JP5846945B2 - Fire prevention structure and construction method of fire prevention structure - Google Patents

Fire prevention structure and construction method of fire prevention structure Download PDF

Info

Publication number
JP5846945B2
JP5846945B2 JP2012020685A JP2012020685A JP5846945B2 JP 5846945 B2 JP5846945 B2 JP 5846945B2 JP 2012020685 A JP2012020685 A JP 2012020685A JP 2012020685 A JP2012020685 A JP 2012020685A JP 5846945 B2 JP5846945 B2 JP 5846945B2
Authority
JP
Japan
Prior art keywords
opening
refractory material
thermoplastic member
thermoplastic
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012020685A
Other languages
Japanese (ja)
Other versions
JP2013158382A (en
Inventor
和気淳一郎
厚男 三栖
厚男 三栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Techno Material Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Techno Material Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2012020685A priority Critical patent/JP5846945B2/en
Publication of JP2013158382A publication Critical patent/JP2013158382A/en
Application granted granted Critical
Publication of JP5846945B2 publication Critical patent/JP5846945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可燃性断熱層を備えた金属管が、防火壁や床等の建築物の防火区画部を貫通する際に用いられる防火構造体等に関するものである。   The present invention relates to a fire prevention structure and the like used when a metal pipe provided with a flammable heat insulating layer penetrates a fire prevention compartment of a building such as a fire prevention wall or a floor.

従来、可燃性発泡断熱層を備えた金属管や、プラスチック配管、電線・ケーブル等の可燃性長尺物が、建築物の壁や床等の防火区画を貫通する部分には、火災時の延焼を防ぐため、所要の防火処理を施す必要がある。このような、防火区画に形成された開口部を貫通する長尺物に対する防火処理は、一般的に区画貫通部防火処理と呼ばれる。区画貫通部防火処理(以下、単に「防火構造体」とする)は、公的な性能評価機関で耐火性能が評価される。   Conventionally, metal pipes with a flammable foam insulation layer, plastic pipes, flammable long objects such as electric wires / cables, etc. that penetrate through fire prevention compartments such as walls and floors of buildings, spread fire in the event of a fire. In order to prevent this, it is necessary to apply the necessary fire prevention treatment. Such a fireproofing process for a long object penetrating through the opening formed in the fireproofing section is generally called a section penetrating part fireproofing process. The fire resistance of the compartment penetrating portion (hereinafter simply referred to as “fire prevention structure”) is evaluated by a public performance evaluation organization.

このような防火構造体としては、貫通する可燃性長尺物の周囲に熱膨張性材料を充填する方法がある。長尺物が火災時に溶融または焼失した場合には、熱膨張性材料が熱によって膨張し、生じた空間に閉塞することで延焼を防ぐことができる(特許文献1)。   As such a fire prevention structure, there is a method of filling a thermally expansible material around a flammable long object that penetrates. When a long object is melted or burned out during a fire, the heat-expandable material expands due to heat, and it is possible to prevent the spread of fire by closing the generated space (Patent Document 1).

このような構造の防火構造体は、可燃性長尺物の中でも比較的延焼速度が遅い樹脂管(硬質塩ビ、高密度ポリエチレン、ポリプロピレン等)や電線ケーブルに適している。上述のような可燃性長尺物に対しては、使用する熱膨張性材料を少なくし、防火処理の処理長(可燃性長尺物の長手方向に対する、区画貫通部防火措置を行う長さ)を短くすることができるため、施工の簡易化や材料コストの抑止を図ることが可能である。   The fire prevention structure having such a structure is suitable for resin pipes (hard vinyl chloride, high density polyethylene, polypropylene, etc.) and electric cables that have a relatively slow fire spread rate among combustible long articles. For flammable long objects as described above, less heat-expandable material is used, and the length of fire prevention treatment (the length of fire through the compartment penetration part in the longitudinal direction of the flammable long objects) Therefore, it is possible to simplify construction and suppress material costs.

一方、特に、片壁構造の開口部に配管やケーブルなどの長尺物を貫通させた場合に適した防火構造体として、例えば、壁構造に形成された貫通部に、長さが当該壁構造の厚さよりも長い耐熱性材料製の貫通スリーブを配置する方法がある。この際、貫通スリーブの長さ方向中心は、壁構造の厚み方向中心よりも一方側に寄せた片寄せ配置で設置される。また、貫通する長尺体の外面と貫通スリーブの間に熱膨張性充填材を配置し、熱膨張時に熱膨張性充填材が所定膨張領域から壁構造の他方側に離脱するのを規制する部材が備えられる(特許文献2)。   On the other hand, as a fire prevention structure suitable particularly when a long object such as a pipe or a cable is passed through an opening of a single wall structure, for example, the length of the wall structure in the penetration part formed in the wall structure There is a method of arranging a penetration sleeve made of a heat-resistant material longer than the thickness of the material. At this time, the center in the length direction of the penetrating sleeve is installed in a side-by-side arrangement that is closer to one side than the center in the thickness direction of the wall structure. A member that arranges a thermally expandable filler between the outer surface of the penetrating elongated body and the penetrating sleeve, and restricts the thermally expandable filler from separating from the predetermined expansion region to the other side of the wall structure during the thermal expansion. (Patent Document 2).

この構造によれば、熱膨張時には貫通スリーブ内の空間に熱膨張性充填材が充満し、貫通スリーブの長手方向にも膨張するため、当初の熱膨張性充填材の処理長(充填長)よりも長い範囲において、延焼防止性能を確保することができる。   According to this structure, the space in the through sleeve is filled with the heat-expandable filler during thermal expansion and expands in the longitudinal direction of the through-sleeve. Therefore, from the initial treatment length (filling length) of the heat-expandable filler In the long range, the fire spread prevention performance can be secured.

特許第3939419号公報Japanese Patent No. 3993919 特開2011−74969号公報JP2011-74969A

しかし、特許文献1の方法に対し、空調冷媒管などに使用されている高発泡ポリエチレン被覆付銅管をはじめとした可燃性発泡断熱層を備えた金属管が用いられる場合がある。可燃性発泡断熱層は、樹脂を発泡させて形成され、空気層を備え、密度が低いため、熱容量が小さい。したがって、可燃性発泡断熱層は、非発泡の樹脂を使った樹脂管や電線ケーブルの外被と比べると延焼の速度が速い。   However, in contrast to the method of Patent Document 1, a metal tube provided with a combustible foam heat insulating layer such as a highly foamed polyethylene-coated copper tube used for an air-conditioning refrigerant tube may be used. The flammable foam heat insulating layer is formed by foaming a resin, includes an air layer, and has a low density, and therefore has a small heat capacity. Therefore, the flammable foam heat insulating layer has a higher rate of fire spread than a resin tube using non-foamed resin or an outer sheath of an electric cable.

また、可燃性発泡断熱層が燃焼しても、心材となる金属管は火災燃焼中もそのまま残存する。このため、火災の熱が、金属管によって、火災側から反火災側(火災が起きている壁の反対側や床上側)に容易に伝導する。したがって、防火壁や床の金属管の貫通部分に、適切な防火構造体を構築したとしても、金属管や開口内壁の熱伝導によって、反火災側の可燃性発泡断熱層が溶融し、さらには可燃性発泡断熱層からの可燃性ガスの発生により発火する恐れがある。   Moreover, even if the combustible foam heat insulating layer burns, the metal pipe as the core material remains as it is during the fire combustion. For this reason, the heat of the fire is easily conducted from the fire side to the anti-fire side (the opposite side of the wall where the fire is occurring or the upper side of the floor) by the metal pipe. Therefore, even if an appropriate fire prevention structure is built in the penetration part of the metal pipe on the fire wall or floor, the combustible foam insulation layer on the anti-fire side melts due to the heat conduction of the metal pipe and the inner wall of the opening, and There is a risk of ignition due to generation of flammable gas from the flammable foam insulation layer.

特にこの傾向は、木製または鋼製の枠組みの両側に石こうボードを貼り付けた中空構造の壁、もしくは木製または鋼製の枠組みの片側に石こうボードを貼り付けた片壁構造における防火構造体に対して顕著に現れる。このような壁は、コンクリートや軽量気泡コンクリート壁の場合と比較して、中空構造の枠組み内などの中空部分や、片壁構造の片面部分に火災時の火炎が容易に入りこむことができる。このため、防火構造体における金属管が直接火炎に晒されることになり、防火壁等の反火災側への熱影響が著しく大きくなるためである。   This trend is especially true for fire-resistant structures in hollow walls with gypsum boards on either side of a wooden or steel frame, or on single-walled structures with a gypsum board on one side of a wooden or steel frame. Appears prominently. Compared with the case of concrete or a lightweight cellular concrete wall, such a wall can easily have a flame at the time of a fire in a hollow part such as a frame of a hollow structure or a single side part of a single wall structure. For this reason, it is because the metal pipe in a fire prevention structure will be directly exposed to a flame, and the thermal influence on the antifire side, such as a fire wall, will become remarkably large.

一方、特許文献2の記載の方法では、上記の課題を解決することができるが、貫通スリーブ内部に熱膨張性充填材を配置する方法については言及されていない。特に、パテ状の熱膨張性充填材を充填する実施例が記載されているが、熱膨張性充填材の充填量を管理することが困難である。したがって、過剰に熱膨張性充填材を充填することによるコスト増や、充填材料の不足による性能劣化などの恐れがある。   On the other hand, the method described in Patent Document 2 can solve the above problem, but does not mention a method of disposing a thermally expandable filler inside the through sleeve. In particular, although an example in which a putty-like thermally expandable filler is filled is described, it is difficult to manage the filling amount of the thermally expandable filler. Therefore, there is a risk of cost increase due to excessive filling of the thermally expandable filler, performance deterioration due to insufficient filling material, and the like.

これに対し、開口部に材料を充填する防火構造体に対して、開口部内に耐火性材料からなる受け材を設置する方法がある。受け部材によって、熱膨張性充填材の充填量を規制することができる。   On the other hand, there is a method in which a receiving material made of a refractory material is installed in the opening with respect to the fire prevention structure in which the opening is filled with material. The filling amount of the thermally expandable filler can be regulated by the receiving member.

しかし、このような受け部材を使用すると、熱膨張性充填材が熱膨張する際に、当該受け板が障害物となり、受け部材方向へ熱膨張させることが困難となる。すなわち、熱膨張性充填材の充填長に対して、より長い領域に膨張させて延焼防止性能を確保することが困難である。したがって延焼速度が速い可燃性発泡断熱層を備えた金属管の延焼防止を図るためには、熱膨張性充填材の充填量(充填長)を増やす必要があり、施工性の悪化や材料コストのアップを伴うものとなる。   However, when such a receiving member is used, when the thermally expandable filler is thermally expanded, the receiving plate becomes an obstacle and it is difficult to thermally expand in the direction of the receiving member. That is, it is difficult to ensure the fire spread prevention performance by expanding into a longer region with respect to the filling length of the thermally expandable filler. Therefore, in order to prevent the fire spread of metal pipes with a flammable foam insulation layer with a fast fire spread rate, it is necessary to increase the filling amount (filling length) of the heat-expandable filler, resulting in poor workability and material costs. It will be accompanied by up.

本発明は、このような問題に鑑みてなされたもので、施工性に優れ、材料コストを削減可能であり、特に、可燃性発泡断熱層を備えた金属管が建築物の開口部を貫通する際に用いられる防火構造体を提供することを目的とする。   This invention is made | formed in view of such a problem, is excellent in workability | operativity, can reduce material cost, and especially the metal pipe provided with the combustible foam heat insulation layer penetrates the opening part of a building. It aims at providing the fire prevention structure used at the time.

前述した目的を達成するため、第1の発明は、区画部に設けられた開口部と、前記開口部を貫通するように設けられ、周囲に金属製の長尺体と、前記開口部の内部に配置される熱可塑性部材と、前記開口部の内部に前記熱可塑性部材と接触するように配置され、前記開口部の内部への充填量が前記熱可塑性部材に接触することで規制される第1の熱膨張性耐火材と、を具備し、前記開口部の内部には、さらに受け部材が設けられ、前記受け部材は、前記開口部の内部において、前記区画部の厚みよりも浅い所定の深さ位置に配置され、前記第1の熱膨張性耐火材が配置される側とは逆側の前記熱可塑性部材と接触し、前記熱可塑性部材は、前記受け部材によって前記開口部の内部に保持され、火災時において、前記熱可塑性部材が燃焼または溶融可塑化して流出することで、前記第1の熱膨張性耐火材が、前記熱可塑性部材が配置されていた方向に膨張可能となることを特徴とする防火構造体である。 In order to achieve the above-described object, the first invention is provided with an opening provided in a partition part, a long metal body provided around the opening, and an interior of the opening. And a thermoplastic member disposed in the opening and disposed in contact with the thermoplastic member in the opening, and a filling amount in the opening is regulated by contacting the thermoplastic member. 1 and a heat-expandable refractory material, and a receiving member is further provided inside the opening, and the receiving member has a predetermined depth that is shallower than the thickness of the partition portion inside the opening. It is arranged at a depth position and is in contact with the thermoplastic member on the side opposite to the side on which the first thermally expandable refractory material is arranged, and the thermoplastic member is brought into the opening by the receiving member. held, during a fire, the thermoplastic member is burning or By flowing by fusion plasticized, the first thermal expansion fireproof material is a fire protection structure, characterized in that the inflatable in a direction in which the thermoplastic member has been arranged.

第2の発明は、区画部に設けられた開口部と、前記開口部を貫通するように設けられた金属製の長尺体と、前記開口部の内部に配置される熱可塑性部材と、前記開口部の内部に配置され、前記熱可塑性部材と接触するように配置され、前記開口部の内部への充填量が前記熱可塑性部材に接触することで規制される第1の熱膨張性耐火材と、を具備し、前記熱可塑性部材は、前記開口部の内部において、前記熱可塑性部材の断面がつぶれて前記長尺体および前記可燃性断熱層の外形状および前記開口部の内面形状に対応して変形可能な弾性体であり、火災時において、前記熱可塑性部材が燃焼または溶融可塑化して流出することで、前記第1の熱膨張性耐火材が、前記熱可塑性部材が配置されていた方向に膨張可能となることを特徴とする防火構造体である。
According to a second aspect of the present invention, there is provided an opening provided in the partition, a metal long body provided so as to penetrate the opening, a thermoplastic member disposed in the opening, A first heat-expandable refractory material disposed inside the opening, disposed so as to be in contact with the thermoplastic member, and the amount of filling into the opening being regulated by contacting the thermoplastic member And the thermoplastic member corresponds to the outer shape of the elongated body and the flammable heat insulating layer and the inner shape of the opening within the opening. Ri deformable resilient member der and, in case of fire, that the thermoplastic member flows out to burn or melt plasticized, the first thermal expansion fireproof material, the thermoplastic member is disposed Fire protection characterized by being able to expand in any direction It is a concrete body.

前記熱可塑性部材は、可撓性を有する長尺部材であり、前記開口部の内部において、前記熱可塑性部材の長手方向が前記開口部の周方向になるように、前記開口部の内面に沿って屈曲して配置されることが望ましい。   The thermoplastic member is a long member having flexibility, and along the inner surface of the opening, the longitudinal direction of the thermoplastic member is the circumferential direction of the opening in the opening. It is desirable to be bent and arranged.

前記熱可塑性部材の長手方向に垂直な方向の断面において、前記熱可塑性部材の内部に中空部が形成されてもよい。   A hollow portion may be formed inside the thermoplastic member in a cross section in a direction perpendicular to the longitudinal direction of the thermoplastic member.

前記開口部の前記第1の熱膨張性耐火材が配置される側の前記区画部には、前記長尺体を覆うように筒状部材が設けられ、前記筒状部材の内部には、前記長尺体の周囲に第2の熱膨張性耐火材が設けられ、さらに前記第2の熱膨張性耐火材の外周に不燃性部材が設けられてもよい。ここで、長尺体とは、たとえば発泡成形樹脂を被覆した可燃性断熱層を有する熱交換器配管などの金属管や、あるいは樹脂被覆した電線、ケーブル類などの長尺体をさすものとする。   A cylindrical member is provided in the partitioning portion on the side where the first thermally expansible refractory material is disposed, so as to cover the elongated body, A second thermally expandable refractory material may be provided around the elongated body, and an incombustible member may be provided on the outer periphery of the second thermally expandable refractory material. Here, the long body refers to, for example, a metal tube such as a heat exchanger pipe having a flammable heat insulating layer coated with foam molding resin, or a long body such as a resin-coated electric wire or cable. .

第1の発明によれば、開口部に配置される第1の熱熱膨張性耐火材の充填量が、熱可塑性部材によって規制されるため、第1の熱膨張性耐火材を開口部内に過剰に充填することがない。したがって、材料コストを削減することができる。   According to the first aspect of the invention, since the filling amount of the first thermothermal expansion refractory material disposed in the opening is regulated by the thermoplastic member, the first thermal expansion refractory material is excessive in the opening. There is no filling. Therefore, material cost can be reduced.

また、第1の熱膨張性耐火材の充填量を規制する部材が熱可塑性部材であるため、火災時の熱によって、容易に燃焼または流出して消失する。このとき、開口部の内部に、熱可塑性部材を保持する受け部材を配置することで、より確実に熱可塑性部材を開口部内に保持することができる。さらに、受け部材を、開口部の所定の深さ位置に配置するため、第1の熱膨張性耐火材の充てん量を規制するとともに、熱可塑性部材の使用量を規制することができ、熱可塑性部材は火災時に早期に流出または消失する。したがって、第1の熱膨張性耐火材は、熱可塑性部材が存在していた方向に対しても容易に膨張することができる。したがって、第1の熱膨張性耐火材の充填長よりも長い領域に対して延焼防止を図ることができる。 In addition, since the member that regulates the filling amount of the first thermally expandable refractory material is a thermoplastic member, it easily burns out or disappears due to heat at the time of fire. At this time, by arranging the receiving member for holding the thermoplastic member inside the opening, the thermoplastic member can be more reliably held in the opening. Furthermore, since the receiving member is disposed at a predetermined depth position of the opening, the amount of the first thermally expandable refractory material can be regulated and the amount of the thermoplastic member used can be regulated. Members flow or disappear early in the event of a fire. Therefore, the first thermally expandable refractory material can easily expand in the direction in which the thermoplastic member was present. Therefore, it is possible to prevent the spread of fire in a region longer than the filling length of the first thermally expandable refractory material.

なお、通常、このような防火構造体に対しては、耐火材や難燃性部材を用いることが一般的であり、可燃性部材や熱に弱い熱可塑性部材を用いることは極力避けられていた。本発明は、このような常識に対して、全く逆の発想によってなされたものである。   In general, for such a fireproof structure, it is common to use a refractory material or a flame retardant member, and the use of a flammable member or a heat-sensitive thermoplastic member has been avoided as much as possible. . The present invention has been made with a completely opposite idea to such common sense.

また、第2の発明によれば、熱可塑性部材が弾性部材であって、断面が容易に潰れて変形可能であるため、長尺体(可燃性断熱層を有する)の外面と開口部の内面との間の隙間の形状に容易に変形して熱可塑性部材を配置することができる。したがって、作業性にも優れる。 In addition, according to the second invention, the thermoplastic member is an elastic member, deformable der because collapses easily cross section, the elongate body exterior surface of the opening (with a flammable insulation layer) The thermoplastic member can be arranged by being easily deformed into the shape of the gap between the inner surface. Therefore, it is excellent in workability.

特に、熱可塑性部材が長尺部材であって、容易に屈曲可能であれば、開口部等の大きさに応じて長さを調整可能であり、容易に挿入することができる。   In particular, if the thermoplastic member is a long member and can be bent easily, the length can be adjusted according to the size of the opening or the like, and can be easily inserted.

また、熱可塑性部材の断面内部に中空部を形成することで、変形量をより大きくすることができるとともに、火災時における熱可塑性部材の燃焼または流出量を抑制することができる。   Further, by forming the hollow portion inside the cross section of the thermoplastic member, the amount of deformation can be increased, and the amount of combustion or outflow of the thermoplastic member during a fire can be suppressed.

また、開口部の一方の側に、筒状部材を配置し、筒状部材の内部に第2の熱膨張性耐火材を配置することで、区画部に対してより確実に延焼防止性能を確保することができる。   In addition, a tubular member is disposed on one side of the opening, and the second thermally expandable refractory material is disposed inside the tubular member, thereby ensuring the fire spread prevention performance more reliably for the partition portion. can do.

の発明は、区画部に形成された開口部に金属製の長尺体を通す工程と、前記開口部の内部において前記区画部の厚みよりも浅い所定の深さ位置に受け部材を配置する工程と、前記開口部の一方の開口側から、前記受け部材の位置まで熱可塑性部材を挿入する工程と、前記開口部の一方の開口側から、前記熱可塑性部材の位置まで熱で膨張する熱膨張性耐火材を挿入する工程と、を具備することを特徴とする防火構造体の施工方法である。 The third invention includes the steps of passing a metallic elongate body into the opening formed in the partition portion, Oite inside the opening, receiving a predetermined depth position shallower than a thickness of the partition portion A step of arranging a member, a step of inserting a thermoplastic member from one opening side of the opening to the position of the receiving member, and a heat from one opening side of the opening to the position of the thermoplastic member. And a step of inserting a heat-expandable refractory material that expands at a step.

の発明によれば、施工性にも優れ、材料コストも削減可能な防火構造体を容易に得ることができる。
According to the third aspect of the invention, it is possible to easily obtain a fire prevention structure that is excellent in workability and can reduce material costs.

本発明によれば、施工性に優れ、材料コストの削減が可能であり、特に、可燃性発泡断熱層を備えた金属管が建築物の開口部を貫通する際に用いられる防火構造体を提供することができる。   According to the present invention, there is provided a fire prevention structure that is excellent in workability and can reduce material costs, and particularly used when a metal tube having a combustible foam heat insulating layer penetrates an opening of a building. can do.

防火構造体1を示す斜視図。The perspective view which shows the fire prevention structure 1. FIG. 図1のA−A線断面図。AA sectional view taken on the line AA of FIG. 防火構造体1を施工する工程を示す図。The figure which shows the process of constructing the fire prevention structure. 防火構造体1を施工する工程を示す図で、(a)は斜視図、(b)は受け部材17を示す図。It is a figure which shows the process of constructing the fire prevention structure 1, (a) is a perspective view, (b) is a figure which shows the receiving member 17. FIG. 受け部材17が配置された状態の正面図。The front view of the state in which the receiving member 17 is arrange | positioned. 防火構造体1を施工する工程を示す図で、(a)は斜視図、(b)は熱可塑性部材19を示す図。It is a figure which shows the process of constructing the fire prevention structure 1, (a) is a perspective view, (b) is a figure which shows the thermoplastic member 19. FIG. 熱可塑性部材19が配置された状態の正面図。The front view of the state by which the thermoplastic member 19 is arrange | positioned. 防火構造体1を施工する工程を示す図で、図2に対応する図。It is a figure which shows the process of constructing the fire prevention structure 1, and is a figure corresponding to FIG. 防火構造体1を施工する工程を示す斜視図。The perspective view which shows the process of constructing the fire prevention structure 1. FIG. 防火構造体1の機能を示す図。The figure which shows the function of the fire prevention structure 1. FIG. 他の防火構造体30を示す図。The figure which shows the other fire prevention structure 30. FIG. (a)は、受け部材33が配置された状態の正面図、(b)は受け部材33の斜視図。(A) is a front view of a state in which the receiving member 33 is disposed, and (b) is a perspective view of the receiving member 33. 熱可塑性部材35を示す図。The figure which shows the thermoplastic member 35. FIG.

以下、本発明の実施の形態を詳細に説明する。図1は、本発明にかかる防火構造体1を示す斜視図であり、図2は図1のA―A線断面図である。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a perspective view showing a fire prevention structure 1 according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

防火構造体1は、主に、部屋等を区画する区画部である防火壁3と、防火壁3に形成された開口部5と、開口部5に設置された複数の長尺体7と、開口部5内面と長尺体7との隙間を塞ぐように設けられた熱膨張性耐火材11bと、熱可塑性部材19等から構成される。なお、以下の例では、防火構造体1として防火壁3について示すが、鉛直方向に区画する床(天井)等に設けられてもよい。   The fire prevention structure 1 is mainly composed of a fire wall 3 which is a partition part for partitioning a room and the like, an opening 5 formed in the fire wall 3, a plurality of long bodies 7 installed in the opening 5, It is comprised from the thermally expansible refractory material 11b provided so that the clearance gap between the inner surface of the opening part 5 and the elongate body 7 may be block | closed, the thermoplastic member 19, etc. FIG. In the following example, although the fire barrier 3 is shown as the fire prevention structure 1, it may be provided on a floor (ceiling) or the like partitioned in the vertical direction.

防火壁3は、図示を簡略化するが、例えば、木製軸組、強化石こうボード両面2枚貼りからなる中空壁である。なお、開口部5の形状は図示した例に限られない。   The fire wall 3 is a hollow wall made of, for example, a wooden frame and two sheets of reinforced gypsum board attached to each other, although the illustration is simplified. The shape of the opening 5 is not limited to the illustrated example.

開口部5内には、複数の長尺体7が挿通される。長尺体7は例えば金属管であり、外周に、断熱層が形成される。長尺体7としては、例えば、空調冷媒用の管体である。断熱層は、例えば、高発泡ポリエチレン等で形成された可燃性発泡断熱層である。なお、図では、2本の長尺体7が配置される例を示すが、さらに多くの長尺体7が配置されてもよく、異なるサイズの長尺体や、断熱層付長尺体以外の付属配管などが適宜配置されてもよい。   A plurality of elongated bodies 7 are inserted into the opening 5. The long body 7 is, for example, a metal tube, and a heat insulating layer is formed on the outer periphery. The long body 7 is, for example, a tube for air conditioning refrigerant. The heat insulation layer is a combustible foam heat insulation layer formed of, for example, highly foamed polyethylene or the like. In addition, although the figure shows the example by which the two long bodies 7 are arrange | positioned, many more long bodies 7 may be arrange | positioned, other than a long body of a different size, and a long body with a heat insulation layer Attached pipes or the like may be appropriately disposed.

開口部5の一方の側(図2の左側であって、以下、「作業側」とする)からは、必要に応じて受け部材17が挿入される。受け部材17は、防火壁3の一方の外面によって支持され、開口部5の深さ方向の所定位置に配置される。受け部材17は、例えば針金等を曲げることで形成される部材であり、熱可塑性部材19を保持するためのものである。受け部材17の詳細については後述する。   A receiving member 17 is inserted from one side of the opening 5 (left side in FIG. 2, hereinafter referred to as “working side”) as necessary. The receiving member 17 is supported by one outer surface of the fire wall 3 and is disposed at a predetermined position in the depth direction of the opening 5. The receiving member 17 is a member formed by, for example, bending a wire or the like, and is for holding the thermoplastic member 19. Details of the receiving member 17 will be described later.

開口部5の内部には、受け部材17と接触するように、受け部材17の作業側に熱可塑性部材19が設けられる。熱可塑性部材19は、火災等の熱によって容易に燃焼または溶融して消失または流出可能な部材である。熱可塑性部材19としては、例えば、熱可塑性樹脂発泡体やゴム状体を用いることができる。ここで、熱可塑性樹脂発泡体としては、発泡ポリエチレンや発泡ポリプロピレンを用いることができ、ゴム状体としては、加熱すると熱可塑性を示す熱可塑性エラストマーを用いることができる。熱可塑エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー、ポリエステル系エラストマーなど種々の材料が考えられ、これらのエラストマーをそのまま使用しても、発泡させて使用しても良い。熱可塑性部材19は、開口部5の内面と断熱層9(長尺体7)の外周面との隙間に配置される。熱可塑性部材19については、詳細を後述する。   Inside the opening 5, a thermoplastic member 19 is provided on the working side of the receiving member 17 so as to be in contact with the receiving member 17. The thermoplastic member 19 is a member that can be easily burned or melted by heat such as a fire to disappear or flow out. As the thermoplastic member 19, for example, a thermoplastic resin foam or a rubber-like body can be used. Here, as the thermoplastic resin foam, foamed polyethylene or foamed polypropylene can be used, and as the rubber-like body, a thermoplastic elastomer that exhibits thermoplasticity when heated can be used. As the thermoplastic elastomer, various materials such as a styrene-based elastomer, an olefin-based elastomer, and a polyester-based elastomer are conceivable. These elastomers may be used as they are or may be used after being foamed. The thermoplastic member 19 is disposed in the gap between the inner surface of the opening 5 and the outer peripheral surface of the heat insulating layer 9 (long body 7). Details of the thermoplastic member 19 will be described later.

開口部5の内部の熱可塑性部材19の作業側には、熱膨張性耐火材11bが設けられる。熱膨張性耐火材11bは、火災等の熱によって体積膨張する部材である。長尺体7と開口部5の内面との隙間に、できるだけ隙間を作らないように充填するためには、熱膨張性耐火材11bとしては、変形自在なパテ状の材料を使用することが望ましい。   A thermally expandable refractory material 11 b is provided on the working side of the thermoplastic member 19 inside the opening 5. The heat-expandable refractory material 11b is a member that expands in volume by heat such as fire. In order to fill the gap between the long body 7 and the inner surface of the opening 5 so as not to make a gap as much as possible, it is desirable to use a deformable putty-like material as the thermally expandable refractory material 11b. .

熱膨張性耐火材は、通常パテ材に用いられる材料であるベースポリマーに炭酸カルシウム、水酸化マグネシウム等の無機材料に、可塑剤として油分を加えた混合物に、膨張黒鉛(膨張性グラファイト)を加えたものを用いるが、両者の混合比率を制御することで膨張倍率や膨張温度を変更することができる。また、熱膨張性耐火材は、開口部に詰め込むことができる程度に柔軟性を有するものである必要がある。   A heat-expandable refractory material is made by adding expanded graphite (expandable graphite) to a mixture of an inorganic material such as calcium carbonate and magnesium hydroxide added to a base polymer, which is a material normally used for putty materials, and an oil as a plasticizer. The expansion ratio and the expansion temperature can be changed by controlling the mixing ratio of the two. Further, the heat-expandable refractory material needs to be flexible enough to be packed in the opening.

なお、熱膨張性耐火材11bの膨張温度は、例えば、具体的な膨張温度としては、熱可塑性部材19の溶融可塑化温度よりも高く、発火温度よりも低い温度である必要があるが、熱膨張性耐火材の膨張温度を、150℃以上で240℃以下の温度で熱膨張を開始することが望ましく、この熱膨張性耐火材の膨張温度に合わせて。具体的な膨張倍率は必要に応じて適宜設計できるが、2倍以上に体積膨張するものを使用するのが望ましく、かつ5倍以上に体積膨張するものを使用することがさらに望ましい。   The expansion temperature of the heat-expandable refractory material 11b is, for example, a specific expansion temperature that is higher than the melt plasticization temperature of the thermoplastic member 19 and lower than the ignition temperature. Desirably, the expansion temperature of the expandable refractory material starts thermal expansion at a temperature of 150 ° C. or higher and 240 ° C. or lower, and is matched with the expansion temperature of the thermally expandable refractory material. The specific expansion ratio can be appropriately designed as necessary. However, it is desirable to use a material that expands volume by 2 times or more, and it is more desirable to use a material that expands volume by 5 times or more.

防火壁3の作業側の外面には、必要に応じて筒状部材15が設置される。筒状部材15は、開口部5の開口径よりもやや大きな内径を有する筒状の部材である。なお、筒状部材15は、周方向に複数に分割(例えば二分割)して、互いに対向するように配置することで筒状としてもよい。筒状部材15は、例えば金属製である。   A cylindrical member 15 is installed on the outer surface of the fire wall 3 on the work side as necessary. The cylindrical member 15 is a cylindrical member having an inner diameter that is slightly larger than the opening diameter of the opening 5. In addition, the cylindrical member 15 is good also as a cylinder shape by dividing | segmenting into multiple in the circumferential direction (for example, dividing into 2), and arrange | positioning so that it may mutually oppose. The cylindrical member 15 is made of metal, for example.

筒状部材15の内部において、長尺体7(断熱層9)の外周面には、熱膨張性耐火材11aが配置される。熱膨張性耐火材11aは、熱膨張性耐火材11bと略同様の部材である。なお、熱膨張性耐火材11a、11bは、一体であってもよい。   Inside the cylindrical member 15, a thermally expandable refractory material 11 a is disposed on the outer peripheral surface of the long body 7 (heat insulating layer 9). The thermally expandable refractory material 11a is substantially the same member as the thermally expandable refractory material 11b. The thermally expandable refractory materials 11a and 11b may be integrated.

筒状部材15の内部であって、熱膨張性耐火材11aの外周部には、不燃材13が配置される。不燃材13は、セラミックウール、ロックウール、グラスウール、ケイ酸質繊維などの無機質繊維が望ましい。さらに、それらの無機質繊維の周囲をプラスチックフィルム、可燃性不織布、可燃性織布などで包装することが施工性向上の面で望ましい。   An incombustible material 13 is disposed inside the cylindrical member 15 and on the outer peripheral portion of the thermally expandable refractory material 11a. The incombustible material 13 is preferably an inorganic fiber such as ceramic wool, rock wool, glass wool, or siliceous fiber. Furthermore, it is desirable in terms of improving workability to wrap around these inorganic fibers with a plastic film, a combustible nonwoven fabric, a combustible woven fabric, or the like.

なお、筒状部材15、熱膨張性耐火材11a、および不燃材13は、必ずしも必要ではなく、熱膨張性耐火材11bによって防火性能を確保できる場合には、筒状部材15等を設けなくてもよい。また、熱可塑性部材19を開口部5の所定位置に保持可能であれば、受け部材17を設けなくてもよい。   Note that the cylindrical member 15, the thermally expandable refractory material 11a, and the incombustible material 13 are not necessarily required. If the fire expandability can be secured by the thermally expandable refractory material 11b, the tubular member 15 or the like is not provided. Also good. Further, the receiving member 17 may not be provided as long as the thermoplastic member 19 can be held at a predetermined position of the opening 5.

次に、防火構造体1の施工方法について説明する。まず、図3に示すように、あらかじめ防火壁3に形成された開口部5に断熱層9が設けられた長尺体7を挿通する。開口部5の大きさおよび形状は、挿通する長尺体7のサイズ、本数等に応じて適宜設定される。   Next, the construction method of the fire prevention structure 1 will be described. First, as shown in FIG. 3, a long body 7 provided with a heat insulating layer 9 is inserted into an opening 5 formed in the fire wall 3 in advance. The size and shape of the opening 5 are appropriately set according to the size, the number, and the like of the long body 7 to be inserted.

次に、図4(a)に示すように、作業側から受け部材17を開口部5に設置する(図中矢印B方向)。図4(b)は、受け部材17を示す図である。前述の通り、受け部材17は、針金などの金属線を屈曲させることで形成される。受け部材17の一部には、切れ部21が設けられる。切れ部21を開くことによって、長尺体7が挿通された開口部5に対しても、容易に設置することができる。   Next, as shown to Fig.4 (a), the receiving member 17 is installed in the opening part 5 from the work side (arrow B direction in the figure). FIG. 4B shows the receiving member 17. As described above, the receiving member 17 is formed by bending a metal wire such as a wire. A cut portion 21 is provided in a part of the receiving member 17. By opening the cut portion 21, the opening portion 5 through which the long body 7 is inserted can be easily installed.

受け部材17は、少なくとも一部に、防火壁3の外面(作業側の外面)に接触し、受け部材17自体が、開口部5の反作業側方向に抜け落ちることを防止する腕部18を有する。また、受け部材17は、開口部5の内部において、長尺体7との干渉を避けつつ、長尺体7(断熱層9)と開口部5の内面との隙間に配置される受け部16を有する。すなわち、受け部材17は、防火壁3の外面と接触する腕部18と、腕部18から略垂直に曲げられ、さらに腕部18と略平行な方向に略垂直に屈曲されて受け部16が形成される。   The receiving member 17 has an arm portion 18 that at least partially contacts the outer surface (the outer surface on the working side) of the fire wall 3 and prevents the receiving member 17 itself from falling off in the direction opposite to the working side of the opening 5. . In addition, the receiving member 17 is disposed in the gap between the long body 7 (heat insulating layer 9) and the inner surface of the opening 5 while avoiding interference with the long body 7 inside the opening 5. Have That is, the receiving member 17 is bent substantially perpendicularly from the arm portion 18 that contacts the outer surface of the fire wall 3 and the arm portion 18, and is bent substantially perpendicularly in a direction substantially parallel to the arm portion 18. It is formed.

図5は、受け部材17を開口部5に設置した状態の正面図である。図5に示すように、受け部材17は、開口部5の内部であって、長尺体7(断熱層9)と開口部5の内面との間に受け部16が位置するように配置される。なお、受け部16は、おおよそ開口部5の内面形状に沿うように、適宜屈曲される。この状態で、一対の腕部18同士の最大幅が、開口部5の開口幅よりも広く設定されるため、受け部材17が、開口部5の内部に落ち込むことがない。また、受け部16を、開口部5の所定の深さ位置に配置することができる。   FIG. 5 is a front view of the receiving member 17 installed in the opening 5. As shown in FIG. 5, the receiving member 17 is disposed inside the opening 5 so that the receiving portion 16 is located between the elongated body 7 (heat insulating layer 9) and the inner surface of the opening 5. The Note that the receiving portion 16 is appropriately bent so as to substantially follow the inner surface shape of the opening 5. In this state, since the maximum width between the pair of arm portions 18 is set wider than the opening width of the opening 5, the receiving member 17 does not fall into the opening 5. Further, the receiving part 16 can be arranged at a predetermined depth position of the opening part 5.

次に、図6(a)に示すように、開口部5の作業側から熱可塑性部材19を挿入する(図中矢印C方向)。図6(b)に示すように、例えば、熱可塑性部材19は、可撓性を有する断面円形の長尺部材である。熱可塑性部材19は、容易に変形し、屈曲させることができる。したがって、開口部5の形状に合うように、長手方向を開口部5形状に沿って例えば円形に屈曲させることができる。   Next, as shown to Fig.6 (a), the thermoplastic member 19 is inserted from the operation | work side of the opening part 5 (arrow C direction in the figure). As shown in FIG. 6B, for example, the thermoplastic member 19 is a long member having a circular cross section having flexibility. The thermoplastic member 19 can be easily deformed and bent. Therefore, the longitudinal direction can be bent, for example, in a circle along the shape of the opening 5 so as to match the shape of the opening 5.

熱可塑性部材19は、その長手方向が開口部5の周方向になるように、開口部5の内面に沿って屈曲した状態で作業側より開口部5内に挿入され、受け部材17の受け部16に接触するまで押し込まれる。すなわち、熱可塑性部材19は、受け部材17によって、開口部5内に保持され、開口部5の内部における深さ方向の位置が定まる。   The thermoplastic member 19 is inserted into the opening 5 from the working side in a state of being bent along the inner surface of the opening 5 so that the longitudinal direction thereof is the circumferential direction of the opening 5. It is pushed in until it contacts 16. That is, the thermoplastic member 19 is held in the opening 5 by the receiving member 17, and the position in the depth direction inside the opening 5 is determined.

図7は、熱可塑性部材19を開口部5に設置した状態の正面図である。図7に示すように、熱可塑性部材19は、開口部5の内部であって、長尺体7(断熱層9)と開口部5の内面との間に挿入される。この際、長尺体7(断熱層9)と開口部5の内面との隙間が狭い部位もあるが、熱可塑性部材19は容易に断面が潰れるため、狭い隙間に対しても押し込むことができる。   FIG. 7 is a front view of a state in which the thermoplastic member 19 is installed in the opening 5. As shown in FIG. 7, the thermoplastic member 19 is inserted inside the opening 5 and between the elongated body 7 (heat insulating layer 9) and the inner surface of the opening 5. At this time, there is a portion where the gap between the long body 7 (the heat insulating layer 9) and the inner surface of the opening 5 is narrow, but since the cross section of the thermoplastic member 19 is easily crushed, it can be pushed into the narrow gap. .

なお、図では、熱可塑性部材19のみが潰れている状態を示すが、断熱層9も同様に潰れてもよい。また、熱可塑性部材19と、開口部5内面または長尺体7(断熱層9)との間に隙間が形成されても良い。また、熱可塑性部材19は、必ずしも長尺物でなくても良く、ブロック状の物を用いても良い。この場合、複数の熱可塑性部材19を用いても良い。   In addition, although the figure shows the state where only the thermoplastic member 19 is crushed, the heat insulating layer 9 may be crushed similarly. Further, a gap may be formed between the thermoplastic member 19 and the inner surface of the opening 5 or the elongated body 7 (heat insulating layer 9). Moreover, the thermoplastic member 19 does not necessarily need to be a long thing, and a block-shaped thing may be used for it. In this case, a plurality of thermoplastic members 19 may be used.

次に、図8に示すように、開口部5の作業側から熱膨張性耐火材11bを挿入する(図中矢印D方向)。熱膨張性耐火材11bは、開口部5の内部であって、長尺体7(断熱層9)と開口部5の内面との間に挿入される。また、熱膨張性耐火材11bは、熱可塑性部材19に当たる深さまで挿入され、防火壁3の外面(作業側)位置まで充填される。前述の通り、熱可塑性部材19の開口部5内部における位置は、受け部材17によって定まるため、熱膨張性耐火材11bの充填深さも、熱可塑性部材19によって定まる。したがって、開口部5内部への熱膨張性耐火材11bの充填量を規制することができる。   Next, as shown in FIG. 8, the thermally expandable refractory material 11b is inserted from the working side of the opening 5 (in the direction of arrow D in the figure). The thermally expandable refractory material 11 b is inserted inside the opening 5 and between the elongated body 7 (heat insulating layer 9) and the inner surface of the opening 5. Further, the heat-expandable refractory material 11 b is inserted to a depth corresponding to the thermoplastic member 19 and filled to the outer surface (working side) position of the fire wall 3. As described above, since the position of the thermoplastic member 19 inside the opening 5 is determined by the receiving member 17, the filling depth of the thermally expandable refractory material 11 b is also determined by the thermoplastic member 19. Therefore, the filling amount of the thermally expandable refractory material 11b in the opening 5 can be regulated.

なお、熱可塑性部材19は、長尺体7(断熱層9)の外周に巻き付けるように配置されるため、開口部5の内面と長尺体7(断熱層9)の外面との隙間が確実に保持される。したがって、熱膨張性耐火材11bの挿入作業が容易である。   In addition, since the thermoplastic member 19 is disposed so as to be wound around the outer periphery of the long body 7 (heat insulating layer 9), the gap between the inner surface of the opening 5 and the outer surface of the long body 7 (heat insulating layer 9) is ensured. Retained. Therefore, the insertion work of the heat-expandable refractory material 11b is easy.

次に、開口部5の作業側に突出する長尺体7(断熱層9)の所定範囲に対し、さらに熱膨張性耐火材11aを巻きつける。熱膨張性耐火材11aを巻きつける長さとしては、例えば50mm以上であることが望ましい。   Next, the heat-expandable refractory material 11 a is further wound around a predetermined range of the long body 7 (heat insulating layer 9) protruding to the working side of the opening 5. The length for winding the heat-expandable refractory material 11a is preferably, for example, 50 mm or more.

図9には、防火構造体1を施工する工程図を示す。熱膨張性耐火材11aの外周には、さらに不燃材13を巻きつける(図中矢印E方向)。さらに、不燃材13の外周側から、反割り状の筒状部材15を被せる(図中矢印F方向)。筒状部材15は、防火壁3に固定される。以上により、防火構造体1を構築することができる。   In FIG. 9, the process figure which constructs the fire prevention structure 1 is shown. An incombustible material 13 is further wound around the outer periphery of the thermally expandable refractory material 11a (in the direction of arrow E in the figure). Further, an inverted split cylindrical member 15 is covered from the outer peripheral side of the non-combustible material 13 (in the direction of arrow F in the figure). The tubular member 15 is fixed to the fire wall 3. As described above, the fire prevention structure 1 can be constructed.

次に、防火構造体1の機能について説明する。図10は、火災時における防火構造体1の機能を示す概念図である。なお、以下は、防火壁3の作業側が火災になった場合について説明する。   Next, the function of the fire prevention structure 1 will be described. FIG. 10 is a conceptual diagram showing the function of the fire prevention structure 1 at the time of a fire. In the following, a case where the work side of the fire wall 3 has a fire will be described.

作業側が火災になると、作業側に配置されている長尺体7の外周の断熱層9は即座に燃焼して焼失する。したがって、筒状部材15内部に位置する断熱層9も焼失する。一方、熱膨張性耐火材11aは、火災の熱によって膨張する。熱膨張性耐火材11aは、反作業側方向に熱膨張性耐火材11bが配置されているため、防火構造体1の中心方向(図中矢印G方向)と長尺体7の長手方向であって作業側方向(図中矢印H方向)に主に膨張する。   When the work side becomes a fire, the heat insulating layer 9 on the outer periphery of the long body 7 arranged on the work side is immediately burned and burned out. Therefore, the heat insulation layer 9 located inside the cylindrical member 15 is also burned out. On the other hand, the thermally expandable refractory material 11a expands due to the heat of the fire. Since the thermally expandable refractory material 11a is arranged in the direction opposite to the work side, the thermally expandable refractory material 11a is in the center direction of the fire prevention structure 1 (in the direction of arrow G in the figure) and the longitudinal direction of the long body 7. Thus, it mainly expands in the work side direction (the direction of arrow H in the figure).

なお、熱膨張性耐火材11bも火災の熱や、長尺体7を伝達する熱等によって膨張する。この際、反作業側には、熱可塑性部材19が配置されるため、熱膨張性耐火材11bは、まず、主に中心方向に膨張する(図中矢印I方向)。したがって、断熱層9の焼失によって生じる隙間を効率よく埋めることができる。   The thermally expandable refractory material 11b also expands due to fire heat, heat transmitted through the long body 7, or the like. At this time, since the thermoplastic member 19 is disposed on the non-work side, the thermally expandable refractory material 11b first expands mainly in the center direction (in the direction of arrow I in the figure). Therefore, it is possible to efficiently fill a gap generated by burning out the heat insulating layer 9.

図10(b)は、さらに火災によって熱膨張性耐火材11a、11bの膨張が進行した状態を示す概念図である。火災がさらに進行すると、熱膨張性耐火材11aは、断熱層9が焼失して露出した長尺体7を覆うように膨張するとともに、さらに長尺体7の長手方向に対して膨張して、長尺体7の外周を覆う。   FIG.10 (b) is a conceptual diagram which shows the state which expansion | swelling of the thermally expansible refractory materials 11a and 11b further advanced by the fire. When the fire further progresses, the thermally expandable refractory material 11a expands so as to cover the long body 7 exposed by the heat insulation layer 9 being burned out, and further expands in the longitudinal direction of the long body 7, The outer periphery of the long body 7 is covered.

一方、熱可塑性部材19は、熱によって軟化して流出するか、または燃焼により焼失する。したがって、熱膨張性耐火材11bは、中心方向への膨張に加え、長尺体7の長手方向であって、反作業側方向に膨張し(図中矢印J方向)、長尺体7(断熱層9)を覆う。なお、受け部材17は、熱によっても焼失することはないが、線状であるため、熱膨張性耐火材11bの膨張の妨げとなることがない。   On the other hand, the thermoplastic member 19 is softened by heat and flows out, or is burned out by combustion. Therefore, in addition to the expansion in the center direction, the thermally expandable refractory material 11b expands in the longitudinal direction of the long body 7 and in the direction opposite to the working side (in the direction of arrow J in the figure), and the long body 7 (heat insulation) Cover layer 9). The receiving member 17 is not burned away by heat, but is linear, and therefore does not hinder the expansion of the thermally expandable refractory material 11b.

以上のように、熱膨張性耐火材11a、11bの中心方向への膨張によって、断熱層9の焼失によって生じた、長尺体7と開口部5内面の隙間を完全に塞ぐことができる。また、熱膨張性耐火材11aの長手方向の膨張によって、長尺体7(断熱層9)の外周が、その長手方向に所定長さだけ熱膨張性耐火材で被覆される。したがって、その間における長尺体7が火災の炎と接触することを防止することができる。また、中空壁であっても、火災の炎が防火壁3内に進入することもない。   As described above, the expansion between the heat-expandable refractory materials 11a and 11b in the center direction can completely close the gap between the long body 7 and the inner surface of the opening 5 caused by the heat insulation layer 9 being burned out. Moreover, the outer periphery of the elongate body 7 (heat insulation layer 9) is coat | covered with the heat-expandable refractory material only the predetermined length in the longitudinal direction by expansion | swelling of the heat-expandable refractory material 11a in the longitudinal direction. Therefore, it can prevent that the elongate body 7 in the meantime contacts with the flame of a fire. Moreover, even if it is a hollow wall, a fire flame does not enter the fire wall 3.

なお、反作業側が火災になった場合にも同様の効果を得ることができる。この場合には、まず、反作業側に位置する断熱層9と熱可塑性部材19がすぐに焼失する。したがって、熱膨張性耐火材11bは、熱によって、中心方向および反作業側に向かって即座に膨張する。同様に、熱膨張性耐火材11aも熱によって、中心方向および長手方向(作業側方向)へ膨張を開始する。以上により、熱膨張性耐火材11a、11bが、開口部5の隙間を塞ぎ、開口部5近傍の長尺体7(断熱層9)を被覆する。   Note that the same effect can be obtained when a fire occurs on the non-work side. In this case, first, the heat insulating layer 9 and the thermoplastic member 19 located on the non-working side are immediately burned away. Therefore, the heat-expandable refractory material 11b immediately expands toward the center direction and the non-work side due to heat. Similarly, the heat-expandable refractory material 11a also starts to expand in the center direction and the longitudinal direction (working side direction) due to heat. As described above, the heat-expandable refractory materials 11 a and 11 b close the gap of the opening 5 and cover the long body 7 (heat insulating layer 9) near the opening 5.

なお、熱可塑性部材19の位置に、仮に断熱材や不燃材が配置されていると、断熱材等によって熱膨張性耐火材11bに熱が伝わることが遅れる。このため、熱膨張性耐火材11bの膨張タイミングが遅れ、例えば作業側の断熱層9が燃焼する恐れがある。しかし、本発明では、熱可塑性部材19はすぐになくなるため、熱膨張性耐火材11bの膨張開始が早くなる。したがって、より高い延焼防止効果を発揮することができる。   In addition, if a heat insulating material or a non-combustible material is temporarily disposed at the position of the thermoplastic member 19, it is delayed that heat is transmitted to the thermally expandable refractory material 11b by the heat insulating material or the like. For this reason, the expansion timing of the heat-expandable refractory material 11b is delayed, and for example, the heat insulating layer 9 on the work side may be burned. However, in the present invention, since the thermoplastic member 19 is quickly lost, the expansion of the thermally expandable refractory material 11b is accelerated. Therefore, a higher fire spread prevention effect can be exhibited.

以上説明したように、本発明にかかる防火構造体1によれば、熱膨張性耐火材11a、11bによって、開口部5の近傍を確実に塞ぎ、延焼を防止することができる。また、施工時に、開口部5の内部に熱可塑性部材19が配置されるため、熱可塑性部材19が熱膨張性耐火材11bのストッパとなり、熱膨張性耐火材11bを必要以上に開口部5内に充填することがなく、また、充填量が不足することがない。   As described above, according to the fire prevention structure 1 according to the present invention, the thermal expansion refractory materials 11a and 11b can reliably block the vicinity of the opening 5 and prevent the spread of fire. Moreover, since the thermoplastic member 19 is arrange | positioned inside the opening part 5 at the time of construction, the thermoplastic member 19 becomes a stopper of the heat-expandable refractory material 11b, and the heat-expandable refractory material 11b is more in the opening part 5 than necessary. And the filling amount is not insufficient.

また、熱可塑性部材19は、火災時に流出または焼失する。このため、熱膨張性耐火材を長尺体7の長手方向に膨張させることができる。したがって、熱膨張性耐火材の充填長に対して、より長い範囲に対して、延焼防止構造を確保することができる。   Further, the thermoplastic member 19 flows out or burns out in the event of a fire. For this reason, the heat-expandable refractory material can be expanded in the longitudinal direction of the long body 7. Therefore, the fire spread prevention structure can be secured for a longer range than the filling length of the thermally expandable refractory material.

また、熱可塑性部材19は、受け部材17によって保持されるため、作業性にも優れる。なお、受け部材17は、線材であるため、熱膨張性耐火材11bの膨張に対してほとんど妨げとなることがない。また、熱可塑性部材19は、容易に断面が潰れるため、設置作業性に優れる。さらに、熱可塑性部材19が長尺材であるため、開口部5の内面全周に容易に設置することができる。   Moreover, since the thermoplastic member 19 is hold | maintained by the receiving member 17, it is excellent also in workability | operativity. In addition, since the receiving member 17 is a wire, it hardly interferes with the expansion of the thermally expandable refractory material 11b. Moreover, since the thermoplastic member 19 is easily crushed in cross section, it is excellent in installation workability. Furthermore, since the thermoplastic member 19 is a long material, it can be easily installed on the entire inner surface of the opening 5.

また、作業側が火災の場合には、熱可塑性部材19は、熱膨張性耐火材11bの膨張を一時規制し、熱膨張性耐火材11bが確実に径方向に膨張させることができる。なお、長尺体7からの熱伝導等によって、熱可塑性部材19は、比較的早期に溶融し形状を維持しなくなり、熱膨張性耐火材11bの支持強度を低下させる。したがって、その後の熱膨張性耐火材11bの長手方向への膨張の妨げとなることはない。   When the work side is a fire, the thermoplastic member 19 temporarily restricts the expansion of the heat-expandable refractory material 11b, and the heat-expandable refractory material 11b can be surely expanded in the radial direction. Note that due to heat conduction from the long body 7, the thermoplastic member 19 melts relatively early and does not maintain its shape, and lowers the support strength of the thermally expandable refractory material 11b. Therefore, the subsequent expansion of the thermally expandable refractory material 11b in the longitudinal direction is not hindered.

また、反作業側が火災の場合にも、熱可塑性部材19が即座に流出または焼失するため、熱膨張性耐火材11bは即座に膨張を開始し、長尺体7と開口部5の内面との間に断熱層を形成し、また開口部を長手方向に膨張することで隙間に流入する空気を遮断することが可能となる。   Further, even when the non-working side is a fire, the thermoplastic member 19 immediately flows out or burns out, so that the thermally expandable refractory material 11b immediately starts to expand, and the long body 7 and the inner surface of the opening 5 It is possible to block air flowing into the gap by forming a heat insulating layer therebetween and expanding the opening in the longitudinal direction.

このように、いずれの側で火災が発生した場合であっても、熱膨張性耐火材11bを長手方向にも膨張させることができるため、充填した熱膨張性耐火材11bの効果を最大限に発揮することができる。すなわち、熱膨張性耐火材の使用量を従来よりも減らすことができる。したがって、材料コストの削減を図ることができるとともに、熱膨張性耐火材11bを充填する深さを減らすことができるので施工性が大幅に改善される。   Thus, even if a fire occurs on either side, the thermally expandable refractory material 11b can be expanded in the longitudinal direction, so that the effect of the filled thermally expandable refractory material 11b is maximized. It can be demonstrated. That is, the usage amount of the heat-expandable refractory material can be reduced as compared with the prior art. Therefore, the material cost can be reduced, and the depth of filling the thermally expandable refractory material 11b can be reduced, so that the workability is greatly improved.

なお、防火構造体1の性能を実際に評価したところ、その防火性能が確認された。評価は、総壁厚80mmの中空壁に設置された丸穴の開口部に、可燃性発泡断熱層を備えた金属管および付属配管などの可燃性長尺物を貫通させた構造を対象とした。熱膨張性充填材の充填深さは、現場での作業性が良好となる35mmに設定した。図1、図2に示した防火構造体1と同様に構築された構造に対し、ISO834に規定された標準加熱曲線に準拠した加熱を行った。作業側を火災側とし、反火災側に熱可塑性部材を配置した。   In addition, when the performance of the fireproof structure 1 was actually evaluated, the fireproof performance was confirmed. The evaluation was made for a structure in which a flammable long object such as a metal pipe and an attached pipe having a flammable foam heat insulating layer was passed through an opening of a round hole installed in a hollow wall having a total wall thickness of 80 mm. . The filling depth of the heat-expandable filler was set to 35 mm so that the workability on site was good. The structure constructed in the same manner as the fireproof structure 1 shown in FIGS. 1 and 2 was heated in accordance with a standard heating curve defined in ISO834. The work side was the fire side, and the thermoplastic member was placed on the anti-fire side.

この結果、加熱30分を過ぎた頃から熱可塑性部材が熱で溶融し、その直後から充填材が反火災側に著しく膨張を開始して開口内壁と可燃性長尺物との間を密に閉塞した。このため、60分以上の防火(延焼防止)性能を発揮することが確認された。   As a result, the thermoplastic member is melted by heat from about 30 minutes after the heating, and immediately after that, the filler starts to expand remarkably on the anti-fire side and closes the space between the inner wall of the opening and the combustible long object. Blocked. For this reason, it was confirmed that the fire prevention (fire spread prevention) performance of 60 minutes or more was exhibited.

これに対し、熱可塑性部材に代えて、不燃材を用いた場合には、可燃性発泡断熱層の燃焼が、60分も持たずに反火災側に伝わった。すなわち、熱膨張性耐火材の充填量を規制するための部材としては、熱可塑性部材を用いる方が、より高い延焼防止性能を発揮した。   On the other hand, when a non-combustible material was used instead of the thermoplastic member, the combustion of the combustible foam heat insulating layer was transmitted to the anti-fire side within 60 minutes. That is, as a member for regulating the filling amount of the heat-expandable refractory material, the use of a thermoplastic member exhibited higher fire spread prevention performance.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

たとえば、図11に示す防火構造体30を用いてもよい。なお、以下の説明では、防火構造体1と同様の機能を奏する部材については、図1、図2と同様の符号を付し、重複する説明を省略する。防火構造体30は、防火構造体1と同様の構成であるが、筒状部材15およびこの内部の構成を用いない点で異なる。   For example, you may use the fire prevention structure 30 shown in FIG. In the following description, members having the same functions as those of the fire prevention structure 1 are denoted by the same reference numerals as those in FIGS. 1 and 2, and redundant descriptions are omitted. The fire prevention structure 30 has the same configuration as that of the fire prevention structure 1, but differs in that the cylindrical member 15 and the internal configuration thereof are not used.

熱膨張性耐火材31は、熱膨張性耐火材11bと同様の部材を用いることができるが、パテ状ではなく、たとえば、パテ又はペースト状のものをポリエチレンなどに袋詰めをしたブロックまたはシート状であってもよい。防火構造体1においては、筒状部材15を用いたが、開口部5の内部において、十分な熱膨張性耐火材31を充填可能であれば、開口部5の内部のみで防火構造体30を構成してもよい。なお、この場合でも、必要な量の熱膨張性耐火材31を確実に把握するために、熱可塑性部材19が設けられる。防火構造体30も、防火構造体1と同様の効果を得ることができる。   The thermally expandable refractory material 31 can use the same member as the thermally expandable refractory material 11b, but is not putty-like, for example, a putty or paste-like block or sheet-like packaged in polyethylene or the like It may be. In the fire prevention structure 1, the tubular member 15 is used. However, if the sufficient heat-expandable refractory material 31 can be filled in the opening 5, the fire prevention structure 30 can be provided only in the opening 5. It may be configured. Even in this case, the thermoplastic member 19 is provided in order to reliably grasp the necessary amount of the heat-expandable refractory material 31. The fire prevention structure 30 can also obtain the same effects as the fire prevention structure 1.

また、熱可塑性部材19を保持する受け部材としては、図12に示す受け部材33を用いてもよい。図12(a)は、受け部材33を開口部5に設置した状態を示す正面図、図12(b)は、受け部材33を示す斜視図である。   Further, as a receiving member for holding the thermoplastic member 19, a receiving member 33 shown in FIG. 12 may be used. FIG. 12A is a front view showing a state in which the receiving member 33 is installed in the opening 5, and FIG. 12B is a perspective view showing the receiving member 33.

受け部材33は、例えば金属製の板状部材が屈曲されて構成される。受け部材33は、受け部材17と同様に、防火壁3の外面と接触する腕部35と、開口部5の内部に位置し、熱可塑性部材19を保持するための受け部37を有する。   The receiving member 33 is configured by bending, for example, a metal plate-like member. Similarly to the receiving member 17, the receiving member 33 has an arm portion 35 that contacts the outer surface of the fire wall 3, and a receiving portion 37 that is positioned inside the opening 5 and holds the thermoplastic member 19.

図12(a)に示すように、受け部材33は、開口部5の縁部の複数個所に設置される。なお、受け部材33は、防火壁3の外面にネジ等で固定してもよい。受け部材33のように構成しても、受け部材17と同様の効果を得ることができる。また、受け部材33を複数個用いることで、開口部5の内部において、熱可塑性部材を確実に保持することができるとともに、既設の長尺体7に対しても、容易に設置することができる。尚、長尺体を後から挿通する場合には、受け部材33は、開口部5の縁部を複数個所に分割して覆うものではなく、開口部の縁部の全周を一つの部材で覆う構造のものとすることもできる。   As shown in FIG. 12A, the receiving member 33 is installed at a plurality of locations on the edge of the opening 5. The receiving member 33 may be fixed to the outer surface of the fire wall 3 with screws or the like. Even when configured as the receiving member 33, the same effect as the receiving member 17 can be obtained. Further, by using a plurality of receiving members 33, the thermoplastic member can be reliably held inside the opening 5 and can be easily installed on the existing long body 7. . When the long body is inserted later, the receiving member 33 does not cover the edge of the opening 5 by dividing it into a plurality of places, but covers the entire periphery of the edge of the opening with a single member. A covering structure can also be used.

また、図13に示すような熱可塑性部材39を用いることもできる。図13(a)は、全体図、図13(b)は図13(a)のK−K線断面図である。熱可塑性部材39は、熱可塑性部材19と略同様であるが、内部に中空部41が形成される点で異なる。   Also, a thermoplastic member 39 as shown in FIG. 13 can be used. 13A is an overall view, and FIG. 13B is a cross-sectional view taken along the line KK of FIG. 13A. The thermoplastic member 39 is substantially the same as the thermoplastic member 19, but differs in that a hollow portion 41 is formed inside.

熱可塑性部材39は、内部に中空部41を有するため、その断面方向における潰れ量が大きい。したがって、開口部5の内面と長尺体7(断熱層9)との隙間が大きい部位においては、大きな外径によって、その隙間を効率良く塞ぎ、また、狭い隙間においては、断面が大きく潰れることで、容易に挿入することができる。   Since the thermoplastic member 39 has the hollow part 41 inside, the amount of crushing in the cross-sectional direction is large. Therefore, in a portion where the gap between the inner surface of the opening 5 and the elongated body 7 (heat insulating layer 9) is large, the gap is efficiently closed by a large outer diameter, and the cross section is largely crushed in a narrow gap. And can be inserted easily.

また、熱可塑性部材39は、外径を大きくしても、体積が小さい。このため、火災時に即座に流出または燃焼して消失する。このため、より早く熱膨張性耐火材を膨張させることができる。   Further, the thermoplastic member 39 has a small volume even when the outer diameter is increased. For this reason, it immediately flows out or burns away in the event of a fire. For this reason, a thermally expansible refractory material can be expanded more rapidly.

1、30………防火構造体
3………防火壁
5………開口部
7………長尺体
9………断熱層
11a、11b、31………熱膨張性耐火材
13………不燃材
15………筒状部材
16、37………受け部
17、33………受け部材
18、35………腕部
19、39………熱可塑性部材
21………切れ部
41………中空部
DESCRIPTION OF SYMBOLS 1, 30 ......... Fire prevention structure 3 ......... Fire barrier 5 ......... Opening part 7 ......... Long body 9 ......... Heat insulation layer 11a, 11b, 31 ......... The thermal expansion fireproof material 13 ... ... non-combustible material 15 ... ... cylindrical members 16 and 37 ... ... receiving parts 17 and 33 ... ... receiving members 18 and 35 ... ... arm parts 19 and 39 ... ... thermoplastic member 21 ... ... cut part 41 ......... hollow part

Claims (6)

区画部に設けられた開口部と、
前記開口部を貫通するように設けられた金属製の長尺体と、
前記開口部の内部に配置される熱可塑性部材と、前記開口部の内部に配置され、前記熱可塑性部材と接触するように配置され、前記開口部の内部への充填量が前記熱可塑性部材に接触することで規制される第1の熱膨張性耐火材と、
を具備し、
前記開口部の内部には、さらに受け部材が設けられ、
前記受け部材は、前記開口部の内部において、前記区画部の厚みよりも浅い所定の深さ位置に配置され、前記第1の熱膨張性耐火材が配置される側とは逆側の前記熱可塑性部材と接触し、前記熱可塑性部材は、前記受け部材によって前記開口部の内部に保持され、
火災時において、前記熱可塑性部材が燃焼または溶融可塑化して流出することで、前記第1の熱膨張性耐火材が、前記熱可塑性部材が配置されていた方向に膨張可能となることを特徴とする防火構造体。
An opening provided in the partition,
A metal elongated body provided so as to penetrate the opening,
A thermoplastic member disposed inside the opening, and disposed inside the opening so as to be in contact with the thermoplastic member, and a filling amount in the opening is in the thermoplastic member. A first thermally expansive refractory material regulated by contact;
Comprising
A receiving member is further provided inside the opening,
The receiving member is arranged at a predetermined depth position shallower than the thickness of the partition portion inside the opening, and the heat on the side opposite to the side on which the first thermally expandable refractory material is arranged. In contact with the plastic member, the thermoplastic member is held inside the opening by the receiving member;
In the event of a fire, the thermoplastic member is combusted or melt-plasticized and flows out, so that the first thermally expandable refractory material can expand in the direction in which the thermoplastic member is disposed. Fire prevention structure.
区画部に設けられた開口部と、
前記開口部を貫通するように設けられた金属製の長尺体と、
前記開口部の内部に配置される熱可塑性部材と、前記開口部の内部に配置され、前記熱可塑性部材と接触するように配置され、前記開口部の内部への充填量が前記熱可塑性部材に接触することで規制される第1の熱膨張性耐火材と、
を具備し、
前記熱可塑性部材は、前記開口部の内部において、前記熱可塑性部材の断面がつぶれて前記長尺体の外形状および前記開口部の内面形状に対応して変形可能な弾性体であり、
火災時において、前記熱可塑性部材が燃焼または溶融可塑化して流出することで、前記第1の熱膨張性耐火材が、前記熱可塑性部材が配置されていた方向に膨張可能となることを特徴とする防火構造体。
An opening provided in the partition,
A metal elongated body provided so as to penetrate the opening,
A thermoplastic member disposed inside the opening, and disposed inside the opening so as to be in contact with the thermoplastic member, and a filling amount in the opening is in the thermoplastic member. A first thermally expansive refractory material regulated by contact;
Comprising
The thermoplastic member, in the interior of the opening, Ri outer shape and deformable resilient member Der corresponding to the inner surface shape of the opening of the long body section of the thermoplastic member is crushed,
In the event of a fire, the thermoplastic member is combusted or melt-plasticized and flows out, so that the first thermally expandable refractory material can expand in the direction in which the thermoplastic member is disposed. Fire prevention structure.
前記熱可塑性部材は、可撓性を有する長尺部材であり、前記開口部の内部において、前記熱可塑性部材の長手方向が前記開口部の周方向になるように、前記開口部の内面に沿って屈曲して配置されることを特徴とする請求項記載の防火構造体。 The thermoplastic member is a long member having flexibility, and along the inner surface of the opening, the longitudinal direction of the thermoplastic member is the circumferential direction of the opening in the opening. The fireproof structure according to claim 2 , wherein the fireproof structure is arranged bent. 前記熱可塑性部材の長手方向に垂直な断面において、前記熱可塑性部材の内部に中空部が形成されることを特徴とする請求項記載の防火構造体。 The fireproof structure according to claim 3 , wherein a hollow portion is formed inside the thermoplastic member in a cross section perpendicular to the longitudinal direction of the thermoplastic member. 前記開口部の前記第1の熱膨張性耐火材が配置される側の前記区画部には、前記長尺体を覆うように筒状部材が設けられ、
前記筒状部材の内部には、前記長尺体の周囲に第2の熱膨張性耐火材が設けられ、さらに前記第2の熱膨張性耐火材の外周に不燃性部材が設けられることを特徴とする請求項1から請求項のいずれかに記載の防火構造体。
A cylindrical member is provided on the partition portion on the side where the first thermally expansible refractory material is disposed, so as to cover the elongated body,
Inside the cylindrical member, a second thermally expandable refractory material is provided around the elongated body, and a nonflammable member is further provided on the outer periphery of the second thermally expandable refractory material. The fireproof structure according to any one of claims 1 to 4 .
区画部に形成された開口部に長尺体を通す工程と、
前記開口部の内部において前記区画部の厚みよりも浅い所定の深さ位置に受け部材を配置する工程と、
前記開口部の一方の開口側から、前記受け部材の位置まで熱可塑性部材を挿入する工程と、
前記開口部の一方の開口側から、前記熱可塑性部材の位置まで熱で膨張する熱膨張性耐火材を挿入する工程と、
を具備することを特徴とする防火構造体の施工方法。
Passing the elongated body through the opening formed in the partition,
Oite inside of the opening, placing a member received in the shallow predetermined depth position than the thickness of said partition portion,
Inserting a thermoplastic member from one opening side of the opening to the position of the receiving member;
Inserting a thermally expandable refractory material that expands with heat from one opening side of the opening to the position of the thermoplastic member;
The construction method of the fire prevention structure characterized by comprising.
JP2012020685A 2012-02-02 2012-02-02 Fire prevention structure and construction method of fire prevention structure Active JP5846945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020685A JP5846945B2 (en) 2012-02-02 2012-02-02 Fire prevention structure and construction method of fire prevention structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020685A JP5846945B2 (en) 2012-02-02 2012-02-02 Fire prevention structure and construction method of fire prevention structure

Publications (2)

Publication Number Publication Date
JP2013158382A JP2013158382A (en) 2013-08-19
JP5846945B2 true JP5846945B2 (en) 2016-01-20

Family

ID=49171143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020685A Active JP5846945B2 (en) 2012-02-02 2012-02-02 Fire prevention structure and construction method of fire prevention structure

Country Status (1)

Country Link
JP (1) JP5846945B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6429910B2 (en) * 2017-01-23 2018-11-28 株式会社古河テクノマテリアル Fireproof member, fireproof structure, structure and construction method of fireproof structure
JP6898190B2 (en) * 2017-09-20 2021-07-07 未来工業株式会社 Penetration structure of fire protection compartment wall
JP6799524B2 (en) * 2017-12-21 2020-12-16 未来工業株式会社 Fireproof material and fireproof compartment wall structure
JP6641417B2 (en) * 2018-06-05 2020-02-05 積水化学工業株式会社 Coating materials, piping, and fire-resistant structures
JP7246895B2 (en) * 2018-11-08 2023-03-28 古河電気工業株式会社 Metal fittings for fire-resistant members, fire-resistant members with metal fittings, fire-resistant structures, construction methods for fire-resistant structures
JP7207959B2 (en) * 2018-11-08 2023-01-18 古河電気工業株式会社 Fireproof materials, fireproof structures
JP7197395B2 (en) * 2019-02-06 2022-12-27 未来工業株式会社 METHOD OF FORMING FIREPROOF TREATMENT PORTION AND TREATMENT MATERIAL RECEIVER
JP7030148B2 (en) * 2020-03-03 2022-03-04 因幡電機産業株式会社 Fireproof compartment structure, how to build fireproof compartment structure
JP7034369B2 (en) * 2020-03-03 2022-03-11 因幡電機産業株式会社 Fireproof compartment structure, how to build fireproof compartment structure
JP7270086B2 (en) * 2020-03-03 2023-05-09 因幡電機産業株式会社 Fire-resistant compartment structure, construction method of fire-resistant compartment structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103609A (en) * 1990-11-15 1992-04-14 Minnesota Mining & Manufacturing Company Intumescable fire stop device
JP4158915B2 (en) * 2004-05-24 2008-10-01 株式会社古河テクノマテリアル Refractory filler support metal fitting for flammable elongate penetration and its installation method
JP2009197476A (en) * 2008-02-21 2009-09-03 Sekisui Chem Co Ltd Fire compartment penetrating part structure and method of constructing the same
JP2011122414A (en) * 2009-12-14 2011-06-23 Sekisui Chem Co Ltd Compartmentation-through part structure

Also Published As

Publication number Publication date
JP2013158382A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5846945B2 (en) Fire prevention structure and construction method of fire prevention structure
JP5427782B2 (en) Fire prevention compartment penetration structure and construction method thereof
KR930005717B1 (en) Fire-prevention device
JP5606017B2 (en) Fireproof plugging composite, fireproof plugging composite built-in fire prevention device, and pipe joint or sleeve provided with fireproof plugging composite built-in fire prevention device
JP5301851B2 (en) Sleeve forming sheet and method of forming through structure
KR101732118B1 (en) Foamable Filling Material of Opening Portion and Construction Method of The Same
JP2008241027A (en) Thermally expansive fireproof implement and fire resistive structure
JP5301850B2 (en) Sleeve forming sheet and method of forming through structure
JP3160790U (en) Fire prevention structure through the fire compartment
JP6193249B2 (en) Fireproof compartment penetration structure
JP2011122414A (en) Compartmentation-through part structure
JP2011163553A (en) Method of blocking drain pipe by fireproof blocking implement
JP5576349B2 (en) Fireproof plugging composite material, fireproof plugging composite built-in fire spread prevention device, and pipe joint or sleeve provided with fireproof plugging composite material
JP6205154B2 (en) Fireproof coating and fireproof structure
JPH1119242A (en) Fireproof pipe of block piercing part, fireproof structure of block piercing part and fireproof construction method for block piercing part
KR20180124620A (en) Fire-stopping Pipe Jacket
JP6158559B2 (en) Fireproof coating and fireproof structure
JP4617394B1 (en) Fireproof closure
JP5937903B2 (en) Fireproofing tools and fireproof structure of penetrations
JP2583388B2 (en) Fire protection structure at the penetration of a long object in a fire protection compartment
JP2000170282A (en) Fire protecting device, fire protecting structure and fire protecting method for through hole section
JPH089499Y2 (en) Fire protection structure for multi-section synthetic resin pipe penetrations in compartments
JP3883913B2 (en) Penetration structure of fireproof compartment and penetration cylinder forming the penetration structure
JP5985933B2 (en) Fireproof material
JP2012237185A (en) Pass-through structure across fire compartment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250