JP5846831B2 - Humidified gas supply device and method for fuel cell - Google Patents

Humidified gas supply device and method for fuel cell Download PDF

Info

Publication number
JP5846831B2
JP5846831B2 JP2011220294A JP2011220294A JP5846831B2 JP 5846831 B2 JP5846831 B2 JP 5846831B2 JP 2011220294 A JP2011220294 A JP 2011220294A JP 2011220294 A JP2011220294 A JP 2011220294A JP 5846831 B2 JP5846831 B2 JP 5846831B2
Authority
JP
Japan
Prior art keywords
gas
dew point
fuel cell
flow rate
humidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011220294A
Other languages
Japanese (ja)
Other versions
JP2013080631A (en
Inventor
克彦 平木
克彦 平木
内藤 修治
修治 内藤
和明 赤穂
和明 赤穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Texeng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Texeng Co Ltd filed Critical Nippon Steel Texeng Co Ltd
Priority to JP2011220294A priority Critical patent/JP5846831B2/en
Publication of JP2013080631A publication Critical patent/JP2013080631A/en
Application granted granted Critical
Publication of JP5846831B2 publication Critical patent/JP5846831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池を搭載した車両(例えば、自動車、フォークリフト、2輪車等)のアクセルワークを模擬した燃料電池の試験の一環として、燃料電池に加湿ガスを供給する装置及びその方法に関する。 The present invention relates to an apparatus and method for supplying humidified gas to a fuel cell as part of a fuel cell test that simulates the accelerator work of a vehicle (for example, an automobile, a forklift, a two-wheeled vehicle, etc.) equipped with a fuel cell.

従来、燃料電池に供給する加湿ガスを作製する場合、例えば特許文献1に記載されているように、温度調節された水を貯留している密閉タンクの底から乾燥ガスを水中に吹込み、密閉タンクの上部に設けた取出し口から取出すバブラーが使用されている。バブラーを使用すると、密閉タンクの底から吹込まれた乾燥ガスが水中に滞留する時間(乾燥ガスが水中内を通過するのに要する時間)を十分長く確保することで、水温と等しい温度の乾燥ガスに飽和量の水蒸気を含ませることができるので、露点精度の高い加湿ガス(密閉タンク内の水温に等しい露点の加湿ガス)を得ることができる。 Conventionally, when producing a humidified gas to be supplied to a fuel cell, for example, as described in Patent Document 1, dry gas is blown into the water from the bottom of a sealed tank storing temperature-adjusted water and sealed. A bubbler is used to take out from the outlet provided in the upper part of the tank. When a bubbler is used, the drying gas blown from the bottom of the closed tank stays in the water for a long time (the time required for the drying gas to pass through the water). Therefore, a humidified gas with high dew point accuracy (humidified gas with a dew point equal to the water temperature in the sealed tank) can be obtained.

特開平7−29591号公報JP 7-29591 A

しかしながら、バブラーを使用する方式では、加湿ガスの露点を変更する場合、密閉タンク内の水温を変更する必要があるが、密閉タンク内には多量の水が貯留されているため、密閉タンク内の水の温度を迅速に変更することはできない。このため、バブラーを使用する方式では、露点が変更されるまでに長時間を要するという問題がある。
なお、密閉タンクに大容量の加熱器及び冷却器を併設して設ける改良型バブラー方式を採用することにより密閉タンク内の水の温度を迅速に変更することは可能になるが、より高速に露点を変更するためには加湿ガスの製造装置の大型化や構造の複雑化が生じると共に、製造コストの上昇、装置設置に要求される据付け面積の増大、及び運転内容の複雑化が生じるため、現実的な方式とはいえない。
However, in the method using a bubbler, when changing the dew point of the humidified gas, it is necessary to change the water temperature in the closed tank, but since a large amount of water is stored in the closed tank, The temperature of the water cannot be changed quickly. For this reason, the method using a bubbler has a problem that it takes a long time to change the dew point.
It is possible to change the temperature of the water in the closed tank quickly by adopting an improved bubbler system with a large capacity heater and cooler installed in the closed tank, but the dew point is faster. Change the size of the humidified gas production device and the structure, increase the production cost, increase the installation area required for the device installation, and complicate the operation. This is not a typical method.

本発明はかかる事情に鑑みてなされたもので、燃料電池に供給する加湿ガスの露点変更要求又は圧力変更要求に迅速に対応することが可能な燃料電池の加湿ガス供給装置及びその方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a humidified gas supply apparatus and method for a fuel cell that can quickly respond to a dew point change request or a pressure change request for a humidified gas supplied to a fuel cell. For the purpose.

前記目的に沿う第1の発明に係る燃料電池の加湿ガス供給装置は、露点、流量、及び圧力がそれぞれ設定された加湿ガスAを供給すると共に発電時に発生する排気ガスを外部に排出しながら行う燃料電池の評価試験に使用する燃料電池の加湿ガス供給装置であって、
乾燥ガスBを加熱して加熱乾燥ガスにする第1のガス供給部と、
乾燥ガスBと同種の乾燥ガスCを水を貯留した密閉タンクの底部から吹込んで水蒸気が飽和状態になった水蒸気飽和ガスにする加湿手段を備えた第2のガス供給部と、
前記第1のガス供給部及び前記第2のガス供給部からそれぞれ供給された加熱乾燥ガス及び水蒸気飽和ガスを合流して加湿ガスAを生成する合流部と、
前記合流部で生成した加湿ガスAを一時貯留して均一性を向上させる貯留槽と、
前記貯留槽からガス導入配管を介して前記燃料電池に供給する加湿ガスAの露点に基づいて合流する加熱乾燥ガスと水蒸気飽和ガスとの分流比を求め、該分流比と加湿ガスAの流量に基づいてそれぞれ求めた流量の加熱乾燥ガス及び水蒸気飽和ガスを前記合流部に供給すると共に、求めた加熱乾燥ガスの流量から決まる乾燥ガスBの流量及び前記燃料電池に供給する加湿ガスAの圧力に基づいて、乾燥ガスBの圧力を制御する制御手段とを有している。
A humidifying gas supply device for a fuel cell according to a first aspect of the present invention that supplies the humidifying gas A having a set dew point, a flow rate, and a pressure and exhausting exhaust gas generated during power generation to the outside. A fuel cell humidified gas supply device for use in a fuel cell evaluation test,
A first gas supply unit that heats the drying gas B into a heated drying gas;
A second gas supply unit comprising a humidifying means for blowing a dry gas C of the same type as the dry gas B from the bottom of a sealed tank storing water into a saturated water vapor saturated with water vapor;
A merging unit that generates a humidified gas A by merging the heating and drying gas and the steam saturated gas respectively supplied from the first gas supply unit and the second gas supply unit;
A storage tank that temporarily stores the humidified gas A generated at the merging portion to improve uniformity;
Based on the dew point of the humidified gas A supplied to the fuel cell from the storage tank via the gas introduction pipe, a split ratio of the heated dry gas and the steam saturated gas is obtained, and the split ratio and the flow rate of the humidified gas A are obtained. The heating drying gas and the water vapor saturated gas having the flow rates determined based on the above are supplied to the junction, and the flow rate of the drying gas B determined from the flow rate of the heating drying gas and the pressure of the humidification gas A supplied to the fuel cell are determined. And a control means for controlling the pressure of the dry gas B.

第1の発明に係る燃料電池の加湿ガス供給装置において、前記合流部は、加熱乾燥ガスが通過する第1のガス流路と、該第1のガス流路を内部に含み該第1のガス流路の中心軸と同一位置に中心軸が配置されて水蒸気飽和ガスが加熱乾燥ガスと同一方向に通過する第2のガス流路とを備えた混合器を有していることが好ましい。 In the humidified gas supply device of the fuel cell according to the first aspect of the present invention, the merging portion includes a first gas flow path through which the heated and dried gas passes, and the first gas flow path including the first gas flow path therein. It is preferable to have a mixer having a second gas flow path in which the central axis is disposed at the same position as the central axis of the flow path and the steam saturated gas passes in the same direction as the heated and dried gas.

第1の発明に係る燃料電池の加湿ガス供給装置において、前記第1のガス供給部は、乾燥ガスBの圧力を調節する圧力調節手段と、圧力の調節が行われた乾燥ガスBの流量を調節する第1の乾燥ガス流量調節手段と、該第1の乾燥ガス流量調節手段を通過した乾燥ガスBを加熱するガス加熱手段とを備え、前記第2のガス供給部は、乾燥ガスCの流量を調節する第2の乾燥ガス流量調節手段と、該第2の乾燥ガス流量調節手段の下流側に配置された前記加湿手段とを備え、前記第2の乾燥ガス流量調節手段は、加湿ガスAの流量範囲及び前記分流比から決まる乾燥ガスCの流量範囲を調節範囲とする親流量調節手段と、該親流量調節手段に対して並列に配置され、乾燥ガスCの流量範囲の下限側を調節範囲とする子流量調節手段とを有していることが好ましい。 In the humidified gas supply device for a fuel cell according to the first invention, the first gas supply unit includes a pressure adjusting means for adjusting the pressure of the dry gas B, and a flow rate of the dry gas B for which the pressure is adjusted. A first dry gas flow rate adjusting means for adjusting; and a gas heating means for heating the dry gas B that has passed through the first dry gas flow rate adjusting means. A second drying gas flow rate adjusting means for adjusting the flow rate; and the humidifying means disposed downstream of the second dry gas flow rate adjusting means, wherein the second dry gas flow rate adjusting means comprises a humidified gas. A flow rate range of A and a parent flow rate adjusting means having a flow rate range of the dry gas C determined from the diversion ratio as an adjustment range, and a parent flow rate adjusting means are arranged in parallel to the parent flow rate adjustment means, and the lower limit side of the flow range of the dry gas C is And a child flow rate adjusting means for the adjustment range. It is preferable.

第1の発明に係る燃料電池の加湿ガス供給装置において、前記加湿手段は、前記密閉タンク内の水を加熱する加熱機能と該密閉タンク内の水を冷却する冷却機能を備えた温度調節部を有していることが好ましい。 In the humidified gas supply device for a fuel cell according to the first aspect of the present invention, the humidifying means includes a temperature adjusting unit having a heating function for heating the water in the sealed tank and a cooling function for cooling the water in the sealed tank. It is preferable to have.

前記目的に沿う第2の発明に係る燃料電池の加湿ガス供給方法は、露点、流量、及び圧力がそれぞれ設定された加湿ガスAを供給すると共に発電時に発生する排気ガスを外部に排出しながら行う燃料電池の評価試験に使用する燃料電池の加湿ガス供給方法であって、
加湿ガスAを、乾燥ガスBを加熱した加熱乾燥ガスと、乾燥ガスBと同種の乾燥ガスCに加湿手段を用いて飽和量の水蒸気を加えて作製した水蒸気飽和ガスとを合流部にて合流して生成し、貯留槽に導入して均一性を向上させた後に、ガス導入配管を介して加湿ガスAを前記貯留槽から前記燃料電池に供給する際に、
前記燃料電池に供給する加湿ガスAの露点に基づいて合流する加熱乾燥ガスと水蒸気飽和ガスとの分流比を求め、該分流比と加湿ガスAの流量に基づいてそれぞれ求めた流量の加熱乾燥ガス及び水蒸気飽和ガスを前記合流部に供給すると共に、求めた加熱乾燥ガスの流量から決まる乾燥ガスBの流量及び前記燃料電池に供給する加湿ガスAの圧力に基づいて、乾燥ガスBの圧力を制御する。
A humidifying gas supply method for a fuel cell according to a second invention that meets the above-mentioned object is performed while supplying a humidifying gas A having a dew point, a flow rate, and a pressure, respectively, and discharging exhaust gas generated during power generation to the outside. A fuel cell humidified gas supply method for use in a fuel cell evaluation test,
The humidified gas A is combined at the junction with a heated dry gas obtained by heating the dry gas B, and a steam saturated gas produced by adding a saturated amount of water vapor to the dry gas C of the same type as the dry gas B using a humidifying means. When the humidified gas A is supplied from the storage tank to the fuel cell via the gas introduction pipe after being generated and introduced into the storage tank to improve the uniformity,
Based on the dew point of the humidified gas A supplied to the fuel cell, the split flow ratio of the heated dry gas and the steam saturated gas is obtained, and the heated dry gas at the flow rate determined based on the split flow ratio and the flow rate of the humidified gas A, respectively. In addition, the pressure of the drying gas B is controlled based on the flow rate of the drying gas B determined from the flow rate of the obtained heated drying gas and the pressure of the humidifying gas A supplied to the fuel cell. To do.

第2の発明に係る燃料電池の加湿ガス供給方法において、前記ガス導入配管に設けた露点計で測定した加湿ガスAの実測露点と加湿ガスAに設定された露点との差に基づいて前記分流比の修正を行うことが好ましい In the humidified gas supply method for a fuel cell according to the second aspect of the present invention, the shunt flow is based on a difference between an actual dew point of the humidified gas A measured by a dew point meter provided in the gas introduction pipe and a dew point set to the humidified gas A. It is preferable to correct the ratio

第2の発明に係る燃料電池の加湿ガス供給方法において、加湿ガスAに設定する露点を変更した際に、前記分流比の修正を停止すると共に、前記分流比を加湿ガスAに設定する変更後の露点から決まる値に固定し、露点の変更時から一定時間経過した後又は前記露点計で求めた実測露点と変更後の露点との差が一定値範囲内になった後、前記分流比の修正を行うことを再開することが好ましい。 In the humidified gas supply method for a fuel cell according to the second aspect of the present invention, when the dew point set in the humidified gas A is changed, the modification of the diversion ratio is stopped and the diversion ratio is set in the humidified gas A. After a certain period of time has elapsed since the dew point was changed, or after the difference between the measured dew point obtained with the dew point meter and the dew point after the change was within a certain range, It is preferable to resume making corrections.

第2の発明に係る燃料電池の加湿ガス供給方法において、加湿ガスAに設定する圧力を急上昇させた際に、加湿ガスAの実測圧力の過渡応答期間に亘って、前記分流比の修正を停止し、前記分流比を加湿ガスAの圧力の変更直前の値に固定して、前記燃料電池に供給する加湿ガスAの露点の変動を防止することが好ましい。 In the humidified gas supply method for a fuel cell according to the second aspect of the invention, when the pressure set for the humidified gas A is suddenly increased, the correction of the diversion ratio is stopped over the transient response period of the measured pressure of the humidified gas A. Then, it is preferable to prevent the fluctuation of the dew point of the humidified gas A supplied to the fuel cell by fixing the diversion ratio to a value immediately before the change of the pressure of the humidified gas A.

第2の発明に係る燃料電池の加湿ガス供給方法において、前記燃料電池に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側の場合、加湿ガスAに設定する露点を、加湿ガスAの圧力変更時から一定時間に亘って加湿ガスAの圧力の上昇幅に応じて一定値だけ増加させ、前記燃料電池に供給する加湿ガスAの露点の低下を補償することができる。
また、前記燃料電池に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側の場合、前記過渡応答期間に亘って、加湿ガスAの実測露点の低下挙動に基づいて加湿ガスAに設定する露点を上昇させ、前記燃料電池に供給する加湿ガスAの露点の低下を補償することができる。
In the humidified gas supply method for a fuel cell according to the second invention, when the flow rate of the humidified gas A supplied to the fuel cell is on the lower limit side of the flow rate range of the humidified gas A, the dew point set for the humidified gas A is humidified. It is possible to compensate for a decrease in the dew point of the humidified gas A supplied to the fuel cell by increasing it by a certain value in accordance with the increase in the pressure of the humidified gas A over a certain period of time after the pressure change of the gas A.
Further, when the flow rate of the humidified gas A supplied to the fuel cell is on the lower limit side of the flow rate range of the humidified gas A, the humidified gas A is determined based on the behavior of decreasing the measured dew point of the humidified gas A over the transient response period. The dew point that is set to 1 can be increased to compensate for a decrease in the dew point of the humidified gas A supplied to the fuel cell.

第1の発明に係る燃料電池の加湿ガス供給装置及び第2の発明に係る燃料電池の加湿ガス供給方法においては、加湿ガスAの露点が変更要求された露点となるように、加熱乾燥ガスと水蒸気飽和ガスの分流比を変更するので、露点の変更要求に迅速に対応することが可能になる。このとき、燃料電池に供給する加湿ガスAの圧力及び加熱乾燥ガスを生成する乾燥ガスBの流量に基づいて、乾燥ガスBの圧力を制御するので、第2のガス供給部に比較して、構造的に乾燥ガスBが流れ易い(差圧が過大となり易い)第1のガス供給部に適切な差圧を設けることができ、第1のガス供給部を通過する乾燥ガスBの流量の制御を安定して行うことができる。その結果、加湿ガスAの露点の変更要求に対して、加湿ガスAの露点を迅速かつ高精度に調節することができる。 In the humidified gas supply device of the fuel cell according to the first invention and the humidified gas supply method of the fuel cell according to the second invention, the heated dry gas is used so that the dew point of the humidified gas A becomes the dew point requested to be changed. Since the diversion ratio of the water-saturated gas is changed, it is possible to quickly respond to a request to change the dew point. At this time, since the pressure of the drying gas B is controlled based on the pressure of the humidifying gas A supplied to the fuel cell and the flow rate of the drying gas B that generates the heated drying gas, compared to the second gas supply unit, An appropriate differential pressure can be provided in the first gas supply section that is structurally easy to flow the dry gas B (the differential pressure is likely to be excessive), and the flow rate of the dry gas B passing through the first gas supply section is controlled. Can be performed stably. As a result, the dew point of the humidified gas A can be adjusted quickly and with high accuracy in response to a request for changing the dew point of the humidified gas A.

第1の発明に係る燃料電池の加湿ガス供給装置において、合流部が、加熱乾燥ガスが通過する第1のガス流路と、第1のガス流路を内部に含み第1のガス流路の中心軸と同一位置に中心軸が配置されて水蒸気飽和ガスが加熱乾燥ガスと同一方向に通過する第2のガス流路とを備えた混合器を有している場合、第1のガス流路の断面積より第2のガス流路の断面積が大きいため、第1のガス流路の配管抵抗が大きくなって、第2のガス流路を通過する水蒸気飽和ガスが第1のガス流路に逆流することを防止できると共に、第2のガス流路内に結露が生じても、構造的に結露が第1のガス流路に侵入することを防止できる。また、加熱乾燥ガスと水蒸気飽和ガスの流量差が大きいと、構造的に流量の多いガスに流量の少ないガスが巻き込まれ易いため、加熱乾燥ガスと水蒸気飽和ガスの混合を促進することができる。 In the humidified gas supply device of the fuel cell according to the first aspect of the present invention, the joining portion includes a first gas flow path through which the heated and dried gas passes, and a first gas flow path including the first gas flow path therein. In the case of having a mixer having a second gas flow path in which the central axis is disposed at the same position as the central axis and the steam saturated gas passes in the same direction as the heated and dried gas, the first gas flow path Since the cross-sectional area of the second gas flow path is larger than the cross-sectional area of the first gas flow path, the piping resistance of the first gas flow path is increased, and the water vapor saturated gas passing through the second gas flow path is the first gas flow path. In addition, it is possible to prevent the dew from flowing into the first gas flow path structurally even if dew condensation occurs in the second gas flow path. In addition, when the flow rate difference between the heated drying gas and the water vapor saturated gas is large, a gas having a low flow rate is likely to be involved in a gas having a large flow rate, so that mixing of the heated drying gas and the water vapor saturated gas can be promoted.

第1の発明に係る燃料電池の加湿ガス供給装置において、第1のガス供給部が、乾燥ガスBの圧力を調節する圧力調節手段と、圧力の調節が行われた乾燥ガスBの流量を調節する第1の乾燥ガス流量調節手段と、該第1の乾燥ガス流量調節手段を通過した乾燥ガスBを加熱するガス加熱手段とを備えた場合、乾燥ガスBを加熱する際の温度、乾燥ガスBの圧力、及び乾燥ガスBの流量をそれぞれ調節することができ、所望の温度、圧力、及び流量を有する加熱乾燥ガスを得ることができる。
また、第2のガス供給部が、乾燥ガスCの流量を調節する第2の乾燥ガス流量調節手段と、第2の乾燥ガス流量調節手段の下流側に配置された加湿手段とを備える場合、乾燥ガスCの流量、乾燥ガスCに加える水蒸気量を調整することができ、所望の露点及び流量を有する水蒸気飽和ガスを得ることができる。
更に、第2の乾燥ガス流量調節手段が、加湿ガスAの流量範囲及び分流比から決まる乾燥ガスCの流量範囲を調節範囲とする親流量調節手段と、親流量調節手段に対して並列に配置され、乾燥ガスCの流量範囲の下限側を調節範囲とする子流量調節手段とを有している場合、少流量の水蒸気飽和ガスを高精度で合流部に供給することができ、露点が正確な低露点(例えば、露点が30℃以下)の加湿ガスAを得ることができる。
In the humidified gas supply device for a fuel cell according to the first invention, the first gas supply unit adjusts the flow rate of the dry gas B in which the pressure is adjusted, and pressure adjusting means for adjusting the pressure of the dry gas B When the first drying gas flow rate adjusting means and the gas heating means for heating the drying gas B that has passed through the first drying gas flow rate adjusting means are provided, the temperature when the drying gas B is heated, the drying gas The pressure of B and the flow rate of the drying gas B can be adjusted, respectively, and a heated drying gas having a desired temperature, pressure, and flow rate can be obtained.
Further, when the second gas supply unit includes a second dry gas flow rate adjusting unit that adjusts the flow rate of the dry gas C, and a humidifying unit that is disposed on the downstream side of the second dry gas flow rate adjusting unit, The flow rate of the dry gas C and the amount of water vapor added to the dry gas C can be adjusted, and a water vapor saturated gas having a desired dew point and flow rate can be obtained.
Further, the second dry gas flow rate adjusting means is arranged in parallel with the parent flow rate adjusting means and the parent flow rate adjusting means having the flow rate range of the dry gas C determined from the flow rate range and the diversion ratio of the humidified gas A as the adjustment range. In addition, when it has a child flow rate adjusting means whose adjustment range is the lower limit side of the flow rate range of the dry gas C, it is possible to supply a small amount of water vapor saturated gas to the junction with high accuracy, and the dew point is accurate. A humidified gas A having a low dew point (for example, a dew point of 30 ° C. or lower) can be obtained.

第1の発明に係る燃料電池の加湿ガス供給装置において、加湿手段が、密閉タンク内の水を加熱する加熱機能と密閉タンク内の水を冷却する冷却機能を備えた温度調節部を有している場合、冷却機能を用いて密閉タンク内の水の水温を下げることができ、低露点の加湿ガスAを生成する際に使用する水蒸気飽和ガスの流量が減少することを防止でき、露点が更に正確な低露点(例えば、露点が30℃以下)の加湿ガスAを得ることができる。 In the humidified gas supply device for a fuel cell according to the first aspect of the invention, the humidifying means has a temperature adjusting unit having a heating function for heating the water in the sealed tank and a cooling function for cooling the water in the sealed tank. If it is, the water temperature in the sealed tank can be lowered using the cooling function, and the flow rate of the water vapor saturated gas used when generating the humid gas A having a low dew point can be prevented, and the dew point can be further reduced. A humidified gas A having an accurate low dew point (for example, a dew point of 30 ° C. or lower) can be obtained.

第2の発明に係る燃料電池の加湿ガス供給方法において、ガス導入配管に設けた露点計で測定した加湿ガスAの実測露点と加湿ガスAに設定された露点との差に基づいて分流比の修正を行う場合、加湿ガスAの実測露点を設定された露点に近づけることができる。 In the humidified gas supply method of the fuel cell according to the second aspect of the present invention, the shunt ratio is determined based on the difference between the measured dew point of the humidified gas A measured by the dew point meter provided in the gas introduction pipe and the dew point set for the humidified gas A. When correction is performed, the measured dew point of the humidified gas A can be brought close to the set dew point.

第2の発明に係る燃料電池の加湿ガス供給方法において、加湿ガスAに設定する露点を変更した際に、分流比の修正を停止すると共に、分流比を加湿ガスAに設定する変更後の露点から決まる値に固定する場合、変更後の露点で決まる分流比で加熱乾燥ガスと水蒸気飽和ガスが合流部に供給されるので、加湿ガスAの露点を変更要求された露点に向けて急速に変化させることができる。
そして、露点の変更時から一定時間経過した後又は露点計で求めた実測露点と変更後の露点との差が一定値範囲内になった後、分流比の修正を行うことを再開する場合、実測露点と変更後の露点との差が小さくなっているので、分流比の修正を行うことにより、実測露点を変更後の露点に容易に近づけることができる。
In the humidified gas supply method of the fuel cell according to the second aspect of the invention, when the dew point set to the humidified gas A is changed, the correction of the shunt ratio is stopped and the dew point after the change is set to set the shunt ratio to the humidified gas A. When the fixed value is fixed to the value, the heated dry gas and steam saturated gas are supplied to the junction at a diversion ratio determined by the dew point after the change, so the dew point of the humidified gas A changes rapidly toward the dew point requested to be changed. Can be made.
And when resuming to correct the shunt ratio after a certain period of time has elapsed since the dew point change or after the difference between the measured dew point obtained by the dew point meter and the dew point after the change is within a certain value range, Since the difference between the measured dew point and the changed dew point is small, the measured dew point can be easily brought close to the changed dew point by correcting the shunt ratio.

第2の発明に係る燃料電池の加湿ガス供給方法において、加湿ガスAに設定する圧力を急上昇させた際に、加湿ガスAの実測圧力の過渡応答期間に亘って、分流比の修正を停止し、分流比を加湿ガスAの圧力の変更直前の値に固定して、燃料電池に供給する加湿ガスAの露点の変動を防止する場合、燃料電池に供給する加湿ガスAの露点が急激に低下することを防止できる。
ここで、燃料電池に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側の場合、加湿ガスAに設定する露点を、加湿ガスAの圧力変更時から一定時間に亘って加湿ガスAの圧力の上昇幅に応じて一定値だけ増加させ、燃料電池に供給する加湿ガスAの露点の低下を補償する場合、又は燃料電池に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側の場合、過渡応答期間に亘って、加湿ガスAの実測露点の低下挙動に基づいて加湿ガスAに設定する露点を上昇させ、燃料電池に供給する加湿ガスAの露点の低下を補償する場合、燃料電池の評価試験の中断、試験中の燃料電池の破損を確実に防止することができる。
In the humidified gas supply method for a fuel cell according to the second invention, when the pressure set for the humidified gas A is suddenly increased, the correction of the shunt ratio is stopped over the transient response period of the actually measured pressure of the humidified gas A. When the shunt ratio is fixed to the value immediately before the change of the pressure of the humidifying gas A to prevent the fluctuation of the dew point of the humidifying gas A supplied to the fuel cell, the dew point of the humidifying gas A supplied to the fuel cell rapidly decreases. Can be prevented.
Here, when the flow rate of the humidifying gas A supplied to the fuel cell is on the lower limit side of the flow range of the humidifying gas A, the dew point set in the humidifying gas A is humidified for a certain period of time from the time when the pressure of the humidifying gas A is changed. When the gas A is increased by a certain value in accordance with the increase in the pressure of the gas A to compensate for a decrease in the dew point of the humidified gas A supplied to the fuel cell, or the flow rate of the humidified gas A supplied to the fuel cell is In the case of the lower limit side of the flow rate range, the dew point set for the humidified gas A is increased based on the decrease behavior of the measured dew point of the humidified gas A over the transient response period, and the dew point of the humidified gas A supplied to the fuel cell is decreased. Therefore, it is possible to reliably prevent the fuel cell evaluation test from being interrupted and the fuel cell from being damaged during the test.

本発明の一実施の形態に係る燃料電池の加湿ガス供給装置の説明図である。It is explanatory drawing of the humidified gas supply apparatus of the fuel cell which concerns on one embodiment of this invention. 乾燥ガスBを加熱するガス加熱手段及び乾燥ガスCを水蒸気飽和ガスに変える加湿手段の説明図である。It is explanatory drawing of the humidification means which changes the gas heating means which heats the dry gas B, and the dry gas C into water vapor | steam saturated gas. 混合器の説明図である。It is explanatory drawing of a mixer. 燃料電池に供給する加湿ガスAの露点の制御時及び露点変更時の実測露点の変動を示す説明図である。It is explanatory drawing which shows the fluctuation | variation of the measurement dew point at the time of control of the dew point of the humidification gas A supplied to a fuel cell, and a dew point change. 燃料電池に供給する加湿ガスAの圧力変更時の実測露点の変動を示す説明図である。It is explanatory drawing which shows the fluctuation | variation of the measurement dew point at the time of the pressure change of the humidification gas A supplied to a fuel cell.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る燃料電池の加湿ガス供給装置10(以下、単に加湿ガス供給装置10という)は、露点、流量、及び圧力がそれぞれ設定された加湿ガスAを供給すると共に発電時に発生する排気ガスを外部に排出しながら行う燃料電池11の評価試験に使用するものである。ここで、加湿ガスAは、加湿空気又は加湿燃料ガス(例えば、加湿水素)である。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a humidified gas supply device 10 (hereinafter, simply referred to as a humidified gas supply device 10) for a fuel cell according to an embodiment of the present invention is a humidified gas in which a dew point, a flow rate, and a pressure are set. A is used for the evaluation test of the fuel cell 11 which is performed while supplying A and exhaust gas generated during power generation to the outside. Here, the humidified gas A is humidified air or humidified fuel gas (for example, humidified hydrogen). Details will be described below.

加湿ガス供給装置10は、乾燥ガスBを加熱して加熱乾燥ガスにする第1のガス供給部12と、乾燥ガスBと同種の乾燥ガスCに水蒸気を加えて水蒸気が飽和状態になった水蒸気飽和ガスにする加湿手段13を備えた第2のガス供給部14と、加熱乾燥ガス及び水蒸気飽和ガスを合流して加湿ガスAを生成する合流部15と、合流部15で生成した加湿ガスAを一時貯留して均一性を向上させる貯留槽16とを有している。更に、加湿ガス供給装置10は、貯留槽16からガス導入配管17を介して燃料電池11に供給する加湿ガスAの露点に基づいて合流する加熱乾燥ガスと水蒸気飽和ガスとの分流比を求め、分流比と加湿ガスAの流量に基づいてそれぞれ求めた流量の加熱乾燥ガス及び水蒸気飽和ガスを合流部15に供給すると共に、求めた加熱乾燥ガスの流量から決まる乾燥ガスBの流量及び燃料電池11に供給する加湿ガスAの圧力に基づいて、乾燥ガスBの圧力を制御する制御手段18を有している。 The humidified gas supply device 10 includes a first gas supply unit 12 that heats the drying gas B to form a heated drying gas, and water vapor that is saturated by adding water vapor to the same drying gas C as the drying gas B. 2nd gas supply part 14 provided with humidification means 13 used as saturated gas, Merger part 15 which combines heating dry gas and water vapor saturated gas, and generates humidification gas A, Humidification gas A generated in merger 15 And a storage tank 16 for temporarily improving the uniformity. Further, the humidified gas supply device 10 obtains a shunt ratio between the heated dry gas and the steam saturated gas that merges based on the dew point of the humidified gas A supplied from the storage tank 16 via the gas introduction pipe 17 to the fuel cell 11, The heated drying gas and the steam saturated gas having the flow rates obtained based on the flow ratio and the humidifying gas A flow rate are respectively supplied to the merging portion 15, and the flow rate of the drying gas B determined from the obtained heated drying gas flow rate and the fuel cell 11. The control means 18 which controls the pressure of the dry gas B based on the pressure of the humidified gas A supplied to is provided.

ここで、制御手段18で制御する加湿ガスAの露点、流量、及び圧力は、燃料電池11の評価試験方法により設定される。そして、加熱乾燥ガスは乾燥ガスBを加熱することにより得られるので、加熱乾燥ガスの流量が決まると、乾燥ガスBの流量が決まる。また、水蒸気飽和ガスは乾燥ガスCを加湿することにより得られるので、水蒸気飽和ガスの流量が決まると、乾燥ガスCの流量が決まる。
なお、図1では、図示しない共通のガス源から供給されるガスを分岐部19で2つに分岐させ、一方を乾燥ガスB、他方を乾燥ガスCとしている。共通のガス源と分岐部19を設けず、乾燥ガスB、Cをそれぞれ独立したガス源から供給するようにすることもできる。ここで、加湿ガスAが加湿空気の場合、ガス源は、大気中の空気から圧縮空気を作製するコンプレッサと、圧縮空気中の水分を除去する乾燥機から構成される。また、加湿ガスAが加湿水素の場合、ガス源は水素を貯留したタンク又はボンベから構成される。
Here, the dew point, flow rate, and pressure of the humidified gas A controlled by the control means 18 are set by an evaluation test method for the fuel cell 11. Since the heated dry gas is obtained by heating the dry gas B, when the flow rate of the heated dry gas is determined, the flow rate of the dry gas B is determined. Further, since the water vapor saturated gas is obtained by humidifying the dry gas C, when the flow rate of the water vapor saturated gas is determined, the flow rate of the dry gas C is determined.
In FIG. 1, a gas supplied from a common gas source (not shown) is branched into two by a branching portion 19, one being a dry gas B and the other being a dry gas C. It is also possible to supply the dry gases B and C from independent gas sources without providing the common gas source and the branch portion 19. Here, when the humidified gas A is humidified air, the gas source includes a compressor that produces compressed air from air in the atmosphere and a dryer that removes moisture in the compressed air. When the humidified gas A is humidified hydrogen, the gas source is composed of a tank or cylinder storing hydrogen.

第1のガス供給部12は、乾燥ガスBの圧力を調節する圧力調節手段の一例である圧力調整弁20と、圧力の調節が行われた乾燥ガスBの流量を調節する第1の乾燥ガス流量調節手段の一例である質量流量計測及び制御機構21と、質量流量計測及び制御機構21を通過した乾燥ガスBを加熱して加熱乾燥ガスにするガス加熱手段22とを備えている。ここで、圧力調整弁20の下流側には質量流量計測及び制御機構21に流入する乾燥ガスBの圧力を測定する圧力計23が設けられ、ガス加熱手段22と合流部15とを接続する第1の連通部24には合流部15に流入する加熱乾燥ガスの圧力を測定する圧力計25が設けられている。更に、第1の連通部24は断熱材(図示せず)で覆われており、ガス加熱手段22から合流部15に流入する加熱乾燥ガスの温度低下を防止している。なお、第1の連通部24にヒータを取付け第1の連通部24を加熱して、加熱乾燥ガスの温度低下を防止するようにしてもよい。
このような構成とすることで、乾燥ガスBを加熱する際の温度、乾燥ガスBの圧力、及び乾燥ガスBの流量をそれぞれ調節することができ、所望の温度、圧力、及び流量を有する加熱乾燥ガスを得ることができる。
The first gas supply unit 12 includes a pressure adjusting valve 20 that is an example of a pressure adjusting unit that adjusts the pressure of the drying gas B, and a first drying gas that adjusts the flow rate of the drying gas B whose pressure has been adjusted. A mass flow measurement and control mechanism 21, which is an example of a flow rate adjusting means, and a gas heating means 22 that heats the dry gas B that has passed through the mass flow measurement and control mechanism 21 to form a heated dry gas. Here, a pressure gauge 23 for measuring the pressure of the dry gas B flowing into the mass flow measurement and control mechanism 21 is provided on the downstream side of the pressure regulating valve 20, and connects the gas heating means 22 and the junction 15. One communication portion 24 is provided with a pressure gauge 25 for measuring the pressure of the heated and dried gas flowing into the merge portion 15. Further, the first communication part 24 is covered with a heat insulating material (not shown) to prevent the temperature of the heated and dried gas flowing into the joining part 15 from the gas heating means 22 from being lowered. Note that a heater may be attached to the first communication portion 24 to heat the first communication portion 24 so as to prevent the temperature of the heated and dried gas from decreasing.
With such a configuration, the temperature at which the drying gas B is heated, the pressure of the drying gas B, and the flow rate of the drying gas B can be adjusted, respectively, and heating having a desired temperature, pressure, and flow rate Dry gas can be obtained.

第2のガス供給部14は、乾燥ガスCの流量を調節する第2の乾燥ガス流量調節手段26と、第2の乾燥ガス流量調節手段26の下流側に配置され、温度調節された水を貯留し、底部から吹込まれた乾燥ガスCを水蒸気飽和ガスに変える密閉タンク32(図2参照)を備えた加湿手段13とを備え、加湿手段13と合流部15とを接続する第2の連通部27には合流部15に流入する水蒸気飽和ガスの圧力を測定する圧力計28が設けられている。更に、第2の連通部27は断熱材(図示せず)で覆われており、加湿手段13から合流部15に流入する水蒸気飽和ガスの温度低下(結露)を防止している。なお、第2の連通部27にヒータを取付け第2の連通部27を加熱して、水蒸気飽和ガスの温度低下を防止するようにしてもよい。
このような構成とすることで、乾燥ガスCの流量、乾燥ガスCに加える水蒸気量を調整することができ、所望の露点及び流量を有する水蒸気飽和ガスを得ることができる。
The second gas supply unit 14 is disposed on the downstream side of the second dry gas flow rate adjusting unit 26 for adjusting the flow rate of the dry gas C, and the temperature-adjusted water. And a humidifying means 13 provided with a sealed tank 32 (see FIG. 2) that stores and converts the dry gas C blown from the bottom into a water-saturated gas, and connects the humidifying means 13 and the junction 15. The part 27 is provided with a pressure gauge 28 for measuring the pressure of the water vapor saturated gas flowing into the merging part 15. Further, the second communication portion 27 is covered with a heat insulating material (not shown), and prevents a temperature drop (condensation) of the water vapor saturated gas flowing from the humidifying means 13 into the joining portion 15. Note that a heater may be attached to the second communication portion 27 to heat the second communication portion 27 so as to prevent the temperature of the steam saturated gas from decreasing.
By setting it as such a structure, the flow volume of the dry gas C and the water vapor | steam amount added to the dry gas C can be adjusted, and the water vapor | steam saturated gas which has a desired dew point and flow volume can be obtained.

第2の乾燥ガス流量調節手段26は、加湿ガスAの流量範囲及び分流比から決まる乾燥ガスCの流量範囲を調節範囲とする親流量調節手段の一例である質量流量計測及び制御機構29と、質量流量計測及び制御機構29に対して並列に配置され、乾燥ガスCの流量範囲の下限側を調節範囲として、小流量の調節を正確かつ安定して行うことが可能な子流量調節手段の一例である質量流量計測及び制御機構30とを有している。ここで、質量流量計測及び制御機構30の流量調節範囲は、質量流量計測及び制御機構29の流量調節範囲の下限側、例えば、質量流量計測及び制御機構29で調節可能な最大流量の0.04〜2%の範囲、あるいは、乾燥ガスCの最小流量の1〜50倍の範囲である。
なお、制御手段18には、水蒸気飽和ガスの流量を求めて加湿手段13に供給する乾燥ガスCの流量を決めた際に、質量流量計測及び制御機構29、30の中から乾燥ガスCの流量の制御に適した質量流量計測及び制御機構を選択する機能が設けられている。これによって、乾燥ガスC(水蒸気飽和ガス)の流量を正確に設定することができ、例えば、小流量の水蒸気飽和ガスを高精度で安定して合流部15に供給することができ、露点が正確な低露点(例えば、露点が30℃以下)の加湿ガスAを得ることができる。
The second dry gas flow rate adjustment means 26 is a mass flow rate measurement and control mechanism 29 which is an example of a parent flow rate adjustment means whose adjustment range is the flow rate range of the dry gas C determined from the flow rate range and the diversion ratio of the humidified gas A, An example of a child flow rate adjusting means that is arranged in parallel to the mass flow rate measurement and control mechanism 29 and can adjust the small flow rate accurately and stably with the lower limit side of the flow rate range of the dry gas C as the adjustment range. And a mass flow measurement and control mechanism 30. Here, the flow rate adjustment range of the mass flow measurement and control mechanism 30 is the lower limit side of the flow rate adjustment range of the mass flow measurement and control mechanism 29, for example, 0.04 of the maximum flow rate that can be adjusted by the mass flow measurement and control mechanism 29. It is in the range of ˜2% or in the range of 1 to 50 times the minimum flow rate of the dry gas C.
The control means 18 determines the flow rate of the dry gas C from the mass flow measurement and control mechanisms 29 and 30 when determining the flow rate of the water vapor saturated gas and determining the flow rate of the dry gas C supplied to the humidification means 13. Is provided with a function of selecting a mass flow measurement and control mechanism suitable for the control. As a result, the flow rate of the dry gas C (water vapor saturated gas) can be set accurately. For example, a small flow rate of the water vapor saturated gas can be stably supplied to the junction 15 with high accuracy, and the dew point is accurate. A humidified gas A having a low dew point (for example, a dew point of 30 ° C. or lower) can be obtained.

図2に示すように、加湿手段13は、第2の乾燥ガス流量調節手段26で流量制御された乾燥ガスCを取入れる乾燥ガス導入路31と、乾燥ガス導入路31の先部と連通する吹込み口(図示せず)を底部に備え、上端部に第2の連通部27の基部が接続される取出し口(図示せず)が設けられて、上部側に空間が形成される高さに水を貯留する密閉タンク32とを有している。ここで、乾燥ガス導入路31の吹込み口側には逆止弁33が設けられ、逆止弁33の上流側には密閉タンク32から取水配管34を介して取出した水で乾燥ガス導入路31を流れる乾燥ガスCを加熱する加熱手段の一例である熱交換器35が設けられている。また、熱交換器35の出口には、図示しない送水ポンプを備えた給水配管36の基部が接続され、給水配管36の先側は密閉タンク32の底部を貫通して密閉タンク32内に配設され、先部が密閉タンク32上部側の空間に設置されたシャワー機構37の入口(図示せず)と連通している。 As shown in FIG. 2, the humidifying means 13 communicates with a dry gas introduction path 31 for taking in the dry gas C whose flow rate is controlled by the second dry gas flow rate adjusting means 26, and a front portion of the dry gas introduction path 31. A height at which a blow-out opening (not shown) is provided at the bottom, and an extraction opening (not shown) to which the base of the second communication portion 27 is connected is provided at the upper end, so that a space is formed on the upper side. And a sealed tank 32 for storing water. Here, a check valve 33 is provided on the inlet side of the dry gas introduction path 31, and the dry gas introduction path is formed on the upstream side of the check valve 33 with water taken from the sealed tank 32 through the intake pipe 34. A heat exchanger 35, which is an example of a heating unit that heats the dry gas C flowing through 31, is provided. The outlet of the heat exchanger 35 is connected to the base of a water supply pipe 36 having a water pump (not shown), and the front side of the water supply pipe 36 passes through the bottom of the closed tank 32 and is arranged in the closed tank 32. The front portion communicates with an inlet (not shown) of a shower mechanism 37 installed in the space above the sealed tank 32.

そして、給水配管36の熱交換器35側には、熱交換器35を通過して給水配管36内に流入した水を、密閉タンク32内に流入する前に密閉タンク32内に貯留された水と同一温度となるように加熱又は冷却する温度調節部38が設けられている。ここで、温度調節部38は、給水配管36の密閉タンク32の外側に配置されたタンク外領域の管内に配置され、給水配管36内を通過する水を加熱する(加熱機能を有する)加熱器39(例えば電気ヒータ)と、給水配管36内を通過する水を2次側に供給しながら1次側に供給する冷却水との間で熱交換を行って、密閉タンク32に戻る水の温度を冷却する(冷却機能を有する)冷却用熱交換器40とを有している。なお、冷却用熱交換器40に供給する冷却水は、冷却用熱交換器40の1次側出口から排出される。
このような構成とすることで、望ましい温度の水を、シャワー機構37により密閉タンク32内の上部側から噴出させることができ、密閉タンク32内の水の温度を所望の温度に保つことができると共に、密閉タンク32内を均一温度に保つことができる。
Then, on the heat exchanger 35 side of the water supply pipe 36, the water that has passed through the heat exchanger 35 and flows into the water supply pipe 36 is stored in the sealed tank 32 before flowing into the sealed tank 32. Is provided with a temperature adjusting unit 38 for heating or cooling so as to be the same temperature. Here, the temperature control unit 38 is disposed in a pipe in a region outside the tank that is disposed outside the sealed tank 32 of the water supply pipe 36, and heats the water that passes through the water supply pipe 36 (has a heating function). The temperature of the water returned to the sealed tank 32 through heat exchange between 39 (for example, an electric heater) and cooling water supplied to the primary side while supplying water passing through the water supply pipe 36 to the secondary side And a heat exchanger 40 for cooling (having a cooling function). The cooling water supplied to the cooling heat exchanger 40 is discharged from the primary side outlet of the cooling heat exchanger 40.
By setting it as such a structure, the water of desired temperature can be spouted from the upper side in the airtight tank 32 by the shower mechanism 37, and the temperature of the water in the airtight tank 32 can be maintained at desired temperature. At the same time, the inside of the sealed tank 32 can be kept at a uniform temperature.

また、密閉タンク32の底から吹込まれた乾燥ガスCが水中に滞留する時間(水中内を通過するのに要する時間)を十分長く確保することにより、密閉タンク32の取出し口から、密閉タンク32に貯留された水と同じ温度の乾燥ガスCに飽和量の水蒸気を混入させることができ、水蒸気が飽和状態になった水蒸気飽和ガス(密閉タンク32の水と同一温度)を取出すことができる。なお、乾燥ガスCに混入させる水蒸気の飽和量は、密閉タンク32に貯留された水の温度を変えることにより調節できる。そして、吹込む乾燥ガスCを熱交換器35で予熱するので、密閉タンク32内の水の温度が変動することを防止できる。 Further, by ensuring a sufficiently long time for the dry gas C blown from the bottom of the sealed tank 32 to stay in water (time required to pass through the water), the sealed tank 32 is removed from the outlet of the sealed tank 32. A saturated amount of water vapor can be mixed in the dry gas C at the same temperature as the water stored in the water, and the water vapor saturated gas (same temperature as the water in the sealed tank 32) in which the water vapor is saturated can be taken out. Note that the saturation amount of water vapor mixed into the dry gas C can be adjusted by changing the temperature of the water stored in the sealed tank 32. And since the dry gas C which blows in is preheated with the heat exchanger 35, it can prevent that the temperature of the water in the airtight tank 32 fluctuates.

乾燥ガスBを加熱するガス加熱手段22は、質量流量計測及び制御機構21で流量制御された乾燥ガスBを取入れる乾燥ガス導入路41と、密閉タンク32内の下部側に設置され、基部が乾燥ガス導入路41の先部と連通した螺旋状のガス加熱部42(即ち、密閉タンク32内に水を貯留した場合、ガス加熱部42は水中に浸漬状態となる)と、ガス加熱部42の先部と密閉タンク32の上端部に設けられ、第1の連通部24の基部が接続される取出し口(図示せず)とを連通する連通管43とを有している。
このような構成とすることで、乾燥ガスBは、ガス加熱部42を通過する際に密閉タンク32内に貯留された水で、連通管43内を通過する際に、密閉タンク32内の上部側の空間に設置されたシャワー機構37により噴出する水でそれぞれ加熱され、水蒸気飽和ガスと同一温度の加熱乾燥ガスにすることができる。これによって、加熱乾燥ガスと水蒸気飽和ガスを合流させた際に、水蒸気飽和ガスの温度が低下すること(水蒸気飽和ガスに結露が生じること)を防止できる。
なお、質量流量計測及び制御機構21と第1の連通部24の間にヒータを設けて、通過する乾燥ガスBの温度を、密閉タンク32内の水と同一温度に加熱するようにしてもよい。
The gas heating means 22 for heating the dry gas B is installed on the lower side of the dry gas introduction path 41 for taking in the dry gas B whose flow rate is controlled by the mass flow measurement and control mechanism 21, and the base portion is A spiral gas heating unit 42 communicating with the tip of the dry gas introduction path 41 (that is, when water is stored in the sealed tank 32, the gas heating unit 42 is immersed in water), and a gas heating unit 42 And a communication pipe 43 which is provided at the upper end of the closed tank 32 and communicates with an outlet (not shown) to which the base of the first communication part 24 is connected.
With such a configuration, the dry gas B is the water stored in the sealed tank 32 when passing through the gas heating unit 42, and the upper part in the sealed tank 32 when passing through the communication pipe 43. Each is heated with water ejected by a shower mechanism 37 installed in the side space, and can be made into a heated dry gas having the same temperature as the water vapor saturated gas. This can prevent the temperature of the steam saturated gas from being lowered (condensation occurs in the steam saturated gas) when the heat-dried gas and the steam saturated gas are merged.
Note that a heater may be provided between the mass flow measurement and control mechanism 21 and the first communication portion 24 so that the temperature of the passing dry gas B is heated to the same temperature as the water in the sealed tank 32. .

図3に示すように、合流部15は、第1、第2の連通部24、27の先部がそれぞれ接続して加熱乾燥ガスと水蒸気飽和ガスが合流(混合)する混合器44と、混合器44の先部と連通して加熱乾燥ガスと水蒸気飽和ガスの合流により形成された加湿ガスAが流入する加湿ガス導出路45とを有している。ここで、混合器44は、第1の連通部24の先部が接続して加熱乾燥ガスが通過する第1のガス流路46と、第1のガス流路46を内部に含み第1のガス流路46の中心軸と同一位置に中心軸が配置されて、第2の連通部27を介して供給された水蒸気飽和ガスが加熱乾燥ガスと同一方向に通過する第2のガス流路47とを備えている。 As shown in FIG. 3, the merging portion 15 is mixed with a mixer 44 in which the tips of the first and second communication portions 24 and 27 are connected to each other so that the heated and dried gas and the steam saturated gas merge (mix). And a humidified gas lead-out path 45 through which the humidified gas A formed by the confluence of the heated drying gas and the steam saturated gas flows. Here, the mixer 44 includes a first gas flow path 46 through which the heated and dried gas passes through the first communication section 24 connected thereto, and a first gas flow path 46 therein. A second gas flow path 47 in which the central axis is disposed at the same position as the central axis of the gas flow path 46 and the water vapor saturated gas supplied via the second communication portion 27 passes in the same direction as the heated and dried gas. And.

このような構成とすることにより、第1のガス流路46の断面積より第2のガス流路47の断面積が大きいため、第1のガス流路46の配管抵抗が大きくなって、第2のガス流路47を通過する水蒸気飽和ガスが第1のガス流路46に逆流することを防止できる。また、第2のガス流路47内に結露が生じても、構造的に結露が第1のガス流路46に侵入することを防止できる。更に、加熱乾燥ガスと水蒸気飽和ガスの流量差が大きいと、流量の多いガスに流量の少ないガスが巻き込まれるため、加熱乾燥ガスと水蒸気飽和ガスの混合を促進することができる。
なお、合流部15は断熱材(図示せず)で覆われており、加熱乾燥ガス、水蒸気飽和ガス、及び加湿ガスAの温度低下を防止して、水蒸気飽和ガス及び加湿ガスAに結露が生じることを防止している。なお、合流部15にヒータを取付け合流部15を加熱して、加熱乾燥ガス、水蒸気飽和ガス、及び加湿ガスAの温度低下を防止するようにしてもよい。
With such a configuration, since the cross-sectional area of the second gas flow path 47 is larger than the cross-sectional area of the first gas flow path 46, the pipe resistance of the first gas flow path 46 is increased, It is possible to prevent the water vapor saturated gas passing through the second gas channel 47 from flowing back into the first gas channel 46. Even if condensation occurs in the second gas flow path 47, it is structurally possible to prevent the condensation from entering the first gas flow path 46. Furthermore, if the flow rate difference between the heated drying gas and the water vapor saturated gas is large, the gas having a small flow rate is caught in the gas having a large flow rate, so that the mixing of the heated drying gas and the water vapor saturated gas can be promoted.
In addition, the junction 15 is covered with a heat insulating material (not shown), and prevents temperature reduction of the heated and dried gas, the steam saturated gas, and the humidified gas A, and condensation occurs in the steam saturated gas and the humidified gas A. To prevent that. In addition, you may make it attach a heater to the junction part 15 and heat the junction part 15 and prevent the temperature fall of heat drying gas, water vapor | steam saturated gas, and the humidification gas A. FIG.

貯留槽16は、加湿ガス導出路45に連通する空間部を内部に備え、外周部は図示しない断熱材で覆われている。これにより、合流部15から流入した加湿ガスAの温度低下を防止しながら、加湿ガスAの均一化(例えば、圧力)を図ることができる。そして、貯留槽16内で均一化した加湿ガスAはガス導入配管17を介して燃料電池11に供給される。また、ガス導入配管17には、燃料電池11に供給される加湿ガスAの露点及び圧力をそれぞれ測定する露点計48及び圧力計49が設けられている。更に、ガス導入配管17は断熱材(図示せず)で覆われており、加湿ガスAの温度低下を防止することにより、加湿ガスAに結露が生じることを防止している。なお、ガス導入配管17にヒータを取付けてもよい。 The storage tank 16 includes a space portion communicating with the humidified gas outlet passage 45 inside, and the outer peripheral portion is covered with a heat insulating material (not shown). Accordingly, the humidification gas A can be made uniform (for example, pressure) while preventing the temperature of the humidification gas A flowing from the merging portion 15 from decreasing. Then, the humidified gas A uniformized in the storage tank 16 is supplied to the fuel cell 11 through the gas introduction pipe 17. The gas introduction pipe 17 is provided with a dew point meter 48 and a pressure gauge 49 for measuring the dew point and pressure of the humidified gas A supplied to the fuel cell 11, respectively. Further, the gas introduction pipe 17 is covered with a heat insulating material (not shown), and by preventing the temperature of the humidified gas A from decreasing, the humidified gas A is prevented from causing condensation. A heater may be attached to the gas introduction pipe 17.

燃料電池11の図示しない排気ガス放出口には、排気ガスの圧力を調節する背圧弁50と、排気ガスの圧力を測定する圧力計51と、圧力計51で測定された排気ガスの圧力が指示値となるように背圧弁50を調節する圧力設定器(図示せず)とを備えた排気ガス排出手段52が設けられている。その結果、燃料電池11内のガス圧力が決まり、燃料電池11に供給する加湿ガスAの圧力が決まる。 An exhaust gas discharge port (not shown) of the fuel cell 11 is instructed by a back pressure valve 50 for adjusting the pressure of the exhaust gas, a pressure gauge 51 for measuring the pressure of the exhaust gas, and the pressure of the exhaust gas measured by the pressure gauge 51. Exhaust gas discharge means 52 provided with a pressure setter (not shown) for adjusting the back pressure valve 50 so as to be a value is provided. As a result, the gas pressure in the fuel cell 11 is determined, and the pressure of the humidified gas A supplied to the fuel cell 11 is determined.

制御手段18は、燃料電池11の評価試験方法により設定される加湿ガスAの露点、加湿ガスAの流量、及び加湿ガスAの圧力の目標値を入力する入力部と、入力部に入力された(設定された)露点に基づいて加湿手段13の密閉タンク32内に貯留されている水の温度を設定する温度設定部と、温度設定部により設定された温度の加熱乾燥ガス及び水蒸気飽和ガスを用いて、設定された露点の加湿ガスAを作製するために合流部15に流入させる加熱乾燥ガス及び水蒸気飽和ガスの分流比を求める分流比演算部と、設定された加湿ガスAの流量及び求めた分流比から、合流部15に流入する加熱乾燥ガス及び水蒸気飽和ガスの各流量を設定するガス流量設定部とを有している。 The control means 18 inputs the dew point of the humidified gas A, the flow rate of the humidified gas A, and the target value of the pressure of the humidified gas A set by the evaluation test method of the fuel cell 11, and the input to the input unit. A temperature setting unit that sets the temperature of the water stored in the sealed tank 32 of the humidifying means 13 based on the dew point (set), and a heating drying gas and a steam saturated gas at a temperature set by the temperature setting unit. The flow rate and the flow rate of the set humidification gas A, and the flow rate calculation unit for determining the flow rate ratio of the heating and drying gas and the steam saturated gas that flows into the merge portion 15 to produce the humidified gas A having the set dew point. And a gas flow rate setting unit for setting the flow rates of the heating and drying gas and the steam saturated gas flowing into the merging unit 15 from the diversion ratio.

また、制御手段18は、ガス流量設定部で設定された流量の乾燥ガスBが得られるように質量流量計測及び制御機構21の制御信号を出力する乾燥ガスBの流量制御部と、ガス流量設定部で設定された乾燥ガスCの流量に応じて質量流量計測及び制御機構29、30に対して一方を起動させ、他方を停止させる動作指定信号を出力するか(小流量のとき)、又は起動させた質量流量計測及び制御機構29、30を用いて、設定された流量の乾燥ガスCが得られるように質量流量計測及び制御機構29、30の流量配分設定のための制御信号を出力する乾燥ガスCの流量制御部とを有している。更に、制御手段18は、入力部で設定された加湿ガスAの圧力と、ガス流量設定部で設定された乾燥ガスBの流量に基づいて、質量流量計測及び制御機構21に流入する乾燥ガスBの圧力を求めて、圧力調整弁20の制御信号を出力する乾燥ガスBの圧力設定部を有している。 Further, the control means 18 includes a flow rate control unit for the dry gas B that outputs a control signal of the mass flow measurement and control mechanism 21 so that the dry gas B having a flow rate set by the gas flow rate setting unit is obtained, and a gas flow rate setting. Depending on the flow rate of the dry gas C set in the unit, the mass flow measurement and control mechanism 29, 30 is activated to output one of the operation designation signals to stop the other (when the flow rate is small) or activated Drying that outputs a control signal for setting the flow distribution of the mass flow measurement and control mechanisms 29 and 30 using the mass flow measurement and control mechanisms 29 and 30 to obtain a dry gas C having a set flow rate. A flow control unit for the gas C. Further, the control means 18 uses the mass gas flow measurement and control mechanism 21 to supply the dry gas B based on the pressure of the humidified gas A set by the input unit and the flow rate of the dry gas B set by the gas flow rate setting unit. And a pressure setting unit for the dry gas B for outputting a control signal for the pressure regulating valve 20.

ここで、分流比演算部には、露点計48で測定した加湿ガスAの実測露点と設定された露点との差(偏差)に基づいて、分流比の修正を行う分流比修正機構が設けられている。
また、分流比演算部には、燃料電池11に供給する加湿ガスAの露点を変更するため、加湿ガスAに設定する露点を変更した際に(入力部に新たな露点を入力した際に)、分流比修正機構の動作を停止すると共に、分流比を加湿ガスAに設定する変更後の露点から決まる値に固定し、露点の変更時から(新たな露点を設定した時から)一定時間(例えば、20秒)経過した後に、分流比修正機構の動作を再開する機能を有する露点変更対応機構が設けられている。
なお、露点変更対応機構の機能を、露点計48で求めた実測露点と変更後の露点との偏差が一定値範囲内(例えば、偏差が露点に対して0を超え5%以下)になった後、分流比修正機構の動作を再開するようにしてもよい。
Here, the diversion ratio calculation unit is provided with a diversion ratio correction mechanism that corrects the diversion ratio based on the difference (deviation) between the measured dew point of the humidified gas A measured by the dew point meter 48 and the set dew point. ing.
Further, in order to change the dew point of the humidified gas A supplied to the fuel cell 11 in the shunt ratio calculation unit, when the dew point set to the humidified gas A is changed (when a new dew point is input to the input unit). In addition to stopping the operation of the shunt ratio correction mechanism, the shunt ratio is set to a value determined from the dew point after the change to set the humidifying gas A, and after a dew point change (after a new dew point is set) for a certain time ( For example, a dew point change response mechanism having a function of restarting the operation of the diversion ratio correction mechanism after 20 seconds) is provided.
The function of the dew point change response mechanism is such that the deviation between the measured dew point obtained by the dew point meter 48 and the dew point after the change is within a certain value range (for example, the deviation exceeds 0 with respect to the dew point and is 5% or less). Thereafter, the operation of the shunt ratio correction mechanism may be resumed.

そして、入力部には、燃料電池11に供給する加湿ガスAの圧力を急上昇させようとして、
加湿ガスに設定する圧力を急上昇した際に(入力部に加湿ガスAの新たな圧力が設定された際に)、分流比の修正を停止し、加湿ガスAの実測圧力の過渡応答期間(加湿ガスAの実測圧力が、新たな圧力に到達した後、数秒〜数十秒経過するまでの期間)に亘って、分流比を加湿ガスAの圧力の変更直前の値に固定して、燃料電池11に供給する加湿ガスAの露点の変動を防止する機能を有する加湿ガス圧力変更対応機構が設けられている。
更に、加湿ガス圧力変更対応機構には、燃料電池11に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側の場合、加湿ガスAに設定する露点を、加湿ガスAの圧力変更時から一定時間に亘って加湿ガスAの圧力の上昇幅に応じて一定値だけ増加させて、燃料電池11に供給する加湿ガスAの露点の低下を補償する補償機能が設けられている。
なお、加湿ガス圧力変更対応機構に設ける補償機能を、過渡応答期間に亘って、加湿ガスAの実測露点の低下挙動に基づいて加湿ガスAに設定する露点を上昇させることにより(例えば、加湿ガスAの実測露点の低下挙動を求めて、低下挙動を示す関数式を予め求めておき、この関数式で予測される露点減少量だけ露点を増加させることにより)、燃料電池11に供給する加湿ガスAの露点の低下を補償する機能とすることもできる。
And in the input part, in order to increase the pressure of the humidified gas A supplied to the fuel cell 11 rapidly,
When the pressure set for the humidified gas suddenly increases (when the new pressure of the humidified gas A is set in the input section), the correction of the shunt ratio is stopped and the transient response period of the measured pressure of the humidified gas A (humidified) After the actual pressure of the gas A reaches a new pressure, the fuel cell is fixed to the value immediately before the change of the pressure of the humidified gas A over a period from several seconds to several tens of seconds) The humidification gas pressure change corresponding mechanism which has a function which prevents the fluctuation | variation of the dew point of the humidification gas A supplied to 11 is provided.
Further, the humidifying gas pressure changing mechanism has a dew point set to the humidifying gas A as the pressure of the humidifying gas A when the flow rate of the humidifying gas A supplied to the fuel cell 11 is the lower limit side of the flow range of the humidifying gas A. A compensation function is provided that compensates for a decrease in the dew point of the humidified gas A supplied to the fuel cell 11 by increasing it by a certain value in accordance with the increasing range of the pressure of the humidified gas A over a certain time from the time of change.
It should be noted that the compensation function provided in the humidifying gas pressure change mechanism increases the dew point set in the humidifying gas A based on the decrease behavior of the measured dew point of the humidifying gas A over the transient response period (for example, the humidifying gas). A dehumidifying behavior of A is obtained, and a function equation indicating the deteriorating behavior is obtained in advance, and the dew point is increased by the dew point reduction amount predicted by this functional equation), and the humidified gas supplied to the fuel cell 11 It can also be set as the function which compensates the fall of the dew point of A.

続いて、加湿ガス供給装置10を用いた本発明の一実施の形態に係る燃料電池11の加湿ガス供給方法について説明する。
燃料電池11の評価試験を行う場合、燃料電池11に供給する加湿ガスAの露点、流量、及び圧力は、評価試験内容により異なる。このため、先ず、加湿ガス供給装置10の制御手段18の入力部に、評価試験に要求される加湿ガスAの露点、流量、及び圧力を入力して、加湿ガス供給装置10の運転を開始する。
Then, the humidified gas supply method of the fuel cell 11 which concerns on one embodiment of this invention using the humidified gas supply apparatus 10 is demonstrated.
When the evaluation test of the fuel cell 11 is performed, the dew point, the flow rate, and the pressure of the humidified gas A supplied to the fuel cell 11 vary depending on the content of the evaluation test. For this reason, first, the dew point, flow rate, and pressure of the humidified gas A required for the evaluation test are input to the input unit of the control means 18 of the humidified gas supply apparatus 10 to start the operation of the humidified gas supply apparatus 10. .

ここで、加湿ガス供給装置10の動作試験を実施することにより、燃料電池11に供給する加湿ガスAの条件(露点、流量、及び圧力)、加熱乾燥ガス(乾燥ガスB)の条件(流量及び圧力)、及び水蒸気飽和ガス(乾燥ガスC)の条件(流量及び圧力)の関係を事前に把握することができる。このため、燃料電池11の評価試験時に燃料電池11に供給する加湿ガスAの露点、流量、及び圧力を決めると、加湿ガス供給装置10を運転する際の乾燥ガスBの流量及び圧力、乾燥ガスCの流量及び圧力をそれぞれ推定することができる。したがって、推定された乾燥ガスB、Cの流量及び圧力を初期値として、加湿ガス供給装置10を運転する。また、加湿手段13の密閉タンク32に貯留する水の温度は、加湿ガスAの露点に対して、例えば、5〜10℃だけ高い温度に保持されるように温度調節部38で制御する。
なお、質量流量計測及び制御機構21と第1の連通部24の間にヒータを設けて乾燥ガスBを加熱する場合は、加熱される乾燥ガスBの温度が密閉タンク32の水温と同一温度になるようにヒータを制御する。
Here, by performing an operation test of the humidified gas supply device 10, the conditions (dew point, flow rate, and pressure) of the humidified gas A supplied to the fuel cell 11 and the conditions (flow rate and flow rate) of the heated dry gas (dry gas B) are determined. Pressure) and the conditions (flow rate and pressure) of the steam saturated gas (dry gas C) can be grasped in advance. For this reason, when the dew point, flow rate, and pressure of the humidified gas A supplied to the fuel cell 11 during the evaluation test of the fuel cell 11 are determined, the flow rate, pressure, and dry gas of the dry gas B when the humidified gas supply device 10 is operated. The flow rate and pressure of C can be estimated respectively. Therefore, the humidified gas supply device 10 is operated with the estimated flow rates and pressures of the dry gases B and C as initial values. The temperature of the water stored in the sealed tank 32 of the humidifying means 13 is controlled by the temperature adjusting unit 38 so as to be maintained at a temperature higher than the dew point of the humidified gas A by, for example, 5 to 10 ° C.
When the heater is provided between the mass flow measurement and control mechanism 21 and the first communication part 24 to heat the drying gas B, the temperature of the drying gas B to be heated is the same as the water temperature of the sealed tank 32. The heater is controlled so that

次いで、設定された加湿ガスAの露点に基づいて合流部15で合流する加熱乾燥ガスと水蒸気飽和ガスとの分流比を求める。
ここで、露点(℃)をt、密閉タンク32内(密閉タンク32中の水)の温度(℃)をt、密閉タンク32内の水蒸気飽和ガスの圧力(Pa)をp、貯留槽16内の加湿ガスAの圧力(Pa)をp、密閉タンク32内の水蒸気飽和ガスの飽和水蒸気圧(Pa)をe(t)、露点における飽和水蒸気圧(Pa)をe(t)、乾燥ガスB及び乾燥ガスCの全流量に対する乾燥ガスCの流量の比をγすると、露点における飽和水蒸気圧e(t)は(a)式で与えられる(例えば、湿度計−試験方 JIS B 7920:2000 5ページ(8)式参照)。
(t)=pγe(t)/{p−(1−γ)e(t)} ・・・ (a)
Next, based on the set dew point of the humidified gas A, a branching ratio between the heated dry gas and the water vapor saturated gas that merges at the merge unit 15 is obtained.
Here, the dew point (° C.) is t d , the temperature (° C.) in the sealed tank 32 (water in the sealed tank 32) is t s , and the pressure (Pa) of the water vapor saturated gas in the sealed tank 32 is p s . pressure (Pa) of p t of the humidified gas a in the tank 16, the saturated steam pressure of water vapor saturated gas in the sealed tank 32 (Pa) e s (t s ), the saturated water vapor pressure at the dew point (Pa) e s (t d), the flow rate ratio of the drying gas C to the total flow rate of the drying gas B and the drying gas C gamma Then, saturation in dew point vapor pressure e s (t d) is given by formula (a) (e.g., humidity Total-Testing method JIS B 7920: 2000, page 5 (see formula (8))
e s (t d) = p t γe s (t s) / {p s - (1-γ) e s (t s)} ··· (a)

(a)式からγを求めると、γは(b)式で与えられる。
γ=(p−e(t))e(t)/(p−e(t))e(t) ・・・ (b)
ここで、tは燃料電池11の評価試験条件として与えられ、tは密閉タンク32内に挿入した図示しない温度計で測定され、pは圧力計28から、pは圧力計49からそれぞれ求めることができ、e(t)、e(t)は、例えば、JIS B 7920:2000 21ページ SONNTAGの飽和蒸気圧式(15)から得ることができる。したがって、(b)式を計算することにより、γを決定することができる。
When γ is obtained from equation (a), γ is given by equation (b).
γ = (p s -e s ( t s)) e s (t d) / (p t -e s (t d)) e s (t s) ··· (b)
Here, t d is given as an evaluation test condition for the fuel cell 11, t s is measured by a thermometer (not shown) inserted in the sealed tank 32, p s is from the pressure gauge 28, and pt is from the pressure gauge 49. can be obtained respectively, e s (t d), e s (t s) is, for example, JIS B 7920: can be obtained from the saturated vapor pressure of 2000 21 pages Sonntag (15). Therefore, γ can be determined by calculating equation (b).

分流比(γ)が決まると、加湿ガスAの流量をQ、加熱乾燥ガスの流量をq、水蒸気飽和ガスの流量をqとした場合、
γ=q/Q=q/(q+q
の関係が成立するので、水蒸気飽和ガスの流量qはγQ、加熱乾燥ガスの流量qは(1−γ)Qとそれぞれ求められる。ここで、乾燥ガスBの流量は加熱乾燥ガスの流量qに等しく、乾燥ガスCの流量は水蒸気飽和ガスの流量qに等しいので、乾燥ガスBの流量がqとなるように質量流量計測及び制御機構21を制御し、乾燥ガスCの流量がqとなるように第2の乾燥ガス流量調節手段26を制御する。なお、第2の乾燥ガス流量調節手段26で乾燥ガスCの流量制御を行う場合、流量qの値に応じて、第2の乾燥ガス流量調節手段26を構成している質量流量計測及び制御機構29、30の中で使用する質量流量計測及び制御機構を選択するか、各々に流量配分設定を行う。
When the diversion ratio (γ) is determined, when the flow rate of the humidified gas A is Q, the flow rate of the heating and drying gas is q d , and the flow rate of the steam saturated gas is q w ,
γ = q w / Q = q w / (q d + q w )
Since the relationship is established, the flow rate q w of water vapor saturated gas GanmaQ, flow rate q d for heating the drying gas can be determined respectively (1-γ) Q. Here, the flow rate of the drying gas B is equal to the flow rate q d of the heated drying gas, and the flow rate of the drying gas C is equal to the flow rate q w of the water vapor saturated gas, so that the mass flow rate is set so that the flow rate of the drying gas B becomes q d. controls measurement and control mechanism 21, the flow rate of the drying gas C controls the second drying gas flow rate control means 26 so that q w. In the case where the flow rate control of the drying gas C in the second drying gas flow rate control means 26, according to the value of the flow rate q w, configured to have mass flow measurement and control a second drying gas flow rate control means 26 The mass flow measurement and control mechanism used in the mechanisms 29 and 30 is selected, or the flow distribution setting is performed for each.

更に、質量流量計測及び制御機構21に流入する乾燥ガスBの圧力をP、燃料電池11に供給される加湿ガスAの圧力をP、乾燥ガスBの流量をqとした場合、乾燥ガスBの圧力Pを、乾燥ガスBの流量q及び加湿ガスAの圧力Pに基づいて、例えば、P=P+Kq の関係式から決まるPとなるように制御している。ここで、Kは数値定数で、加湿ガス供給装置10に応じて決める。
乾燥ガスBの圧力Pを、乾燥ガスBの流量q及び加湿ガスAの圧力Pに基づいて制御することにより、第2のガス供給部14に比較して、構造的に乾燥ガスBが流れ易い(差圧が過大となり易い)第1のガス供給部12に適切な差圧を設けることができ、第1のガス供給部12を通過する乾燥ガスBの流量の制御を安定して行うことができる。その結果、加湿ガスAの露点の変更要求に対して、加湿ガスAの露点を迅速かつ高精度に調節することができる。
Further, when the pressure of the dry gas B flowing into the mass flow measurement and control mechanism 21 is P 0 , the pressure of the humidified gas A supplied to the fuel cell 11 is P b , and the flow rate of the dry gas B is q d , Based on the flow rate q d of the dry gas B and the pressure P b of the humidified gas A, the pressure B 0 of the gas B is controlled to be P 0 determined from, for example, a relational expression of P 0 = P b + Kq d 2. ing. Here, K is a numerical constant and is determined according to the humidified gas supply device 10.
By controlling the pressure P 0 of the drying gas B based on the flow rate q d of the drying gas B and the pressure P b of the humidifying gas A, the drying gas B is structurally compared to the second gas supply unit 14. Can be provided with an appropriate differential pressure in the first gas supply unit 12 and the flow rate of the dry gas B passing through the first gas supply unit 12 can be controlled stably. It can be carried out. As a result, the dew point of the humidified gas A can be adjusted quickly and with high accuracy in response to a request for changing the dew point of the humidified gas A.

加湿ガスAの露点を一定値に制御している状態では、ガス導入配管17に設けた露点計48で測定した加湿ガスAの実測露点と、入力部に入力した露点(即ち、設定された露点である制御の目標露点)との差(偏差)に基づいて、PID制御等の方法で分流比の計算出力値を修正することにより、露点のフィードバック制御を行う。これによって、加湿ガスAの実測露点を設定された露点(目標露点)に近づけると共に、実測露点の安定化を図ることができる。 In a state where the dew point of the humidified gas A is controlled to a constant value, the measured dew point of the humidified gas A measured by the dew point meter 48 provided in the gas introduction pipe 17 and the dew point input to the input unit (that is, the set dew point) The dew point feedback control is performed by correcting the calculated output value of the diversion ratio by a method such as PID control based on the difference (deviation) from the control target dew point). As a result, the measured dew point of the humidified gas A can be brought close to the set dew point (target dew point) and the measured dew point can be stabilized.

ここで、燃料電池11に供給する加湿ガスAの露点変更要求に応じて、制御手段18の入力部に新たな露点が入力された(加湿ガスAに設定する露点を変更した)場合、分流比演算部では、分流比修正機構の動作を停止して露点のフィードバック制御を停止すると共に、分流比を変更後の露点から決まる値に固定し(即ち、露点の制御を、フィードバックとフィードフォワード併用制御からフィードフォワード単独制御に変更して)、露点の変更時から一定時間(例えば、10〜20秒)経過した後に、分流比修正機構の動作を再開する(露点のフィードバック制御を再開する)。
なお、露点のフィードフォワード単独制御を実施する期間を、露点計48で求めた実測露点と変更後の目標露点との偏差が一定値範囲内(例えば、偏差が、変更後の目標露点露点に対して0を超え5%以下になるまでの期間とすることもできる。
Here, when a new dew point is input to the input unit of the control means 18 in response to a request to change the dew point of the humidified gas A supplied to the fuel cell 11 (the dew point set for the humidified gas A is changed), The calculation unit stops the operation of the shunt ratio correction mechanism to stop the dew point feedback control, and fixes the shunt ratio to a value determined from the dew point after the change (that is, the dew point control is combined with feedback and feedforward control). After the dew point is changed, the operation of the diversion ratio correcting mechanism is resumed (dew point feedback control is resumed) after a fixed time (for example, 10 to 20 seconds) has elapsed since the dew point was changed.
Note that the deviation between the measured dew point calculated by the dew point meter 48 and the changed target dew point is within a certain range (for example, the deviation is less than the changed target dew point dew point). may be a period until less than 5%) greater than 0 Te.

これによって、変更後の露点で決まる分流比で加熱乾燥ガスと水蒸気飽和ガスが合流部15に供給されるため、加湿ガスAの露点を変更後の露点に向けて急速に変化させることができる。そして、目標露点の変更時から一定時間経過した後又は露点計48で求めた実測露点と変更後の目標露点との差が一定値範囲内になった後、分流比の修正を行うことによる露点のフィードバック制御を再開するので、実測露点を変更後の目標露点に容易に近づけて安定化することができる。 As a result, the heated dry gas and the steam saturated gas are supplied to the junction 15 at a diversion ratio determined by the changed dew point, so that the dew point of the humidified gas A can be rapidly changed toward the changed dew point. Then, after a certain period of time has elapsed since the change of the target dew point, or after the difference between the measured dew point obtained by the dew point meter 48 and the target dew point after the change is within a certain range, the dew point is obtained by correcting the diversion ratio. Therefore, the measured dew point can be easily brought close to the changed target dew point and stabilized.

加湿ガスAの露点を一定値に制御している状態で、燃料電池11に供給する加湿ガスAの圧力変更要求に応じて制御手段18の入力部に新たな圧力が入力されて(加湿ガスAに設定する圧力を変更して)、加湿ガスAの圧力を急上昇させる場合、加湿ガスAの実測圧力の過渡応答期間(加湿ガスAの実測圧力が、設定された新たな圧力に到達した後、数秒〜数十秒経過するまでの期間)に亘って、分流比の修正を停止し露点のフィードバック制御を停止すると共に、分流比を加湿ガスAの圧力の変更直前の値に固定して(露点の制御を、フィードバックとフィードフォワード併用制御からフィードフォワード単独制御に変更して)、燃料電池11に供給する加湿ガスAの露点の変動を防止する。 In a state where the dew point of the humidified gas A is controlled to a constant value, a new pressure is input to the input unit of the control means 18 in response to a request for changing the pressure of the humidified gas A supplied to the fuel cell 11 (humidified gas A When the pressure of the humidifying gas A is rapidly increased by changing the pressure to be set to 1), the transient response period of the actually measured pressure of the humidifying gas A (after the measured pressure of the humidifying gas A reaches the set new pressure, Over the period from several seconds to several tens of seconds), the correction of the diversion ratio is stopped and the feedback control of the dew point is stopped, and the diversion ratio is fixed to the value immediately before the change of the pressure of the humidified gas A (dew point). Is changed from feedback and feedforward combined control to feedforward independent control), and the dew point of the humidified gas A supplied to the fuel cell 11 is prevented from changing.

ここで、燃料電池11に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側(例えば、最小流量の1倍から20倍の範囲)の場合、加湿ガスAの露点を、加湿ガスAの圧力変更時から一定時間(例えば、0を超え120秒以下)に亘って加湿ガスAの圧力の上昇幅に応じて一定値(例えば、上昇幅の1を超え1.2倍以下)だけ増加させ、燃料電池11に供給する加湿ガスAの露点の低下を補償する。
なお、過渡応答期間zに亘って、加湿ガスAの実測露点の低下挙動に基づいて加湿ガスAの設定された露点を上昇させることにより、例えば、設定された露点(制御の目標露点)をtとした際、加湿ガスAの実測露点の低下挙動を求めて、低下挙動を示す関数式F(z)を予め求めておき、関数式F(z)で予測される露点減少量だけ設定される露点を増加、即ち加湿ガスAの目標露点がt+F(z)となるように制御することにより、燃料電池11に供給する加湿ガスAの露点の低下を補償するようにすることもできる。これによって、燃料電池11の評価試験の中断、試験中の燃料電池11の破損を確実に防止することができる。
Here, when the flow rate of the humidified gas A supplied to the fuel cell 11 is on the lower limit side of the flow range of the humidified gas A (for example, a range of 1 to 20 times the minimum flow rate), the dew point of the humidified gas A is A constant value (for example, more than 1 and 1.2 times or less of the rising width) over a certain period of time (for example, exceeding 0 and 120 seconds or less) from the time of changing the pressure of the gas A according to the increasing width of the pressure of the humidified gas A The dew point of the humidified gas A supplied to the fuel cell 11 is compensated for.
In addition, by raising the set dew point of the humidified gas A based on the decrease behavior of the measured dew point of the humidified gas A over the transient response period z, for example, the set dew point (target dew point of control) is t. When d , the decrease behavior of the measured dew point of the humidified gas A is obtained, and the function formula F (z) indicating the decrease behavior is obtained in advance, and only the dew point reduction amount predicted by the function formula F (z) is set. that increase the dew point, i.e. the target dew point of the humidified gas a is Ri by the controlling such that t d + F (z), be adapted to compensate for the reduction in the dew point of the supplied humidified gas a to the fuel cell 11 You can also. Thereby, interruption of the evaluation test of the fuel cell 11 and breakage of the fuel cell 11 during the test can be reliably prevented.

(実施例1)
燃料電池に露点80℃の加湿ガスAを供給するため、制御手段の入力部に露点(目標露点)として80℃を入力(設定)し、露点計による実測露点と目標露点との偏差に基づいて、PID制御により分流比の計算出力値を修正しながら加湿ガスAの露点の制御(露点のフィードバック制御)を実施した。その結果を図4に示す。
分流比の計算出力値を修正しながら加熱乾燥ガス及び水蒸気飽和ガスの流量をそれぞれ制御することにより、実測露点を目標露点である80℃に安定して保持できることが確認できた。
(Example 1)
In order to supply humidified gas A with a dew point of 80 ° C. to the fuel cell, 80 ° C. is input (set) as a dew point (target dew point) to the input part of the control means, and based on the deviation between the dew point measured by the dew point meter and the target dew point The control of the dew point of the humidified gas A (dew point feedback control) was performed while correcting the calculated output value of the shunt ratio by PID control. The result is shown in FIG.
It was confirmed that the measured dew point can be stably maintained at the target dew point of 80 ° C. by controlling the flow rates of the heating and drying gas and the steam saturated gas while correcting the calculated output value of the diversion ratio.

(実施例2)
目標露点を80℃に制御している状態において、入力部に新たに設定する露点(目標露点)として30℃を入力し、目標露点を80℃から30℃に急低下させて保持する制御を行った。このとき、合流部に流入させる加熱乾燥ガス及び水蒸気飽和ガスの流量は、それぞれ露点30℃の加湿ガスAを生成する際の分流比から決まる流量に固定した(露点を30℃とするフィードフォワード単独制御を行った)。その結果を図4に示す。
加湿ガスAの実測露点は、目標露点の急低下に追従して変化しており、加湿ガスAの露点を急低下できることが確認できた。
(Example 2)
While the target dew point is controlled to 80 ° C, 30 ° C is input as a newly set dew point (target dew point) to the input unit, and the target dew point is suddenly lowered from 80 ° C to 30 ° C and held. It was. At this time, the flow rates of the heating and drying gas and the water-saturated gas flowing into the junction are fixed to flow rates determined from the diversion ratio when generating the humidified gas A having a dew point of 30 ° C. (feed forward alone with a dew point of 30 ° C. Control). The result is shown in FIG.
The measured dew point of the humidified gas A changed following the rapid decrease of the target dew point, and it was confirmed that the dew point of the humidified gas A could be rapidly decreased.

(実施例3)
目標露点を30℃に制御している状態において、入力部に新たに設定する露点(目標露点)として80℃を入力し、目標露点を30℃から80℃に急上昇させて保持する制御を行った。このとき、合流部に流入させる加熱乾燥ガス及び水蒸気飽和ガスの流量は、露点の急上昇開始時にはそれぞれ露点80℃の加湿ガスAを生成する際の分流比から決まる流量に固定し(露点を80℃とするフィードフォワード単独制御を行い)、露点の急上昇開始時から30秒経過した後(実測露点が目標露点80℃に接近した後)、フィードフォワード単独制御を露点を80℃とするフィードバック制御に変更した。即ち、露点を30℃から80℃に急上昇させる場合、フィードフォワードとフィードバック併用制御を行うことになる。その結果を図4に示す。
加湿ガスAの目標露点が30℃から80℃に急上昇することに対応して、実測露点は30℃から80℃に急上昇しており、加湿ガスAの露点を急上昇できることが確認できると共に、急上昇させた実測露点を80℃に保持できることが確認できた。
(Example 3)
In a state where the target dew point is controlled to 30 ° C., 80 ° C. is input as a newly set dew point (target dew point) to the input unit, and the target dew point is rapidly increased from 30 ° C. to 80 ° C. and maintained. . At this time, the flow rates of the heating and drying gas and the water vapor saturated gas flowing into the junction are fixed to flow rates determined from the diversion ratio when the humidified gas A having the dew point of 80 ° C. is generated at the start of the sudden rise of the dew point (the dew point is set to 80 ° C. After 30 seconds have elapsed from when the dew point suddenly started to rise (after the measured dew point approaches the target dew point of 80 ° C), the feed forward single control was changed to feedback control with a dew point of 80 ° C. did. That is, when the dew point is rapidly increased from 30 ° C. to 80 ° C., feedforward and feedback combined control are performed. The result is shown in FIG.
Corresponding to the target dew point of humidified gas A increasing rapidly from 30 ° C to 80 ° C, the measured dew point has increased rapidly from 30 ° C to 80 ° C, and it can be confirmed that the dew point of humidified gas A can be increased rapidly and increased rapidly. It was confirmed that the measured dew point could be maintained at 80 ° C.

(実施例4)
燃料電池に供給する加湿ガスAの目標露点を60℃に制御している状態で、燃料電池に供給する加湿ガスAに設定する圧力(背圧)をゲージ圧力で10kPaから250kPaまで急上昇させ、一定時間保持した後に急低下させる制御の際に、背圧急上昇に伴う加湿ガスAの実測背圧の過渡応答期間(加湿ガスAの圧力変更時から加湿ガスAの実測背圧が背圧制御値の3%の範囲内に到達するまでの時間)に亘って、加湿ガスAの目標露点を65℃に急上昇するフィードフォワード単独制御を行った。その結果を図5に示す。
背圧急上昇に伴って加湿ガスAの目標露点を60℃から5℃急上昇させることで、実測背圧がゲージ圧力で10kPaから250kPaまで上昇した背圧制御値に安定化するまでに要する期間に生じる実測露点の目標露点60℃に対する低下量を、約3℃以下にすることができる。
Example 4
While the target dew point of the humidified gas A supplied to the fuel cell is controlled at 60 ° C., the pressure (back pressure) set for the humidified gas A supplied to the fuel cell is rapidly increased from 10 kPa to 250 kPa as a gauge pressure. During the control to rapidly decrease after holding the time, the transient response period of the measured back pressure of the humidified gas A accompanying the rapid increase of the back pressure (the measured back pressure of the humidified gas A from the time when the pressure of the humidified gas A is changed becomes the back pressure control value. The feedforward single control was performed in which the target dew point of the humidified gas A was rapidly increased to 65 ° C. over a period of time until reaching the range of 3%. The result is shown in FIG.
Along with the rapid increase in back pressure, the target dew point of the humidified gas A is rapidly increased from 60 ° C. to 5 ° C., so that it occurs in the period required for the measured back pressure to stabilize to the back pressure control value increased from 10 kPa to 250 kPa as the gauge pressure. The amount of decrease in the measured dew point relative to the target dew point of 60 ° C. can be about 3 ° C. or less.

(比較例)
燃料電池に供給する加湿ガスAの目標露点を60℃に制御している状態で、燃料電池に供給する加湿ガスAに設定する背圧を250Paだけ急上昇させ、一定時間保持した後に急低下する制御を行なった際における加湿ガスAの実測露点の変動を図5に示す。実測背圧が、250Pa上昇した背圧制御値に安定化するまでに要する期間に生じる実測露点の目標露点60℃に対する低下量は最大約10℃であった。
したがって、燃料電池に供給する加湿ガスAの背圧制御値を急上昇させることに伴って、加湿ガスAの実測背圧の過渡応答期間に亘って、加湿ガスAの目標露点を急上昇させることで、実測背圧が背圧制御値に安定化するまでの期間に生じる実測露点の目標露点に対する低下量を小さくできる(露点の低下を補償できる)ことが確認できた。
(Comparative example)
Control in which the back pressure set for the humidified gas A supplied to the fuel cell is rapidly increased by 250 Pa while the target dew point of the humidified gas A supplied to the fuel cell is controlled at 60 ° C., and then rapidly decreased after being held for a certain period of time. FIG. 5 shows the variation of the measured dew point of the humidified gas A when performing the above. The amount of decrease in the measured dew point that occurs during the period required for the measured back pressure to stabilize to the back pressure control value increased by 250 Pa with respect to the target dew point of 60 ° C. was about 10 ° C. at the maximum.
Therefore, by rapidly increasing the back pressure control value of the humidified gas A supplied to the fuel cell, by rapidly increasing the target dew point of the humidified gas A over the transient response period of the measured back pressure of the humidified gas A, It was confirmed that the amount of decrease in the measured dew point that occurs during the period until the measured back pressure stabilizes to the back pressure control value can be reduced (the dew point decrease can be compensated).

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
更に、本実施の形態とその他の実施の形態や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
Further, the present invention also includes a combination of components included in the present embodiment and other embodiments and modifications.

10:加湿ガス供給装置、11:燃料電池、12:第1のガス供給部、13:加湿手段、14:第2のガス供給部、15:合流部、16:貯留槽、17:ガス導入配管、18:制御手段、19:分岐部、20:圧力調整弁、21:質量流量計測及び制御機構、22:ガス加熱手段、23:圧力計、24:第1の連通部、25:圧力計、26:第2の乾燥ガス流量調節手段、27:第2の連通部、28:圧力計、29、30:質量流量計測及び制御機構、31:乾燥ガス導入路、32:密閉タンク、33:逆止弁、34:取水配管、35:熱交換器、36:給水配管、37:シャワー機構、38:温度調節部、39:加熱器、40:冷却用熱交換器、41:乾燥ガス導入路、42:ガス加熱部、43:連通管、44:混合器、45:加湿ガス導出路、46:第1のガス流路、47:第2のガス流路、48:露点計、49:圧力計、50:背圧弁、51:圧力計、52:排気ガス排出手段 DESCRIPTION OF SYMBOLS 10: Humidification gas supply apparatus, 11: Fuel cell, 12: 1st gas supply part, 13: Humidification means, 14: 2nd gas supply part, 15: Merging part, 16: Reservoir, 17: Gas introduction piping , 18: control means, 19: branching part, 20: pressure regulating valve, 21: mass flow measurement and control mechanism, 22: gas heating means, 23: pressure gauge, 24: first communication part, 25: pressure gauge, 26: second dry gas flow rate adjusting means, 27: second communication portion, 28: pressure gauge, 29, 30: mass flow measurement and control mechanism, 31: dry gas introduction path, 32: closed tank, 33: reverse Stop valve, 34: intake pipe, 35: heat exchanger, 36: water supply pipe, 37: shower mechanism, 38: temperature control unit, 39: heater, 40: heat exchanger for cooling, 41: dry gas introduction path, 42: Gas heating unit, 43: Communication pipe, 44: Mixer, 45: Humidified gas guide Road, 46: first gas flow path, 47: second gas flow path, 48: hygrometer, 49: pressure gauge, 50: back pressure valve, 51: pressure gauge, 52: exhaust gas discharging means

Claims (10)

露点、流量、及び圧力がそれぞれ設定された加湿ガスAを供給すると共に発電時に発生する排気ガスを外部に排出しながら行う燃料電池の評価試験に使用する燃料電池の加湿ガス供給装置であって、
乾燥ガスBを加熱して加熱乾燥ガスにする第1のガス供給部と、
乾燥ガスBと同種の乾燥ガスCを水を貯留した密閉タンクの底部から吹込んで水蒸気が飽和状態になった水蒸気飽和ガスにする加湿手段を備えた第2のガス供給部と、
前記第1のガス供給部及び前記第2のガス供給部からそれぞれ供給された加熱乾燥ガス及び水蒸気飽和ガスを合流して加湿ガスAを生成する合流部と、
前記合流部で生成した加湿ガスAを一時貯留して均一性を向上させる貯留槽と、
前記貯留槽からガス導入配管を介して前記燃料電池に供給する加湿ガスAの露点に基づいて合流する加熱乾燥ガスと水蒸気飽和ガスとの分流比を求め、該分流比と加湿ガスAの流量に基づいてそれぞれ求めた流量の加熱乾燥ガス及び水蒸気飽和ガスを前記合流部に供給すると共に、求めた加熱乾燥ガスの流量から決まる乾燥ガスBの流量及び前記燃料電池に供給する加湿ガスAの圧力に基づいて、乾燥ガスBの圧力を制御する制御手段とを有することを特徴とする燃料電池の加湿ガス供給装置。
A humidifying gas supply device for a fuel cell used for an evaluation test of a fuel cell that supplies a humidifying gas A having a set dew point, a flow rate, and a pressure and discharges exhaust gas generated during power generation to the outside,
A first gas supply unit that heats the drying gas B into a heated drying gas;
A second gas supply unit comprising a humidifying means for blowing a dry gas C of the same type as the dry gas B from the bottom of a sealed tank storing water into a saturated water vapor saturated with water vapor;
A merging unit that generates a humidified gas A by merging the heating and drying gas and the steam saturated gas respectively supplied from the first gas supply unit and the second gas supply unit;
A storage tank that temporarily stores the humidified gas A generated at the merging portion to improve uniformity;
Based on the dew point of the humidified gas A supplied to the fuel cell from the storage tank via the gas introduction pipe, a split ratio of the heated dry gas and the steam saturated gas is obtained, and the split ratio and the flow rate of the humidified gas A are obtained. The heating drying gas and the water vapor saturated gas having the flow rates determined based on the above are supplied to the junction, and the flow rate of the drying gas B determined from the flow rate of the heating drying gas and the pressure of the humidification gas A supplied to the fuel cell are determined. And a control means for controlling the pressure of the dry gas B based on the humidified gas supply device of the fuel cell.
請求項1記載の燃料電池の加湿ガス供給装置において、前記合流部は、加熱乾燥ガスが通過する第1のガス流路と、該第1のガス流路を内部に含み該第1のガス流路の中心軸と同一位置に中心軸が配置されて水蒸気飽和ガスが加熱乾燥ガスと同一方向に通過する第2のガス流路とを備えた混合器を有していることを特徴とする燃料電池の加湿ガス供給装置。 2. The humidified gas supply device for a fuel cell according to claim 1, wherein the merging portion includes a first gas flow path through which a heated and dried gas passes, and the first gas flow path therein. A fuel comprising a mixer having a second gas flow path in which a central axis is disposed at the same position as the central axis of a passage and a water vapor saturated gas passes in the same direction as the heated and dried gas Battery humidification gas supply device. 請求項1又は2記載の燃料電池の加湿ガス供給装置において、前記第1のガス供給部は、乾燥ガスBの圧力を調節する圧力調節手段と、圧力の調節が行われた乾燥ガスBの流量を調節する第1の乾燥ガス流量調節手段と、該第1の乾燥ガス流量調節手段を通過した乾燥ガスBを加熱するガス加熱手段とを備え、前記第2のガス供給部は、乾燥ガスCの流量を調節する第2の乾燥ガス流量調節手段と、該第2の乾燥ガス流量調節手段の下流側に配置された前記加湿手段とを備え、前記第2の乾燥ガス流量調節手段は、加湿ガスAの流量範囲及び前記分流比から決まる乾燥ガスCの流量範囲を調節範囲とする親流量調節手段と、該親流量調節手段に対して並列に配置され、乾燥ガスCの流量範囲の下限側を調節範囲とする子流量調節手段とを有していることを特徴とする燃料電池の加湿ガス供給装置。 3. The humidified gas supply device for a fuel cell according to claim 1, wherein the first gas supply unit includes pressure adjusting means for adjusting the pressure of the dry gas B, and a flow rate of the dry gas B subjected to pressure adjustment. And a gas heating means for heating the drying gas B that has passed through the first drying gas flow rate adjusting means, and the second gas supply unit includes a drying gas C. A second drying gas flow rate adjusting means for adjusting the flow rate of the first drying gas flow rate adjusting means, and the humidifying means disposed downstream of the second drying gas flow rate adjusting means. A parent flow rate adjusting means having a flow rate range of the gas A and a flow range of the dry gas C determined from the diversion ratio as an adjustment range, and a lower limit side of the flow rate range of the dry gas C disposed in parallel to the parent flow rate adjusting means. A child flow rate adjusting means having an adjustment range of Humidified gas supply device for a fuel cell, characterized in that there. 請求項1〜3のいずれか1項に記載の燃料電池の加湿ガス供給装置において、前記加湿手段は、前記密閉タンク内の水を加熱する加熱機能と該密閉タンク内の水を冷却する冷却機能を備えた温度調節部を有していることを特徴とする燃料電池の加湿ガス供給装置。 The humidification gas supply apparatus of the fuel cell of any one of Claims 1-3 WHEREIN: The said humidification means has the heating function which heats the water in the said airtight tank, and the cooling function which cools the water in this airtight tank A humidified gas supply device for a fuel cell, comprising: a temperature control unit comprising: 露点、流量、及び圧力がそれぞれ設定された加湿ガスAを供給すると共に発電時に発生する排気ガスを外部に排出しながら行う燃料電池の評価試験に使用する燃料電池の加湿ガス供給方法であって、
加湿ガスAを、乾燥ガスBを加熱した加熱乾燥ガスと、乾燥ガスBと同種の乾燥ガスCに加湿手段を用いて飽和量の水蒸気を加えて作製した水蒸気飽和ガスとを合流部にて合流して生成し、貯留槽に導入して均一性を向上させた後に、ガス導入配管を介して加湿ガスAを前記貯留槽から前記燃料電池に供給する際に、
前記燃料電池に供給する加湿ガスAの露点に基づいて合流する加熱乾燥ガスと水蒸気飽和ガスとの分流比を求め、該分流比と加湿ガスAの流量に基づいてそれぞれ求めた流量の加熱乾燥ガス及び水蒸気飽和ガスを前記合流部に供給すると共に、求めた加熱乾燥ガスの流量から決まる乾燥ガスBの流量及び前記燃料電池に供給する加湿ガスAの圧力に基づいて、乾燥ガスBの圧力を制御することを特徴とする燃料電池の加湿ガス供給方法。
A humidifying gas supply method for a fuel cell that is used for an evaluation test of a fuel cell that is performed while supplying a humidifying gas A having a set dew point, a flow rate, and a pressure, and exhausting exhaust gas generated during power generation to the outside,
The humidified gas A is combined at the junction with a heated dry gas obtained by heating the dry gas B, and a steam saturated gas produced by adding a saturated amount of water vapor to the dry gas C of the same type as the dry gas B using a humidifying means. When the humidified gas A is supplied from the storage tank to the fuel cell via the gas introduction pipe after being generated and introduced into the storage tank to improve the uniformity,
Based on the dew point of the humidified gas A supplied to the fuel cell, the split flow ratio of the heated dry gas and the steam saturated gas is obtained, and the heated dry gas at the flow rate determined based on the split flow ratio and the flow rate of the humidified gas A, respectively. In addition, the pressure of the drying gas B is controlled based on the flow rate of the drying gas B determined from the flow rate of the obtained heated drying gas and the pressure of the humidifying gas A supplied to the fuel cell. A humidified gas supply method for a fuel cell.
請求項5記載の燃料電池の加湿ガス供給方法において、前記ガス導入配管に設けた露点計で測定した加湿ガスAの実測露点と加湿ガスAに設定された露点との差に基づいて前記分流比の修正を行うことを特徴とする燃料電池の加湿ガス供給方法。 6. The humidifying gas supply method for a fuel cell according to claim 5, wherein the flow dividing ratio is based on a difference between an actual dew point of the humidifying gas A measured by a dew point meter provided in the gas introduction pipe and a dew point set to the humidifying gas A. A humidified gas supply method for a fuel cell, characterized in that 請求項6記載の燃料電池の加湿ガス供給方法において、加湿ガスAに設定する露点を変更した際に、前記分流比の修正を停止すると共に、前記分流比を加湿ガスAに設定する変更後の露点から決まる値に固定し、露点の変更時から一定時間経過した後又は前記露点計で求めた実測露点と変更後の露点との差が一定値範囲内になった後、前記分流比の修正を行うことを再開することを特徴とする燃料電池の加湿ガス供給方法。 The humidified gas supply method for a fuel cell according to claim 6, wherein when the dew point set in the humidified gas A is changed, the correction of the diversion ratio is stopped and the diversion ratio is set in the humidified gas A after the change. After fixing the dew point to a fixed value and after a certain period of time has elapsed since the dew point was changed, or after the difference between the measured dew point obtained with the dew point meter and the dew point after the change was within the fixed value range, the diversion ratio was corrected. The method of supplying a humidified gas for a fuel cell is characterized by restarting the operation. 請求項6記載の燃料電池の加湿ガス供給方法において、加湿ガスAに設定する圧力を急上昇させた際に、加湿ガスAの実測圧力の過渡応答期間に亘って、前記分流比の修正を停止し、前記分流比を加湿ガスAの圧力の変更直前の値に固定して、前記燃料電池に供給する加湿ガスAの露点の変動を防止することを特徴とする燃料電池の加湿ガス供給方法。 7. The humidifying gas supply method for a fuel cell according to claim 6, wherein when the pressure set for the humidifying gas A is suddenly increased, the correction of the diversion ratio is stopped over a transient response period of the actually measured pressure of the humidifying gas A. A humidifying gas supply method for a fuel cell, wherein the diversion ratio is fixed to a value immediately before the change of the pressure of the humidifying gas A to prevent fluctuations in the dew point of the humidifying gas A supplied to the fuel cell. 請求項8記載の燃料電池の加湿ガス供給方法において、前記燃料電池に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側の場合、加湿ガスAに設定する露点を、加湿ガスAの圧力変更時から一定時間に亘って加湿ガスAの圧力の上昇幅に応じて一定値だけ増加させ、前記燃料電池に供給する加湿ガスAの露点の低下を補償することを特徴とする燃料電池の加湿ガス供給方法。 9. The humidifying gas supply method for a fuel cell according to claim 8, wherein when the flow rate of the humidifying gas A supplied to the fuel cell is on the lower limit side of the flow rate range of the humidifying gas A, the dew point set for the humidifying gas A is set to the humidifying gas. A fuel which is increased by a constant value in accordance with an increase width of the pressure of the humidified gas A over a predetermined time from the time when the pressure of A is changed, and compensates for a decrease in the dew point of the humidified gas A supplied to the fuel cell. A humidified gas supply method for a battery. 請求項8記載の燃料電池の加湿ガス供給方法において、前記燃料電池に供給する加湿ガスAの流量が、加湿ガスAの流量範囲の下限側の場合、前記過渡応答期間に亘って、加湿ガスAの実測露点の低下挙動に基づいて加湿ガスAに設定する露点を上昇させ、前記燃料電池に供給する加湿ガスAの露点の低下を補償することを特徴とする燃料電池の加湿ガス供給方法。 9. The humidified gas supply method for a fuel cell according to claim 8, wherein when the flow rate of the humidified gas A supplied to the fuel cell is on the lower limit side of the flow rate range of the humidified gas A, the humidified gas A over the transient response period. A humidifying gas supply method for a fuel cell, wherein the dew point set for the humidifying gas A is increased based on the behavior of decreasing the measured dew point to compensate for the decrease in the dew point of the humidifying gas A supplied to the fuel cell.
JP2011220294A 2011-10-04 2011-10-04 Humidified gas supply device and method for fuel cell Active JP5846831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220294A JP5846831B2 (en) 2011-10-04 2011-10-04 Humidified gas supply device and method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220294A JP5846831B2 (en) 2011-10-04 2011-10-04 Humidified gas supply device and method for fuel cell

Publications (2)

Publication Number Publication Date
JP2013080631A JP2013080631A (en) 2013-05-02
JP5846831B2 true JP5846831B2 (en) 2016-01-20

Family

ID=48526859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220294A Active JP5846831B2 (en) 2011-10-04 2011-10-04 Humidified gas supply device and method for fuel cell

Country Status (1)

Country Link
JP (1) JP5846831B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037736A (en) * 2018-09-19 2018-12-18 北京久安通氢能科技有限公司 The humidification controling adjustment device and humidifying controlling method of fuel cell
CN109300560A (en) * 2018-11-01 2019-02-01 中国原子能科学研究院 A kind of mixed oxide pellet sintering atmosphere oxygen gesture control device
CN113471481B (en) * 2021-06-30 2022-09-23 潍柴动力股份有限公司 Air inlet control device of fuel cell test equipment
CN114068997B (en) * 2021-10-18 2024-03-29 上海神力科技有限公司 High-efficiency energy-saving fuel cell stack test system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618936B2 (en) * 2001-06-15 2011-01-26 三機工業株式会社 Gas supply device and inspection system
JP2003068340A (en) * 2001-08-24 2003-03-07 Sanki Eng Co Ltd Gas supply apparatus and inspection system
JP2004265828A (en) * 2003-03-04 2004-09-24 Nittetsu Elex Co Ltd Feeding method of wet gas
JP4686115B2 (en) * 2003-03-28 2011-05-18 株式会社チノー Humidifier for polymer electrolyte fuel cell
JP2005038647A (en) * 2003-07-16 2005-02-10 Nittetsu Elex Co Ltd Humidified gas supply system
JP2007095446A (en) * 2005-09-28 2007-04-12 Yokogawa Electric Corp Gas supply control device and gas supply control method
JP2007095505A (en) * 2005-09-29 2007-04-12 Yokogawa Electric Corp Gas supply control unit and gas supply control method
JP2009266561A (en) * 2008-04-24 2009-11-12 Espec Corp Gas supply device, fuel cell evaluation testing device, and fuel cell system

Also Published As

Publication number Publication date
JP2013080631A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5846831B2 (en) Humidified gas supply device and method for fuel cell
US10705545B2 (en) Fluid control device and flow rate ratio control device
KR20120049148A (en) Mass flow controller and storage medium for storing mass flow control program
AU2012364053B2 (en) Coal deactivation treatment device
KR20150143941A (en) Fuel cell system for vehicle and method for controlling the same
JP5108365B2 (en) Humidified gas supply method and apparatus
JP2007095505A (en) Gas supply control unit and gas supply control method
US8814149B2 (en) Humidity generator
KR101966449B1 (en) Air supply device for fuel cell system and method for adjusting pressure of air blower
JP5709289B2 (en) Humidity control method for tobacco materials
KR102509378B1 (en) APPARATUS OF ENRICHING γ-AMINOBUTYRIC ACID OF GRAIN
EP3760579A1 (en) Ozone generating apparatus and ozone generating method
JP2009193722A (en) Fuel cell evaluation device
JP2004353915A (en) Humidifier
JPH0828935A (en) Humidifier
JP2009210167A (en) Evaporative humidifier
JP4950545B2 (en) Back pressure control device
JP2003068340A (en) Gas supply apparatus and inspection system
JP2008084635A (en) Humidification system of fuel cell
JP6268493B2 (en) Fuel cell running-in system
JP6107391B2 (en) boiler
JP2014075292A (en) Fuel cell evaluation device
JP6209980B2 (en) Boiler and boiler system
JP2006100152A (en) Fuel cell system and its inspection system
JPS591626A (en) Moistening method for atmosphere gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250