JP5847381B2 - 体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す装置および方法 - Google Patents

体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す装置および方法 Download PDF

Info

Publication number
JP5847381B2
JP5847381B2 JP2009550206A JP2009550206A JP5847381B2 JP 5847381 B2 JP5847381 B2 JP 5847381B2 JP 2009550206 A JP2009550206 A JP 2009550206A JP 2009550206 A JP2009550206 A JP 2009550206A JP 5847381 B2 JP5847381 B2 JP 5847381B2
Authority
JP
Japan
Prior art keywords
component
oscillation circuit
plasma
vacuum chamber
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009550206A
Other languages
English (en)
Other versions
JP2010519693A (ja
Inventor
ラウレ・シュテファン
Original Assignee
ドクトル・ラウレ・プラスマテヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ドクトル・ラウレ・プラスマテヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング filed Critical ドクトル・ラウレ・プラスマテヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Publication of JP2010519693A publication Critical patent/JP2010519693A/ja
Application granted granted Critical
Publication of JP5847381B2 publication Critical patent/JP5847381B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す装置および方法に関する。
圧力、温度およびプラズマ組成のようなプラズマパラメータが適当に選択されている場合、構成部品の表面をプラズマに曝露することで、この表面の機能性および特性に意図的に作用を与え、それらを変化させることができる。従来技術では、任意の材料から成る表面を処理、改質またはコーティングする方法が公知であり、これらの方法では、プラズマの粒子流またはエネルギー流が利用される。これらの方法には、とりわけ、プラズマ溶射、アークプラズマ溶融、プラズマ熱処理法、プラズマCVD法およびプラズマクリーニングが含まれる。被加工物表面の機能性の変更は、プラズマ粒子を意図的に作用させることによって行われる。これは、特定の化学特性を有する粒子との相互作用によって、あるいはプラズマから発せられる放射の作用によって可能となる。構成部品にプラズマコーティングを施す方法では、コーティング材料が、エネルギーの供給によって蒸気状態または気体状態にされ、蒸気相または気相から構成部品上に析出される。
プラズマを生成するためには、プラズマトーチ、例えば、アークプラズマ発生器、高周波プラズマ発生器、マイクロ波プラズマ発生器などが用いられる。
上述の熱プラズマは、ある程度耐熱性に秀でた構成部品を加工することに適している。プラスチック製の構成部品の場合、または、最大100−200℃の温度にまでしか曝露することが許されていない、既に塗装された構成部品の場合、この種の方法は利用できない。
公知のプラズマ発生器を用いるプラズマ処理は、確かに小さな構成部品の場合には向いているが、大きな構成部品には適していない。プラズマは、非常に限られた範囲でしか生じず、構成部品全体にわたって形成されることはない。従って、大きな構成部品の表面全体をプラズマ処理するためには、プラズマジェットが構成部品全体に誘導されねばならない。これは、例えば車両の車体のような構成部品の場合、要する時間と費用とが増大することにつながる。
エネルギー密度が比較的小さな、希薄なプラズマを生成する場合にも、高周波発生器が用いられる。高周波発生器の周波数範囲は、数百キロヘルツから数十ギガヘルツの間である。プラズマは、電極の表面またはアンテナの表面に湧出するように生成され、空間へ広がっていく。コーティング材料は、スパッタリングによって、いわゆるスパッタリングターゲットから溶出されて、あるいは物理蒸着法(略称PVD法)の場合には気化されて、その後、構成部品面に析出する。短所として明らかになっていることは、プラズマの組成と温度とが、プラズマトーチからの間隔が増大するにつれて変化する点である。これにより、構成部品の表面全体に均一な膜が析出することが困難となる。また、これらの方法では、限られた数のコーティング材料によるコーティングしか実施できない。
PVD法を用いて大きな構成部品の表面全体をプラズマ処理する際の短所は、平均自由行程が大きくなければならず、また、真空チャンバ内の圧力が非常に小さくなければならないことである。このことは、構成部品の大きさに関連して真空チャンバが大きくなるために、技術的および財政的なコストの増大につながっている。
また、これらの公知の方法は、車両の車体の場合に生じるような間隙、継ぎ目、中空部およびアンダーカット部を処理することには適していない。プラズマ源の方を向いていない面は、均一なプラズマに曝露されていない。プラズマ源の方を向いた面では、傾斜が大きいために均一な加工が保証されない。これは、特に、照射工程が主となる加工工程に当てはまる。
これに対して、請求項1の特徴を備えた本発明に係る装置および請求項7の特徴を備えた本発明に係る方法は、大きな構成部品が、表面全体にわたって均一に作用するプラズマ処理を受けることができるという利点、および、プラズマに含まれた物質の反応によって、構成部品の表面に膜または膜構造が析出できるという利点を有する。それぞれ調整可能なインダクタンスとキャパシタンスとを有する少なくとも2つの高周波発生器を備えた少なくとも2つの発振回路によって、および、少なくとも2つの発振回路に構成部品を結合すること、または組み込むことによって、構成部品の表面上に、また場合によっては、構成部品により画成された中空部内にも、プラズマが生成される。このプラズマの粒子密度およびエネルギーは調整可能であり、可変である。プラズマの形態は、発振回路のコンポーネントに依存し、特に、励起周波数、発振回路と構成部品とのキャパシタンスおよび発振回路と構成部品とのインダクタンスに依存する。その際、構成部品のインダクタンスとキャパシタンスは、事前に定められている。他の全てのコンポーネントおよび付随するパラメータは調整可能である。本装置および本方法は、このように多くのパラメータの調整が可能であるので、構成部品の表面に生成される、プラズマのエネルギー密度および粒子密度に高い自由度および可変性があって秀でている。
少なくとも1つの別の発振回路を付加することによって、構成部品の表面におけるプラズマのパラメータを調整する自由度が高まる。第1および第2の高周波発生器の励起周波数、ならびに、場合によって付加されている他の高周波発生器の励起周波数は、同一であっても、異なっていてもよい。全ての高周波発生器が同じ励起周波数で動作する場合、高周波発生器が1つのみの場合に比して、プラズマに変換される出力は増大する。これらの励起周波数を変動させ、各発振回路について異なった調整を行った場合、プラズマに異なった励起モードを働かせることができる。このようにして、原子、電子、イオンなどの所定の粒子をプラズマ内に生成すること、プラズマ内の化学反応を実現あるいは促進すること、および、所望の波長のビーム放射を引き起こすことが可能となる。
発振回路は、互いに独立しており、互いに独立して動作させることができる。そのために、各発振回路は、固有の高周波発生器と、別なインダクタンスおよびキャパシタンスとが備えている。
本装置は、多周波プラズマ発生器として動作させることが可能である。
処理およびコーティングの対象には、外表面および内表面の両方が含まれている。間隙、継ぎ目、中空部およびアンダーカット部に加工を施すことも可能である。このような領域は、特に、複数の部材から成る構成部品の場合に生じる。
本発明に係る装置および本発明に係る方法は、さまざまな大きさの任意の構成部品の場合に用いることができる。本装置および本方法は、特に、大きな構成部品、例えば数例だけを挙げると、車両の車体、飛行機の部品および機械の部品などに適している。これの前提は、真空チャンバが必要な大きさを有していること、ならびに、構成部品を真空チャンバ内へ導入できること、および真空チャンバに対して絶縁できることである。真空チャンバへの構成部品の導入および真空チャンバからの構成部品の導出を行うために、真空チャンバに搬送機構を装備することが可能である。
構成部品は 本装置の真空チャンバ内へ搬入される。このために搬送機構を用いるのが好ましい。次に、構成部品は、第1の高周波発生器を備えた第1の発振回路に接続されるか、あるいは、第1の発振回路に少なくとも部分的に無接触で結合される。その際、構成部品は、導電結合、容量結合または誘導結合を介して発振回路に組み込まれる。混合形式のカップリングを用いることも可能である。例えば、一方の極に導電結合を、他方の極に容量結合を用いて構成部品を発振回路に結合することもできる。誘導結合は、例えば、コイルを介して行われ、コイルは、真空チャンバ内において構成部品の近傍に配置される。これにより、構成部品は、第1の発振回路の一部を形成する。それに続いて、または同時に、構成部品は同じようにして第2の発振回路へ組み込まれる。第1および第2の発振回路の高周波交流電流が、構成部品の中を流れる。その際、構成部品のインダクタンスおよびキャパシタンスは、発振回路のインダクタンスおよびキャパシタンスに作用する。電力を最適に構成部品に結合することを保証するために、それぞれ、加工すべき構成部品と別のキャパシタンスおよびインダクタンスとから成る両発振回路は、適当に適合されねばならない。これは、両発振回路のキャパシタンスおよびインダクタンスの変動によって実施される。発振回路のキャパシタンスおよびインダクタンスの調整は、手動または自動で行うことができる。自動調整の場合、まず、構成部品のキャパシタンスとインダクタンスとが検知される。発振回路のキャパシタンスおよびインダクタンスの変動によって、発振回路の周波数が変化する。
本発明に係る装置および本発明に係る方法を用いることで、構成部品のさまざまな加工が可能である。1つまたは複数の膜を構成部品上に析出して、構成部品の表面を活性化させることで、その後の加工、例えば塗装やコーティングのためにこの表面を準備することができる。また、プラズマを用いて生成されたビーム、例えばUV領域のビームによって、表面のコーティングを硬化することもできる。さらに、UV塗料を架橋することも可能である。あるいは、表面のエッチングや雑菌の除去を行うこともできる。表面放電の発生によって、表面に電気的な作用が生じ、この作用を表面の加工に利用することが可能である。
プラズマは、構成部品の表面に渦電流が発生することによって生成される。構成部品の中を流れる交流電流は、振動する磁界を発生させ、この磁界は、構成部品の形状に従ってその周囲に広がっていく。磁界の時間的な変化によって電界が生じ、この電界が構成部品の周囲におけるプラズマの生成と維持とを司る。
本発明の有利な構成では、真空チャンバ内にアンテナ、リフレクタ、金属薄板、金属製の管および/または格子が設けられている。構成部品自体がアンテナとなって、そこから電磁波が真空チャンバの空間内へ放射される。この作用は、構成部品の周囲にあるその他のアンテナ状の部材によって支援することができる。このような部材としては、金属製の薄板または格子などがある。螺旋状に配置された管、例えば銅製の管も、同様にこの作用を実現することができる。これらの部材の中へ電磁波が入射し、構成部品からある程度の間隔をおいて別なプラズマを生成する。このようにして、プラズマの放射束を構成部品の方向へ操作することができる。
本発明の別の有利な構成では、真空チャンバ面または真空チャンバ内に1つまたは複数のマイクロ波プラズマ発生器が配置されている。マイクロ波プラズマ発生器の働きは、所定の位置でプラズマの一定の粒子密度またはエネルギー密度を支援して、特に真空チャンバ内が高圧または高粒子密度である場合に、および、真空チャンバ内への流入前または流入時に作動媒体およびその成分を前処理または調製するために、プラズマを着火させることである。マイクロ波プラズマ発生器は、例えば、前駆物質の調製のために利用することができる。有利には、マイクロ波プラズマ発生器の位置は調整可能であって、この位置を構成部品に最適に適合させることができる。また、マイクロ波プラズマ発生器を真空チャンバの外部に配置して、接続端子を介して真空チャンバに結合することも可能である。
本発明に係る方法および本発明に係る装置を用いることで、単一成分物質をプラズマに変換することが可能である。場合によっては、そのために、別のエネルギー源、例えば別のプラズマトーチが、または上述のマイクロ波プラズマ発生器の1つが必要とされる。このような物質の変換は、直接、構成部品の表面において、そこで燃焼しているプラズマ内で行われる。
粒子密度またはエネルギー密度の時間的な変動によって、構成部品の表面に傾斜膜を析出させることができる。また、プラズマに供給される物質の時間的な変動によって、複数の異なった膜または1つの連続膜が、構成部品の表面に析出できる。これは、精確に制御することが可能である。
本発明の別の有利な構成では、作動ガスが真空チャンバ内へ与えられる。これによって、真空チャンバ内の圧力を高めることができる。例えば、1000Paまでの圧力が可能である。作動ガスは、構成部品の表面と化学的に相互作用を始める。作動ガスとして、要件に応じてさまざまなガスを使用することが可能である。
本発明のさらに別の有利な構成では、付加された液体が気化されて、バルブを介して真空チャンバ内へ与えられる。この液体蒸気は、作動ガスと同じ役割を果たす。
本発明のさらに別の有利な構成では、高周波発生器を通じて、0.1MHzから10MHzの交流電圧が発振回路へ供給される。交流電圧は1MHzから4MHzの間であることが特に好ましい。
本発明のさらに別の有利な構成では、真空チャンバは、0.05Paから1000Paまでの圧力にまで排気される。従来技術において公知である方法とは異なり、作動圧は、用途に応じて数十mbarまで高めることができる。従って、加工すべき構成部品の表面と相互作用を始める粒子の数を制御するために利用可能なツールが1つ増えることになる。
本発明のその他の効果および有利な構成については、以下の説明、図面および請求項で明らかにする。
図面には、プラズマコーティングを施すための、本発明に係る装置の実施例が示されている。以下において、この装置について説明する。
プラズマ処理を施す装置の正面図である。 プラズマ処理を施す装置の平面図である。 図1および図2に示した装置の回路図である。 プラズマ処理を施す装置の回路図であり、3つの発振回路を備え、これらの回路に構成部品が導電可能に組み込まれている。 プラズマ処理を施す別の装置の回路図であり、3つの発振回路を備え、そのうち2つの発振回路にアンテナが装備されている。 図4に示した、プラズマ処理を施す装置の回路図であり、マイクロ波プラズマ発生器が付加的に装備されている。 構成部品と発振回路との間の導電性接続部を示す。 導電性接続部およびアンテナを介した、発振回路への構成部品の組み込みを示す。 図8に示した組み込みであるが、位相線路に並列回路が付加されている。 2つの高周波発生器を備えた2つの発振回路への構成部品の組み込みを示す。
図1から図3は、プラズマ支援によるコーティングおよび表面処理を施すための装置を示す正面図、平面図および回路図である。これらの図には、第1の高周波発生器の第1の発振回路に構成部品をどのように組み込むかが示されている。図4から図6および図10は、複数の発振回路への構成部品の組み込みを示す。
図1から図3に示した装置の場合、加工すべき構成部品1が、レール2と図に示されていないローラとを介して真空チャンバ3内へ搬入される。レールとローラは、相俟って搬送機構を形成する。搬送機構には、付加的に駆動部を装備しておくことができるが、図には示されていない。レール2には絶縁部4が設けられており、これにより、構成部品1が真空チャンバ3に対して絶縁される。構成部品が終端位置へ達すると同時に、高周波発振回路と構成部品との間の接点が閉じられる。これは、図示されていない摺動接点を介して行われ、摺動接点は形状結合によって構成部品1に密着する。この時点で、構成部品は発振回路の一部となっている。第1の発振回路は、構成部品1以外に、図3に示されたフィードバックコイル11を備えた第1の高周波発生器5、同軸ケーブル6、外部発振回路7および高周波供給線路8から成り、この高周波供給線路の終端に摺動接点が設けられている。真空チャンバ3内には、高周波供給線路8用の高周波フィードスルー9が設けられている。構成部品の上方には、プラズマ用のリフレクタ10が設けられている。
その他の発振回路および高周波発生器は、それぞれ適当な方法で、または同様の方法で真空チャンバに配置されて、構成部品に接続されている。これに関する回路図が、図4から図6に示されている。
図3は、図1および図2に示した装置の模式的な回路図である。第1の高周波発生器5は、同軸ケーブル6を介して第1の発振回路に交流電流を供給する。第1の高周波発生器5は、フィードバックコイル11を備えており、このコイルのインダクタンスは自動的に調整することができる。第1の発振回路のうち、真空チャンバの外部に位置する部分を、外部発振回路7と呼ぶ。外部発振回路7内には、3つのコンデンサ12が設けられている。これらのコンデンサは、全てまたは一部のみを発振回路へ組み入れることができ、これにより、総キャパシタンスを変化させることができる。発振回路のインダクタンスは、実質上、構成部品1によって決まる。構成部品1は、高周波供給線路8を介して外部発振回路7に接続されている。構成部品に合わせて発振回路のインダクタンスを調節するために、コイル13が外部発振回路に設けられている。それに加えて、高周波供給線路8にタップを有するもう1つのコイル14が、直接、コイル13に接続して設けられている。このコイルは、必要な場合にのみ、総インダクタンスを調節するために発振回路へ組み入れられる。この場合には、高周波供給線路8の代わりに高周波供給線路8aが用いられる。構成部品1は、選択的に線路15を介して接地することができる。
非常に低い出力で高周波交流電流を供給することによって、構成部品1と発振回路との間の接点が検査される。接点が要件を満たす場合、真空チャンバ3は排気される。真空チャンバ3内の圧力が、処理の種類に応じた所定の値に達した後、高周波交流電流が発振回路へ供給される。構成部品1の表面に、構成部品の処理に必要とされるプラズマが発生する。構成部品の表面におけるプラズマ作用の制御は、交流電流を発振回路へ供給する送信管16の陽極電圧を調整することによって行われる。発振回路の送信管16の電流−電圧特性曲線を監視することによって、プラズマへの電力の伝達効率が管理される。プラズマ処理中の発振回路の微調節は、発振回路のフィードバックコイルのインダクタンスを変動させることによって行われる。さらに、それに先んじて、別のインダクタ14またはキャパシタ12を組み込むことによって、加工すべき構成部品に合わせてシステムの粗調節を行うことも可能である。
図4は、プラズマ支援によるコーティングおよび表面処理を施す装置の実施例の回路図であり、3つの発振回路と3つの高周波発生器17、18および19を備えている。3つの各高周波発生器は、真空チャンバ20内に配置された構成部品21と共に、それぞれ発振回路に組み込まれている。各高周波発生器と構成部品とは、別のキャパシタおよびインダクタと共に、それぞれ第1、第2および第3の発振回路を形成する。3つの各発振回路には、コンデンサ、コイルおよび送信管が、図3の回路図に示された通りに装備されている。従って、ここでは詳細な説明は省く。構成部品は、3つ全ての発振回路に導電可能に組み込まれている。そのために、各発振回路の線路22、23および24が、構成部品に接続されている。第2の接続端子25、26、27は接地されている。
これに対して、図5に示した、3つの高周波発生器を備えた別の実施例では、第1の高周波発生器28のみが、図3の回路図通りに真空チャンバ32内の構成部品31に接続されている。他の2つの高周波発生器29および30には、アンテナ33および34が装備されており、これにより、第2および第3の発振回路のエネルギーを構成部品31に向けて発し、無接触で伝達することができる。両アンテナ33および34は、コイルとして構成されている。従って、第2および第3の発振回路との構成部品31の結合は、誘導結合である。
図6に示された実施例は、3つの罰のマイクロ波プラズマ発生器35、36および37を除いて、図4に示した実施例と同じである。マイクロ波プラズマ発生器は、真空チャンバ20内に配置されている。
図7から図10は、図3に示した高周波発生器を備えた発振回路へ構成部品を結合する種々の可能な方法を示す。簡略化のために、図7から図10では、各高周波発生器、構成部品および構成部品への結合のみが示されている。この構成部品39は、いずれも車両の車体である。
図7では、構成部品39は、2つの極において、流電によって、従って導電可能に第1の高周波発生器40の発振回路に組み込まれている。レール2上に配置された構成部品は、図1に示した真空チャンバ内へ導入されると、端子として働くプレート41に導電接続される。このプレートによって、構成部品との形状結合が可能となり、従って、導電接続のために十分な機械的接触が保証される。第2の極42は、グランドに接続されており、接地電位にある。
図8では、構成部品39は、図7の場合と同様に一方の極でプレート41を介して導電結合によって、もう一方の極ではコンデンサプレート43を介して容量結合によって、高周波発生器40の発振回路内へ組み込まれている。図9に示した組み込みの場合、さらに別のコンデンサプレート44が、位相線路45を介して発振回路に接続され、構成部品39に導電結合されている。
図10は、第1の高周波発生器40および第2の高周波発生器40へそれぞれ導電端子および容量端子を介して構成部品39を結合した状態を模式的に示す。両高周波発生器40の両発振回路への結合は、どちらも図8に示された原理に従って行われる。そのために、第2の高周波発生器40の発振回路にもコンデンサプレート46が装備されている。
本発明の全ての特徴は、単独においても任意の組み合わせにおいても本発明の構成要件であり得る。
1 構成部品
2 レール
3 真空チャンバ
4 絶縁部
5 第1の高周波発生器
6 同軸ケーブル
7 外部発振回路
8 高周波供給線路
9 高周波フィードスルー
10 リフレクタ
11 フィードバックコイル
12 外部発振回路のコンデンサ
13 コイル
14 コイル
15 線路
16 送信管
17 第1の高周波発生器
18 第2の高周波発生器
19 第3の高周波発生器
20 真空チャンバ
21 構成部品
22 高周波供給線路
23 高周波供給線路
24 高周波供給線路
25 第2の端子
26 第2の端子
27 第2の端子
28 第1の高周波発生器
29 第2の高周波発生器
30 第3の高周波発生器
31 構成部品
32 真空チャンバ
33 アンテナ
34 アンテナ
35 マイクロ波プラズマ発生器
36 マイクロ波プラズマ発生器
37 マイクロ波プラズマ発生器
38
39 構成部品
40 第1の高周波発生器
41 プレート
42 第2の極
43 コンデンサプレート
44 コンデンサプレート
45 位相線路
46 コンデンサプレート

Claims (12)

  1. 1つまたは複数のポンプを有する真空チャンバ(3、20、32)と、
    第1の高周波発生器(5、17、28、40)を有する第1の発振回路と、
    前記第1の発振回路の調整可能なキャパシタンスおよび調整可能なインダクタンスと、 前記第1の発振回路内へ構成部品(1、21、31、39)を組み込むための第1の端子と、
    第2の高周波発生器(18、29、40)を有する少なくとも1つの第2の発振回路と、
    前記第2の発振回路内へ前記構成部品(1、21、31、39)を組み込むための第2の端子と、
    前記第2の発振回路の調整可能なキャパシタンスおよび調整可能なインダクタンスとを具備しており、
    前記第2の発振回路に少なくとも1つのアンテナ(33、34)またはコンデンサプレート(43、44、46)が装備されており、これにより第2の発振回路のエネルギーを無接触で前記構成部品(1、21、31、39)に伝達することができ、前記アンテナ(33、34)または前記コンデンサプレート(43、44、46)が前記真空チャンバ内に配置されており、
    前記第一および前記第二の発振回路に前記構成部品を組込むことにより、前記構成部品の表面上にプラズマを生成し、
    本装置に付加的に少なくとも1つのマイクロ波プラズマ発生器(35、36、37)が装備されており、このマイクロ波プラズマ発生器が、真空チャンバの外部に配置されており、かつ接続端子を介して真空チャンバに結合されている、車の車体のような体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す装置。
  2. 前記第2の発振回路内へ前記構成部品(1、21、31、39)を組み込むための前記第2の端子が、導電結合用、容量結合用または誘導結合用として構成されていることを特徴とする請求項1に記載の装置。
  3. 前記第2の発振回路に端子が装備されており、これにより前記構成部品(1、21、31、39)の第1の極を第2の発振回路に導電接続することができること、および、この第2の発振回路に前記コンデンサプレート(43、44、46)または電極が装備されており、これにより前記構成部品(1、21、31、39)の第2の極を第2の発振回路に容量接続することができることを特徴とする請求項1または2に記載の装置。
  4. 前記マイクロ波プラズマ発生器(35、36、37)の位置が、前記構成部品(1、21、31、39)に対して相対的に調整可能であることを特徴とする請求項1に記載の装置。
  5. 請求項1〜4のいずれか一つに記載の装置を用いて、車の車体のような体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す方法において、
    前記構成部品(1、21、31、39)が真空チャンバ(3、20、32)内に配置され、この真空チャンバ(3、20、32)が排気されること、
    前記構成部品(1、21、31、39)が、第1の高周波発生器(5、17、28、40)を有する第1の発振回路に接続されること、
    前記第1の発振回路のインダクタンスおよび/またはキャパシタンスが、前記構成部品(1、21、31、39)のインダクタンスおよび/またはキャパシタンスに合わせて調節されること、
    少なくとも1つの第2の発振回路および少なくとも1つの第2の高周波発生器(18、19、29、30、40)を用いて、付加的にエネルギーが生成され、このエネルギーが前記構成部品(1、21、31、39)に伝達されることを特徴とする方法。
  6. 前記第2の発振回路のインダクタンスおよび/またはキャパシタンスが、前記構成部品(1、21、31、39)のインダクタンスおよび/またはキャパシタンスに合わせて調節されることを特徴とする請求項5に記載の方法。
  7. 前記構成部品(1、21、31、39)が、少なくとも前記第2の発振回路の1つの極に導電接続されることを特徴とする請求項5または6に記載の方法。
  8. 前記第2の発振回路の少なくとも1つの極が、前記構成部品(1、21、31、39)に容量接続または誘導接続されることを特徴とする請求項5〜7のいずれか一つに記載の方法。
  9. コーティング材料が前記真空チャンバ(3、20、32)内へ導入されること、および、このコーティング材料がプラズマ相から前記構成部品(1、21、31、39)上に析出することを特徴とする請求項5〜8のいずれか一つに記載の方法。
  10. プラズマが、少なくとも1つの付加的なマイクロ波プラズマ発生器(35、36、37)によって着火されることを特徴とする請求項5〜9のいずれか一つに記載の方法。
  11. 前記構成部品(1、21、31、39)の表面におけるプラズマの粒子密度および/またはエネルギー密度が、少なくとも1つの付加的なマイクロ波プラズマ発生器(35、36、37)によって空間的および時間的に一定に保持されること、または時間的に変動されることを特徴とする請求項5〜10のいずれか一つに記載の方法。
  12. 作動ガスおよび/またはコーティング材料が、少なくとも1つのマイクロ波プラズマ発生器(35、36、37)によって調製または前処理されることを特徴とする請求項5〜11のいずれか一つに記載の方法。
JP2009550206A 2007-02-26 2008-02-26 体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す装置および方法 Expired - Fee Related JP5847381B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007009581 2007-02-26
DE102007009581.5 2007-02-26
PCT/DE2008/000330 WO2008104160A2 (de) 2007-02-26 2008-02-26 Vorrichtung und ein verfahren zur plasmagestützten beschichtung und oberflächenbehandlung grossvolumiger bauteile

Publications (2)

Publication Number Publication Date
JP2010519693A JP2010519693A (ja) 2010-06-03
JP5847381B2 true JP5847381B2 (ja) 2016-01-20

Family

ID=39595690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009550206A Expired - Fee Related JP5847381B2 (ja) 2007-02-26 2008-02-26 体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す装置および方法

Country Status (7)

Country Link
US (1) US20100323126A1 (ja)
EP (1) EP2127503B1 (ja)
JP (1) JP5847381B2 (ja)
AT (1) ATE509507T1 (ja)
DE (1) DE112008000490A5 (ja)
ES (1) ES2366350T3 (ja)
WO (1) WO2008104160A2 (ja)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US568619A (en) * 1896-09-29 Railway tie and clamp
US4916273A (en) * 1987-03-11 1990-04-10 Browning James A High-velocity controlled-temperature plasma spray method
JPH04901A (ja) * 1990-04-18 1992-01-06 Mitsubishi Electric Corp プラズマ装置の高周波給電方法及び装置
US5211995A (en) * 1991-09-30 1993-05-18 Manfred R. Kuehnle Method of protecting an organic surface by deposition of an inorganic refractory coating thereon
US6001432A (en) * 1992-11-19 1999-12-14 Semiconductor Energy Laboratory Co., Ltd. Apparatus for forming films on a substrate
US5618619A (en) * 1994-03-03 1997-04-08 Monsanto Company Highly abrasion-resistant, flexible coatings for soft substrates
US6391147B2 (en) * 1994-04-28 2002-05-21 Tokyo Electron Limited Plasma treatment method and apparatus
JPH0982495A (ja) * 1995-09-18 1997-03-28 Toshiba Corp プラズマ生成装置およびプラズマ生成方法
US6312554B1 (en) * 1996-12-05 2001-11-06 Applied Materials, Inc. Apparatus and method for controlling the ratio of reactive to non-reactive ions in a semiconductor wafer processing chamber
US6158384A (en) * 1997-06-05 2000-12-12 Applied Materials, Inc. Plasma reactor with multiple small internal inductive antennas
US6197165B1 (en) * 1998-05-06 2001-03-06 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6365016B1 (en) * 1999-03-17 2002-04-02 General Electric Company Method and apparatus for arc plasma deposition with evaporation of reagents
EP1193746B1 (en) * 1999-05-06 2009-12-09 Tokyo Electron Limited Apparatus for plasma processing
US7335199B2 (en) * 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
US7223676B2 (en) * 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
JP2002339063A (ja) * 2001-05-17 2002-11-27 Toshiba Tungaloy Co Ltd イオン注入装置
EP1512771A1 (en) * 2002-03-08 2005-03-09 Mitsubishi Heavy Industries, Ltd. Method and apparatus for production of metal film
EP1354640A1 (de) * 2002-04-19 2003-10-22 Dürr Systems GmbH Verfahren und Vorrichtung zum Härten einer Beschichtung
JP4370789B2 (ja) * 2002-07-12 2009-11-25 東京エレクトロン株式会社 プラズマ処理装置及び可変インピーダンス手段の校正方法
JP3637913B2 (ja) * 2003-12-09 2005-04-13 日新電機株式会社 自動車用防振部材の製造方法
US20110104381A1 (en) * 2004-01-15 2011-05-05 Stefan Laure Plasma Treatment of Large-Scale Components
US7737382B2 (en) * 2004-04-01 2010-06-15 Lincoln Global, Inc. Device for processing welding wire
US20090123662A1 (en) * 2005-04-11 2009-05-14 Stefan Laure Plasma Coating Device and Method
JP4769014B2 (ja) * 2005-04-28 2011-09-07 学校法人日本大学 同軸磁化プラズマ生成装置と同軸磁化プラズマ生成装置を用いた膜形成装置

Also Published As

Publication number Publication date
US20100323126A1 (en) 2010-12-23
DE112008000490A5 (de) 2009-11-26
JP2010519693A (ja) 2010-06-03
ES2366350T3 (es) 2011-10-19
EP2127503A2 (de) 2009-12-02
ATE509507T1 (de) 2011-05-15
EP2127503B1 (de) 2011-05-11
WO2008104160A3 (de) 2008-11-13
WO2008104160A2 (de) 2008-09-04

Similar Documents

Publication Publication Date Title
EP2971226B1 (en) Method and apparatus for generating highly repetitive pulsed plasmas
CN104411082B (zh) 等离子源系统和等离子生成方法
CN111247617B (zh) 线性高能射频等离子体离子源
CN101805895B (zh) 一种螺旋波等离子体增强化学气相沉积装置
US10573495B2 (en) Self-neutralized radio frequency plasma ion source
US10032608B2 (en) Apparatus and method for tuning electrode impedance for high frequency radio frequency and terminating low frequency radio frequency to ground
EA019460B1 (ru) Способ и установка для нанесения пленок на основу
JP5305900B2 (ja) プラズマコーティングを施す装置および方法
US6710524B2 (en) Plasma source
JP5597340B2 (ja) 大容積の構成要素のプラズマ加工
JP2003073814A (ja) 製膜装置
JP5582809B2 (ja) プラズマ発生装置
JP5847381B2 (ja) 体積の大きな構成部品にプラズマ支援によるコーティングおよび表面処理を施す装置および方法
JP6223875B2 (ja) 皮膜形成装置、皮膜形成方法、及び皮膜付筒部材
JP7465265B2 (ja) 位相制御を使用してプラズマ分布を調整するためのデバイス及び方法
CN210458364U (zh) 等离子体增强化学气相沉积系统
JPS62116775A (ja) プラズマcvd装置
KR100855880B1 (ko) 기판 처리 장치 및 플라즈마 밀도의 제어 방법

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140818

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5847381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees