JP2007285807A - Method and device for manufacturing high-dispersion-particle-containing material molding - Google Patents

Method and device for manufacturing high-dispersion-particle-containing material molding Download PDF

Info

Publication number
JP2007285807A
JP2007285807A JP2006112054A JP2006112054A JP2007285807A JP 2007285807 A JP2007285807 A JP 2007285807A JP 2006112054 A JP2006112054 A JP 2006112054A JP 2006112054 A JP2006112054 A JP 2006112054A JP 2007285807 A JP2007285807 A JP 2007285807A
Authority
JP
Japan
Prior art keywords
fine particle
heat
holder
meltable
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006112054A
Other languages
Japanese (ja)
Inventor
Hirotake Oki
裕壮 沖
Shiro Kajitani
史朗 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006112054A priority Critical patent/JP2007285807A/en
Publication of JP2007285807A publication Critical patent/JP2007285807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a molding of material with particles dispersedly embedded therein without agglomerating. <P>SOLUTION: A device comprises a holder 3 and an ultrasonic vibrator 4, with the holder 3 used for therein putting a particle material and a particle embedding material 2 in liquid form. This device solidifies the embedding material 2 while giving ultrasonic vibration to the material 2 by means of the vibrator 4. As the material 2, a heat-melting material is used wherein its particles change into a liquid that can flow by being heated while the liquid changes into a solid by being slow cooled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高分散微粒子含有材料成形体製造方法及び装置に関する。さらに詳述すると、本発明は、例えば電子顕微鏡観察用ペレットや研磨剤粒子を含むワックス等の製造に用いて好適な高分散微粒子含有材料成形体製造方法及び装置に関する。   The present invention relates to a method and an apparatus for producing a molded body of highly dispersed fine particle-containing material. More specifically, the present invention relates to a highly dispersed fine particle-containing material molded body production method and apparatus suitable for use in producing, for example, electron microscope observation pellets and wax containing abrasive particles.

燃焼・ガス化反応の途上で生成される未燃粒子(チャーとも呼ばれる)や微粉炭中の鉱物粒子の分析方法にCCSEM(Computer Controlled Scanning Electron Microscopy:計算機制御走査電子顕微鏡)分析法がある。このCCSEM分析では、分析対象の微粒子試料を分散して包埋させた樹脂成形体を観察用ペレットとして用いる。   There is a CCSEM (Computer Controlled Scanning Electron Microscope) analysis method as an analysis method of unburned particles (also called char) generated in the course of combustion and gasification reactions and mineral particles in pulverized coal. In this CCSEM analysis, a resin molded body in which a fine particle sample to be analyzed is dispersed and embedded is used as an observation pellet.

CCSEM分析に用いる観察用ペレットは、試料と樹脂とを混合し、この混合物を入れた容器を加熱器の中に置いて樹脂を溶融させ、樹脂が完全に溶融した後、加熱器から取り出すと同時に容器の中を適当な棒を使って攪拌することにより製造される。この際、加熱器から取り出された試料入り樹脂は1〜2分で粘性を失って固化し、固化する直前まで攪拌を続ける(非特許文献1)。   The observation pellets used for CCSEM analysis are prepared by mixing the sample and the resin, placing the container containing the mixture in a heater to melt the resin, and after the resin is completely melted, remove it from the heater. It is manufactured by stirring the inside of a container using a suitable stick. At this time, the sample-containing resin taken out of the heater loses viscosity in 1 to 2 minutes and solidifies, and the stirring is continued until just before solidification (Non-Patent Document 1).

また、微粒子材料を分散して包埋させる樹脂成形体の従来の製造方法としては、還流冷却器及び撹拌機を備えた反応器内で樹脂と金属アルコキシド及び/又は有機金属アルコキシドとを親水性有機溶媒に溶かし、親水性有機溶媒に分散させたコロイド状シリカ及び/又はコロイド状アルミナと水とを加え、30分程度撹拌した後に親水性有機溶媒を除去し、押し出し機等により150〜330℃で溶融混練りし、押し出し成形等により成形する方法が知られている(特許文献1)。なお、このような、加熱溶融した材料に微粒子材料を包埋させた後に凝固させて微粒子含有材料の成形体を製造する方法は溶融法と呼ばれる。   In addition, as a conventional method for producing a resin molded body in which a fine particle material is dispersed and embedded, a resin and a metal alkoxide and / or an organometallic alkoxide are made hydrophilic in a reactor equipped with a reflux condenser and a stirrer. Add colloidal silica and / or colloidal alumina and water dissolved in a solvent and dispersed in a hydrophilic organic solvent, stir for about 30 minutes, remove the hydrophilic organic solvent, and extrude at 150 to 330 ° C. with an extruder or the like. A method of melt kneading and molding by extrusion molding or the like is known (Patent Document 1). Such a method of embedding a fine particle material in a heat-melted material and then solidifying it is called a melting method.

寺前・山下:講座「黒もの分析の今日と明日」(1),日本エネルギー学会誌,第76巻第10号,pp.988−994,1997年Teramae and Yamashita: Lecture “Today and Tomorrow of Black Things Analysis” (1), Journal of the Japan Institute of Energy, Vol. 76, No. 10, pp. 988-994, 1997 特開平10−36686号JP-A-10-36686

しかしながら、本発明者らが従来の溶融法によって作成した観察用ペレットを用いてCCSEM分析法により平均粒径が異なる微粉炭の灰粒子の分析を行ったところ、一般的には、微粉炭の粉砕が進んで微粉炭粒子の粒径が小さくなるほど微粉炭粒子から放出されてむき出しとなった灰粒子の割合が高くなると考えられるにもかかわらず、平均粒径約12μmの微粒炭試料の分析において計測誤差と考えられる結果が観察された(図2)。具体的には、平均粒径が約76μm及び約34μmの微粉炭試料の分析結果については、平均粒径が小さい方がむき出しの灰粒子の割合が高くなっている(図中記号○)一方で、平均粒径が約12μmの微粉炭試料の分析結果については、平均粒径が更に小さいにもかかわらずむき出しの灰粒子の割合が極端に低くなっている(図中記号▲)。なお、割合としては、微粉炭粒子に含まれる灰粒子の重量と微粉炭粒子から放出されたむき出しの灰粒子の重量との合計に対するむき出しの灰粒子の重量の割合(重量%)を用いている。   However, when the present inventors analyzed ash particles of pulverized coal having different average particle sizes by CCSEM analysis using pellets for observation prepared by a conventional melting method, generally, pulverized coal is pulverized. Measured in the analysis of pulverized coal samples with an average particle size of about 12 μm, although the ratio of ash particles released from the pulverized coal particles and the exposed ash particles increases as the particle size of the pulverized coal particles decreases. A result considered to be an error was observed (FIG. 2). Specifically, regarding the analysis results of the pulverized coal samples having an average particle diameter of about 76 μm and about 34 μm, the smaller the average particle diameter, the higher the ratio of the exposed ash particles (in the figure, symbol ◯) As for the analysis result of the pulverized coal sample having an average particle diameter of about 12 μm, the ratio of the exposed ash particles is extremely low (symbol ▲) in spite of the smaller average particle diameter. In addition, as a ratio, the ratio (% by weight) of the weight of the exposed ash particles to the total of the weight of the ash particles contained in the pulverized coal particles and the weight of the exposed ash particles released from the pulverized coal particles is used. .

また、観察用ペレット内での微粉炭粒子の分散の粗密の差が顕著であると共に、CCSEM分析に用いた観察用ペレットの電子顕微鏡写真(図3)から、微粒子の凝集が起こって微粉炭粒子の密度が高くなっている部分では隣接する粒子の区別が困難であることが確認された。このことから、微粉炭粒子のペレット内分散が不十分なため、CCSEM分析において、実際にはむき出しの灰粒子であるにもかかわらず微粉炭粒子に含まれる灰粒子であると誤って認識されてしまうことによる計測誤差が生じていると考えられた。なお、図3において、符号20は微粉炭粒子、符号21は微粉炭粒子に含まれる灰粒子、符号22は微粉炭粒子から放出されたむき出しの灰粒子をそれぞれ表す。   In addition, the difference in the density of the dispersion of the pulverized coal particles in the observation pellets is remarkable, and from the electron micrograph (FIG. 3) of the observation pellets used for the CCSEM analysis, fine particle agglomeration occurs. It was confirmed that it was difficult to distinguish adjacent particles in the portion where the density of the particles was high. Because of this, the dispersion of the pulverized coal particles in the pellet is insufficient, and in the CCSEM analysis, the ash particles are erroneously recognized as being contained in the pulverized coal particles even though they are actually exposed ash particles. It was thought that a measurement error was caused by this. In FIG. 3, reference numeral 20 denotes pulverized coal particles, reference numeral 21 denotes ash particles contained in the pulverized coal particles, and reference numeral 22 denotes exposed ash particles released from the pulverized coal particles.

この結果から、従来の溶融法によって作成した観察用ペレットでは、微粒子試料の粒径が一定の大きさよりも小さい場合に、観察用ペレットの作成過程において生じる微粒子の凝集により微粒子の粗密が生じて計測誤差が生じ易くなると考えられる。このことは、CCSEM分析に用いる観察用ペレットの製造に限らず、微粒子を分散させる処理において起こり得ることである。   From this result, in the observation pellets prepared by the conventional melting method, when the particle size of the fine particle sample is smaller than a certain size, the fine particles become dense due to the aggregation of the fine particles generated in the observation pellet preparation process. It is considered that an error is likely to occur. This is not limited to the production of observation pellets used for CCSEM analysis, but can occur in the process of dispersing fine particles.

そこで、微粒子が凝集することなく均等に分散している観察用ペレットを作成することが望まれる。   Therefore, it is desired to produce an observation pellet in which fine particles are uniformly dispersed without agglomeration.

本発明はかかる要望に応えるもので、微粒子が凝集することなく分散して包埋された材料の成形体を製造することができる微粒子含有材料成形体製造方法及び装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention meets such a demand and an object of the present invention is to provide a method and apparatus for producing a fine particle-containing material molded body that can produce a molded body of a material in which fine particles are dispersed and embedded without agglomeration. .

本発明者らは、CCSEM分析に用いても計測誤差が生じない観察用ペレットの作成の試行錯誤を繰り返す中で、微粒子試料を包埋させた液状材料に超音波振動を与えることが、微粒子試料を材料中に凝集を防いで分散させることに有効であることを知見した。   While repeating trial and error in producing an observation pellet that does not cause a measurement error even when used for CCSEM analysis, the present inventors give ultrasonic vibration to a liquid material in which a fine particle sample is embedded. Has been found to be effective in preventing aggregation and dispersion in the material.

請求項1記載の高分散微粒子含有材料成形体製造方法は、前記知見に基づくものであり、ホルダーに微粒子材料と液状の微粒子包埋材料とを入れ、微粒子包埋材料に超音波振動を与えながら微粒子包埋材料を凝固させるようにしている。   The method for producing a highly dispersed fine particle-containing material molded body according to claim 1 is based on the above knowledge, while placing a fine particle material and a liquid fine particle embedding material in a holder and applying ultrasonic vibration to the fine particle embedding material. The fine particle embedding material is solidified.

この高分散微粒子含有材料成形体製造方法によると、微粒子材料を包埋させた液状の微粒子包埋材料に超音波振動を与えることにより、微粒子包埋材料中に微粒子材料が凝集することなく分散する。   According to this method for producing a highly dispersed fine particle-containing material molding, by applying ultrasonic vibration to the liquid fine particle embedding material in which the fine particle material is embedded, the fine particle material is dispersed in the fine particle embedding material without aggregation. .

なお、本発明において、液状並びに液体とは、軟化又は溶融状態を含むものとして用いる。   In the present invention, liquid and liquid are used as including a softened or molten state.

また、本発明において、微粒子包埋材料とは、微粒子材料を包埋させて分散させる材料のことをいう。   In the present invention, the fine particle embedding material means a material in which the fine particle material is embedded and dispersed.

また、本発明において、ホルダーに微粒子材料と液状の微粒子包埋材料とを入れる処理には、ホルダーに微粒子材料と粉体状の微粒子包埋材料とを入れ、例えば加熱溶融することによりホルダー内で液状の微粒子包埋材料にする場合も含む。   In the present invention, the processing for putting the fine particle material and the liquid fine particle embedding material into the holder is performed by putting the fine particle material and the powdery fine particle embedding material into the holder and, for example, heating and melting them in the holder. This includes the case where a liquid fine particle embedding material is used.

また、本発明は、液体から固体に変化する微粒子包埋材料を対象とし、気体から固体に変化する微粒子包埋材料は対象としない。   In addition, the present invention is directed to a fine particle embedding material that changes from a liquid to a solid, and not a fine particle embedding material that changes from a gas to a solid.

また、請求項2記載の高分散微粒子含有材料成形体製造方法は、ホルダーに微粒子材料と溶融状態の熱溶融性材料とを入れ、ホルダーを熱溶融性材料の融点以上の温度に一旦加熱された媒体中に置いて熱溶融性材料に超音波振動を与えながら媒体と共に熱溶融性材料を徐冷して熱溶融性材料を凝固させるようにしている。   Further, in the method for producing a highly dispersed fine particle-containing material molded body according to claim 2, the fine particle material and a molten thermomeltable material are put in a holder, and the holder is once heated to a temperature equal to or higher than the melting point of the heat meltable material. While being placed in a medium and applying ultrasonic vibration to the heat-meltable material, the heat-meltable material is gradually cooled together with the medium to solidify the heat-meltable material.

この高分散微粒子含有材料成形体製造方法によると、微粒子材料を包埋させた溶融状態の熱溶融性材料に超音波振動を与えることにより、熱溶融性材料中に微粒子材料が凝集することなく分散する。また、熱溶融性材料を入れたホルダーを一旦加熱された媒体中に置いて媒体と共に熱溶融性材料を徐冷して熱溶融性材料を凝固させるようにしているので、熱溶融性材料の凝固過程における急激な冷却が防止される。   According to this method for producing a molded article containing highly dispersed fine particles, by applying ultrasonic vibration to a molten thermomeltable material in which the fine particle material is embedded, the fine particle material is dispersed in the heat meltable material without agglomeration. To do. In addition, the holder containing the heat-meltable material is placed in a heated medium once, and the heat-meltable material is gradually cooled together with the medium so that the heat-meltable material is solidified. Rapid cooling in the process is prevented.

なお、本発明において、熱溶融性とは、材料を加熱して温度が融点以上になると固体から液体に変化すると共に、材料を徐冷して温度が融点未満になると液体から固体に変化する材料の性質のことをいう。   In the present invention, heat meltability means a material that changes from a solid to a liquid when the material is heated to a temperature equal to or higher than the melting point, and changes from a liquid to a solid when the material is gradually cooled to a temperature lower than the melting point. Refers to the nature of

また、請求項3記載の高分散微粒子含有材料成形体製造装置は、微粒子材料と液状の微粒子包埋材料とを入れるホルダーと、超音波振動子とを有し、微粒子包埋材料に超音波振動子により超音波振動を与えながら微粒子包埋材料を凝固させるようにしている。   The apparatus for producing a highly dispersed fine particle-containing material molded body according to claim 3 has a holder for placing the fine particle material and the liquid fine particle embedding material, and an ultrasonic vibrator, and the ultrasonic vibration is applied to the fine particle embedding material. The fine particle embedding material is solidified while applying ultrasonic vibration by the child.

この高分散微粒子含有材料成形体製造装置によると、微粒子材料を包埋させた液状の微粒子包埋材料に超音波振動子により超音波振動を与えることにより、微粒子包埋材料中に微粒子材料が凝集することなく分散する。   According to this highly dispersed fine particle-containing material molded body manufacturing apparatus, the fine particle material aggregates in the fine particle embedding material by applying ultrasonic vibration to the liquid fine particle embedding material in which the fine particle material is embedded by an ultrasonic vibrator. Disperse without doing.

また、請求項4記載の高分散微粒子含有材料成形体製造装置は、微粒子材料と熱溶融性材料とを入れるホルダーと、ホルダーの周囲にホルダーと接して滞留する媒体と、超音波振動子を備えて媒体を貯留する容器とを有し、ホルダーに入れられた溶融状態の熱溶融性材料に超音波振動子により超音波振動を与えながら媒体と共に熱溶融性材料を徐冷して熱溶融性材料を凝固させるようにしている。   According to a fourth aspect of the present invention, there is provided an apparatus for producing a highly dispersed fine particle-containing material molded body, comprising: a holder for putting the fine particle material and the heat-meltable material; a medium staying in contact with the holder around the holder; And a container for storing the medium, and by applying ultrasonic vibration to the molten heat-meltable material placed in the holder using an ultrasonic vibrator, the heat-meltable material is gradually cooled together with the medium. To solidify.

この高分散微粒子含有材料成形体製造装置によると、微粒子材料を包埋させた溶融状態の熱溶融性材料に超音波振動子により超音波振動を与えることにより、熱溶融性材料中に微粒子材料が凝集することなく分散する。また、熱溶融性材料を入れたホルダーを一旦加熱された媒体中に置いて媒体と共に熱溶融性材料を徐冷して熱溶融性材料を凝固させるようにしているので、熱溶融性材料の凝固過程における急激な冷却が防止される。   According to this highly dispersed fine particle-containing material molded body manufacturing apparatus, by applying ultrasonic vibration to the meltable heat-meltable material in which the fine particle material is embedded by an ultrasonic vibrator, the fine particle material is contained in the heat-meltable material. Disperses without agglomeration. In addition, the holder containing the heat-meltable material is placed in a heated medium once, and the heat-meltable material is gradually cooled together with the medium so that the heat-meltable material is solidified. Rapid cooling in the process is prevented.

請求項1記載の高分散微粒子含有材料成形体製造方法によれば、微粒子材料を包埋させた液状の微粒子包埋材料に超音波振動を与えることにより、微粒子包埋材料中に微粒子材料を凝集することなく分散させることができる。   According to the method for producing a highly dispersed fine particle-containing material molded body according to claim 1, the fine particle material is aggregated in the fine particle embedding material by applying ultrasonic vibration to the liquid fine particle embedding material in which the fine particle material is embedded. Can be dispersed without

また、請求項2記載の高分散微粒子含有材料成形体製造方法によれば、微粒子材料を包埋させた溶融状態の熱溶融性材料に超音波振動を与えることにより、熱溶融性材料中に微粒子材料を凝集することなく分散させることができる。また、熱溶融性材料の凝固過程における急激な冷却が防止されるので、急激な冷却による亀裂などの損傷のない良好な微粒子含有材料の成形体を製造することができる。   Further, according to the method for producing a highly dispersed fine particle-containing material molded product according to claim 2, the ultrasonic vibration is applied to the molten thermomeltable material in which the fine particle material is embedded, whereby the fine particle is contained in the hotmeltable material. The material can be dispersed without agglomeration. In addition, since rapid cooling in the solidification process of the heat-meltable material is prevented, it is possible to manufacture a molded body of a good fine particle-containing material that is free from damage such as cracks due to rapid cooling.

請求項3記載の高分散微粒子含有材料成形体製造装置によれば、微粒子材料を包埋させた液状の微粒子包埋材料に超音波振動子により超音波振動を与えることにより、微粒子包埋材料中に微粒子材料が凝集することなく分散した微粒子含有材料の成形体を製造することができる。   According to the highly dispersed fine particle-containing material molded body manufacturing apparatus according to claim 3, by applying ultrasonic vibration to the liquid fine particle embedding material in which the fine particle material is embedded by an ultrasonic vibrator, It is possible to produce a molded body of a fine particle-containing material in which the fine particle material is dispersed without agglomeration.

また、請求項4記載の高分散微粒子含有材料成形体製造装置によれば、微粒子材料を包埋させた溶融状態の熱溶融性材料に超音波振動子により超音波振動を与えることにより、熱溶融性材料中に微粒子材料が凝集することなく分散した微粒子含有材料の成形体を製造することができる。また、熱溶融性材料の凝固過程における急激な冷却が防止されるので、急激な冷却による亀裂などの損傷のない良好な微粒子含有材料の成形体を製造することができる。   According to the apparatus for producing a highly dispersed fine particle-containing material molded body according to claim 4, thermal fusion is performed by applying ultrasonic vibration to the molten thermomeltable material in which the fine particle material is embedded by an ultrasonic vibrator. It is possible to produce a molded body of a fine particle-containing material in which the fine particle material is dispersed without being aggregated in the functional material. In addition, since rapid cooling in the solidification process of the heat-meltable material is prevented, it is possible to manufacture a molded body of a good fine particle-containing material that is free from damage such as cracks due to rapid cooling.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明の高分散微粒子含有材料成形体製造装置の実施形態の一例を示す。この高分散微粒子含有材料成形体製造装置1は、微粒子材料と液状の微粒子包埋材料2とを入れるホルダー3と、超音波振動子4とを有し、微粒子包埋材料2に超音波振動子4により超音波振動を与えながら微粒子包埋材料2を凝固させるものである。   In FIG. 1, an example of embodiment of the highly dispersed fine particle containing material molded object manufacturing apparatus of this invention is shown. This highly dispersed fine particle-containing material molded body manufacturing apparatus 1 includes a holder 3 for placing a fine particle material and a liquid fine particle embedding material 2 and an ultrasonic vibrator 4. 4 is used to solidify the fine particle embedding material 2 while applying ultrasonic vibration.

本実施形態では、微粒子包埋材料2として、加熱することによって微粒子が流動可能な液体に変化すると共に除熱することによって液体から固体に変化する熱溶融性材料が用いられる。なお、微粒子包埋材料2として用いられる熱溶融性材料としては、例えば、カルナバワックス、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、塩化ビニル樹脂、フッ素樹脂、ポリエステル樹脂などが挙げられる。   In the present embodiment, as the fine particle embedding material 2, a heat-meltable material that changes from a liquid to a solid by changing to a liquid in which the fine particles can flow by heating and removing heat is used. Examples of the heat-meltable material used as the fine particle embedding material 2 include carnauba wax, polyethylene, polypropylene, polystyrene, ABS resin, vinyl chloride resin, fluorine resin, and polyester resin.

なお、微粒子材料の粒径並びに微粒子包埋材料の粘度については、微粒子材料と微粒子包埋材料との比重差も考慮しながら、液状若しくは溶融状態において微粒子材料が移動可能且つ沈降しない程度の粒径並びに粘度が選択される。   Regarding the particle size of the fine particle material and the viscosity of the fine particle embedding material, the particle size is such that the fine particle material is movable and does not settle in a liquid or molten state, taking into consideration the specific gravity difference between the fine particle material and the fine particle embedding material. As well as the viscosity.

ホルダー3の形状や大きさは、製造する微粒子含有材料の成形体に合わせて設定される。本実施形態では、ホルダー3は円筒状の本体3aと円盤状の底板3bとから構成され、全体としてコップ状に形成される。   The shape and size of the holder 3 are set according to the compact of the fine particle-containing material to be manufactured. In this embodiment, the holder 3 is composed of a cylindrical main body 3a and a disk-shaped bottom plate 3b, and is formed in a cup shape as a whole.

微粒子包埋材料2として熱溶融性材料が用いられる場合には、さらに、ホルダー3内の熱溶融性材料の凝固過程における急激な冷却を防止して亀裂などの損傷のない良好な微粒子含有材料の成形体を製造するため、ホルダー3は一定の熱容量を有することが好ましい。具体的には例えば、3J/cm・K以上の熱容量を有する金属等で形成され、ホルダー3の内径の一割程度の厚さの周壁を有することが好ましい。なお、ホルダー3の形状が例えば楕円形や長方形の場合には、ホルダー3は、最も長い内径即ち長径の一割以上の厚さの周壁を有することが好ましい。本実施形態では、ホルダー3の周壁にあたる本体3aは、熱容量が3J/cm・K以上の鉄により形成される。 In the case where a heat-meltable material is used as the fine particle embedding material 2, a good fine particle-containing material having no damage such as cracks can be prevented by preventing rapid cooling in the solidification process of the heat-meltable material in the holder 3. In order to produce a molded body, the holder 3 preferably has a certain heat capacity. Specifically, for example, it is preferable to have a peripheral wall formed of a metal having a heat capacity of 3 J / cm 3 · K or more and having a thickness of about 10% of the inner diameter of the holder 3. When the shape of the holder 3 is, for example, an ellipse or a rectangle, the holder 3 preferably has a longest inner diameter, that is, a peripheral wall having a thickness of 10% or more of the long diameter. In the present embodiment, the main body 3a corresponding to the peripheral wall of the holder 3 is formed of iron having a heat capacity of 3 J / cm 3 · K or more.

ホルダー3の底板3bは、微粒子包埋材料2として熱溶融性材料が用いられる場合には、ホルダー3内の熱溶融性材料の凝固過程における急激な冷却を防止して亀裂などの損傷のない良好な微粒子含有材料の成形体を製造する観点からはホルダー3の周壁にあたる本体3aと同じ材料を用いて本体3aと少なくとも同じ厚さ若しくはより厚く形成されることが望ましいが、異なる材料で形成されたり、周壁よりも薄く形成されても良い。また、例えば電子顕微鏡観察用ペレットのように傷のない滑らかな表面を有する成形体を製造することが必要とされる場合には、底板3bは、硬くて傷が付きにくい材料や傷の有無が分かり易い材料や微粒子包埋材料2の剥離が容易な材料により形成されることが好ましい。具体的には例えば、底板3bは、傷が付きにくいと共に傷の有無が分かり易く、更に微粒子包埋材料2の剥離が容易な石英ガラスにより形成される。   When a heat-meltable material is used as the fine particle embedding material 2, the bottom plate 3 b of the holder 3 is excellent in preventing rapid cooling in the solidification process of the heat-meltable material in the holder 3 and not causing damage such as cracks. From the viewpoint of manufacturing a molded body of a fine particle-containing material, it is desirable that the same material as that of the main body 3a corresponding to the peripheral wall of the holder 3 is used to form at least the same thickness or thicker than the main body 3a. Further, it may be formed thinner than the peripheral wall. Further, when it is necessary to produce a molded body having a smooth surface without scratches, such as an electron microscope observation pellet, the bottom plate 3b is made of a hard and scratch-resistant material or scratches. It is preferable that the material is formed of a material that is easy to understand or a material that allows easy separation of the fine particle embedding material 2. Specifically, for example, the bottom plate 3b is formed of quartz glass that is hard to be scratched, easily understands the presence or absence of scratches, and further facilitates peeling of the fine particle embedding material 2.

なお、ホルダー3の本体3aと底板3bとは、ホルダー3内の溶融状態の熱溶融性材料2が漏れ出ないように接合されると共に、凝固した熱溶融性材料2の成形体が容易に取り出されるように分解可能に接合される。具体的には例えば、本体3aと底板3bとの接合部の外側に高温耐熱テープを巻いて接合される。   The main body 3a and the bottom plate 3b of the holder 3 are joined so that the molten heat-meltable material 2 in the holder 3 does not leak out, and a solidified molded body of the heat-meltable material 2 is easily taken out. It is joined so that it can be disassembled. Specifically, for example, a high temperature heat resistant tape is wound around and joined to the outside of the joint portion between the main body 3a and the bottom plate 3b.

また、本実施形態では、高分散微粒子含有材料成形体製造装置1は、ホルダー3を収容する水槽6と、ホルダー3を収容した水槽6内に充填される媒体5とを有する。そして、水槽6には、バルブ9aを備え媒体5が供給される供給管路9と、バルブ10aを備え媒体5が排出される排出管路10とが備えられる。   In the present embodiment, the highly dispersed fine particle-containing material molded body manufacturing apparatus 1 includes a water tank 6 that houses the holder 3 and a medium 5 that is filled in the water tank 6 that houses the holder 3. The water tank 6 is provided with a supply pipe 9 provided with a valve 9a and supplied with a medium 5, and a discharge pipe 10 provided with a valve 10a and discharged with a medium 5.

超音波振動子4は、熱溶融性材料2に超音波振動を与えることができるように設置されていれば良い。本実施形態では、超音波振動子4が水槽6の底部に水槽6内に突出して設けられる。なお、超音波振動子4としては、例えば20kHz〜60kHz程度の振動数の振動を出力可能な振動子が用いられる。   The ultrasonic vibrator 4 only needs to be installed so as to apply ultrasonic vibration to the heat-meltable material 2. In the present embodiment, the ultrasonic transducer 4 is provided at the bottom of the water tank 6 so as to protrude into the water tank 6. In addition, as the ultrasonic transducer | vibrator 4, the transducer | vibrator which can output the vibration of the frequency of about 20kHz-60kHz is used, for example.

また、本実施形態では、網状の天板7aと天板7aの四隅に設けられた脚7bとからなり超音波振動子4を覆う台座7が水槽6の底部に設けられ、天板7a上にホルダー3が置かれる。   Moreover, in this embodiment, the base 7 which consists of the net-like top plate 7a and the leg 7b provided in the four corners of the top plate 7a and covers the ultrasonic transducer 4 is provided at the bottom of the water tank 6, and on the top plate 7a. Holder 3 is placed.

上述の構成により、水槽6内のホルダー3の周囲に充填された媒体5を介して超音波振動子4により熱溶融性材料2に超音波振動を与えることができる。   With the above configuration, ultrasonic vibration can be applied to the heat-meltable material 2 by the ultrasonic vibrator 4 through the medium 5 filled around the holder 3 in the water tank 6.

媒体5としては、熱溶融性材料2の融点以上の温度になることが可能な流体が用いられる。具体的には例えば、水やシリコンオイルなどが用いられる。   As the medium 5, a fluid that can reach a temperature equal to or higher than the melting point of the heat-meltable material 2 is used. Specifically, for example, water or silicone oil is used.

また、本実施形態では、水槽6の側壁の内部に、媒体5を熱溶融性材料2の融点以上の温度まで加熱することができるヒータ8が備えられる。   In the present embodiment, a heater 8 capable of heating the medium 5 to a temperature equal to or higher than the melting point of the heat-meltable material 2 is provided inside the side wall of the water tank 6.

上述の構成により、ヒータ8の出力を調整して水槽6内のホルダー3の周囲に充填された媒体5の温度を上下させることによってホルダー3内の熱溶融性材料2の温度を調整することができ、熱溶融性材料2の溶融や凝固を制御することができる。   With the above-described configuration, the temperature of the heat-meltable material 2 in the holder 3 can be adjusted by adjusting the output of the heater 8 to raise or lower the temperature of the medium 5 filled around the holder 3 in the water tank 6. The melting and solidification of the heat-meltable material 2 can be controlled.

上述した高分散微粒子含有材料成形体製造装置1の動作を以下に説明する。   The operation of the above-described highly dispersed fine particle-containing material molded body manufacturing apparatus 1 will be described below.

まず、本体3aと底板3bとの接合部の外側に高温耐熱テープが巻かれて本体3aと底板3bとが接合されカップ状のホルダー3が形成される。   First, a high-temperature heat-resistant tape is wound around the joint between the main body 3a and the bottom plate 3b, and the main body 3a and the bottom plate 3b are joined to form the cup-shaped holder 3.

ホルダー3に微粒子材料と例えばフレーク状や微粉末状の熱溶融性材料2とが入れられ、撹拌棒等により撹拌される。   A fine particle material and, for example, a flake-like or fine powder-like heat-meltable material 2 are put in the holder 3 and stirred by a stirring rod or the like.

排出管路10のバルブ10aが閉じられると共に供給管路9のバルブ9aが開けられて水槽6内に媒体5が供給され、媒体5の水位が所定の水位となったところでバルブ9aを閉じて媒体5の供給が停止される。そして、媒体5が溜められた水槽6内の台座7の天板7a上にホルダー3が置かれる。   The valve 10a of the discharge pipe 10 is closed and the valve 9a of the supply pipe 9 is opened to supply the medium 5 into the water tank 6. When the water level of the medium 5 reaches a predetermined water level, the valve 9a is closed and the medium is supplied. The supply of 5 is stopped. Then, the holder 3 is placed on the top plate 7a of the base 7 in the water tank 6 in which the medium 5 is stored.

続いて、ヒータ8を作動させると共に超音波振動子4を作動させる。これにより、媒体5が加熱されホルダー3内の熱溶融性材料2が加熱されて溶融すると共に媒体5を介してホルダー3内の熱溶融性材料2に超音波振動が与えられ、溶融した熱溶融性材料2中に微粒子材料が凝集することなく分散する。なお、ヒータ8の出力は、媒体5の温度が熱溶融性材料2の融点以上になるように調整される。   Subsequently, the heater 8 is activated and the ultrasonic transducer 4 is activated. As a result, the medium 5 is heated and the heat-meltable material 2 in the holder 3 is heated and melted, and ultrasonic vibration is applied to the heat-meltable material 2 in the holder 3 via the medium 5 to melt the heat-melted material. The fine particle material is dispersed in the conductive material 2 without agglomeration. The output of the heater 8 is adjusted so that the temperature of the medium 5 is equal to or higher than the melting point of the heat-meltable material 2.

ホルダー3上部の開口部から観察して熱溶融性材料2全部が溶融していることが確認された後、ヒータ8の作動が停止される。これにより、媒体5の温度が低下し、ホルダー3及び熱溶融性材料2が徐冷されて熱溶融性材料2が凝固する。   The operation of the heater 8 is stopped after it is confirmed from the opening at the top of the holder 3 that all the heat-meltable material 2 is melted. Thereby, the temperature of the medium 5 is lowered, the holder 3 and the heat-meltable material 2 are gradually cooled, and the heat-meltable material 2 is solidified.

ホルダー3上部の開口部から観察して熱溶融性材料2全体が凝固していることが確認された後、超音波振動子4の作動が停止される。   After observing from the opening in the upper part of the holder 3 and confirming that the entire heat-meltable material 2 is solidified, the operation of the ultrasonic transducer 4 is stopped.

続いて、ホルダー3が水槽6から取り出される。そして、ホルダー3の外側に巻かれた高温耐熱テープが剥がされて底板3bが取り外され、凝固した熱溶融性材料2が取り出される。これにより、微粒子材料が凝集することなく分散した微粒子含有材料の成形体が得られる。   Subsequently, the holder 3 is removed from the water tank 6. Then, the high-temperature heat-resistant tape wound around the outside of the holder 3 is peeled off, the bottom plate 3b is removed, and the solidified hot-melt material 2 is taken out. Thereby, a molded body of the fine particle-containing material in which the fine particle material is dispersed without agglomeration is obtained.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、液体から固体に変化する材料中に微粒子材料を包埋させて分散させ凝固させて微粒子含有材料の成形体を製造する場合について説明したが、本発明の微粒子分散方法は、固体に変化することなく液体のままの材料中に微粒子材料を包埋させて分散させる場合にも利用可能である。この場合には、液体中に微粒子材料を凝集することなく分散させることが必要とされる期間中液体に超音波振動が与えられるようにする。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, in the present embodiment, a case has been described in which a particulate material is embedded in a material that changes from a liquid to a solid, dispersed, and solidified to produce a molded body of the particulate-containing material. Also, the present invention can be used when the fine particle material is embedded and dispersed in a liquid material without changing to a solid. In this case, ultrasonic vibration is applied to the liquid during a period in which it is necessary to disperse the particulate material in the liquid without agglomeration.

また、本実施形態では、微粒子包埋材料2として熱溶融性材料が用いられているが、これに限られず、加熱することにより液体から固体に変化する熱硬化性材料が用いられても良い。この場合には、液体状態の熱硬化性材料と微粒子材料とをホルダー3に入れて撹拌し、超音波振動子4を作動させて超音波振動を与えながらヒータ8を作動させて熱硬化性材料を加熱して凝固させることにより、微粒子材料を凝集させることなく分散させた微粒子含有材料の成形体が得られる。なお、微粒子包埋材料2として用いられる熱硬化性材料としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、尿素樹脂などが挙げられる。   In the present embodiment, a heat-meltable material is used as the fine particle embedding material 2, but the present invention is not limited to this, and a thermosetting material that changes from a liquid to a solid by heating may be used. In this case, the thermosetting material and the particulate material in a liquid state are put in the holder 3 and agitated, and the heater 8 is operated while applying the ultrasonic vibration by operating the ultrasonic vibrator 4 and the thermosetting material. By heating and solidifying, a molded body of the fine particle-containing material in which the fine particle material is dispersed without agglomeration can be obtained. In addition, as a thermosetting material used as the fine particle embedding material 2, an epoxy resin, a phenol resin, an unsaturated polyester resin, a urea resin etc. are mentioned, for example.

さらに、微粒子包埋材料2として、凝固剤を添加することにより液体から固体に変化する材料が用いられても良い。この場合には、液体状態の微粒子包埋材料と微粒子材料とをホルダー3に入れて撹拌し、超音波振動子4を作動させて超音波振動を与えながら凝固剤を添加して微粒子包埋材料を凝固させることにより、微粒子材料を凝集させることなく分散させた微粒子含有材料の成形体が得られる。   Furthermore, as the fine particle embedding material 2, a material that changes from a liquid to a solid by adding a coagulant may be used. In this case, the fine particle embedding material and the fine particle material in a liquid state are put in the holder 3 and agitated, and the ultrasonic vibrator 4 is operated to add the coagulant while applying the ultrasonic vibration to add the fine particle embedding material. By solidifying the particles, a molded body of the fine particle-containing material in which the fine particle material is dispersed without agglomeration can be obtained.

また、本実施形態では、水槽6がヒータ8を備え、ヒータ8によって媒体5が加熱されるようにしているが、これに限られず、水槽6はヒータ8を備えず、別途設けられた加熱装置によって媒体5が加熱されるようにしても良い。この場合も、熱溶融性材料2の融点以上の温度に加熱された媒体5を供給管路9から水槽6に供給することにより、熱溶融性材料2を加熱して溶融させることができる。なお、熱溶融性材料2を完全に溶融させるために必要と考えられる場合には、供給管路9のバルブ9a及び排出管路10のバルブ10aを調整し、所定の温度に加熱された媒体5を継続して供給することにより水槽6内の媒体5の温度の低下を防止する。   In the present embodiment, the water tank 6 includes the heater 8 and the medium 5 is heated by the heater 8. However, the present invention is not limited to this, and the water tank 6 does not include the heater 8 and is provided separately. Thus, the medium 5 may be heated. Also in this case, the hot melt material 2 can be heated and melted by supplying the medium 5 heated to a temperature equal to or higher than the melting point of the hot melt material 2 from the supply pipe 9 to the water tank 6. If it is considered necessary to completely melt the heat-meltable material 2, the medium 5 heated to a predetermined temperature is adjusted by adjusting the valve 9a of the supply pipe 9 and the valve 10a of the discharge pipe 10. Is continuously supplied to prevent the temperature of the medium 5 in the water tank 6 from decreasing.

また、本実施形態では、微粒子材料と固体状の熱溶融性材料2とを入れたホルダー3を水槽6内の媒体5中に設置し、ヒータ8によって加熱された媒体5によってホルダー3内の熱溶融性材料2を加熱して溶融させるようにしているが、これに限られず、別途設けられた加熱装置によって熱溶融性材料2を加熱して溶融させるようにしても良い。この場合、加熱溶融された熱溶融性材料2が入れられたホルダー3が水槽6内に設置される時点では媒体5が熱溶融性材料2の融点以上の温度まで加熱され、超音波振動が与えられる前に熱溶融性材料2が凝固しないようにすることが必要である。   In this embodiment, the holder 3 containing the particulate material and the solid heat-meltable material 2 is installed in the medium 5 in the water tank 6, and the heat in the holder 3 is heated by the medium 5 heated by the heater 8. Although the meltable material 2 is heated and melted, the present invention is not limited to this, and the heat meltable material 2 may be heated and melted by a separately provided heating device. In this case, the medium 5 is heated to a temperature equal to or higher than the melting point of the heat-meltable material 2 when the holder 3 containing the heat-meltable heat-meltable material 2 is placed in the water tank 6, and ultrasonic vibration is applied. It is necessary to ensure that the hot-melt material 2 does not solidify before it is applied.

また、本実施形態では、媒体5を介してホルダー3内の熱溶融性材料2に超音波振動が与えられるようにしているが、媒体5を介さず、超音波振動子4をホルダー3に接触させるなどして超音波振動をホルダー3に直接与えるようにしても良いし、又は超音波振動子4を熱溶融性材料2に接触させるなどして超音波振動を熱溶融性材料2に直接与えるようにしても良い。   In this embodiment, ultrasonic vibration is applied to the heat-meltable material 2 in the holder 3 through the medium 5, but the ultrasonic vibrator 4 is brought into contact with the holder 3 without through the medium 5. The ultrasonic vibration may be directly applied to the holder 3 by, for example, or the ultrasonic vibration is directly applied to the heat-meltable material 2 by bringing the ultrasonic vibrator 4 into contact with the heat-meltable material 2. You may do it.

また、本実施形態では、ホルダー3及び媒体5を収容する容器として水槽6を用いると共に媒体5として水が用いられているが、容器並びに媒体5はこれらに限られるものではない。具体的には例えば、ホルダー3を密封して収容する容器を用いると共に、容器内の空気を媒体5として加熱並びに徐冷するようにしても良い。この場合も、媒体5としての空気を加熱することによりホルダー3内の熱溶融性材料2を加熱して溶融させることができると共に、媒体5としての空気と共に徐冷することにより熱溶融性材料2の凝固過程における急激な冷却が防止される。なお、この場合には、例えば超音波振動子4をホルダー3に接触させるなどして超音波振動をホルダー3に直接与えるようにする。   Moreover, in this embodiment, although the water tank 6 is used as a container which accommodates the holder 3 and the medium 5, and water is used as the medium 5, the container and the medium 5 are not restricted to these. Specifically, for example, a container that encloses and holds the holder 3 may be used, and the air in the container may be heated and gradually cooled using the medium 5 as a medium. Also in this case, the heat-meltable material 2 in the holder 3 can be heated and melted by heating the air as the medium 5, and the heat-meltable material 2 is slowly cooled with the air as the medium 5. Rapid cooling during the solidification process is prevented. In this case, for example, the ultrasonic vibrator 4 is brought into contact with the holder 3 so that the ultrasonic vibration is directly applied to the holder 3.

また、本実施形態では、熱溶融性材料2が加熱されると共に熱溶融性材料2に超音波振動が与えられるようにしているが、これに限られず、熱溶融性材料2が加熱されて溶融した後に熱溶融性材料2に超音波振動を与えるようにしても良い。この場合には、熱溶融性材料2の溶融後、一定の時間熱溶融性材料2に超音波振動を与えてからヒータ8の作動を停止し熱溶融性材料2を徐冷して凝固させる。なお、熱溶融性材料2の溶融後、熱溶融性材料2に超音波振動が与えられる時間は、熱溶融性材料2や包埋させる微粒子材料の量に合わせて適宜設定される。   In this embodiment, the heat-meltable material 2 is heated and ultrasonic vibration is applied to the heat-meltable material 2. However, the present invention is not limited to this, and the heat-meltable material 2 is heated and melted. After that, ultrasonic vibration may be applied to the heat-meltable material 2. In this case, after melting the heat-meltable material 2, ultrasonic vibration is applied to the heat-meltable material 2 for a certain time, and then the operation of the heater 8 is stopped, and the heat-meltable material 2 is gradually cooled and solidified. Note that the time during which ultrasonic vibration is applied to the heat-meltable material 2 after the heat-meltable material 2 is melted is appropriately set according to the amount of the heat-meltable material 2 and the fine particle material to be embedded.

また、本実施形態では、熱溶融性材料2全体が凝固していることが確認された後、超音波振動子4の作動が停止されるようにしているが、これに限られず、熱溶融性材料2中の微粒子材料の移動が停止する程度まで熱溶融性材料2の液相粘度が高くなったところで超音波振動子4の作動が停止されるようにしても良い。   Further, in this embodiment, the operation of the ultrasonic vibrator 4 is stopped after it is confirmed that the entire heat-meltable material 2 is solidified. However, the present invention is not limited to this. The operation of the ultrasonic vibrator 4 may be stopped when the liquid-phase viscosity of the heat-meltable material 2 becomes high enough to stop the movement of the particulate material in the material 2.

本実施形態の高分散微粒子含有材料成形体製造装置1を用いた電子顕微鏡観察用ペレット製造の実施例を図4及び図5を用いて説明する。本実施例では、直径30mm、高さ5mmの円盤状の電子顕微鏡観察用ペレットを製造した。そして、内径30mm、厚さ3mmの円筒状に形成された本体3aと、直径36mm、厚さ3mmの円盤状に形成された底板3bとを有するホルダー3を用いた。   An example of manufacturing an electron microscope observation pellet using the highly dispersed fine particle-containing material molded body manufacturing apparatus 1 of the present embodiment will be described with reference to FIGS. 4 and 5. In this example, a disk-shaped pellet for electron microscope observation having a diameter of 30 mm and a height of 5 mm was manufactured. A holder 3 having a main body 3a formed in a cylindrical shape with an inner diameter of 30 mm and a thickness of 3 mm and a bottom plate 3b formed in a disk shape with a diameter of 36 mm and a thickness of 3 mm was used.

本実施例では、熱溶融性材料2としてフレーク状のカルナバワックスを用いた。なお、カルナバワックスの融点は95℃である。また、分析対象の微粒子試料として平均粒径が約12μmの微粉炭粒子を用いた。   In this example, flaky carnauba wax was used as the heat-meltable material 2. Carnauba wax has a melting point of 95 ° C. Moreover, pulverized coal particles having an average particle diameter of about 12 μm were used as the fine particle sample to be analyzed.

カルナバワックス2の加熱溶融及び超音波振動の加振処理の間はヒータ8の温度を調整して媒体5の温度を96℃に保つようにした。また、超音波振動子4の振動数は40kHzとした。   During the heating and melting of the carnauba wax 2 and the vibration treatment of ultrasonic vibration, the temperature of the heater 8 was adjusted to keep the temperature of the medium 5 at 96 ° C. The frequency of the ultrasonic transducer 4 was 40 kHz.

カルナバワックス2全部が溶融したことを確認した後、ヒータ8の作動を停止し、カルナバワックス2を徐冷した。なお、本実施例では、カルナバワックス2の加熱溶融及び加振処理の時間は約3分、カルナバワックス2の徐冷凝固処理の時間は約3分であった。   After confirming that all of the carnauba wax 2 was melted, the operation of the heater 8 was stopped and the carnauba wax 2 was gradually cooled. In this example, the time for heat melting and vibration treatment of the carnauba wax 2 was about 3 minutes, and the time for the slow cooling solidification treatment of the carnauba wax 2 was about 3 minutes.

カルナバワックス2の徐冷凝固処理後、ホルダー3からカルナバワックス2の成形体を取り出し、微粉炭粒子試料を包埋させた電子顕微鏡観察用ペレットを得た。   After the carnauba wax 2 was slowly cooled and solidified, the molded body of the carnauba wax 2 was taken out from the holder 3 to obtain an electron microscope observation pellet in which a pulverized coal particle sample was embedded.

上記により作成した観察用ペレットの電子顕微鏡写真を図4に示す。この写真から、従来の方法により作成した観察用ペレットの電子顕微鏡写真(図3)と比べて微粒子の凝集が防止されており、微粒子材料が適当に分散していることが確認された。なお、図4において、符号20は微粉炭粒子、符号21は微粉炭粒子に含まれる灰粒子、符号22は微粉炭粒子から放出されたむき出しの灰粒子をそれぞれ表す。   An electron micrograph of the observation pellet prepared as described above is shown in FIG. From this photograph, it was confirmed that the aggregation of the fine particles was prevented as compared with the electron micrograph (FIG. 3) of the observation pellet prepared by the conventional method, and the fine particle material was appropriately dispersed. In FIG. 4, reference numeral 20 denotes pulverized coal particles, reference numeral 21 denotes ash particles contained in the pulverized coal particles, and reference numeral 22 denotes exposed ash particles released from the pulverized coal particles.

また、上記により作成した観察用ペレットのCCSEM分析を行ったところ、むき出しの灰粒子の割合が、平均粒径が約76μm及び約34μmの微粉炭の分析結果と整合する結果となり(図5、本実施例で用いた微粉炭粒子の平均粒径は約12μm)、この結果からも微粒子の凝集が防止され、微粒子材料が適当に分散していることが確認された。   Further, when the CCSEM analysis of the observation pellets prepared as described above was performed, the ratio of the exposed ash particles was consistent with the analysis results of the pulverized coal having an average particle size of about 76 μm and about 34 μm (FIG. The average particle size of the pulverized coal particles used in the examples was about 12 μm). From this result, it was confirmed that the aggregation of the fine particles was prevented and the fine particle material was appropriately dispersed.

本発明の高分散微粒子含有材料成形体製造装置の実施形態の一例の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of an example of embodiment of the highly dispersed fine particle containing material molded object manufacturing apparatus of this invention. 従来の方法により作成した観察用ペレットを用いたCCSEM分析の結果を示す図である。It is a figure which shows the result of the CCSEM analysis using the pellet for observation produced by the conventional method. 従来の方法により作成した観察用ペレットの電子顕微鏡写真である。It is an electron micrograph of the pellet for observation created by the conventional method. 本発明の高分散微粒子含有材料成形体製造装置により作成した観察用ペレットの電子顕微鏡写真である。It is an electron micrograph of the pellet for observation produced with the highly disperse fine particle content material fabrication object device of the present invention. 本発明の高分散微粒子含有材料成形体製造装置により作成した観察用ペレットを用いたCCSEM分析の結果を示す図である。It is a figure which shows the result of the CCSEM analysis using the pellet for observation created with the highly dispersed fine particle containing material molded object manufacturing apparatus of this invention.

符号の説明Explanation of symbols

1 高分散微粒子含有材料成形体製造装置
2 微粒子包埋材料
3 ホルダー
4 超音波振動子
5 媒体
6 水槽
DESCRIPTION OF SYMBOLS 1 Highly dispersed fine particle containing material molded object manufacturing apparatus 2 Fine particle embedding material 3 Holder 4 Ultrasonic vibrator 5 Medium 6 Water tank

Claims (4)

ホルダーに微粒子材料と液状の微粒子包埋材料とを入れ、前記微粒子包埋材料に超音波振動を与えながら前記微粒子包埋材料を凝固させることを特徴とする高分散微粒子含有材料成形体製造方法。   A method for producing a highly dispersed fine particle-containing material molded product, comprising: placing a fine particle material and a liquid fine particle embedding material in a holder; and solidifying the fine particle embedding material while applying ultrasonic vibration to the fine particle embedding material. ホルダーに微粒子材料と溶融状態の熱溶融性材料とを入れ、前記ホルダーを前記熱溶融性材料の融点以上の温度に一旦加熱された媒体中に置いて前記熱溶融性材料に超音波振動を与えながら前記媒体と共に前記熱溶融性材料を徐冷して前記熱溶融性材料を凝固させることを特徴とする高分散微粒子含有材料成形体製造方法。   A fine particle material and a molten thermomeltable material are put in a holder, and the holder is placed in a medium once heated to a temperature equal to or higher than the melting point of the hotmeltable material to give ultrasonic vibration to the hotmelt material. A method for producing a highly dispersed fine particle-containing material molded body, comprising slowly cooling the heat-meltable material together with the medium to solidify the heat-meltable material. 微粒子材料と液状の微粒子包埋材料とを入れるホルダーと、超音波振動子とを有し、前記微粒子包埋材料に前記超音波振動子により超音波振動を与えながら前記微粒子包埋材料を凝固させることを特徴とする高分散微粒子含有材料成形体製造装置。   A holder for placing the fine particle material and the liquid fine particle embedding material, and an ultrasonic vibrator, and solidifying the fine particle embedding material while applying ultrasonic vibration to the fine particle embedding material by the ultrasonic vibrator. An apparatus for producing a molded body of a material containing highly dispersed fine particles. 微粒子材料と熱溶融性材料とを入れるホルダーと、前記ホルダーの周囲に前記ホルダーと接して滞留する媒体と、超音波振動子を備えて前記媒体を貯留する容器とを有し、前記ホルダーに入れられた溶融状態の前記熱溶融性材料に前記超音波振動子により超音波振動を与えながら前記媒体と共に前記熱溶融性材料を徐冷して前記熱溶融性材料を凝固させることを特徴とする高分散微粒子含有材料成形体製造装置。   A holder for storing the particulate material and the heat-meltable material; a medium that stays in contact with the holder around the holder; and a container that includes an ultrasonic vibrator and stores the medium. The heat-meltable material is solidified by gradually cooling the heat-meltable material together with the medium while applying ultrasonic vibration to the heat-meltable material in a molten state by the ultrasonic vibrator. Dispersed fine particle-containing material molded body manufacturing apparatus.
JP2006112054A 2006-04-14 2006-04-14 Method and device for manufacturing high-dispersion-particle-containing material molding Pending JP2007285807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112054A JP2007285807A (en) 2006-04-14 2006-04-14 Method and device for manufacturing high-dispersion-particle-containing material molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112054A JP2007285807A (en) 2006-04-14 2006-04-14 Method and device for manufacturing high-dispersion-particle-containing material molding

Publications (1)

Publication Number Publication Date
JP2007285807A true JP2007285807A (en) 2007-11-01

Family

ID=38757725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112054A Pending JP2007285807A (en) 2006-04-14 2006-04-14 Method and device for manufacturing high-dispersion-particle-containing material molding

Country Status (1)

Country Link
JP (1) JP2007285807A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203897A (en) * 2009-03-03 2010-09-16 Ihi Corp State detection method of metal particle in glass
JP2013238455A (en) * 2012-05-14 2013-11-28 National Institute Of Advanced Industrial & Technology Powder sample disk for quantitative analysis using laser ablation, manufacturing method thereof, and apparatus for the same
JP2018062143A (en) * 2016-10-14 2018-04-19 住友金属鉱山株式会社 Mold for hot mounting apparatus and method for preparing resin embedded sample
CN115876819A (en) * 2023-03-03 2023-03-31 中国电建集团山东电力建设第一工程有限公司 Cold inlaying method for preparing porous metallographic specimen for SEM by adding carbon fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203897A (en) * 2009-03-03 2010-09-16 Ihi Corp State detection method of metal particle in glass
JP2013238455A (en) * 2012-05-14 2013-11-28 National Institute Of Advanced Industrial & Technology Powder sample disk for quantitative analysis using laser ablation, manufacturing method thereof, and apparatus for the same
JP2018062143A (en) * 2016-10-14 2018-04-19 住友金属鉱山株式会社 Mold for hot mounting apparatus and method for preparing resin embedded sample
CN115876819A (en) * 2023-03-03 2023-03-31 中国电建集团山东电力建设第一工程有限公司 Cold inlaying method for preparing porous metallographic specimen for SEM by adding carbon fibers

Similar Documents

Publication Publication Date Title
JP2019182714A (en) Particulate material, and its production method, and heat conductive material
CN1221471C (en) Highly filled SiO2 dispersion, methods for production thereof and its use
JP2007285807A (en) Method and device for manufacturing high-dispersion-particle-containing material molding
CN1789204A (en) Herbst bremer goldschlaegerei
JPH0444629B2 (en)
JP5439194B2 (en) Organic binder manufacturing method and organic binder
CA3021829C (en) Oxide ore smelting method
US2251454A (en) Preparing and molding material
RU2718717C2 (en) Device for mixing powders by cryogenic fluid medium and generation of vibrations
WO1999008321A1 (en) Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same
JP2015521213A (en) Reactor and related method for gasifying and / or purifying, in particular depolymerizing, plastic materials
CA1267505A (en) Molding medium method for making same and evaporative pattern casting process
Hara et al. Shrinkage distribution of sintering bed evaluated by X-ray CT observation
Cai et al. Preparation of tritium breeding Li2TiO3 ceramic pebbles via newly developed piezoelectric micro‐droplet jetting
Wencke et al. Toward the Direct Synthesis of HDPE Powders for Powder Bed Fusion Based Additive Manufacturing
JP2022029382A (en) Modification catalyst, production method for the same and modification device and exhaust emission control device
CN107188570A (en) A kind of preparation method of ceramic microsphere
JP2008254980A (en) Manufacture method of opaque quartz glass product, silica granules used for use therein and its preparation method
CN209716373U (en) A kind of device for precoated sand recycling
US11866610B2 (en) Tablet-based method of producing nano/micro particle water suspensions and carbon dioxide gas
JP7142690B2 (en) Apparatus and method for low temperature manufacturing of ceramic parts
JPH0978101A (en) Method for granulating tantalum powder and device therefor
JP2009001890A (en) Surface treatment device for nanoparticle, and method therefor
JP2018054278A (en) Thermal storage device and heat exchanging device
JP2010100869A (en) Method and device for mixing lubricant and base metal powder