JP5846398B2 - Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof - Google Patents

Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof Download PDF

Info

Publication number
JP5846398B2
JP5846398B2 JP2013539642A JP2013539642A JP5846398B2 JP 5846398 B2 JP5846398 B2 JP 5846398B2 JP 2013539642 A JP2013539642 A JP 2013539642A JP 2013539642 A JP2013539642 A JP 2013539642A JP 5846398 B2 JP5846398 B2 JP 5846398B2
Authority
JP
Japan
Prior art keywords
mol
semiconductor ceramic
ceramic capacitor
varistor function
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013539642A
Other languages
Japanese (ja)
Other versions
JPWO2013058227A1 (en
Inventor
光俊 川本
光俊 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013539642A priority Critical patent/JP5846398B2/en
Publication of JPWO2013058227A1 publication Critical patent/JPWO2013058227A1/en
Application granted granted Critical
Publication of JP5846398B2 publication Critical patent/JP5846398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/1006Thick film varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Description

本発明はバリスタ機能付き積層型半導体セラミックコンデンサとその製造方法に関し、より詳しくはSrTiO系粒界絶縁型の半導体セラミックを利用したバリスタ機能付き積層型半導体セラミックコンデンサとその製造方法に関する。The present invention relates to a multilayer semiconductor ceramic capacitor having a varistor function and a method for manufacturing the same, and more particularly to a multilayer semiconductor ceramic capacitor having a varistor function using an SrTiO 3 based grain boundary insulating semiconductor ceramic and a method for manufacturing the same.

近年のエレクトロニクス技術の発展に伴い、携帯電話やノート型パソコン等の携帯用電子機器や、自動車などに搭載される車載用電子機器の普及と共に、電子機器の小型化、多機能化が求められている。   With the recent development of electronics technology, portable electronic devices such as mobile phones and laptop computers, and in-vehicle electronic devices mounted on automobiles, etc. have become popular, and electronic devices have become smaller and more multifunctional. Yes.

一方、電子機器の小型化、多機能化を実現するために、各種IC、LSIなどの半導体素子が多く用いられるようになってきており、それに伴って電子機器のノイズ耐力が低下しつつある。   On the other hand, semiconductor devices such as various ICs and LSIs are increasingly used in order to realize downsizing and multi-functionalization of electronic devices, and accordingly, noise resistance of electronic devices is decreasing.

そこで、従来より、各種IC、LSIの電源ラインにバイパスコンデンサとしてフィルムコンデンサ、積層型セラミックコンデンサ、半導体セラミックコンデンサなどを配し、これにより電子機器のノイズ耐力を確保することが行われている。   Therefore, conventionally, a film capacitor, a multilayer ceramic capacitor, a semiconductor ceramic capacitor, and the like are provided as bypass capacitors on the power lines of various ICs and LSIs, thereby ensuring noise resistance of electronic devices.

特に、カーナビやカーオーディオ、車載ECU等では、静電容量が1nF程度のコンデンサを外部端子に接続し、これにより高周波ノイズを吸収することが広く行われている。   In particular, in car navigation systems, car audio systems, in-vehicle ECUs, and the like, it is widely performed to connect a capacitor having a capacitance of about 1 nF to an external terminal, thereby absorbing high-frequency noise.

しかしながら、これらのコンデンサは、高周波ノイズの吸収に対しては優れた性能を示すが、コンデンサ自体は高電圧パルスや静電気を吸収する機能を有さない。このため斯かる高電圧パルスや静電気が電子機器内に侵入すると、電子機器の誤動作や半導体素子の破損を招くおそれがある。特に、静電容量が1nF程度の低容量になると、ESD(Electro-Static Discharge:「静電気放電」)耐圧が極端に低くなり(例えば、2kV〜4kV程度)、コンデンサそのものの破損を招くおそれがある。   However, these capacitors exhibit excellent performance in absorbing high frequency noise, but the capacitors themselves do not have a function of absorbing high voltage pulses or static electricity. For this reason, when such a high-voltage pulse or static electricity enters the electronic device, there is a risk of malfunction of the electronic device or damage to the semiconductor element. In particular, when the capacitance is as low as 1 nF, ESD (Electro-Static Discharge) is extremely low (for example, about 2 kV to 4 kV), which may cause damage to the capacitor itself. .

そこで、従来では、図2(a)に示すように、外部端子101とIC102とを接続する電源ライン103に接続されたコンデンサ104に対し、並列にツェナーダイオード105を設けたり、或いは図2(b)に示すように、前記コンデンサ104に対し、並列にバリスタ106を設け、これによりESD耐圧を確保することが行われている。   Therefore, conventionally, as shown in FIG. 2A, a Zener diode 105 is provided in parallel to the capacitor 104 connected to the power supply line 103 that connects the external terminal 101 and the IC 102, or FIG. ), A varistor 106 is provided in parallel with the capacitor 104, thereby ensuring an ESD withstand voltage.

しかしながら、上述のようにコンデンサ104に対し並列にツェナーダイオード105やバリスタ106も設けた場合は、部品個数が増加しコスト高を招く上に、設置スペースを確保しなければならず、デバイスの大型化を招くおそれがある。   However, when the Zener diode 105 and the varistor 106 are also provided in parallel with the capacitor 104 as described above, the number of components increases, resulting in an increase in cost, and an installation space must be secured, resulting in an increase in the size of the device. May be incurred.

したがって、コンデンサにバリスタ機能を持たすことができれば、ツェナーダイオードやバリスタが不要となり、図3に示すように、ESD耐圧に対してもコンデンサのみで対処することができ、これにより設計の標準化も容易となり、付加価値を有するコンデンサの提供が可能となる。   Therefore, if the capacitor can have a varistor function, a Zener diode and a varistor are not required, and as shown in FIG. 3, the ESD withstand voltage can be dealt with only by the capacitor, thereby facilitating standardization of the design. It is possible to provide a capacitor having added value.

そして、特許文献1には、半導体セラミックが、SrTiO系粒界絶縁型で形成されると共に、SrサイトとTiサイトとの配合モル比mが1.000<m≦1.020であり、ドナー元素が結晶粒子中に固溶されると共に、アクセプタ元素が、前記Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)の範囲で粒界層中に存在し、かつ、結晶粒子の平均粒径が1.0μm以下であるバリスタ機能付き積層型半導体セラミックコンデンサが提案されている。Patent Document 1 discloses that a semiconductor ceramic is formed of an SrTiO 3 -based grain boundary insulating type, and a molar ratio m of Sr sites to Ti sites is 1.000 <m ≦ 1.020. The element is dissolved in the crystal grains, and the acceptor element is present in the grain boundary layer in a range of 0.5 mol or less (excluding 0 mol) with respect to 100 mol of the Ti element, and A multilayer semiconductor ceramic capacitor with a varistor function in which the average grain size of crystal grains is 1.0 μm or less has been proposed.

この特許文献1では、半導体セラミックが上述の組成を有することにより、絶縁性やESD耐圧が良好で薄層化・小型化が可能なバリスタ機能を有する積層型の粒界絶縁型半導体セラミックコンデンサを得ることができる。   In this patent document 1, since the semiconductor ceramic has the above-described composition, a multilayer grain boundary insulation type semiconductor ceramic capacitor having a varistor function that has good insulation and ESD withstand voltage and can be thinned and miniaturized is obtained. be able to.

国際公開2008/004389号International Publication 2008/004389

しかしながら、特許文献1のバリスタ機能付き積層型半導体セラミックコンデンサは、30kV以上のESD耐圧と比抵抗logρが9.7以上の良好な絶縁性を有するものの、静電容量が1nF程度に低容量化してくると、絶縁性能に大きなバラツキが生じ、このため製品歩留まりが低下し、量産性に劣るという問題があった。   However, the multilayer semiconductor ceramic capacitor with a varistor function disclosed in Patent Document 1 has an ESD withstand voltage of 30 kV or more and a good insulation with a specific resistance logρ of 9.7 or more, but the capacitance is reduced to about 1 nF. As a result, there is a large variation in the insulation performance, resulting in a decrease in product yield and inferior mass productivity.

本発明はこのような事情に鑑みなされたものであって、実用性に耐えうる絶縁性能を確保しつつ製品歩留まりの向上を図ることができ、かつ良好なESD耐圧を有する量産性に適したSrTiO系粒界絶縁型のバリスタ機能付き積層型半導体セラミックコンデンサとその製造方法を提供することを目的とする。The present invention has been made in view of such circumstances, and can improve the product yield while ensuring the insulation performance that can withstand practicality, and is suitable for mass production having a good ESD withstand voltage. It is an object of the present invention to provide a three- system grain boundary insulation type multilayer semiconductor ceramic capacitor with a varistor function and a method for manufacturing the same.

本発明者は、上記目的を達成するためにSrTiO系粒界絶縁型半導体セラミックについて鋭意研究を行ったところ、SrサイトとTiサイトの配合モル比mが1.000≦m≦1.020となるようにSrサイトとTiサイトの配合モル比mを調整し、さらにZr元素をTi元素100モルに対し0.15〜3.0モルの範囲で所定量のアクセプタ元素と共に添加して熱処理することにより、実用性に耐えうる絶縁性能を確保しつつ、製品歩留まりの向上を図ることができ、かつ良好なESD耐圧を得ることができるという知見を得た。In order to achieve the above-mentioned object, the present inventor conducted intensive studies on SrTiO 3 -based grain boundary insulating semiconductor ceramics, and found that the mixing molar ratio m of Sr sites and Ti sites was 1.000 ≦ m ≦ 1.020. The mixing molar ratio m of Sr site and Ti site is adjusted so that Zr element is added together with a predetermined amount of acceptor element in the range of 0.15 to 3.0 mol with respect to 100 mol of Ti element and heat-treated. As a result, it has been found that the product yield can be improved while ensuring the insulation performance that can withstand practicality, and a good ESD withstand voltage can be obtained.

本発明はこれらの知見に基づきなされたものであって、本発明に係るバリスタ機能付き積層型半導体セラミックコンデンサ(以下、単に「積層型半導体セラミックコンデンサ」という。)は、SrTiO系粒界絶縁型の半導体セラミックで形成された複数の半導体セラミック層と複数の内部電極層とが交互に積層されて焼成されてなる積層焼結体と、該積層焼結体の両端部に前記内部電極層と電気的に接続された外部電極とを有する積層型半導体セラミックコンデンサであって、前記半導体セラミックが、SrサイトとTiサイトとの配合モル比mは1.000≦m≦1.020であり、ドナー元素が結晶粒子中に固溶されると共に、アクセプタ元素が、前記Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)の範囲で粒界層中に存在し、Zr元素が前記Ti元素100モルに対し0.15モル以上3.0モル以下の範囲で含有され、かつ、結晶粒子の平均粒径が1.5μm以下であることを特徴としている。The present invention has been made based on these findings, and a multilayer semiconductor ceramic capacitor with a varistor function according to the present invention (hereinafter simply referred to as “multilayer semiconductor ceramic capacitor”) is an SrTiO 3 -based grain boundary insulation type. A laminated sintered body formed by alternately laminating a plurality of semiconductor ceramic layers and a plurality of internal electrode layers formed of the above-mentioned semiconductor ceramic, and firing the internal electrode layers and the electric electrodes at both ends of the laminated sintered body. A laminated semiconductor ceramic capacitor having externally connected external electrodes, wherein the semiconductor ceramic has a molar ratio m of Sr sites to Ti sites of 1.000 ≦ m ≦ 1.020, and a donor element Is dissolved in the crystal grains, and the acceptor element is in the range of 0.5 mol or less (excluding 0 mol) with respect to 100 mol of the Ti element. In the grain boundary layer, the Zr element is contained in the range of 0.15 mol or more and 3.0 mol or less with respect to 100 mol of the Ti element, and the average particle size of the crystal particles is 1.5 μm or less. It is characterized by that.

また、所望のESD耐圧を確保しつつ、より良好な電気特性と絶縁性を確保するためには、前記アクセプタ元素は、前記Ti元素100モルに対し、0.3〜0.5モルの範囲で含有されているのが好ましい。   Further, in order to ensure better electrical characteristics and insulation while ensuring a desired ESD withstand voltage, the acceptor element is in a range of 0.3 to 0.5 mol with respect to 100 mol of the Ti element. It is preferably contained.

すなわち、本発明の積層型半導体セラミックコンデンサは、前記アクセプタ元素が、前記Ti元素100モルに対し、0.3〜0.5モルの範囲で含有されているのが好ましい。   That is, in the multilayer semiconductor ceramic capacitor of the present invention, the acceptor element is preferably contained in a range of 0.3 to 0.5 mol with respect to 100 mol of the Ti element.

また、本発明の積層型半導体セラミックコンデンサは、前記アクセプタ元素が、Mn、Co、Ni、及びCrのうちの少なくとも1種の元素を含んでいるのが好ましい。   In the multilayer semiconductor ceramic capacitor of the present invention, it is preferable that the acceptor element contains at least one element of Mn, Co, Ni, and Cr.

また、本発明の積層型半導体セラミックコンデンサは、前記ドナー元素は、La、Nd、Sm、Dy、Nb、及びTaのうちの少なくとも1種の元素を含んでいるのが好ましい。   In the multilayer semiconductor ceramic capacitor of the present invention, the donor element preferably contains at least one element selected from La, Nd, Sm, Dy, Nb, and Ta.

また、本発明の積層型半導体セラミックコンデンサは、低融点酸化物が、前記Ti元素100モルに対し0.1モル以下の範囲で含有されているのが好ましい。   In the multilayer semiconductor ceramic capacitor of the present invention, the low melting point oxide is preferably contained in a range of 0.1 mol or less with respect to 100 mol of the Ti element.

さらに、本発明の積層型半導体セラミックコンデンサは、前記低融点酸化物が、SiOであるのが好ましい。Furthermore, in the multilayer semiconductor ceramic capacitor of the present invention, it is preferable that the low melting point oxide is SiO 2 .

また、本発明に係る積層型半導体セラミックコンデンサの製造方法は、SrTiO系粒界絶縁型の半導体セラミックを用いたバリスタ機能付き積層型半導体セラミックコンデンサの製造方法であって、ドナー化合物を含むセラミック素原料を、SrサイトとTiサイトの配合モル比mが1.000≦m≦1.020の範囲となるように秤量して混合粉砕した後、仮焼処理を行って仮焼粉末を作製する仮焼粉末作製工程と、Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)となるようにアクセプタ化合物を秤量すると共に、Ti元素100モルに対し0.15モル以上3.0モル以下となるようにZr化合物を秤量し、該Zr化合物及び前記アクセプタ化合物を前記仮焼粉末と混合し、熱処理を行って熱処理粉末を作製する熱処理粉末作製工程と、前記熱処理粉末に成形加工を施しセラミックグリーンシートを作製し、その後内部電極層とセラミックグリーンシートを交互に積層して積層体を形成する積層体形成工程と、還元雰囲気下、前記積層体に一次焼成処理を行った後、弱還元雰囲気下、大気雰囲気下、又は酸化雰囲気下で二次焼成処理を行う焼成工程とを含むことを特徴としている。In addition, a method for manufacturing a multilayer semiconductor ceramic capacitor according to the present invention is a method for manufacturing a multilayer semiconductor ceramic capacitor with a varistor function using an SrTiO 3 -based grain boundary insulating semiconductor ceramic, the ceramic element including a donor compound. The raw materials are weighed so that the blending molar ratio m of Sr sites and Ti sites is in the range of 1.000 ≦ m ≦ 1.020, mixed and pulverized, and then calcined to prepare a calcined powder. The acceptor compound is weighed so as to be 0.5 mol or less (excluding 0 mol) with respect to 100 mol of Ti element, and 0.15 mol to 3 mol of Ti element with respect to 100 mol of Ti element. The Zr compound is weighed so as to be less than or equal to 0.0 mol, the Zr compound and the acceptor compound are mixed with the calcined powder, and heat treatment is performed to produce a heat treated powder. A heat treatment powder manufacturing step to be manufactured; a laminate forming step of forming a ceramic green sheet by subjecting the heat treatment powder to a forming process; and then alternately laminating internal electrode layers and ceramic green sheets; and a reducing atmosphere. And a firing step of performing a secondary firing treatment in a weak reducing atmosphere, an air atmosphere, or an oxidizing atmosphere after the laminate is subjected to a primary firing treatment.

また、本発明の積層型半導体セラミックコンデンサの製造方法は、前記仮焼処理における仮焼温度が、前記一次焼成処理における焼成温度よりも高いのが好ましい。   In the method for producing a multilayer semiconductor ceramic capacitor of the present invention, it is preferable that a calcination temperature in the calcination treatment is higher than a calcination temperature in the primary firing treatment.

本発明の積層型半導体セラミックコンデンサによれば、半導体セラミック層を形成する半導体セラミックが、SrサイトとTiサイトとの配合モル比mは1.000≦m≦1.020であり、ドナー元素が結晶粒子中に固溶されると共に、アクセプタ元素が、前記Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)の範囲で粒界層中に存在し、Zr元素が前記Ti100モルに対し0.15モル以上3.0モル以下の範囲で含有され、かつ、結晶粒子の平均粒径が1.5μm以下であるので、SrサイトとTiサイトとの配合モル比mが化学量論比又はSrサイトが化学量論比よりも過剰であっても、十分に実用性に耐えうる絶縁性能を確保しつつ、製品歩留まりの向上を図ることができ、かつ良好なESD耐圧を有する量産性に適した積層型半導体セラミックコンデンサを得ることができる。   According to the multilayer semiconductor ceramic capacitor of the present invention, the semiconductor ceramic forming the semiconductor ceramic layer has a compound molar ratio m of Sr sites to Ti sites of 1.000 ≦ m ≦ 1.020, and the donor element is a crystal. While being dissolved in the particles, the acceptor element is present in the grain boundary layer in the range of 0.5 mol or less (excluding 0 mol) with respect to 100 mol of the Ti element, and the Zr element is Since it is contained in the range of 0.15 mol or more and 3.0 mol or less with respect to 100 mol of Ti and the average particle size of the crystal particles is 1.5 μm or less, the compound molar ratio m of Sr site and Ti site is chemical. Even if the stoichiometric ratio or Sr site is more than the stoichiometric ratio, it is possible to improve the product yield while ensuring the insulation performance that can sufficiently withstand practicality, and has a good ESD withstand voltage. You It is possible to obtain a laminated semiconductor ceramic capacitor which is suitable for mass production.

具体的には、静電容量が1nF程度に低容量化しても、30kV以上のESD耐圧を有し、絶縁抵抗logIRは8.5以上を確保でき、85%以上の製品歩留まりを有し、良好な信頼性を有する量産性に適した積層型半導体セラミックコンデンサを得ることが可能となる。   Specifically, even if the capacitance is reduced to about 1 nF, it has an ESD withstand voltage of 30 kV or more, an insulation resistance logIR of 8.5 or more, a product yield of 85% or more, and good It is possible to obtain a multilayer semiconductor ceramic capacitor having high reliability and suitable for mass production.

また、本発明の積層型半導体セラミックコンデンサの製造方法によれば、SrTiO系粒界絶縁型の半導体セラミックを用いたバリスタ機能付き積層型半導体セラミックコンデンサの製造方法であって、ドナー化合物を含むセラミック素原料を、SrサイトとTiサイトの配合モル比mが1.000≦m≦1.020の範囲となるように秤量して混合粉砕した後、仮焼処理を行って仮焼粉末を作製する仮焼粉末作製工程と、Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)となるようにアクセプタ化合物を秤量すると共に、Ti元素100モルに対し0.15モル以上3.0モル以下となるようにZr化合物を秤量し、該Zr化合物及び前記アクセプタ化合物を前記仮焼粉末と混合し、熱処理を行って熱処理粉末を作製する熱処理粉末作製工程と、前記熱処理粉末に成形加工を施しセラミックグリーンシートを作製し、その後内部電極層とセラミックグリーンシートを交互に積層して積層体を形成する積層体形成工程と、還元雰囲気下、前記積層体に一次焼成処理を行った後、弱還元雰囲気下、大気雰囲気下、又は酸化雰囲気下で二次焼成処理を行う焼成工程とを含むので、SrサイトとTiサイトの配合モル比mが1.000≦m≦1.020であっても、熱処理粉末作製工程でZr化合物を添加して熱処理を行なうことにより、製品歩留まりが良好で、十分に実用性に耐えうる絶縁性能を有し、かつ良好なESD耐圧を有する量産性に適した積層型半導体セラミックコンデンサを製造することができる。Also, according to the method for manufacturing a multilayer semiconductor ceramic capacitor of the present invention, there is provided a method for manufacturing a multilayer semiconductor ceramic capacitor with a varistor function using a SrTiO 3 -based grain boundary insulating semiconductor ceramic, the ceramic including a donor compound The raw material is weighed so that the blending molar ratio m of Sr site and Ti site is in the range of 1.000 ≦ m ≦ 1.020, mixed and pulverized, and then calcined to prepare a calcined powder. The calcining powder preparation step and the acceptor compound are weighed so as to be 0.5 mol or less (excluding 0 mol) with respect to 100 mol of Ti element, and at least 0.15 mol with respect to 100 mol of Ti element. The Zr compound is weighed so as to be 3.0 mol or less, the Zr compound and the acceptor compound are mixed with the calcined powder, and heat treatment is performed to obtain the heat treated powder. A heat treatment powder production step to be produced, a laminate forming step in which a molding process is performed on the heat treatment powder to produce a ceramic green sheet, and then an internal electrode layer and a ceramic green sheet are alternately laminated to form a laminate, and a reducing atmosphere And a firing step in which a secondary firing treatment is performed in a weak reducing atmosphere, an air atmosphere, or an oxidizing atmosphere after the laminate is subjected to a primary firing treatment. Even if m is 1.000 ≦ m ≦ 1.020, by performing the heat treatment by adding a Zr compound in the heat treatment powder preparation step, the product yield is good and the insulation performance can sufficiently withstand practicality. In addition, it is possible to manufacture a multilayer semiconductor ceramic capacitor suitable for mass production having a good ESD withstand voltage.

本発明に係る積層型半導体セラミックコンデンサの一実施の形態を模式的に示す断面図である。1 is a cross-sectional view schematically showing an embodiment of a multilayer semiconductor ceramic capacitor according to the present invention. ツェナーダイオード又はバリスタをコンデンサに並列に設けた場合の電気回路図である。It is an electric circuit diagram when a Zener diode or a varistor is provided in parallel with a capacitor. コンデンサにバリスタ機能を持たせた場合の電気回路図である。It is an electric circuit diagram when the capacitor has a varistor function.

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

図1は本発明に係る積層型半導体セラミックコンデンサの一実施の形態を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing an embodiment of a multilayer semiconductor ceramic capacitor according to the present invention.

積層型半導体セラミックコンデンサは、部品素体1と、該部品素体1の両端部に形成された外部電極3a、3bとを備えている。   The multilayer semiconductor ceramic capacitor includes a component body 1 and external electrodes 3 a and 3 b formed at both ends of the component body 1.

部品素体1は、複数の半導体セラミック層1a〜1gと複数の内部電極層2a〜2fとが交互に積層されて焼成された積層焼結体からなり、一方の内部電極層2a、2c、2eは、部品素体1の一方の端面に露出すると共に、一方の外部電極3aと電気的に接続され、他方の内部電極層2b、2d、2fは、部品素体1の他方の端面に露出すると共に、他方の外部電極3bと電気的に接続されている。   The component body 1 is composed of a laminated sintered body in which a plurality of semiconductor ceramic layers 1a to 1g and a plurality of internal electrode layers 2a to 2f are alternately laminated and fired, and one of the internal electrode layers 2a, 2c, and 2e. Is exposed to one end face of the component element body 1 and is electrically connected to one external electrode 3a, and the other internal electrode layers 2b, 2d, and 2f are exposed to the other end face of the component element body 1. At the same time, it is electrically connected to the other external electrode 3b.

半導体セラミック層1a〜1gは、微視的には半導体からなる複数の結晶粒子と、結晶粒子の周囲に形成される粒界層とからなり(図示せず)、結晶粒子同士が粒界層を介して静電容量を形成する。そしてこれらが内部電極層2a、2c、2eと内部電極層2b、2d、2fとの対向面間で直列に、或いは並列に繋がることで、全体として所望の静電容量を得ている。   Microscopically, the semiconductor ceramic layers 1a to 1g are composed of a plurality of crystal grains made of a semiconductor and a grain boundary layer formed around the crystal grains (not shown). The electrostatic capacity is formed through. These are connected in series or in parallel between the opposing surfaces of the internal electrode layers 2a, 2c, and 2e and the internal electrode layers 2b, 2d, and 2f, thereby obtaining a desired capacitance as a whole.

上記半導体セラミック層1a〜1gは、SrTiO系粒界絶縁型の半導体セラミックで形成されている。そして、該半導体セラミックは、SrサイトとTiサイトとの配合モル比m(=Srサイト/Tiサイト)が1.000≦m≦1.020とされ、ドナー元素が結晶粒子中に固溶されると共に、アクセプタ元素が、Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)の範囲で粒界層中に存在し、Zr元素が前記Ti元素100モルに対し0.15モル以上3.0モル以下の範囲で含有され、かつ、結晶粒子の平均粒径が1.5μm以下とされている。The semiconductor ceramic layers 1a to 1g are made of SrTiO 3 -based grain boundary insulating semiconductor ceramic. In the semiconductor ceramic, the compound molar ratio m (= Sr site / Ti site) of Sr site and Ti site is 1.000 ≦ m ≦ 1.020, and the donor element is dissolved in the crystal particles. At the same time, the acceptor element is present in the grain boundary layer in the range of 0.5 mol or less (excluding 0 mol) with respect to 100 mol of Ti element, and the Zr element is in an amount of 0.005 mol per 100 mol of Ti element. It is contained in the range of 15 mol or more and 3.0 mol or less, and the average particle size of the crystal particles is 1.5 μm or less.

そしてこれにより、十分に実用性に耐えうる絶縁性能を確保しつつ製品歩留まりの向上を図ることができ、かつ良好なESD耐圧を有する量産性に適したバリスタ機能付き積層型半導体セラミックコンデンサを得ることができる。   As a result, it is possible to obtain a multilayer semiconductor ceramic capacitor with a varistor function suitable for mass production, capable of improving the product yield while ensuring sufficient insulation performance that can withstand practicality, and having good ESD withstand voltage. Can do.

次に、配合モル比m、アクセプター元素及びZr元素の含有モル量を上述の範囲にした理由を詳述する。   Next, the reason why the mixing molar ratio m, the content of the acceptor element and the Zr element is within the above ranges will be described in detail.

(1)配合モル比m
Srサイトの含有モル量を化学量論組成(=1.000)よりも過剰とすることにより、結晶粒子が粗大化するのを抑制すると共に絶縁抵抗が低下するのを防止することが可能である。すなわち、Srを化学量論組成よりも過剰に添加することにより、結晶粒子に固溶されずに粒界層に析出したSrが粒成長を抑制し、これにより微粒の結晶粒子が得られる。そしてこのような微粒の結晶粒子は、粒界層に酸素が行き届きやすくなってショットキー障壁の形成を促進し、これにより絶縁抵抗が低下するのを防止できると考えられる。
(1) Mixing molar ratio m
By making the content amount of Sr sites more than the stoichiometric composition (= 1.000), it is possible to suppress the crystal grains from coarsening and to prevent the insulation resistance from decreasing. . That is, by adding Sr in excess of the stoichiometric composition, Sr precipitated in the grain boundary layer without being solid-solved in the crystal particles suppresses the grain growth, thereby obtaining fine crystal grains. Such fine crystal grains are considered to facilitate the formation of a Schottky barrier by making oxygen easily reach the grain boundary layer, thereby preventing the insulation resistance from being lowered.

また、配合モル比mが化学量論組成の場合は、セラミックの粒成長を抑制する物質が粒界層に存在しないため、結晶粒子は若干の粗大化を招くものの、実用上、十分な絶縁性能を確保しつつ、平均粒径を1.5μm以下に抑制することが可能となる。   In addition, when the blending molar ratio m is a stoichiometric composition, there is no substance that suppresses the grain growth of the ceramic in the grain boundary layer. It is possible to suppress the average particle size to 1.5 μm or less while ensuring the above.

一方、配合モル比mが1.020を超えると、結晶粒子に固溶されずに粒界層に析出するSrが過剰となり、後述するZr元素を含有させても製品歩留まりを向上させるのが困難である。   On the other hand, when the blending molar ratio m exceeds 1.020, Sr that is not solid-dissolved in the crystal particles and precipitates in the grain boundary layer becomes excessive, and it is difficult to improve the product yield even if the Zr element described later is contained. It is.

そこで、本実施の形態では、配合モル比mが1.000≦m≦1.020となるように調製している。   Therefore, in the present embodiment, the blending molar ratio m is adjusted to be 1.000 ≦ m ≦ 1.020.

(2)アクセプタ元素の含有モル量
アクセプタ元素を粒界層中に存在させることにより、粒界層は、電気的に活性化するエネルギー準位(粒界準位)を形成してショットキー障壁の形成を促進し、これにより絶縁抵抗が向上し、良好な絶縁性を有する積層型半導体セラミックコンデンサを得ることができる。
(2) Molar content of acceptor element
By allowing the acceptor element to be present in the grain boundary layer, the grain boundary layer forms an electrically activated energy level (grain boundary level) to promote the formation of a Schottky barrier, thereby insulating resistance. As a result, a multilayer semiconductor ceramic capacitor having good insulation can be obtained.

しかしながら、アクセプタ元素の含有モル量がTi元素100モルに対し0.5モルを超えると、ESD耐圧の低下を招き、好ましくない。   However, if the content of the acceptor element exceeds 0.5 mol with respect to 100 mol of Ti element, the ESD withstand voltage is lowered, which is not preferable.

そこで、本実施の形態では、ESDの低下を招かないように、アクセプタ元素をTi元素100モルに対し0.5モル以下(ただし、0モルを含まず。)の範囲で含有させ、絶縁性の向上を図っている。   Therefore, in this embodiment, the acceptor element is included in a range of 0.5 mol or less (excluding 0 mol) with respect to 100 mol of Ti element so as not to cause a decrease in ESD, so that the insulating property is reduced. We are trying to improve.

尚、所望のESD耐圧を確保しつつ、所望の静電容量及び良好な絶縁性(絶縁抵抗)を得るためには、アクセプタ元素は、Ti元素100モルに対し、0.3〜0.5モルの範囲で含有されているのが好ましい。   In order to obtain a desired capacitance and good insulation (insulation resistance) while ensuring a desired ESD withstand voltage, the acceptor element is 0.3 to 0.5 mol per 100 mol of Ti element. It is preferable to contain in the range.

そして、このようなアクセプタ元素としては、アクセプタとしての作用を奏するものであれば、特に限定されるものではなく、Mn、Co、Ni、Cr等を使用することができるが、特にMnが好んで使用される。   Such an acceptor element is not particularly limited as long as it acts as an acceptor, and Mn, Co, Ni, Cr, etc. can be used, but Mn is particularly preferred. used.

(3)Zr元素の含有モル量
上述のように配合モル比mを1.000≦m≦1.020とすることにより、平均結晶粒子を1.5μm以下の微粒とすることができるものの、この配合モル比mでは製品歩留まりの低下を招くおそれがある。
(3) Content molar amount of Zr element Although the average crystal grain can be reduced to 1.5 μm or less by adjusting the blending molar ratio m to 1.000 ≦ m ≦ 1.020 as described above, If the blending molar ratio m, the product yield may be reduced.

すなわち、Srサイトの含有モル量を化学量論組成又は化学量論組成よりも過剰にした場合、静電容量が1nF程度の低容量化品では、量産すると製品間で絶縁性能に大きなバラツキが生じ、その結果、製品歩留まりが低下して量産性に劣る。これは結晶粒子に固溶されずに粒界層に析出したSrが結晶粒界の絶縁化を若干阻害するためと考えられ、配合モル比mが増加するのに伴い顕著になる。   In other words, when the molar content of Sr sites is excessive than the stoichiometric composition or the stoichiometric composition, a low-capacitance product with a capacitance of about 1 nF causes a large variation in insulation performance between products when mass-produced. As a result, the product yield decreases and the mass productivity is inferior. This is considered to be because Sr precipitated in the grain boundary layer without being solid-dissolved in the crystal grains slightly inhibits the insulation of the grain boundaries, and becomes prominent as the blending molar ratio m increases.

そこで、本実施の形態では、Ti元素100モルに対し0.15モル以上3.0モル以下のZr元素を含有させることにより、製品歩留まりを向上させている。   Therefore, in this embodiment, the product yield is improved by containing 0.15 mol or more and 3.0 mol or less of Zr element with respect to 100 mol of Ti element.

すなわち、本発明者の研究結果により、配合モル比mが1.000以上となってSrが結晶粒子に固溶されずに粒界層に析出した場合であっても、配合モル比mが1.020以下であれば、Zr元素を添加して熱処理することにより、製品歩留まりが向上することが分った。これは合成された仮焼粉末にZr元素を添加して熱処理し、Zrを粒界層に偏析させることにより、粒界層に析出したSrがZrにより補償され、Srが粒界絶縁化を阻害するのを抑制できると考えられるためである。このようにZrには粒界層に析出するSrを補償する作用を有すると考えられ、これにより製品歩留まりを向上させることが可能となる。   That is, according to the research results of the present inventors, even when the blending molar ratio m is 1.000 or more and Sr is not dissolved in the crystal particles but is precipitated in the grain boundary layer, the blending molar ratio m is 1. It was found that the product yield was improved by adding Zr element and heat-treating it if it was .020 or less. This is because the synthesized calcined powder is heat-treated by adding Zr element and segregates Zr to the grain boundary layer, so that Sr precipitated in the grain boundary layer is compensated by Zr, and Sr inhibits the grain boundary insulation. It is because it is thought that it can suppress doing. Thus, it is considered that Zr has an action of compensating Sr precipitated in the grain boundary layer, which makes it possible to improve the product yield.

そして、そのためにはZr元素の含有モル量は、Ti元素100モルに対し少なくとも0.15モルは必要である。   For this purpose, the molar content of the Zr element is required to be at least 0.15 mol per 100 mol of the Ti element.

一方、Zr元素の含有モル量がTi100モルに対し3.0モルを超えると、粒界層に偏析して結晶粒子の微粒化に寄与するSr量が相対的に減少し、その結果、結晶粒子の平均粒径が粗大化して絶縁性の低下が顕著となり、しかもESD耐圧も低下する。   On the other hand, when the content molar amount of the Zr element exceeds 3.0 mol with respect to 100 mol of Ti, the amount of Sr that segregates in the grain boundary layer and contributes to the atomization of the crystal particles is relatively reduced. As a result, the average particle size of the material becomes coarse, and the deterioration of the insulation becomes remarkable, and the ESD withstand voltage also decreases.

そこで、本実施の形態では、Zr元素は、Ti元素100モルに対し0.15モル以上3.0モル以下となるように含有されている。   Therefore, in the present embodiment, the Zr element is contained so as to be 0.15 mol or more and 3.0 mol or less with respect to 100 mol of Ti element.

尚、セラミックは、ドナー元素を結晶粒子中に固溶させることにより、半導体化する。すなわち、ドナー元素は、還元雰囲気で焼成処理を行ってセラミックを半導体化するために結晶粒子中に固溶させているが、その含有量は特に限定されない。ただし、ドナー元素がTi元素100モルに対し0.2モル未満の場合は静電容量の過度の低下を招くおそれがある。一方、ドナー元素がTi元素100モルに対し1.2モルを超えると焼成温度の許容温度幅が狭くなるおそれがある。   The ceramic is made into a semiconductor by dissolving a donor element in crystal grains. That is, the donor element is solid-solved in the crystal particles in order to carry out the firing treatment in a reducing atmosphere to make the ceramic a semiconductor, but the content is not particularly limited. However, when the donor element is less than 0.2 mol with respect to 100 mol of Ti element, there is a risk of causing an excessive decrease in capacitance. On the other hand, if the donor element exceeds 1.2 mol with respect to 100 mol of Ti element, the allowable temperature range of the firing temperature may be narrowed.

したがって、ドナー元素の含有モル量はTi元素100モルに対し0.2〜1.2モル、好ましくは0.4〜1.0モルがよい。   Accordingly, the molar content of the donor element is 0.2 to 1.2 mol, preferably 0.4 to 1.0 mol, per 100 mol of Ti element.

そして、このようなドナー元素としては、特に限定されるものではなく、例えば、ドナー元素をSrサイトに固容させる場合は、La、Nd、Sm、Dy等を使用することができ、ドナー元素をTiサイトに固容させる場合は、Nb、Ta等を使用することができる。   Such a donor element is not particularly limited. For example, when solidifying the donor element at the Sr site, La, Nd, Sm, Dy, etc. can be used. Nb, Ta, or the like can be used when solidifying the Ti site.

また、上記半導体セラミック中に、Ti元素100モルに対し、0.1モル以下の範囲で低融点酸化物を添加するのも好ましく、このような低融点酸化物を添加することにより、焼結性を向上させることができると共に上記アクセプタ元素の粒界層への偏析を促進することができる。   Moreover, it is also preferable to add a low melting point oxide in the range of 0.1 mole or less to 100 moles of Ti element in the semiconductor ceramic, and by adding such a low melting point oxide, sinterability And the segregation of the acceptor element to the grain boundary layer can be promoted.

尚、低融点酸化物の含有モル量を上記範囲としたのは、その含有モル量がTi元素100モルに対し、0.1モルを超えると静電容量の過度の低下を招き、所望の電気特性が得られないおそれがあるからである。   The content of the low melting point oxide is within the above range because when the content exceeds 0.1 mol with respect to 100 mol of Ti element, the electrostatic capacity is excessively lowered, and the desired electrical properties are reduced. This is because characteristics may not be obtained.

また、低融点酸化物としては、特に限定されるものではなく、SiO、Bやアルカリ金属元素(K、Li、Na等)を含有したガラスセラミック、銅−タングステン塩等を使用することができるが、SiOが好んで使用される。As the low-melting-point oxide, is not particularly limited, SiO 2, B and alkali metal element (K, Li, Na, etc.) glass ceramic containing copper - may be used tungsten salt However, SiO 2 is preferably used.

尚、半導体セラミックの結晶粒子の平均粒径は、上述した組成範囲と相俟ってTi化合物の比表面積や仮焼温度、焼成温度等の製造条件を制御することにより、容易に1.5μm以下に制御することができる。   In addition, the average particle diameter of the crystal grains of the semiconductor ceramic can be easily reduced to 1.5 μm or less by controlling the production conditions such as the specific surface area of the Ti compound, the calcination temperature, and the firing temperature in combination with the composition range described above. Can be controlled.

このように本実施の形態では、半導体セラミック層1a〜1gを形成する半導体セラミックが、SrサイトとTiサイトとの配合モル比mは1.000≦m≦1.020であり、La、Nd,Sm、Dy、Nb、Ta等のドナー元素が結晶粒子中に固溶されると共に、Mn、Co、Ni、Cr等のアクセプタ元素が、前記Ti元素100モルに対し0.5モル以下(好ましくは、0.3〜0.5モル)の範囲で粒界層中に存在し、Zr元素がTi元素100モルに対し0.15〜3.0モルの範囲で含有され、かつ、結晶粒子の平均粒径が1.5μm以下であるので、十分に実用性に耐えうる絶縁性能を確保しつつ製品歩留まりの向上を図ることができ、かつ良好なESD耐圧を有する量産性に適した積層型半導体セラミックコンデンサを得ることができる。   As described above, in the present embodiment, the semiconductor ceramic forming the semiconductor ceramic layers 1a to 1g has a mixing molar ratio m of Sr sites to Ti sites of 1.000 ≦ m ≦ 1.020, and La, Nd, Donor elements such as Sm, Dy, Nb, and Ta are dissolved in crystal grains, and acceptor elements such as Mn, Co, Ni, and Cr are 0.5 mol or less (preferably, 100 mol of Ti element) , 0.3 to 0.5 mol) in the grain boundary layer, the Zr element is contained in the range of 0.15 to 3.0 mol with respect to 100 mol of Ti element, and the average of crystal grains Since the particle size is 1.5 μm or less, it is possible to improve the product yield while ensuring sufficient insulation performance that can withstand practicality, and to have a good ESD withstand voltage and suitable for mass production. Get a capacitor It is possible.

具体的には、静電容量が1nF程度に低容量化しても、30kV以上のESD耐圧を有し、絶縁抵抗logIRは8.5以上を確保でき、85%以上の製品歩留まりを有し、良好な信頼性を有する量産性に適した積層型半導体セラミックコンデンサを得ることが可能となる。   Specifically, even if the capacitance is reduced to about 1 nF, it has an ESD withstand voltage of 30 kV or more, an insulation resistance logIR of 8.5 or more, a product yield of 85% or more, and good It is possible to obtain a multilayer semiconductor ceramic capacitor having high reliability and suitable for mass production.

次に、上記積層型半導体セラミックコンデンサの製造方法の一実施の形態を説明する。   Next, an embodiment of a method for manufacturing the multilayer semiconductor ceramic capacitor will be described.

まず、セラミック素原料としてSrCO等のSr化合物、LaやSm等のドナー元素を含有したドナー化合物、及び、例えば比表面積が10m/g以上(平均粒径:約0.1μm以下)のTiO等、微粒のTi化合物をそれぞれ用意し、所定量秤量する。First, an Sr compound such as SrCO 3 as a ceramic raw material, a donor compound containing a donor element such as La or Sm, and TiO having a specific surface area of 10 m 2 / g or more (average particle size: about 0.1 μm or less), for example. Prepare a fine Ti compound such as 2 and weigh a predetermined amount.

次いで、この秤量物に所定量(例えば、1〜3重量部)の分散剤を添加し、PSZ(Partially Stabilized Zirconia;「部分安定化ジルコニア」)ボール等の粉砕媒体及び純水と共にボールミルに投入し、該ボールミル内で十分に湿式混合してスラリーを作製する。   Next, a predetermined amount (for example, 1 to 3 parts by weight) of a dispersant is added to the weighed product, and the mixture is put into a ball mill together with a grinding medium such as PSZ (Partially Stabilized Zirconia) balls and pure water. Then, the slurry is sufficiently wet-mixed in the ball mill.

次に、このスラリーを蒸発乾燥させた後、大気雰囲気下、所定温度(例えば、1300℃〜1450℃)で2時間程度、仮焼処理を施し、ドナー元素が固溶した仮焼粉末を作製する。   Next, this slurry is evaporated to dryness, and then calcined at a predetermined temperature (for example, 1300 ° C. to 1450 ° C.) for about 2 hours in an air atmosphere to produce a calcined powder in which the donor element is dissolved. .

次いで、Zr元素がTi元素100モルに対し0.15〜3.0モルとなるようにZr化合物を秤量し、また、MnやCo等のアクセプタ元素の含有モル量が、Ti元素100モルに対し、0.5モル以下(好ましくは、0.3〜0.5モル)となるようにアクセプタ化合物、さらにはSiO等の低融点酸化物の含有モル量がTi元素100モルに対し0〜0.1モルとなるように秤量する。次いで、これらZr化合物、アクセプタ化合物、及び低融点酸化物と前記仮焼粉末及び純水並びに必要に応じて分散剤を添加し、再度前記粉砕媒体と共にボールミルに投入し、該ボールミル内で十分に湿式で混合する。そしてその後、蒸発乾燥させ、大気雰囲気下、所定温度(例えば、500〜700℃)で5時間程度、熱処理を行い、熱処理粉末を作製する。Next, the Zr compound is weighed so that the Zr element is 0.15 to 3.0 mol with respect to 100 mol of the Ti element, and the molar content of the acceptor element such as Mn or Co is 100 mol with respect to the Ti element. The molar amount of the acceptor compound and further the low melting point oxide such as SiO 2 is 0 to 0 with respect to 100 mol of Ti element so that it is 0.5 mol or less (preferably 0.3 to 0.5 mol). Weigh to 1 mol. Then, these Zr compound, acceptor compound, low melting point oxide, the calcined powder and pure water, and a dispersant as necessary are added, and again put into the ball mill together with the grinding medium, and sufficiently wet in the ball mill. Mix with. Then, it is evaporated to dryness, and heat treatment is performed at a predetermined temperature (for example, 500 to 700 ° C.) for about 5 hours in an air atmosphere to produce heat treated powder.

次に、この熱処理粉末にトルエン、アルコール等の有機溶媒や有機バインダ、消泡剤、カチオン性界面活性剤等を適宜添加して十分に湿式で混合し、これによりセラミックスラリーを得る。   Next, an organic solvent such as toluene and alcohol, an organic binder, an antifoaming agent, a cationic surfactant, and the like are appropriately added to the heat-treated powder and mixed sufficiently wet, thereby obtaining a ceramic slurry.

次に、ドクターブレード法、リップコータ法、ダイコータ法等の成形加工法を使用してセラミックスラリーに成形加工を施し、焼成後の厚みが所定厚み(例えば、1〜2μm程度)となるようにセラミックグリーンシートを作製する。   Next, the ceramic slurry is formed using a forming method such as a doctor blade method, a lip coater method, a die coater method, etc., and the thickness after firing becomes a predetermined thickness (for example, about 1 to 2 μm). A sheet is produced.

次いで、内部電極用導電性ペーストを使用してセラミックグリーンシート上にスクリーン印刷法、グラビア印刷法、又は真空蒸着法、スパッタリング法などを用いた転写等を施し、前記セラミックグリーンシートの表面に所定パターンの導電膜を形成する。   Next, a transfer using a screen printing method, a gravure printing method, a vacuum deposition method, a sputtering method, or the like is performed on the ceramic green sheet using the conductive paste for internal electrodes, and a predetermined pattern is formed on the surface of the ceramic green sheet. The conductive film is formed.

尚、内部電極用導電性ペーストに含有される導電性材料としては特に限定されるものではないが、NiやCu等の良導電性を有する卑金属材料を使用するのが好ましい。   The conductive material contained in the internal electrode conductive paste is not particularly limited, but a base metal material having good conductivity such as Ni or Cu is preferably used.

次いで、導電膜が形成されたセラミックグリーンシートを所定方向に複数枚積層すると共に、導電膜の形成されていない外層用のセラミックグリーンシートを積層した後、圧着し、所定寸法に切断して積層体を作製する。   Next, a plurality of ceramic green sheets on which a conductive film is formed are laminated in a predetermined direction, and an outer layer ceramic green sheet on which a conductive film is not formed is laminated. Is made.

そしてこの後、大気雰囲気下で温度300〜500℃で2時間程度、脱バインダ処理を行なう。次いで、HガスとNガスが所定の流量比(例えば、H/N=1/1000〜1/100)となるように還元雰囲気とされた焼成炉を使用し、該焼成炉内で、1200〜1250℃の温度で2時間程度、一次焼成を行い、積層体を半導体化する。Thereafter, the binder removal treatment is performed at a temperature of 300 to 500 ° C. for about 2 hours in an air atmosphere. Next, a firing furnace having a reducing atmosphere is used so that the H 2 gas and the N 2 gas have a predetermined flow ratio (for example, H 2 / N 2 = 1/1000 to 1/100). Then, primary firing is performed at a temperature of 1200 to 1250 ° C. for about 2 hours, and the stacked body is made into a semiconductor.

このように仮焼処理における仮焼温度(1300〜1450℃)を、一次焼成処理における焼成温度(1200〜1250℃)よりも高くすることで、一次焼成処理において結晶粒子の粒成長が促進されることがほとんどなく、結晶粒子が粗大化するのを抑制することができる。そして、結晶粒子の平均粒径が1.5μm以下となるように仮焼粉末作製時に仮焼処理を制御することができる。   Thus, by making the calcination temperature (1300 to 1450 ° C.) in the calcination treatment higher than the firing temperature (1200 to 1250 ° C.) in the primary calcination treatment, grain growth of crystal grains is promoted in the primary calcination treatment. There is almost nothing, and it can suppress that a crystal grain coarsens. And a calcination process can be controlled at the time of calcination powder preparation so that the average particle diameter of crystal grains may be 1.5 micrometers or less.

尚、一次焼成処理時に結晶粒子の平均粒径を1.5μm以下の範囲で大きくしたい場合には、一次焼成処理の焼成温度を1200〜1250℃の範囲内で高温側に設定することで可能である。   In addition, when it is desired to increase the average particle size of the crystal grains in the range of 1.5 μm or less during the primary firing treatment, it is possible to set the firing temperature of the primary firing treatment to a high temperature within a range of 1200 to 1250 ° C. is there.

また、一次焼成処理の焼成温度を仮焼温度よりも高くした場合であっても、双方の温度を極力近づけるようにすることにより、結晶粒子の平均粒径を1.5μm以下に抑制することが可能である。   Even when the firing temperature of the primary firing treatment is higher than the calcining temperature, the average particle size of the crystal particles can be suppressed to 1.5 μm or less by making both temperatures as close as possible. Is possible.

そして、このように積層体を半導体化した後、弱還元雰囲気下、大気雰囲気下、又は酸化雰囲気下、NiやCu等の内部電極材料が酸化しないように600〜900℃の低温度で1時間程度、二次焼成を行う。そして、半導体セラミックを再酸化して粒界絶縁層を形成し、これにより内部電極2が埋設された積層焼結体からなる部品素体1が作製される。   And after making a laminated body into a semiconductor in this way, it is 1 hour at a low temperature of 600-900 degreeC so that internal electrode materials, such as Ni and Cu, may not oxidize in weak reducing atmosphere, air atmosphere, or oxidizing atmosphere. Secondary firing is performed to the extent. Then, the semiconductor ceramic is reoxidized to form a grain boundary insulating layer, whereby the component body 1 made of a laminated sintered body in which the internal electrode 2 is embedded is manufactured.

次に、部品素体1の両端部に外部電極用導電性ペーストを塗布し、焼付処理を行い、外部電極3a、3bを形成し、これにより積層型半導体セラミックコンデンサが製造される。   Next, a conductive paste for external electrodes is applied to both ends of the component element body 1 and subjected to a baking treatment to form external electrodes 3a and 3b, whereby a multilayer semiconductor ceramic capacitor is manufactured.

尚、外部電極3a、3bの形成方法として、印刷、真空蒸着、又はスパッタリング等で形成してもよい。また、未焼成の積層体の両端部に外部電極用導電性ペーストを塗布した後、積層体と同時に焼成処理を施すようにしてもよい。   The external electrodes 3a and 3b may be formed by printing, vacuum vapor deposition, sputtering, or the like. Moreover, after applying the conductive paste for external electrodes to both end portions of the unfired laminate, the firing treatment may be performed simultaneously with the laminate.

外部電極用導電性ペーストに含有される導電性材料についても特に限定されるものではないが、Ga、In、Ni、Cu等の材料を使用するのが好ましく、さらに、これらの電極上にAg電極を形成することも可能である。   The conductive material contained in the conductive paste for external electrodes is not particularly limited, but it is preferable to use a material such as Ga, In, Ni, or Cu. Further, an Ag electrode is provided on these electrodes. It is also possible to form

このように本実施の形態では、ドナー化合物を含むセラミック素原料を、SrサイトとTiサイトの配合モル比mが1.000≦m≦1.020の範囲となるように秤量して混合粉砕し、仮焼処理を行って仮焼粉末を作製した後、Ti元素100モルに対し0.15モル以上3.0モル以下となるようにZr化合物を秤量し、所定量のアクセプタ化合物と共に前記仮焼粉末と混合して熱処理を行っているので、SrサイトとTiサイトとの配合モル比mが化学量論比又はSrサイトが化学量論比よりも過剰であっても、十分に実用性に耐えうる絶縁性能を確保しつつ、製品歩留まりの向上を図ることができ、かつ良好なESD耐圧を有する量産性に適した積層型半導体セラミックコンデンサを得ることができる。   As described above, in this embodiment, the ceramic raw material containing the donor compound is weighed and mixed and pulverized so that the blending molar ratio m of the Sr site and Ti site is in the range of 1.000 ≦ m ≦ 1.020. Then, after calcining to prepare a calcined powder, the Zr compound is weighed so as to be 0.15 mol or more and 3.0 mol or less with respect to 100 mol of Ti element, and the calcined together with a predetermined amount of the acceptor compound. Since heat treatment is performed by mixing with powder, even if the mixing molar ratio m of Sr site and Ti site is a stoichiometric ratio or Sr site is more than the stoichiometric ratio, it is sufficiently practical. Thus, it is possible to obtain a multilayer semiconductor ceramic capacitor suitable for mass production having a good ESD withstand voltage while ensuring a good insulating performance.

尚、本発明は上記実施の形態に限定されるものではない。例えば、上記実施の形態では、固溶体を固相法で作製しているが、固溶体の作製方法は特に限定されるものではなく、例えば水熱合成法、ゾル・ゲル法、加水分解法、共沈法等任意の方法を使用することができる。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the solid solution is produced by the solid phase method, but the production method of the solid solution is not particularly limited. For example, hydrothermal synthesis method, sol-gel method, hydrolysis method, coprecipitation Any method such as a method can be used.

次に、本発明の実施例を具体的に説明する。   Next, examples of the present invention will be specifically described.

〔試料の作製〕
セラミック素原料としてSrCO、比表面積が30m/g(平均粒径:約30nm)のTiO、及びドナー化合物としてのLaCl、SmCl、及びNdClを用意した。そして、ドナー元素の含有量がTi元素100モルに対し表1となるように前記ドナー化合物を秤量し、さらにSrサイトとTiサイトとの配合モル比m(=Srサイト/Tiサイト)が表1となるようにSrCO及びTiOを秤量した。次いで、これらの秤量物100重量部に対し3重量部のポリカルボン酸アンモニウム塩を分散剤として添加した後、粉砕媒体として直径2mmのPSZボール及び純水と共にボールミルに投入し、該ボールミル内で16時間湿式混合してスラリーを作製した。
[Sample preparation]
SrCO 3 as ceramic raw materials, specific surface area of 30m 2 / g: TiO 2 (average particle size about 30 nm), and LaCl 3, SmCl 3 as a donor compound and was prepared NdCl 3. Then, the donor compound is weighed so that the content of the donor element is as shown in Table 1 with respect to 100 mol of Ti element, and the blending molar ratio m (= Sr site / Ti site) of Sr site and Ti site is shown in Table 1. SrCO 3 and TiO 2 were weighed so that Next, after adding 3 parts by weight of a polycarboxylic acid ammonium salt as a dispersing agent to 100 parts by weight of these weighed products, the mixture was put into a ball mill together with PSZ balls having a diameter of 2 mm and pure water as a grinding medium. A slurry was prepared by wet mixing for a period of time.

次に、このスラリーを蒸発乾燥させた後、大気雰囲気下、1350℃の温度で2時間仮焼処理を施し、ドナー元素が結晶粒子に固溶した仮焼粉末を得た。   Next, this slurry was evaporated to dryness, and then calcined at 1350 ° C. for 2 hours in an air atmosphere to obtain a calcined powder in which the donor element was solid-solved in the crystal particles.

次に、前記仮焼粉末に対し、Ti元素100モルに対するZr元素の含有モル量が表1となるようにZrOを添加し、Ti元素100モルに対するMn元素の含有量が表1となるようにMnCOを添加し、またTi元素100モルに対するSiOの含有モル量が0.1モルとなるようにSiOを添加し、さらに分散剤が1重量%となるように該分散剤を添加した。そして、再び直径2mmのPSZボール及び純水と共にボールミルに投入し、該ボールミル内で16時間湿式混合した。尚、MnCOに代えてMnCl水溶液やMnOゾルを使用してもよい。また、SiOに代えてテトラエトキシシラン(Si(OC)を使用してもよい。Next, with respect to the calcined powder, ZrO 2 is added so that the molar content of Zr element with respect to 100 mol of Ti element is as shown in Table 1, and the content of Mn element with respect to 100 mol of Ti element is as shown in Table 1. MnCO 3 is added to SiO 2 , and SiO 2 is added so that the molar content of SiO 2 with respect to 100 mol of Ti element is 0.1 mol. Further, the dispersant is added so that the dispersant is 1% by weight. did. Then, it was again put into a ball mill together with PSZ balls having a diameter of 2 mm and pure water, and wet mixed in the ball mill for 16 hours. In place of MnCO 3 , an MnCl 2 aqueous solution or MnO 2 sol may be used. Further, tetraethoxysilane (Si (OC 2 H 5 ) 4 ) may be used instead of SiO 2 .

そしてこの後、蒸発乾燥させ、大気雰囲気下、600℃で5時間、熱処理を行い、熱処理粉末を得た。   Then, it was evaporated to dryness, and heat treatment was performed at 600 ° C. for 5 hours in an air atmosphere to obtain heat treated powder.

次に、トルエン、アルコール等の有機溶媒、及び分散剤を前記熱処理粉末に適量添加し、再び直径2mmのPSZボールと共にボールミルに投入し、該ボールミル内にて湿式で16時間混合した。そしてこの後、有機バインダとしてのポリビニルビチラール(PVB)や可塑剤としてのジオクチルフタレート(DOP)、さらにはカチオン性界面活性剤を適量添加し、湿式で1.5時間混合処理を行い、これによりセラミックスラリーを作製した。   Next, an appropriate amount of an organic solvent such as toluene and alcohol, and a dispersant were added to the heat-treated powder, and the mixture was again put into a ball mill together with PSZ balls having a diameter of 2 mm, and mixed in the ball mill for 16 hours in a wet manner. And after this, polyvinyl bityral (PVB) as an organic binder, dioctyl phthalate (DOP) as a plasticizer, and an appropriate amount of a cationic surfactant are added and mixed for 1.5 hours in a wet manner. A ceramic slurry was prepared.

次に、リップコーター法を使用してこのセラミックスラリーに成形加工を施してセラミックグリーンシートを作製し、次いで、Niを主成分とする内部電極用導電性ペーストを使用してセラミックグリーンシート上にスクリーン印刷を施し、前記セラミックグリーンシートの表面に所定パターンの導電膜を形成した。   Next, a ceramic green sheet is produced by molding the ceramic slurry using a lip coater method, and then a screen is formed on the ceramic green sheet using a conductive paste for internal electrodes mainly composed of Ni. Printing was performed to form a conductive film having a predetermined pattern on the surface of the ceramic green sheet.

次いで、導電膜の形成されたセラミックグリーンシートを所定方向に複数枚積層した後、導電膜の形成されていない外層用のセラミックグリーンシートを積層し、その後厚みが0.7mm程度となるように熱圧着し、セラミックグリーンシートと内部電極とが交互に積層された積層体を得た。   Next, after laminating a plurality of ceramic green sheets with a conductive film in a predetermined direction, a ceramic green sheet for an outer layer without a conductive film is laminated, and then heated so that the thickness becomes about 0.7 mm. A laminated body in which ceramic green sheets and internal electrodes were alternately laminated was obtained by pressure bonding.

そしてこの後、窒素雰囲気中、温度375℃で2時間、脱バインダ処理を行ない、次いで、H:N=1:100の流量比に調製された還元雰囲気下、1250℃の温度で2時間、積層体に一次焼成を施し、積層体を半導体化した。尚、焼成温度は、各試料毎にCR積が極大となる温度に設定した。Thereafter, the binder removal treatment is performed in a nitrogen atmosphere at a temperature of 375 ° C. for 2 hours, and then in a reducing atmosphere prepared at a flow rate ratio of H 2 : N 2 = 1: 100 at a temperature of 1250 ° C. for 2 hours. The laminate was subjected to primary firing to make the laminate a semiconductor. The firing temperature was set to a temperature at which the CR product was maximized for each sample.

次いで、大気雰囲気下、700℃の温度で1時間、二次焼成を行って再酸化処理を施し、その後、端面を研磨して部品素体(積層焼結体)を作製した。次いで、この部品素体の両端面にスパッタリングを施し、Ni−Cr層、Ni−Cu層、Ag層からなる三層構造の外部電極を形成した。次いで、電解めっきを施し、外部電極の表面にNi皮膜及びSn皮膜を順次形成し、これにより試料番号1〜19の試料を作製した。尚、得られた各試料の外径寸法は、長さL:1.0mm、幅W:0.5mm、厚みT:0.5mm、積層数は10層であった。   Next, secondary firing was performed for 1 hour at a temperature of 700 ° C. in an air atmosphere to perform reoxidation treatment, and then the end face was polished to prepare a component body (laminated sintered body). Next, sputtering was performed on both end faces of the component element body to form a three-layered external electrode composed of a Ni—Cr layer, a Ni—Cu layer, and an Ag layer. Next, electrolytic plating was performed to sequentially form a Ni film and a Sn film on the surface of the external electrode, thereby preparing samples Nos. 1 to 19. In addition, the outer diameter dimension of each obtained sample was length L: 1.0mm, width W: 0.5mm, thickness T: 0.5mm, and the number of laminations was ten layers.

〔試料の評価〕
次に、試料番号1〜19の各試料3個について、樹脂固めを行い、各試料の幅方向に研磨し、幅方向の約1/2の箇所で研磨断面を得た。次いで、この研磨断面をケミカルエッチングして走査型電子顕微鏡(SEM)で観察し、このSEM写真を画像解析した。そして、JIS規格(R1670)に準拠し、円相当径に換算して結晶粒子の平均粒径を求め、3個の試料の平均値を算出し、平均結晶粒径とした。
(Sample evaluation)
Next, for each of the three samples of sample numbers 1 to 19, resin hardening was performed, and polishing was performed in the width direction of each sample. Next, this polished cross section was chemically etched and observed with a scanning electron microscope (SEM), and this SEM photograph was subjected to image analysis. And based on JIS standard (R1670), it converted into an equivalent circle diameter, the average particle diameter of the crystal grain was calculated | required, the average value of three samples was calculated, and it was set as the average crystal grain diameter.

また、各試料100個について、インピーダンスアナライザ(アジレント・テクノロジー社製:HP4194A)を使用し、周波数1kHz、電圧1Vの条件で静電容量を測定し、100個の試料の平均値を求めた。   Further, with respect to 100 samples, an impedance analyzer (manufactured by Agilent Technologies: HP4194A) was used, and the capacitance was measured under conditions of a frequency of 1 kHz and a voltage of 1 V, and an average value of 100 samples was obtained.

さらに、各試料100個について、ESDのイミュニティ試験規格であるIEC61000−4−2(国際規格)に準拠し、正逆10回印加し、接触放電させてESD耐圧を測定し、100個の試料の平均値を求めた。   Furthermore, 100 samples were measured according to ESD immunity test standard IEC61000-4-2 (international standard), applied forward and reverse 10 times, contact discharged to measure ESD withstand voltage, and 100 samples were measured. The average value was obtained.

また、各試料100個について、50Vの直流電圧を1分間印加し、その漏れ電流から絶縁抵抗IRを測定し、平均値を求めた。さらに、各試料100個について、50MΩ以上の絶縁抵抗を有している試料を計数し、製品歩留まり(%)を求めた。   For 100 samples, a DC voltage of 50 V was applied for 1 minute, and the insulation resistance IR was measured from the leakage current, and the average value was obtained. Further, for 100 samples, the samples having an insulation resistance of 50 MΩ or more were counted to determine the product yield (%).

表1は、試料番号1〜19の組成及び測定結果を示している。尚、絶縁抵抗IRは、その平均値を常用対数(logIR)で示している。   Table 1 shows the compositions and measurement results of sample numbers 1 to 19. The insulation resistance IR has an average value represented by a common logarithm (logIR).

Figure 0005846398
Figure 0005846398

試料番号1は、絶縁抵抗logIRは8.9と良好であるが、製品歩留まりは58%と低かった。これは配合モル比mは1.020であるが、ZrOが含まれていないため、過剰に配合されたSrが粒界層に析出し、このため結晶粒界の絶縁化が阻害されたためと考えられる。In Sample No. 1, the insulation resistance logIR was as good as 8.9, but the product yield was as low as 58%. This is because the blending molar ratio m is 1.020, but ZrO 2 is not included, so that excessively blended Sr is precipitated in the grain boundary layer, which prevents the grain boundary from being insulated. Conceivable.

試料番号2は、配合モル比mが1.020であるが、ZrOの含有モル量がTi元素100モルに対し0.10モルと少ないため、試料番号1と同様の理由から、絶縁抵抗logIRは8.8と良好であるが、製品歩留まりは61%と低くなった。Sample No. 2 has a compounding molar ratio m of 1.020, but the content of ZrO 2 is as small as 0.10 mol with respect to 100 mol of Ti element. Therefore, for the same reason as Sample No. 1, the insulation resistance logIR Was as good as 8.8, but the product yield was as low as 61%.

試料番号6は、ZrOの含有モル量がTi元素100モルに対し3.5モルと過剰であるため、平均結晶粒径は1.75μmと大きく、このため絶縁抵抗logIRは7.8に低下し、ESD耐圧も劣化した。これは、ZrOの含有モル量が過剰であるため、結晶層に析出したSrが結晶粒子の微小化への寄与が小さくなったためと思われる。また、この場合は、製品歩留まりも51%と低くなった。Sample No. 6 has an excess of ZrO 2 content of 3.5 moles with respect to 100 moles of Ti element, so the average crystal grain size is as large as 1.75 μm, so the insulation resistance logIR is reduced to 7.8. In addition, the ESD withstand voltage also deteriorated. This seems to be because Sr precipitated in the crystal layer contributes less to the miniaturization of crystal grains because the molar amount of ZrO 2 is excessive. In this case, the product yield was also reduced to 51%.

試料番号7は、配合モル比mが1.025であり、1.020を超えているため、絶縁抵抗logIRは8.5と良好であるが、製品歩留まりは59%と低くなった。これはZr元素をTi元素100モルに対し1.5モル含有させているものの、配合モル比mが1.020を超えているため、SrをZrで補償しきれなくなったためと思われる。   Sample No. 7 had a blending molar ratio m of 1.025 and exceeded 1.020. Therefore, the insulation resistance logIR was as good as 8.5, but the product yield was as low as 59%. This seems to be because although the Zr element is contained in an amount of 1.5 mol per 100 mol of the Ti element, the compound molar ratio m exceeds 1.020, so that Sr cannot be compensated for by Zr.

試料番号8は、配合モル比mは1.010であるが、ZrOが含まれていないため、試料番号1と同様の理由から、絶縁抵抗logIRは8.9と良好であるが、製品歩留まりは60%と低かった。Sample No. 8 has a compounding molar ratio m of 1.010, but does not contain ZrO 2, and therefore, for the same reason as Sample No. 1, the insulation resistance logIR is as good as 8.9, but the product yield. Was as low as 60%.

試料番号10は、Mn元素が含まれていないため、絶縁抵抗logIRが7.5に低下し、製品歩留まりも48%と低くなった。   In Sample No. 10, since the Mn element was not included, the insulation resistance logIR was lowered to 7.5, and the product yield was lowered to 48%.

試料番号11は、配合モル比mは1.000であるが、ZrOが含まれていないため、絶縁抵抗logIRは8.6と良好であるが、製品歩留まりが65%と低くなった。Sample No. 11 had a blending molar ratio m of 1.000 but no ZrO 2, so that the insulation resistance logIR was as good as 8.6, but the product yield was as low as 65%.

試料番号15は、Mn元素の含有モル量がTi元素100モルに対し0.7モルと過剰であるため、ESD耐圧が10kVに低下した。また、この場合は、平均結晶粒径が1.81μmと大きくなり、このため絶縁抵抗logIRも7.4に低下し、さらに製品歩留まりも49%と低くなることが分った。   In Sample No. 15, since the molar amount of Mn element was 0.7 mol per 100 mol of Ti element, the ESD withstand voltage was reduced to 10 kV. In this case, the average crystal grain size was as large as 1.81 μm, so that the insulation resistance logIR was reduced to 7.4 and the product yield was also reduced to 49%.

試料番号19は、平均結晶粒径が1.71μmと粗大化し、絶縁抵抗logIRは7.6に低下し、ESD耐圧も10kVに低下した。これは配合モル比mが0.995と1.000未満であるため、結晶粒子の微小化に寄与するSrが粒界層に析出しなくなったためと思われる。また、この場合、製品歩留まりも47%に低下することが分った。   Sample No. 19 was coarsened with an average crystal grain size of 1.71 μm, the insulation resistance logIR was reduced to 7.6, and the ESD withstand voltage was also reduced to 10 kV. This is probably because Sr that contributes to miniaturization of crystal grains no longer precipitates in the grain boundary layer because the blending molar ratio m is less than 0.995 and 1.000. In this case, the product yield was also reduced to 47%.

これに対し試料番号3〜5、9、12〜14、及び16〜18は、配合モル比mが1.000〜1.020、アクセプタ元素であるMn元素の含有量がTi元素100モルに対し0.3〜0.5モル、Zr元素の含有量がTi元素100モルに対し0.15〜3.0モルであり、平均結晶粒径が1.50μm以下であり、いずれも本発明範囲内であるので、静電容量が1.15〜1.31nFの低容量でありながら、絶縁抵抗logIRは8.5〜8.9と十分に実用性に耐えうる絶縁性能を確保することができ、しかも製品歩留まりが85〜92%と飛躍的に向上し、かつ30kV以上のESD耐圧を有する量産に適した所望の積層型半導体セラミックコンデンサを得ることができることが分かった。   On the other hand, sample numbers 3-5, 9, 12-14, and 16-18 have a molar ratio m of 1.000 to 1.020, and the content of Mn element as an acceptor element is 100 mol of Ti element. 0.3 to 0.5 mol, the content of Zr element is 0.15 to 3.0 mol with respect to 100 mol of Ti element, and the average crystal grain size is 1.50 μm or less, both within the scope of the present invention. Therefore, while the capacitance is a low capacitance of 1.15 to 1.31 nF, the insulation resistance logIR is 8.5 to 8.9, which can ensure insulation performance that can sufficiently withstand practicality, Moreover, it has been found that a desired multilayer semiconductor ceramic capacitor suitable for mass production having an ESD breakdown voltage of 30 kV or more can be obtained with a dramatic improvement in product yield of 85 to 92%.

実用性に耐えうる絶縁性能を確保しつつ製品歩留まりの向上を図ることができ、かつ良好なESD耐圧を有する量産性に適したバリスタ機能付きの積層型半導体セラミックコンデンサを実現できる。   A multilayer semiconductor ceramic capacitor with a varistor function suitable for mass production having a good ESD withstand voltage can be achieved while ensuring insulation performance that can withstand practicality.

1 部品素体(積層焼結体)
1a〜1g 半導体セラミック層
2、2a〜2f 内部電極
3a、3b 外部電極
1 Component body (laminated sintered body)
1a to 1g Semiconductor ceramic layer 2, 2a to 2f Internal electrode 3a, 3b External electrode

Claims (8)

SrTiO系粒界絶縁型の半導体セラミックで形成された複数の半導体セラミック層と複数の内部電極層とが交互に積層されて焼成されてなる積層焼結体と、該積層焼結体の両端部に前記内部電極層と電気的に接続された外部電極とを有するバリスタ機能付き積層型半導体セラミックコンデンサであって、
前記半導体セラミックが、SrサイトとTiサイトとの配合モル比mは1.000≦m≦1.020であり、ドナー元素が結晶粒子中に固溶されると共に、アクセプタ元素が、前記Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)の範囲で粒界層中に存在し、
Zr元素が前記Ti元素100モルに対し0.15モル以上3.0モル以下の範囲で含有され、かつ、結晶粒子の平均粒径が1.5μm以下であることを特徴とするバリスタ機能付き積層型半導体セラミックコンデンサ。
A laminated sintered body formed by alternately laminating a plurality of semiconductor ceramic layers and a plurality of internal electrode layers formed of SrTiO 3 -based grain boundary insulating semiconductor ceramic, and both ends of the laminated sintered body A multilayer semiconductor ceramic capacitor with a varistor function having an external electrode electrically connected to the internal electrode layer,
In the semiconductor ceramic, the blending molar ratio m of Sr site and Ti site is 1.000 ≦ m ≦ 1.020, the donor element is dissolved in the crystal particles, and the acceptor element is the Ti element 100 Present in the grain boundary layer in a range of 0.5 mol or less (excluding 0 mol) with respect to mol,
Zr element is contained in the range of 0.15 mol or more and 3.0 mol or less with respect to 100 mol of Ti element, and the average particle size of crystal particles is 1.5 μm or less, and the laminate with varistor function Type semiconductor ceramic capacitor.
前記アクセプタ元素が、前記Ti元素100モルに対し、0.3〜0.5モルの範囲で含有されていることを特徴とする請求項1記載のバリスタ機能付き積層型半導体セラミックコンデンサ。   2. The multilayer semiconductor ceramic capacitor with a varistor function according to claim 1, wherein the acceptor element is contained in a range of 0.3 to 0.5 mol with respect to 100 mol of the Ti element. 前記アクセプタ元素は、Mn、Co、Ni、及びCrのうちの少なくとも1種の元素を含んでいることを特徴とする請求項1又は請求項2記載のバリスタ機能付き積層型半導体セラミックコンデンサ。   3. The multilayer semiconductor ceramic capacitor with a varistor function according to claim 1, wherein the acceptor element contains at least one element selected from the group consisting of Mn, Co, Ni, and Cr. 前記ドナー元素は、La、Nd、Sm、Dy、Nb、及びTaのうちの少なくとも1種の元素を含んでいることを特徴とする請求項1乃至請求項3のいずれかに記載のバリスタ機能付き積層型半導体セラミックコンデンサ。   4. The varistor function according to claim 1, wherein the donor element includes at least one element selected from La, Nd, Sm, Dy, Nb, and Ta. 5. Multilayer semiconductor ceramic capacitor. 低融点酸化物が、前記Ti元素100モルに対し0.1モル以下の範囲で含有されていることを特徴とする請求項1乃至請求項4のいずれかに記載のバリスタ機能付き積層型半導体セラミックコンデンサ。   The multilayer semiconductor ceramic with a varistor function according to any one of claims 1 to 4, wherein the low melting point oxide is contained in an amount of 0.1 mol or less with respect to 100 mol of the Ti element. Capacitor. 前記低融点酸化物は、SiOであることを特徴とする請求項5記載のバリスタ機能付き積層型半導体セラミックコンデンサ。The low melting point oxide varistor function stacked semiconductor ceramic capacitor according to claim 5, characterized in that the SiO 2. SrTiO系粒界絶縁型の半導体セラミックを用いたバリスタ機能付き積層型半導体セラミックコンデンサの製造方法であって、
ドナー化合物を含むセラミック素原料を、SrサイトとTiサイトの配合モル比mが1.000≦m≦1.020の範囲となるように秤量して混合粉砕した後、仮焼処理を行って仮焼粉末を作製する仮焼粉末作製工程と、
Ti元素100モルに対し0.5モル以下(ただし、0モルを含まず。)となるようにアクセプタ化合物を秤量すると共に、Ti元素100モルに対し0.15モル以上3.0モル以下となるようにZr化合物を秤量し、該Zr化合物及び前記アクセプタ化合物を前記仮焼粉末と混合し、熱処理を行って熱処理粉末を作製する熱処理粉末作製工程と、
前記熱処理粉末に成形加工を施しセラミックグリーンシートを作製し、その後内部電極層とセラミックグリーンシートを交互に積層して積層体を形成する積層体形成工程と、
還元雰囲気下、前記積層体に一次焼成処理を行った後、弱還元雰囲気下、大気雰囲気下、又は酸化雰囲気下で二次焼成処理を行う焼成工程とを含むことを特徴とするバリスタ機能付き積層型半導体セラミックコンデンサの製造方法。
A method of manufacturing a multilayer semiconductor ceramic capacitor with a varistor function using a SrTiO 3 -based grain boundary insulating semiconductor ceramic,
The ceramic raw material containing the donor compound is weighed so that the blending molar ratio m of Sr site and Ti site is in the range of 1.000 ≦ m ≦ 1.020, mixed and pulverized, and then calcined. A calcined powder production process for producing a calcined powder;
The acceptor compound is weighed so that it is 0.5 mol or less (excluding 0 mol) with respect to 100 mol of Ti element, and is 0.15 mol or more and 3.0 mol or less with respect to 100 mol of Ti element. A Zr compound is weighed, the Zr compound and the acceptor compound are mixed with the calcined powder, and a heat treatment powder is produced by performing a heat treatment,
Forming a ceramic green sheet by performing a molding process on the heat-treated powder, and then laminating the internal electrode layers and the ceramic green sheet alternately to form a laminate,
A laminate having a varistor function, comprising: a firing step of performing a secondary firing treatment in a reducing atmosphere, an air atmosphere, or an oxidizing atmosphere after performing a primary firing treatment on the laminate in a reducing atmosphere. Type semiconductor ceramic capacitor manufacturing method.
前記仮焼処理における仮焼温度が、前記一次焼成処理における焼成温度よりも高いことを特徴とする請求項7記載のバリスタ機能付き積層型半導体セラミックコンデンサの製造方法。   The method for producing a multilayer semiconductor ceramic capacitor with a varistor function according to claim 7, wherein a calcining temperature in the calcining treatment is higher than a firing temperature in the primary firing treatment.
JP2013539642A 2011-10-20 2012-10-16 Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof Expired - Fee Related JP5846398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013539642A JP5846398B2 (en) 2011-10-20 2012-10-16 Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011230752 2011-10-20
JP2011230752 2011-10-20
PCT/JP2012/076665 WO2013058227A1 (en) 2011-10-20 2012-10-16 Laminated semiconductor ceramic capacitor with varistor functionality and method for producing same
JP2013539642A JP5846398B2 (en) 2011-10-20 2012-10-16 Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2013058227A1 JPWO2013058227A1 (en) 2015-04-02
JP5846398B2 true JP5846398B2 (en) 2016-01-20

Family

ID=48140874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013539642A Expired - Fee Related JP5846398B2 (en) 2011-10-20 2012-10-16 Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof

Country Status (5)

Country Link
US (1) US9105603B2 (en)
JP (1) JP5846398B2 (en)
CN (1) CN103858193B (en)
DE (1) DE112012004389T5 (en)
WO (1) WO2013058227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619449B1 (en) * 2018-06-04 2023-12-28 삼성전자주식회사 A method for forming a semiconductor pattern and a method for manufacturing v-mlcc using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270564B (en) * 2011-02-03 2016-10-26 株式会社村田制作所 Semiconductive ceramic and manufacture method thereof and the laminated semiconductor ceramic capacitor of band variable resistance function and manufacture method thereof
KR102579634B1 (en) 2017-11-10 2023-09-18 삼성전기주식회사 Multi-layered capacitor
KR20220057734A (en) * 2020-10-30 2022-05-09 삼성전기주식회사 Multilayer capacitor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2659672B2 (en) * 1976-12-30 1980-12-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Capacitor dielectric with internal barrier layers and process for its manufacture
JPS59208807A (en) * 1983-05-13 1984-11-27 松下電器産業株式会社 Voltage dependency nonlinear resistor porcelain composition
JPH01289206A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Voltage-dependent nonlinear resistance element and manufacture thereof
JPH03165018A (en) * 1989-11-24 1991-07-17 Matsushita Electric Ind Co Ltd Manufacture of ceramic capacitor having varistor characteristic
JP2002134350A (en) * 2000-10-26 2002-05-10 Matsushita Electric Ind Co Ltd Laminated ceramic capacitor and its manufacturing method
JP2005158895A (en) * 2003-11-21 2005-06-16 Tdk Corp Grain-boundary-insulated semiconductor ceramic and laminated semiconductor capacitor
JP4165893B2 (en) * 2005-12-28 2008-10-15 株式会社村田製作所 Semiconductor ceramic, multilayer semiconductor ceramic capacitor, and method of manufacturing semiconductor ceramic
EP2025655B1 (en) * 2006-05-31 2016-11-16 Murata Manufacturing Co. Ltd. Semiconductor ceramic, laminated semiconductor ceramic capacitor, method for fabricating semiconductor ceramic, and method for fabricating laminated semiconductor ceramic capacitor
EP2037467A4 (en) 2006-07-03 2011-02-16 Murata Manufacturing Co Stacked semiconductor ceramic capacitor with varistor function and method for manufacturing the same
US8237151B2 (en) * 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
CN101687663B (en) * 2007-06-27 2012-06-27 株式会社村田制作所 Semiconductor ceramic powder, semiconductor ceramic, and laminated semiconductor capacitor
JP5397341B2 (en) * 2010-07-23 2014-01-22 株式会社村田製作所 Multilayer semiconductor ceramic capacitor with varistor function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619449B1 (en) * 2018-06-04 2023-12-28 삼성전자주식회사 A method for forming a semiconductor pattern and a method for manufacturing v-mlcc using the same

Also Published As

Publication number Publication date
US9105603B2 (en) 2015-08-11
CN103858193A (en) 2014-06-11
WO2013058227A1 (en) 2013-04-25
JPWO2013058227A1 (en) 2015-04-02
US20140210048A1 (en) 2014-07-31
DE112012004389T5 (en) 2014-07-10
CN103858193B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP4666269B2 (en) Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4483597B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4967963B2 (en) Dielectric porcelain composition and electronic component
JP4622537B2 (en) Dielectric porcelain composition and electronic component
JP5397341B2 (en) Multilayer semiconductor ceramic capacitor with varistor function
JP4967965B2 (en) Dielectric porcelain composition and electronic component
JP5594373B2 (en) SEMICONDUCTOR CERAMIC AND ITS MANUFACTURING METHOD, MULTILAYER SEMICONDUCTOR CERAMIC CAPACITOR WITH VARISTOR FUNCTION AND ITS MANUFACTURING METHOD
JP5975370B2 (en) Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof
TW200935468A (en) Dielectric ceramic composition and electric device
JPWO2007139061A1 (en) Semiconductor ceramic, multilayer semiconductor ceramic capacitor, method for manufacturing semiconductor ceramic, and method for manufacturing multilayer semiconductor ceramic capacitor
JP5685931B2 (en) Multilayer ceramic capacitor
WO2002051770A1 (en) Dielectric porcelain composition and electronic parts
JP2003277139A (en) Dielectric ceramic composition and electronic parts
JP5846398B2 (en) Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof
JP4403705B2 (en) Dielectric porcelain composition and electronic component
JP5648744B2 (en) Manufacturing method of semiconductor ceramic capacitor
JP2013243281A (en) Method for manufacturing multilayer semiconductor ceramic capacitor and multilayer semiconductor ceramic capacitor
JP2007055835A (en) Dielectric ceramic composition and electronic component
JP5418993B2 (en) Manufacturing method of multilayer semiconductor ceramic capacitor and multilayer semiconductor ceramic capacitor
JP5061961B2 (en) Dielectric porcelain composition
WO2016088675A1 (en) Varistor-function-equipped laminated semiconductor ceramic capacitor
WO2016006510A1 (en) Stacked semiconductor ceramic capacitor with varistor function
JP2007119293A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R150 Certificate of patent or registration of utility model

Ref document number: 5846398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees