがわかる。また,アスペクト比が50を超える比較例6の場合は,耐摩耗性や耐食性が低下することがわかる。これは粗な組織になったことが原因と考えられる。また,アスペクト比が50を超える場合は,二次粒子の均一性が得にくくなった虞もある。なお比較例5,比較例6の通気特性変化率は測定しないこととした。
From these results, in Examples 3 to 6 in which the aspect ratio is 5 or more and 50 or less, the change rate of the airflow characteristics is remarkably reduced to 19 to 35 with respect to Comparative Example 1, and the generated stress. It can be seen that the value is smaller than that of Comparative Example 1 and all other evaluation items are “◎” or “又 は”.
On the other hand, in Comparative Example 5 in which the aspect ratio is less than 5 (≦ 4), the generated stress is larger than that in Comparative Example 1, and it can be seen that the stress relaxation ability is not sufficient. Moreover, in the case of the comparative example 6 with an aspect ratio exceeding 50, it turns out that abrasion resistance and corrosion resistance fall. This is thought to be due to the rough structure. Moreover, when the aspect ratio exceeds 50, there is a possibility that it is difficult to obtain the uniformity of secondary particles. It should be noted that the rate of change in airflow characteristics of Comparative Examples 5 and 6 was not measured.

[実施例C]
実施例Cは,二次粒子の含有率の効果を調査した例である。
[Example C]
Example C is an example in which the effect of the secondary particle content was investigated.

表3に詳細を示す。
Table 3 shows details.

この結果から,二次粒子の含有率が55質量%以上90質量%以下である実施例7〜実施例11では通気特性変化率が,比較例1に対し21〜40と顕著に低下していること,及び,発生応力値も比較例1より小さく,他の評価項目も全て「◎」又は「○」であることがわかる。これに対し二次粒子の含有率が50質量%の比較例7の場合は,発生応力の緩和能が十分でなく,さらに耐摩耗性や耐食性が低下することがわかる。これは炭素成分の硬度が小さいことに起因する機械的な摩耗損耗,酸化や溶鋼内への溶出等による化学反応的な消失によるものと考えられる。
二次粒子の含有率が94質量%の比較例8の場合は,発生応力の緩和能が十分であるものの,耐摩耗性や耐食性が低下することがわかる。これは粗な組織になったことが原因と考えられる。
なお比較例7の通気特性変化率は測定しないこととした。
この二次粒子の最適な含有率55質量%以上90質量%以下であることに伴い,耐火物中での化学成分Alの含有割合は54質量%(55質量%に二次粒子のAlの含有割合(下限の98%)を乗じた値を小数点以下を四捨五入した値)以上90質量%以下(90質量%に二次粒子のAlの含有割合(上限の100%)を乗じた値を小数点以下を四捨五入した値)となる。さらに二次粒子の含有割合が少ない場合に,個別の操業条件等の要求に応じて耐食性や耐摩耗性の向上を図る目的で炭素基質材料,特に結合炭素以外の黒鉛等の粒子状炭素に替えて,非偏平状のアルミナ粒子を耐火物のマトリクス部分に含有させてもよい。実施例12はこの例であって,二次粒子の含有率が最低値55質量%以上の場合に黒鉛に替えて非偏平状のアルミナ粒子を耐火物のマトリクス部分に5質量%含有させた例である。この実施例12も通気特性変化率が比較例1に対し27と顕著に低下していると共に,他の評価項目も全て「◎」であることがわかる。
From this result, in Example 7 to Example 11 in which the content of secondary particles is 55% by mass or more and 90% by mass or less, the rate of change in air permeability is significantly reduced to 21 to 40 compared to Comparative Example 1. In addition, it can be seen that the generated stress value is also smaller than that of Comparative Example 1, and all the other evaluation items are “」 ”or“ ○ ”. On the other hand, in the case of Comparative Example 7 in which the content of secondary particles is 50% by mass, it is understood that the ability to relax the generated stress is not sufficient, and the wear resistance and corrosion resistance are further reduced. This is thought to be due to chemical wear and loss due to the low hardness of the carbon component, chemical reaction disappearance due to oxidation, elution into the molten steel, and the like.
In the case of Comparative Example 8 in which the content of secondary particles is 94% by mass, it is understood that although the ability to relax the generated stress is sufficient, the wear resistance and corrosion resistance are reduced. This is thought to be due to the rough structure.
Note that the rate of change in air permeability characteristics of Comparative Example 7 was not measured.
Along with the optimal content of the secondary particles being 55% by mass or more and 90% by mass or less, the content of the chemical component Al 2 O 3 in the refractory is 54% by mass (55% by mass of the secondary particles A value obtained by multiplying the content ratio of Al 2 O 3 (98% of the lower limit) rounded off the decimal point) to 90% by mass (90% by mass of the Al 2 O 3 content of the secondary particles (upper limit of 100 %) Is rounded off to the nearest decimal point). In addition, when the content of secondary particles is small, carbon substrate materials, especially particulate carbon such as graphite other than bonded carbon, are used for the purpose of improving corrosion resistance and wear resistance according to the requirements of individual operating conditions. Thus, non-flat alumina particles may be included in the matrix portion of the refractory. Example 12 is this example, and in the case where the content ratio of the secondary particles is 55% by mass or more, an example is obtained in which 5% by mass of non-flat alumina particles are contained in the matrix portion of the refractory instead of graphite. It is. It can be seen that in Example 12, the rate of change in air permeability characteristics was significantly reduced to 27 compared to Comparative Example 1, and all other evaluation items were “◎”.

[実施例D]
実施例Dは,二次粒子の大きさの効果を調査した例である。
[Example D]
Example D is an example in which the effect of secondary particle size was investigated.

表4に詳細を示す。
Table 4 shows details.

この結果から,二次粒子の大きさが0.05mm超2.0mm以下である実施例13〜実施例15では通気特性変化率が比較例1に対し21〜44と顕著に低下していること,及び,発生応力値も比較例1より小さく,他の評価項目も全て「◎」であることがわかる。
これに対し二次粒子の大きさが0.05mm以下である比較例9及び2.0mmを超える比較例10の場合は,発生応力の緩和能が十分でないことがわかる。また,二次粒子の大きさが2.0を超える比較例10の場合は,実施例14を100とする通気量のバラツキの程度を示す通気量R(通気量の最大値から最小値を差し引いた値。)の指数が111と拡大しており,成形時のはい土内の二次粒子の偏析による耐火物組織の均一性が低下したことが考えられる。
なお,比較例9,比較例10の通気特性変化率は測定しないこととした。
From these results, in Examples 13 to 15 in which the size of the secondary particles is more than 0.05 mm and not more than 2.0 mm, the change rate of the aeration characteristic is remarkably reduced to 21 to 44 compared to Comparative Example 1. , And the generated stress value is smaller than that of Comparative Example 1, and all other evaluation items are “項目”.
On the other hand, in the case of Comparative Example 9 where the size of the secondary particles is 0.05 mm or less and Comparative Example 10 exceeding 2.0 mm, it can be seen that the ability to relax the generated stress is not sufficient. Further, in the case of Comparative Example 10 in which the size of the secondary particles exceeds 2.0, the air flow rate R indicating the degree of variation in the air flow rate with Example 14 being 100 (subtract the minimum value from the maximum value of the air flow rate). It is considered that the uniformity of the refractory structure was lowered due to segregation of secondary particles in the soil during molding.
It should be noted that the rate of change in airflow characteristics of Comparative Example 9 and Comparative Example 10 was not measured.

次に示す[実施例E]から[実施例G]は,耐火物としての化学成分の効果を調査した例である。
これら成分は耐火物を窒素ガス雰囲気中1500℃熱処理した後の試料についての測定値である。
The following [Example E] to [Example G] are examples in which the effects of chemical components as refractories are investigated.
These components are measured values for the sample after heat treatment of the refractory at 1500 ° C. in a nitrogen gas atmosphere.

[実施例E]
実施例Eは,化学成分のうち炭素の効果を調査した例である。
[Example E]
Example E is an example of investigating the effect of carbon among chemical components.

表5に詳細を示す。
Table 5 shows the details.

この結果から,炭素が3質量%以上45質量%以下である実施例16〜実施例18では通気特性変化率が比較例1に対し19〜40と顕著に低下していると共に,他の評価項目も全て「◎」又は「○」であることがわかる。
炭素が3質量%未満(=2質量%)の比較例11は,発生応力が高くなることがわかる。これは相対的にアルミナ比率が高くなり熱膨張率および弾性率が高くなると共に,応力緩和能を担う黒鉛等が過少なために,応力緩和能が十分でないことが原因と考えられる。
また,炭素が45質量%を超える(=47質量%)の比較例12は,通気特性変化率は比較例1に対し47と顕著に低下しているが,耐摩耗性および耐食性が低下することがわかる。これは,炭素成分の硬度が小さいことに起因する機械的な摩耗損耗,酸化や溶鋼内への溶出等による化学反応的な消失によるものと考えられる。
なお,比較例11の通気特性変化率は測定しないこととした。
From these results, in Examples 16 to 18 in which the carbon content is 3% by mass or more and 45% by mass or less, the change rate of the aeration characteristic is significantly reduced to 19 to 40 with respect to Comparative Example 1, and other evaluation items Are all “わ か る” or “○”.
It can be seen that in Comparative Example 11 in which carbon is less than 3% by mass (= 2% by mass), the generated stress is high. This is thought to be due to the fact that the alumina ratio is relatively high, the thermal expansion coefficient and the elastic modulus are high, and the stress relaxation ability is not sufficient due to the lack of graphite and the like that bear the stress relaxation ability.
Further, in Comparative Example 12 in which the carbon content exceeds 45 mass% (= 47 mass%), the rate of change in air permeability characteristics is significantly reduced to 47 as compared with Comparative Example 1, but the wear resistance and corrosion resistance are reduced. I understand. This is considered to be due to chemical wear and loss due to the low hardness of the carbon component, chemical reaction disappearance due to oxidation and elution into the molten steel.
It should be noted that the rate of change in ventilation characteristics of Comparative Example 11 was not measured.

[実施例F]
実施例Fは,化学成分のうちSiCの効果を調査した例である。
[Example F]
Example F is an example in which the effect of SiC among the chemical components was investigated.

表6に詳細を示す。
Table 6 shows details.

この結果から,SiCが1.0質量%以上10.0質量%以下である実施例19〜実施例21のいずれも通気特性変化率については比較例1に対し19〜29と顕著に低下しており,及び,発生応力値も比較例1より小さく,他の評価項目も全て「◎」又は「○」であることがわかる。
これに対しSiCが0.5質量%である比較例13は,比較例1に対し通気特性変化率については18と顕著に低下しているものの,耐摩耗性が劣ることがわかる。またSiCが11.0質量%である比較例14は耐食性が劣ることがわかる。これは,SiCが1.0質量%未満では耐摩耗性向上効果得るのに十分なマトリクス内での分散状態を得られず,10.0質量%を超えるとその酸化や溶鋼等(溶鋼由来の非金属介在物を含む)による反応溶損等が進行するためと考えられる。
From these results, in Examples 19 to 21 where SiC is 1.0% by mass or more and 10.0% by mass or less, the rate of change in air permeability characteristics is significantly reduced to 19 to 29 compared to Comparative Example 1. In addition, it can be seen that the generated stress value is smaller than that of Comparative Example 1 and all other evaluation items are “◎” or “「 ”.
On the other hand, it can be seen that Comparative Example 13 with SiC of 0.5 mass% is inferior in wear resistance, although the rate of change in the air permeability characteristics is remarkably reduced to 18 with respect to Comparative Example 1. Moreover, it turns out that the comparative example 14 whose SiC is 11.0 mass% is inferior in corrosion resistance. This is because when SiC is less than 1.0% by mass, it is impossible to obtain a dispersion state in the matrix sufficient to obtain an effect of improving wear resistance, and when it exceeds 10.0% by mass, its oxidation, molten steel, etc. This is considered to be due to the progress of reaction melting loss due to the inclusion of non-metallic inclusions.

[実施例G]
実施例Gは,化学成分のうち前記以外のその他成分,すなわち,アルカリ金属酸化物,アルカリ土類金属酸化物,溶融シリカを除くSiO,TiO及びその他製造上不可避の成分等の合計含有量の効果を調査した例である。
[Example G]
Example G is a total content of other chemical components other than those described above, that is, alkali metal oxides, alkaline earth metal oxides, SiO 2 excluding fused silica, TiO 2 and other components inevitable in production. It is the example which investigated the effect of.

表7に詳細を示す。
Table 7 shows the details.

この結果から,その他成分の合計含有量が0.5質量%以上2.0質量%以下である実施例22〜実施例25では通気特性変化率が比較例1に対し23〜40と顕著に低下していると共に,発生応力値も比較例1より小さく,他の評価項目も全て「◎」であることがわかる。
しかしその他成分の合計含有量が2.0質量%を超える(=2.5質量%)比較例15は,通気特性変化率,発生応力,耐摩耗性については比較例2に対しては改善又は同等の効果を示すものの,耐食性が大きく劣ることがわかる。これは,その他成分の合計含有量が2.0質量%を超えると,これら成分が耐火物組織内の他の成分と反応して低融物を生成して耐火物組織を軟化させて摩耗し易くする,炭素(特に結合炭素)を酸化させて耐火物組織を脆弱化する,溶鋼等(溶鋼由来の非金属介在物を含む)との反応溶損等を促進する等が原因と考えられる。
From these results, in Examples 22 to 25 in which the total content of other components is 0.5% by mass or more and 2.0% by mass or less, the change rate of air permeability characteristics is remarkably reduced to 23 to 40 compared to Comparative Example 1. In addition, it can be seen that the generated stress value is smaller than that of Comparative Example 1, and all other evaluation items are “◎”.
However, Comparative Example 15 in which the total content of other components exceeds 2.0% by mass (= 2.5% by mass) is improved with respect to Comparative Example 2 in terms of the change rate of air permeability characteristics, the generated stress, and the wear resistance. Although it shows the same effect, it can be seen that the corrosion resistance is greatly inferior. This is because, when the total content of other components exceeds 2.0% by mass, these components react with other components in the refractory structure to form a low melt and soften the refractory structure and wear. This is thought to be due to facilitating, oxidizing carbon (particularly bonded carbon) to weaken the refractory structure, and promoting reaction erosion with molten steel (including non-metallic inclusions derived from molten steel).

[実施例H]
実施例Hは,耐火物の気孔率の効果を調査した例である。この気孔率は,耐火物を窒素ガス雰囲気中1500℃で熱処理した後の試料についてのJISR2205の方法に準じた見掛け気孔率の測定値である。
なお,通気量は内径φ80mm,通気部面積500cmの試料に,圧力0.1MPaの空気を内部空間に負荷した場合の通気量を測定し,見掛け気孔率が40%である実施例 28の通気量を100とする指数で表記した。
[Example H]
Example H is an example in which the effect of the porosity of the refractory was investigated. This porosity is a measured value of the apparent porosity according to the method of JIS R2205 for a sample after heat-treating the refractory at 1500 ° C. in a nitrogen gas atmosphere.
Note that the ventilation rate when an air pressure of 0.1 MPa was applied to the internal space of a sample having an inner diameter of φ80 mm and a ventilation area of 500 cm 2 was measured and the apparent porosity was 40%. Expressed as an index with the amount as 100.

表8に詳細を示す。
Table 8 shows details.

この結果から,気孔率が30%未満の場合はやや通気量(指数)が低下する傾向があり,気孔率が50%を超える場合は通気量(指数)が大幅に増大することがわかる。
実施例26〜実施例30のいずれも粒子としてのシリカを含有しないことから,通気特性変化率の指数は18〜45と良好である。またこれら実施例のいずれの気孔率でも発生応力値も比較例1より小さく,耐摩耗性,耐食性は全て「◎」又は「○」であることがわかる。
しかし本実施例の場合は,気孔率が小さくなるに伴い通気量が小さくなる傾向が認められる。また気孔率が小さくなるに伴い発生応力が大きくなる傾向が認められ,気孔率が大きくなるに伴い耐摩耗性や耐食性が低下する傾向が認められる。通気量,発生応力値,耐摩耗性,耐食性は気孔率以外の制御手段も採用することができるので気孔率は絶対的な要件とはならないものの,30%以上50%未満を好ましい範囲としてもよい。
From this result, it can be seen that when the porosity is less than 30%, the air flow rate (index) tends to decrease slightly, and when the porosity exceeds 50%, the air flow rate (index) increases significantly.
Since all of Examples 26 to 30 do not contain silica as particles, the index of the change rate of air permeability characteristics is as good as 18 to 45. Further, the generated stress value is smaller than that of Comparative Example 1 in any of the porosity of these examples, and it can be seen that the wear resistance and the corrosion resistance are all “◎” or “○”.
However, in the case of the present example, it is recognized that the air flow rate tends to decrease as the porosity decreases. In addition, the generated stress tends to increase with decreasing porosity, and the wear resistance and corrosion resistance tend to decrease with increasing porosity. The air flow rate, generated stress value, wear resistance, and corrosion resistance can be controlled by means other than the porosity, so the porosity is not an absolute requirement, but it may be 30% or more and less than 50%. .

a 長さ
a´ 幅
b 厚さ
1 一次粒子(偏平状のアルミナ)
2 二次粒子
3 二次粒子内の空間
4 二次粒子の外部,すなわち炭素質,SiC,その他成分からなる,耐火物のマト リックス部
5 SiC
6 供試体
7 カーボンスペーサー
8 カーボンブロック
9 加圧ロッド
10 発熱体
11 保護壁
12 クロスヘッド
13 本発明の耐火物(通気性耐火物)
14 ガス通過経路(等圧帯)
15 ジルコニア−黒鉛質耐火物(パウダー部用耐火物)
16 ガス導入孔
21 吐出孔横の柱部
22 吐出孔周囲
23 吐出孔
a Length a 'Width b Thickness 1 Primary particle (flat alumina)
2 Secondary particle 3 Space in secondary particle 4 Matrix part of refractory consisting of carbonaceous, SiC, and other components outside secondary particle, 5 SiC
6 Specimen 7 Carbon Spacer 8 Carbon Block 9 Pressure Rod 10 Heating Element 11 Protective Wall 12 Crosshead 13 Refractory of the Present Invention (Breathable Refractory)
14 Gas passage (isobaric zone)
15 Zirconia-graphite refractory (refractory for powder part)
16 Gas introduction hole 21 Column next to discharge hole 22 Around discharge hole 23 Discharge hole

Claims (5)

アスペクト比が5以上50以下の偏平状のアルミナ粒子を一次粒子とし,前記一次粒子複数個を無機質結合材により集合させて形成した,長さが0.05mm超2mm以下の二次粒子を含有する耐火物であって,
前記耐火物は,1500℃非酸化雰囲気中で3時間熱処理した後において,
前記二次粒子が55質量%以上90質量%以下含有され,
前記二次粒子内の炭素を除く成分は,Alが98質量%以上であり,
化学成分として,フリーの炭素を3質量%以上45質量%以下,SiCを1質量%以上10質量%以下含有し,単一化合物のSiO,アルカリ金属酸化物,アルカリ土類金属酸化物,TiO,及び,その他製造上不可避の成分の合計含有量が2質量%以下であることを特徴とする,耐火物。
Flat particles having an aspect ratio of 5 or more and 50 or less are used as primary particles, and secondary particles having a length of more than 0.05 mm and 2 mm or less are formed by assembling a plurality of the primary particles with an inorganic binder. Refractory,
After the refractory was heat treated in a non-oxidizing atmosphere at 1500 ° C. for 3 hours,
The secondary particles are contained in an amount of 55% by weight to 90% by weight,
The component excluding carbon in the secondary particles is 98% by mass or more of Al 2 O 3 ,
As chemical components, free carbon is contained in an amount of 3% by mass to 45% by mass, SiC is contained in an amount of 1% by mass to 10% by mass, and a single compound SiO 2 , alkali metal oxide, alkaline earth metal oxide, TiO 2 and a total content of other components inevitable in production is 2% by mass or less.
耐火物を非酸化雰囲気1500℃中3時間熱処理した後の見掛け気孔率が30%以上50%以下,耐火物を非酸化雰囲気の拘束条件下で室温から1500℃まで5℃/分で昇温する間の最大発生応力値が18MPa以下であることを特徴とする,請求項1に記載の耐火物。   The apparent porosity after heat-treating the refractory in a non-oxidizing atmosphere at 1500 ° C. for 3 hours is 30% or more and 50% or less, and the refractory is heated from room temperature to 1500 ° C. at 5 ° C./min. The refractory according to claim 1, wherein the maximum generated stress value is 18 MPa or less. 非酸化雰囲気1500℃中で3時間熱処理した後の化学成分として,Alを54質量%以上90質量%以下,フリーの炭素を3質量%以上45質量%以下,SiCを1質量%以上10質量%以下含有し,単一化合物のSiO,アルカリ金属酸化物,アルカリ土類金属酸化物,TiO,及び,その他製造上不可避の成分の合計含有量が2質量%以下である耐火物の製造方法であって,
偏平状のアルミナの一次粒子の粉体に無機質結合材を加えて混和する混和工程と,
得られた混和物を混練し,一次粒子の集合体である二次粒子の造粒物を形成させる造粒工程と,
得られた造粒物を分級して,長さが0.05mm超2mm以下の複数の二次粒子とする分級工程と,
得られた複数の二次粒子をAl成分となる配合原料とし,SiC成分となる配合原料,及び,フリーの炭素となる配合原料と共に,結合材を添加して混練し,成形用のはい土を得る成形用はい土の生成工程と,
前記はい土をCIP成形するCIP成形工程と,
得られた成形物を焼成する焼成工程を有し,
前記混和工程では,前記造粒工程で生成される二次粒子の炭素を除く成分が,Al98質量%以上となるように,前記無機質結合材を加え,
前記成形用はい土の生成工程では,成形用のはい土中に,前記複数の二次粒子を55質量%以上90質量%以下の割合で存在するように配合することを特徴とする耐火物の製造方法。
As chemical components after heat treatment in a non-oxidizing atmosphere at 1500 ° C. for 3 hours, Al 2 O 3 is 54 mass% to 90 mass%, free carbon is 3 mass% to 45 mass%, and SiC is 1 mass% or more. Refractory containing 10% by mass or less and having a total content of SiO 2 , alkali metal oxides, alkaline earth metal oxides, TiO 2 , and other components inevitable in production, of 2% by mass or less. A manufacturing method of
A mixing step of adding an inorganic binder to the powder of primary particles of flat alumina and mixing;
A granulation step of kneading the obtained admixture to form a granulated product of secondary particles that is an aggregate of primary particles;
Classifying the obtained granulated product into a plurality of secondary particles having a length of more than 0.05 mm and 2 mm or less;
The obtained secondary particles are used as a raw material to be Al 2 O 3 component, and a raw material to be SiC component and a raw material to be free carbon are added and kneaded to form a binder. Yes, the production process of forming soil for obtaining soil,
A CIP molding step of CIP molding the soil;
Having a firing step of firing the resulting molded product,
In the mixing step, the inorganic binder is added so that the component excluding carbon of the secondary particles generated in the granulation step is 98% by mass or more of Al 2 O 3 ,
In the step of producing the molding earth, the plurality of secondary particles are blended in the molding earth so as to be present in a proportion of 55% by mass or more and 90% by mass or less. Production method.
請求項1又は請求項2に記載の耐火物を溶鋼と接触する面の少なくとも一部の層として配設した連続鋳造用浸漬ノズルであって,前記耐火物層とその背後の連続鋳造用浸漬ノズル本体耐火物との間には,ガスが通過することのできる空間を配設しており,前記空間は連続鋳造用浸漬ノズル外部のガス供給設備と連通するためのガス導入孔に連通していることを特徴とする,連続鋳造用浸漬ノズル。   A continuous casting immersion nozzle in which the refractory according to claim 1 or 2 is disposed as at least a part of a layer in contact with molten steel, the refractory layer and a continuous casting immersion nozzle behind the refractory layer. A space through which gas can pass is arranged between the main body refractories, and the space communicates with a gas introduction hole for communicating with a gas supply facility outside the immersion nozzle for continuous casting. An immersion nozzle for continuous casting. 請求項1又は請求項2に記載の耐火物を配設した領域が,連続鋳造用浸漬ノズルの内孔側の直胴部壁面の一部若しくは全部,又は吐出孔内壁面の一部若しくは全部のいずれか1以上を含む領域であることを特徴とする,請求項4に記載の連続鋳造用浸漬ノズル。   The region where the refractory according to claim 1 or 2 is disposed is a part or all of the wall surface of the straight barrel portion on the inner hole side of the immersion nozzle for continuous casting, or a part or all of the inner wall surface of the discharge hole. The continuous casting immersion nozzle according to claim 4, which is a region including any one or more.
JP2013017011A 2013-01-31 2013-01-31 Refractory, refractory manufacturing method, and immersion nozzle for continuous casting Expired - Fee Related JP6021667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013017011A JP6021667B2 (en) 2013-01-31 2013-01-31 Refractory, refractory manufacturing method, and immersion nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017011A JP6021667B2 (en) 2013-01-31 2013-01-31 Refractory, refractory manufacturing method, and immersion nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JP2014148430A true JP2014148430A (en) 2014-08-21
JP6021667B2 JP6021667B2 (en) 2016-11-09

Family

ID=51571746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017011A Expired - Fee Related JP6021667B2 (en) 2013-01-31 2013-01-31 Refractory, refractory manufacturing method, and immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JP6021667B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117226083A (en) * 2023-11-14 2023-12-15 山西昊业新材料开发有限公司 Long nozzle for continuous casting and preparation method thereof
JP7451363B2 (en) 2020-09-16 2024-03-18 株式会社ノリタケカンパニーリミテド plaster for casting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223267A (en) * 1983-05-27 1984-12-15 ハリマセラミック株式会社 Nozzle refractories for molten metal vessel
JPH03243257A (en) * 1990-02-20 1991-10-30 Kurosaki Refract Co Ltd Submerged nozzle for continuous casting
JPH07206538A (en) * 1994-01-17 1995-08-08 Agency Of Ind Science & Technol High-strength porous member and its production
JPH0948675A (en) * 1995-08-04 1997-02-18 Kawasaki Refract Co Ltd Amorphous refractory for apraying
JPH10166114A (en) * 1996-12-10 1998-06-23 Kyushu Refract Co Ltd Nozzle for continuous casting to prevent adhesion of non-metallic inclusion
JP2008055452A (en) * 2006-08-30 2008-03-13 Kurosaki Harima Corp Hardly adherent nozzle for continuous casting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223267A (en) * 1983-05-27 1984-12-15 ハリマセラミック株式会社 Nozzle refractories for molten metal vessel
JPH03243257A (en) * 1990-02-20 1991-10-30 Kurosaki Refract Co Ltd Submerged nozzle for continuous casting
JPH07206538A (en) * 1994-01-17 1995-08-08 Agency Of Ind Science & Technol High-strength porous member and its production
JPH0948675A (en) * 1995-08-04 1997-02-18 Kawasaki Refract Co Ltd Amorphous refractory for apraying
JPH10166114A (en) * 1996-12-10 1998-06-23 Kyushu Refract Co Ltd Nozzle for continuous casting to prevent adhesion of non-metallic inclusion
JP2008055452A (en) * 2006-08-30 2008-03-13 Kurosaki Harima Corp Hardly adherent nozzle for continuous casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7451363B2 (en) 2020-09-16 2024-03-18 株式会社ノリタケカンパニーリミテド plaster for casting
CN117226083A (en) * 2023-11-14 2023-12-15 山西昊业新材料开发有限公司 Long nozzle for continuous casting and preparation method thereof
CN117226083B (en) * 2023-11-14 2024-01-26 山西昊业新材料开发有限公司 Long nozzle for continuous casting and preparation method thereof

Also Published As

Publication number Publication date
JP6021667B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6279068B2 (en) Steel casting refractories, sliding nozzle device plate, and method for producing steel casting refractories
JP6978404B2 (en) Refractory for steel casting and plates for sliding nozzle equipment
JP2015193511A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
WO2010013686A1 (en) Refractory for nozzle used in continuous casting and nozzle for continuous casting
JP6021667B2 (en) Refractory, refractory manufacturing method, and immersion nozzle for continuous casting
WO2015151599A1 (en) Castable refractory and casting nozzle and sliding nozzle plate using same
JP5166302B2 (en) Continuous casting nozzle
JP5192970B2 (en) Basic plate refractories for sliding nozzle devices
JP2017154146A (en) Refractory for casting, and plate for sliding nozzle device
JP2018075601A (en) Semi-immersion nozzle
JP5920412B2 (en) Continuous casting nozzle
JP3312373B2 (en) Long nozzle for continuous casting
US5911900A (en) Continuous casting nozzle for casting molten steel
JP5048928B2 (en) Breathable refractory material for continuous casting
JP3101650B2 (en) Nozzle for continuous casting
US5975382A (en) Continuous casting nozzle for casting molten steel
JP2959632B1 (en) Nozzle for continuous casting
JP3383185B2 (en) Nozzle for casting
JP4629461B2 (en) Continuous casting nozzle
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
JP3101651B2 (en) Nozzle for continuous casting
EP4074433A1 (en) Refractory material
JP3164342B2 (en) Nozzle for continuous casting
JP2010036229A (en) Nozzle for continuous casting
JP2004323260A (en) Nozzle material for continuous casting and nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees