JP5846440B2 - Method for producing sample disk for quantitative analysis using laser ablation - Google Patents

Method for producing sample disk for quantitative analysis using laser ablation Download PDF

Info

Publication number
JP5846440B2
JP5846440B2 JP2012110672A JP2012110672A JP5846440B2 JP 5846440 B2 JP5846440 B2 JP 5846440B2 JP 2012110672 A JP2012110672 A JP 2012110672A JP 2012110672 A JP2012110672 A JP 2012110672A JP 5846440 B2 JP5846440 B2 JP 5846440B2
Authority
JP
Japan
Prior art keywords
sample
powder
resin
sample disk
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012110672A
Other languages
Japanese (ja)
Other versions
JP2013238455A (en
Inventor
彦北 朱
彦北 朱
光一 千葉
光一 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012110672A priority Critical patent/JP5846440B2/en
Publication of JP2013238455A publication Critical patent/JP2013238455A/en
Application granted granted Critical
Publication of JP5846440B2 publication Critical patent/JP5846440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、レーザアブレーションを用いた定量分析用の粉末試料ディスク及びその製造方法並びにそのための装置に関する。   The present invention relates to a powder sample disk for quantitative analysis using laser ablation, a manufacturing method thereof, and an apparatus therefor.

固体試料中に微量含まれる原子を定量的に分析する方法として、レーザアブレーションを併用した誘導結合プラズマ(以下「ICP」に略記)質量分析法又はICP発光分析法が知れている。これらの方法は、固体表面にレーザを照射してアブレーションを起こさせ、生じた飛散物質をプラズマ化(イオン化)して質量分析や発光分析を行う方法である。   As a method for quantitatively analyzing atoms contained in a small amount in a solid sample, inductively coupled plasma (hereinafter abbreviated as “ICP”) mass spectrometry or ICP emission spectrometry combined with laser ablation is known. These methods are methods in which a solid surface is irradiated with a laser to cause ablation, and the generated scattered material is turned into plasma (ionized) to perform mass spectrometry or emission analysis.

これらのレーザアブレーションICP質量分析又はレーザアブレーションICP発光分析に用いられる試料が、バルク試料や薄膜試料である場合にはそのまま、分析装置の試料室に設置して用いることができるが、粉末試料の場合には、試料室に設置できるように、成形してディスク状とする必要がある。   When these samples used for laser ablation ICP mass spectrometry or laser ablation ICP emission analysis are bulk samples or thin film samples, they can be used as they are in the sample chamber of the analyzer, but in the case of powder samples Needs to be shaped into a disk so that it can be placed in the sample chamber.

この場合、粉末試料を、プレス成形等の方法で保持しうる形態に成形することが考えられるが、成形された粉末試料は機械的強度が弱く、レーザが照射されると崩壊してしまい、その結果ICP部に導入される試料の量が一定しないという問題がある。
そこで、特許文献1では、ポリマーバインダーを用いて、バインダー中に粉末を分散させた試料を用いてレーザアブレーションを施すことが提案されている。
また、非特許文献1では、粉末試料とZnO粉末を混合し、2−メトキシ−4−(2−プロペニル)フェノールを添加することにより、ZnOの2−メトキシ−4−(2−プロペニル)フェノール錯体を形成してバインダーとして使用することが記載されている。
さらに、特許文献2では、液体試料にも適用できるように、液体試料を凍結固化して用いることが記載されている。
In this case, it is conceivable to mold the powder sample into a form that can be held by a method such as press molding, but the molded powder sample has a low mechanical strength and will collapse when irradiated with a laser. As a result, there is a problem that the amount of the sample introduced into the ICP part is not constant.
Therefore, in Patent Document 1, it is proposed to perform laser ablation using a polymer binder and using a sample in which powder is dispersed in the binder.
In Non-Patent Document 1, a powder sample and ZnO powder are mixed, and 2-methoxy-4- (2-propenyl) phenol is added to add 2-methoxy-4- (2-propenyl) phenol complex of ZnO. And used as a binder.
Furthermore, Patent Document 2 describes that a liquid sample is used after being frozen and solidified so as to be applicable to a liquid sample.

特開2005−24332号公報JP 2005-24332 A 特開平11−51904号公報JP-A-11-51904

J.Anal.At.Spectrom.,2011,26,1539〜1543J. et al. Anal. At. Spectrom., 2011, 26, 1539-1543

特許文献1の方法では、具体的には、分析対象である粉末試料に、バインダーとしてパラフィンのような低融点材料を加え、融点以上に加熱してバインダーを溶融し、粉末試料をバインダー中に分散させている。しかしながら、バインダーの蒸発による損失や試料・バインダーの再分配を引き起こして、分析結果の再現性の低下ないし再現不能の虞がある。
また、非特許文献1の方法では、金属酸化物の粉末と有機溶剤を用いてバインダーを生成させているが、大量の金属酸化物の粉末の導入は、ICP質量分析やICP発光分析にメモリ効果を与える虞があり、有機溶剤の取り扱いを慎重に行う必要がある。
Specifically, in the method of Patent Document 1, a low-melting-point material such as paraffin is added as a binder to a powder sample to be analyzed, the binder is melted by heating above the melting point, and the powder sample is dispersed in the binder. I am letting. However, there is a risk that loss of the binder due to evaporation or redistribution of the sample / binder may cause a decrease in reproducibility of the analysis result or inability to reproduce.
In the method of Non-Patent Document 1, a metal oxide powder and an organic solvent are used to generate a binder. However, introduction of a large amount of metal oxide powder has a memory effect in ICP mass spectrometry and ICP emission analysis. It is necessary to handle organic solvents with care.

このように、レーザアブレーションICP質量分析又はレーザアブレーションICP発光分析は、固体試料の直接分析に有効であるものの、分析対象試料に機械的安定性及び化学的均質性が求められている。
本発明は、こうした従来方法の問題点を鑑みてなされたものであって、分析結果の再現性を確保でき、しかも粉末試料ディスク作成時に有機溶剤を必要としない粉末試料ディスク及びその製造方法並びにそのための装置を提供することを目的とするものである。
Thus, although laser ablation ICP mass spectrometry or laser ablation ICP emission analysis is effective for direct analysis of solid samples, mechanical stability and chemical homogeneity are required for the sample to be analyzed.
The present invention has been made in view of the problems of the conventional method, and can ensure the reproducibility of the analysis results, and does not require an organic solvent when preparing the powder sample disk, its manufacturing method, and therefore It is an object of the present invention to provide an apparatus.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、樹脂粉末と粉末試料を混合した後、樹脂を加熱により軟化し、冷却により再硬化して、粉末試料ディスクとすることにより、分析結果の再現性を確保することができるという知見を得た。
また、粉末試料ディスク作成時、個々の試料の圧力が一致するように調整することが可能な圧力緩衝機能付きの装置を用いることにより、均質な粉末ディスクを作成できることも判明した。
As a result of intensive studies to achieve the above object, the present inventors have mixed resin powder and a powder sample, and then softened the resin by heating and re-cured by cooling to obtain a powder sample disk. The knowledge that the reproducibility of the analysis result can be secured was obtained.
It has also been found that a homogeneous powder disk can be produced by using a device with a pressure buffering function that can be adjusted so that the pressures of individual samples coincide with each other when producing a powder sample disk.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]樹脂の微粉末と粉末試料を含有する混合物が、該樹脂の融点以下に加熱されて軟化した後、冷却して硬化してなることを特徴とするレーザアブレーションを用いた定量分析用試料ディスク。
[2]前記樹脂粉末に、所定量の内標準元素が付着していることを特徴とする[1]に記載のレーザアブレーションを用いた定量分析用試料ディスク。
[3]レーザアブレーションを用いた定量分析用試料ディスクの製造方法であって、
樹脂の微粉末に、粉末試料を混合する工程、
該樹脂の融点以下に加熱して軟化させる工程、
冷却して硬化させる工程
を含むことを特徴とする試料用ディスクの製造方法。
[4]前記混合する工程の前に、前記樹脂粉末に所定量の内標準元素を付着させる工程を有することを特徴とする[3]に記載の製造方法。
[5]前記の加熱により軟化させる工程を、加圧下で行うことを特徴とする[3]又は[4]に記載の製造方法。
[5]レーザアブレーションを用いた定量分析用試料ディスク作成用の成形装置であって、
下板、複数の試料穴が設けられたボディ、上板をこの順に有し、
前記試料穴に充填された樹脂の微粉末と粉末試料を含有する粉体混合物の上に載置される圧力緩衝機能付きのプラグと、
前記圧力緩衝機能付きプラグを載置した状態で、前記下板、前記ボディ、及び前記上板を固定する手段と、
を備えることを特徴とする圧力緩衝機能付き成形装置。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A sample for quantitative analysis using laser ablation, characterized in that a mixture containing a fine powder of a resin and a powder sample is softened by being heated below the melting point of the resin and then cooled and cured. disk.
[2] The sample disk for quantitative analysis using laser ablation according to [1], wherein a predetermined amount of an internal standard element is adhered to the resin powder.
[3] A method for producing a sample disk for quantitative analysis using laser ablation,
Mixing a powder sample with resin fine powder,
Heating and softening to below the melting point of the resin,
A method for producing a sample disk, comprising a step of cooling and curing.
[4] The method according to [3], further comprising a step of attaching a predetermined amount of an internal standard element to the resin powder before the mixing step.
[5] The method according to [3] or [4], wherein the step of softening by heating is performed under pressure.
[5] A molding apparatus for making a sample disk for quantitative analysis using laser ablation,
It has a lower plate, a body with a plurality of sample holes, and an upper plate in this order,
A plug with a pressure buffering function placed on the powder mixture containing the fine powder of the resin filled in the sample hole and the powder sample;
Means for fixing the lower plate, the body, and the upper plate in a state where the plug with the pressure buffering function is placed;
A molding apparatus with a pressure buffering function.

本発明によれば、粉末試料ディスクの作成時に、金属粉末と有機溶剤を用いないために分析装置への負担が軽減され、試料の取扱いも簡単になり、また、バインダーを溶融することがないので、溶融ロスによる試料−バインダー比に変動がなく、試料・バインダーの再分配も起らず、分析精度と再現性の低下を防止することができる。   According to the present invention, since no metal powder and organic solvent are used when creating a powder sample disk, the burden on the analyzer is reduced, the sample is handled easily, and the binder is not melted. The sample-binder ratio does not vary due to melting loss, and redistribution of the sample / binder does not occur, thereby preventing a decrease in analysis accuracy and reproducibility.

圧力緩衝機能付きの試料ディスク作成装置を示す模式的に示す図The figure which shows typically the sample disc preparation apparatus with a pressure buffering function 完成した試料ディスクの一例を示す図Diagram showing an example of a completed sample disc

本発明の定量分析用の粉末試料ディスクは、樹脂の微粉末と粉末試料を含有する混合物が、該樹脂の融点以下に加熱されて軟化した後、冷却して硬化してなることを特徴としている。
本発明の粉末試料用ディスクは、軟化した後に再硬化した樹脂中に粉末試料が分散されているため、レーザ照射中に崩れることがないので、安定した定量分析が可能となる。
The powder sample disk for quantitative analysis of the present invention is characterized in that a mixture containing a fine resin powder and a powder sample is softened by being heated below the melting point of the resin, and then cooled and hardened. .
In the powder sample disk of the present invention, since the powder sample is dispersed in a resin that has been softened after being softened, the powder sample does not collapse during laser irradiation, so that stable quantitative analysis is possible.

本発明の試料ディスクを用いた定量分析法としては、ICP質量分析、ICP発光分析等を用いることができる。
特に、これらの分析においては、分析精度を向上させるために、内標準元素補正が有効である。この方法は、内標準元素と分析対象の測定強度比によって試料導入量の変動を補正する方法であるが、本発明においては、測定信号の再現性を確保できる内標準元素、例えば、Cs等を樹脂粉末に付着させておくことが好ましい。
As a quantitative analysis method using the sample disk of the present invention, ICP mass spectrometry, ICP emission analysis, or the like can be used.
In particular, in these analyses, internal standard element correction is effective in order to improve analysis accuracy. This method is a method of correcting the variation in the amount of sample introduced according to the ratio of the measurement intensity of the internal standard element and the analysis target. In the present invention, however, an internal standard element that can ensure the reproducibility of the measurement signal, such as Cs, is used. It is preferable to adhere to the resin powder.

本発明に用いる樹脂は、特に限定されないが、ICP質量分析、ICP発光分析等で分析対象とならない、炭素及び水素のみで構成されているもの、或いは、さらに酸素、窒素、燐、硫黄、ハロゲンなどを含むものであってもよい。
また、融点以下の温度に加熱して軟化させるため、通常は安価に入手できるアクリル樹脂などの市販の樹脂などが好ましく用いられる。
樹脂は、粉砕して微粉末にしたものを用いる。粉砕法は特に限定されないが、好ましくは、凍結粉砕によって微粉末にする方法が用いられる。
微粉末は、篩いを通して、所定の大きさとすることが好ましく、例えば、平均粒径250μm以下とするのが好ましい。
The resin used in the present invention is not particularly limited, but is not subject to analysis by ICP mass spectrometry, ICP emission analysis, or the like, or composed of only carbon and hydrogen, or further oxygen, nitrogen, phosphorus, sulfur, halogen, etc. May be included.
Moreover, since it softens by heating to the temperature below melting | fusing point, normally commercially available resin etc., such as an acrylic resin which can be obtained cheaply, are used preferably.
The resin used is pulverized into a fine powder. The pulverization method is not particularly limited, but preferably a method of forming a fine powder by freeze pulverization is used.
The fine powder is preferably passed through a sieve to have a predetermined size, and for example, the average particle size is preferably 250 μm or less.

本発明においては、用いる樹脂微粉末に、Cs等の内標準元素を付着させておくことが好ましい。
付着させる方法は、特に限定されないが、例えば、樹脂微粉末と、内標準元素の化合物水溶液とを混合して、充分振動させた後、遠心分離法により上澄み液から分離し、凍結乾燥によって乾燥した微粉末を得る方法が用いられる。
In the present invention, it is preferable to adhere an internal standard element such as Cs to the resin fine powder to be used.
The method of attaching is not particularly limited. For example, the resin fine powder and the aqueous compound solution of the internal standard element are mixed and sufficiently vibrated, then separated from the supernatant by centrifugation and dried by lyophilization. A method of obtaining a fine powder is used.

また、本発明においては、前記の加熱により軟化させる工程を、加圧下で行うことが好ましく、その圧力は、10kgf以上であることが好ましい。
以下に、本発明において加圧下で成形するのに適した装置について説明する。
In the present invention, the step of softening by heating is preferably performed under pressure, and the pressure is preferably 10 kgf or more.
Below, the apparatus suitable for shape | molding under pressure in this invention is demonstrated.

図1は、本発明の、粉末試料ディスク作成時、個々の試料の圧力が一致するように調整することが可能な圧力緩衝機能付きの成形装置を模式的に示す図であり、図中、(1)は緩衝機能付きプラグ、(2)はねじ止め穴(小)、(3)は試料穴、(4)は薬包紙、(5)はねじ止め穴(大)、(6)は上板、(7)はボディ、(8)は下板、をそれぞれ示している。
該装置を用いて、試料ディスクを作成する手順は、まず、ねじ止め穴(小)(2)で薬包紙(4)とボディ(7)を下板(8)に固定し、樹脂の微粉末と粉末試料の混合物を試料穴(3)に充填し、緩衝機能付きプラグ(1)を試料穴(3)に挿入し、上板(6)を乗せ、ねじ止め穴(大)(5)で固定する。
そのまま、所定温度に設定されたオーブン中で所定時間加熱した後、室温まで冷却し、該装置のすべてのねじを取り外し、完成した試料ディスクを得る。
図2は、完成した試料ディスクの一例を示すものである。
FIG. 1 is a diagram schematically showing a molding apparatus with a pressure buffering function that can be adjusted so that the pressures of individual samples match when creating a powder sample disk of the present invention. (1) is a plug with a buffer function, (2) is a screw hole (small), (3) is a sample hole, (4) is a medicine paper, (5) is a screw hole (large), (6) is an upper plate, (7) shows the body, and (8) shows the lower plate.
The procedure for preparing a sample disk using the apparatus is as follows. First, the medicine paper (4) and the body (7) are fixed to the lower plate (8) with the screw holes (small) (2), and the resin fine powder and Fill the sample hole (3) with the powder sample mixture, insert the plug (1) with buffer function into the sample hole (3), place the upper plate (6), and fix it with the screw hole (large) (5) To do.
As it is, it is heated for a predetermined time in an oven set at a predetermined temperature, and then cooled to room temperature, and all screws of the apparatus are removed to obtain a completed sample disk.
FIG. 2 shows an example of a completed sample disk.

上記装置によれば、個々の試料穴に充填された粉末混合物に均一な圧力をかけることができる。また、用いる緩衝機能付きプラグを選択・変更することにより、粉末混合物に所望の圧力をかけることが可能となる。   According to the said apparatus, a uniform pressure can be applied to the powder mixture with which each sample hole was filled. Moreover, it becomes possible to apply desired pressure to a powder mixture by selecting and changing the plug with a buffer function to be used.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
(樹脂微粉末の作成)
市販のアクリル樹脂ペレットを、凍結粉砕によって微粉末化し、孔径100μmのナイロン製ふるいにかけ、ふるいを通過した微粉末のみをバインダーの原料とした。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
(Preparation of fine resin powder)
Commercially available acrylic resin pellets were pulverized by freeze pulverization and passed through a nylon sieve having a pore size of 100 μm, and only the fine powder that passed through the sieve was used as a raw material for the binder.

(樹脂粉末への内標準元素の付着)
100μg/mL(Csとして)のCsCl水溶液と前記のアクリル樹脂微粉末とを体積比1:1で混合し、後3時間振動させることによりアクリル樹脂微粉末にCsを吸着させた。その後、遠心分離後上澄みを捨て、凍結乾燥によって、内標準元素を付着させた試料ディスク用のバインダー粉末を得た。
この後の測定では、このCsを内標準元素として使用する。
(Adhesion of internal standard elements to resin powder)
A CsCl aqueous solution of 100 μg / mL (as Cs) and the above-mentioned acrylic resin fine powder were mixed at a volume ratio of 1: 1, and then vibrated for 3 hours to adsorb Cs to the acrylic resin fine powder. Thereafter, the supernatant was discarded after centrifugation, and a binder powder for a sample disk to which an internal standard element was adhered was obtained by freeze drying.
In the subsequent measurement, this Cs is used as an internal standard element.

(試料ディスクの作成)
独立行政法人産業技術総合研究所計測標準研究部門により頒布している認証標準物質である、微量元素分析用茶葉粉末(NMIJ CRM 7505-a)をテスト試料として使用した。
該テスト試料と、前記のバインダー粉末の質量混合比を、0:10、2:8、3:7、4:6でそれぞれ混合し、図1の試料ディスク作成装置を用いて、10kgfの圧力をかけながら、110℃のオーブン中で2時間加熱した。なお、この過程ではバインダーが溶融することなく軟化していた。ついで、室温まで冷却後、前記装置のすべてのねじを取り外し、完成した試料ディスク(直径15mm、高さ15mm、図2参照)を取り出して分析装置に供した。
(Create sample disk)
A certified reference material distributed by the National Institute of Advanced Industrial Science and Technology (AIST), a certified reference material, was used as a test sample for tea leaf powder for trace element analysis (NMIJ CRM 7505-a).
The test sample and the binder powder were mixed at a mass mixing ratio of 0:10, 2: 8, 3: 7, 4: 6, respectively, and a pressure of 10 kgf was applied using the sample disk making apparatus of FIG. Heated in an oven at 110 ° C. for 2 hours. In this process, the binder was softened without melting. Next, after cooling to room temperature, all the screws of the apparatus were removed, and the completed sample disk (diameter 15 mm, height 15 mm, see FIG. 2) was taken out and used for the analyzer.

(定量分析)
レーザアブレーション装置は、NewWave Research社製のUP-213型を使用した。十分な試料導入量を確保するために、レーザビーム径を110μm、レーザ出力を100%、レーザパルスを20Hzに設定した。スキャン速度を110μm/s、スキャンライン間隔を150μmに設定した。
ICP質量分析装置は、Agilent社製のAgilent 7700x型を使用した。該ICP質量分析装置による測定は、時間分析モードで行い、ポイント毎の積分時間を100msとした。
前述のレーザアブレーションICP質量分析装置を用いて、試料ディスク中のAl、P、Ca、Mn、Fe、Ni、Cu、Zn、Rb、Sr、Baについて測定した。
(Quantitative analysis)
As a laser ablation apparatus, UP-213 type manufactured by NewWave Research was used. In order to ensure a sufficient amount of sample introduction, the laser beam diameter was set to 110 μm, the laser output was set to 100%, and the laser pulse was set to 20 Hz. The scan speed was set to 110 μm / s and the scan line interval was set to 150 μm.
The Agilent 7700x model manufactured by Agilent was used as the ICP mass spectrometer. The measurement by the ICP mass spectrometer was performed in the time analysis mode, and the integration time for each point was 100 ms.
Using the laser ablation ICP mass spectrometer described above, measurement was performed on Al, P, Ca, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Ba in the sample disk.

(結果)
測定信号の繰り返し性(Rbを例として):
測定信号の標準不確かさ(u)は、スキャンライン毎の測定点数(p)及びスキャンライン数(l)の増加と共に減少した。
すなわち、p=5かつl=3の場合のuは、6.5%であったが、pが10以上かつlが5以上では、uは2%以下であった。
したがって、以下の実験では、p=10、l=5に設定して行った。
(result)
Repeatability of measurement signal (Rb as an example):
The standard uncertainty (u) of the measurement signal decreased with an increase in the number of measurement points (p) and the number of scan lines (l) per scan line.
That is, when p = 5 and l = 3, u was 6.5%, but when p was 10 or more and l was 5 or more, u was 2% or less.
Therefore, in the following experiment, p = 10 and l = 5 were set.

内標準元素補正による再現性と直線性の向上:
規格化信号強度と試料質量割合との相関係数の平方は、Csによる内標準補正のない場合、PとZn(0.92)以外では0.87以下であったが、Csによる補正後ではBaとFe(0.98)以外すべて0.99以上となっており、定量的分析が可能であった。
茶葉粉末を用いて検量線を作製し、白米粉末(NMIJCRM 7502a)中のZnとRbの定量を試みた結果は、それぞれ(29±6)mg/kgと、(1.6±0.3)mg/kg(Mean±SD、n=3)であり、白米粉末の認定値と一致した。
Improved reproducibility and linearity by internal standard element correction:
The square of the correlation coefficient between the normalized signal intensity and the sample mass ratio was 0.87 or less except for P and Zn (0.92) when there was no internal standard correction by Cs, but after correction by Cs. All except Ba and Fe (0.98) were 0.99 or more, and a quantitative analysis was possible.
A calibration curve was prepared using tea leaf powder, and the results of attempts to determine Zn and Rb in white rice powder (NMIJCRM 7502a) were (29 ± 6) mg / kg and (1.6 ± 0.3), respectively. It was mg / kg (Mean ± SD, n = 3), which was consistent with the certified value of white rice powder.

(1)緩衝機能付きプラグ
(2)ねじ止め穴(小)
(3)試料穴
(4)薬包紙
(5)ねじ止め穴(大)
(6)上板
(7)ボディ
(8)下板
(1) Plug with buffer function (2) Screw hole (small)
(3) Sample hole (4) Medicine wrapping paper (5) Screw hole (large)
(6) Upper plate (7) Body (8) Lower plate

Claims (2)

レーザアブレーションを用いた定量分析用試料ディスクの製造方法であって、
樹脂の微粉末に所定量の内標準元素を付着させる工程と
前記内標準元素を付着させた前記樹脂粉末に試料粉末を混合する工程
下板の上に薬包紙と板状のボディをねじで固定する工程と
前記ボディに複数設けられた試料穴に、前記樹脂粉末と前記試料粉末の混合物を充填する工程と
前記試料穴に充填された前記混合物の上に圧力緩衝機能付きプラグを載置し、その状態で上板を乗せて前記上板を下板にねじで固定することにより前記混合物を加圧下にする工程と
前記樹脂の融点以下に加熱して加圧下で軟化させる工程
前記加熱して軟化させた後、室温まで冷却して硬化させる工程
前記全てのねじを取り外し、完成した試料ディスクを取り出す工程と
からなる試料ディスクの製造方法。
A method of manufacturing a sample disk for quantitative analysis using laser ablation,
Attaching a predetermined amount of internal standard element to resin fine powder;
And mixing the sample powder to the resin powder adhered with the internal standard element,
Fixing the medicine wrapping paper and the plate-shaped body on the lower plate with screws ,
Filling a plurality of sample holes provided in the body with a mixture of the resin powder and the sample powder ;
A plug with a pressure buffering function is placed on the mixture filled in the sample hole, and the upper plate is placed in that state, and the upper plate is fixed to the lower plate with a screw to bring the mixture under pressure. Process ,
A step of softening under pressure and heated below the melting point of the resin,
After softened by the heating, and curing was cooled to room temperature,
Removing all the screws and removing the completed sample disk ;
A method for producing a sample disk comprising :
前記圧力緩衝機能付きプラグを、選択・変更することにより加圧下の圧力を所望の圧力にすることを特徴とする請求項1に記載の試料ディスクの製造方法 2. The method of manufacturing a sample disk according to claim 1, wherein the pressure under pressure is changed to a desired pressure by selecting and changing the plug with the pressure buffering function .
JP2012110672A 2012-05-14 2012-05-14 Method for producing sample disk for quantitative analysis using laser ablation Expired - Fee Related JP5846440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110672A JP5846440B2 (en) 2012-05-14 2012-05-14 Method for producing sample disk for quantitative analysis using laser ablation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110672A JP5846440B2 (en) 2012-05-14 2012-05-14 Method for producing sample disk for quantitative analysis using laser ablation

Publications (2)

Publication Number Publication Date
JP2013238455A JP2013238455A (en) 2013-11-28
JP5846440B2 true JP5846440B2 (en) 2016-01-20

Family

ID=49763620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110672A Expired - Fee Related JP5846440B2 (en) 2012-05-14 2012-05-14 Method for producing sample disk for quantitative analysis using laser ablation

Country Status (1)

Country Link
JP (1) JP5846440B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344564B2 (en) * 2014-09-02 2018-06-20 住友金属鉱山株式会社 Resin-embedded sample and method for producing the same
JP2016121906A (en) * 2014-12-24 2016-07-07 住友電気工業株式会社 Analysis method
CN110196275B (en) * 2019-05-15 2022-04-05 中国科学院上海硅酸盐研究所 High-temperature real-time sample pool for laser ablation system and detection method thereof
CN115053130A (en) 2020-02-07 2022-09-13 富士胶片株式会社 Standard sample film, method for producing standard sample film, standard sample, sample set, quantitative analysis method, and transfer film
JPWO2023013417A1 (en) * 2021-08-02 2023-02-09

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651649A (en) * 1979-10-03 1981-05-09 Hitachi Ltd Preparation of sample for fluorescence x-ray analysis
JPS5714746A (en) * 1980-06-30 1982-01-26 Shimadzu Corp Method for preparing powdered sample for linear scanning type analytical apparatus of electrically charged particle
JPS59163945U (en) * 1983-04-18 1984-11-02 同和鉱業株式会社 pellet molding machine
JP2999155B2 (en) * 1996-10-02 2000-01-17 日本カラリング株式会社 Pancake manufacturing apparatus and manufacturing method
JP2005024332A (en) * 2003-06-30 2005-01-27 Tdk Corp Laser ablation method, sample analysis method, binder for analysis and manufacturing method of powder processed material
JP2006071608A (en) * 2004-09-06 2006-03-16 Tdk Corp Powder holder, measuring sample manufacturing method, and sample analysis method
JP2007010351A (en) * 2005-06-28 2007-01-18 Canon Inc Sample for infrared absorption spectrum analysis, its preparing method and its preparing device
DE102005054443B4 (en) * 2005-11-15 2013-09-26 Fachhochschule Münster Standard Calibration Kit, Method of Making and Using Standard Kits
JP2007285807A (en) * 2006-04-14 2007-11-01 Central Res Inst Of Electric Power Ind Method and device for manufacturing high-dispersion-particle-containing material molding
US7901940B2 (en) * 2008-06-06 2011-03-08 Basf Corporation Method for measuring recovery of catalytic elements from fuel cells

Also Published As

Publication number Publication date
JP2013238455A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5846440B2 (en) Method for producing sample disk for quantitative analysis using laser ablation
AU2014286638B2 (en) Method and device for producing a tablet
CN107180739B (en) Substance assistant laser desorpted-time-of-flight mass spectrometry instrument target plate
Zhang et al. Simultaneous quantitation of nucleosides, nucleobases, amino acids, and alkaloids in mulberry leaf by ultra high performance liquid chromatography with triple quadrupole tandem mass spectrometry
Panyala et al. Laser ablation synthesis of new gold phosphides using red phosphorus and nanogold as precursors. Laser desorption ionisation time‐of‐flight mass spectrometry
Yang et al. Rapid determination of the volatile components in tobacco by ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction with gas chromatography‐mass spectrometry
CN103487497A (en) Boron isotope abundance measuring method using carbon nanotube as ion emitting agent
Xu et al. Ultra small-mass graphitization by sealed tube zinc reduction method for AMS 14C measurements
Roura et al. Toward standardization of mesenchymal stromal cell‐derived extracellular vesicles for therapeutic use: A call for action
CN105628785A (en) High-purity copper correction sample for glow discharge mass spectrometer and preparation method of high-purity copper correction sample
CN110208392B (en) Method for metabonomics research of selenium-rich tobacco leaves based on UPLC-QTOF-MS
Lu et al. Preliminary extraction of tannins by 1‐butyl‐3‐methylimidazole bromide and its subsequent removal from Galla chinensis extract using macroporous resins
CN104267054A (en) Method for analyzing main elements in geological sample by utilizing X-fluorescence spectrum
CN108593829A (en) A kind of Stable Isotopic Analysis method for influence factor of tracing to the source the milk place of production
JP7013912B2 (en) Preparation method of sample for analysis and Auger electron spectroscopy measurement method
CN103604678A (en) Sample preparation method for uniformly distributing trace components in solid block matrix
JP2009031072A (en) Impurity concentration analysis method of siliceous powder
CN106141165A (en) A kind of mixture and employ the manufacture method of inductance of this mixture
CN104297276A (en) Method for analysis of trace elements in geological sample by X-fluorescence spectrum
CN104310399B (en) A kind of norbide neutron-absorbing body processing technology
CN109642858A (en) Method of the preparation for the sample of laser induced breakdown spectroscopy art
JP6519459B2 (en) Ore observation sample for mineral particle analyzer and method for producing the same
JP2009069053A (en) Sample for analyzing generated gas, generated gas analyzing method and gas generation behavior analysis method
JPH0579975A (en) Standard sample for atomic absorption analysis and manufacture thereof
CN102539222A (en) Determination of total nitrogen of tobacco and tobacco products through element analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R150 Certificate of patent or registration of utility model

Ref document number: 5846440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees