JP5839883B2 - Vibration analysis method for piping system - Google Patents

Vibration analysis method for piping system Download PDF

Info

Publication number
JP5839883B2
JP5839883B2 JP2011175561A JP2011175561A JP5839883B2 JP 5839883 B2 JP5839883 B2 JP 5839883B2 JP 2011175561 A JP2011175561 A JP 2011175561A JP 2011175561 A JP2011175561 A JP 2011175561A JP 5839883 B2 JP5839883 B2 JP 5839883B2
Authority
JP
Japan
Prior art keywords
natural frequency
piping system
reference model
correction coefficient
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011175561A
Other languages
Japanese (ja)
Other versions
JP2013037649A (en
Inventor
俊吾 大槻
俊吾 大槻
岡 智之
智之 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011175561A priority Critical patent/JP5839883B2/en
Publication of JP2013037649A publication Critical patent/JP2013037649A/en
Application granted granted Critical
Publication of JP5839883B2 publication Critical patent/JP5839883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、例えば、石油化学工場、薬品・食品製造工場、製鉄所、機械製造工場、発電所、パイプライン等の各種プラントにおける配管系の振動解析を行う方法に関する。   The present invention relates to a method for performing vibration analysis of a piping system in various plants such as a petrochemical factory, a chemical / food manufacturing factory, an iron mill, a machine manufacturing factory, a power plant, and a pipeline.

プラントにおける配管系では、配管系の振動解析を行い、その解析結果に基づいて何らかの振動対策を施すことがある。振動対策として、例えば、回転体や往復運動体を備えた機器との共振を避けたり、振動に対する剛性を向上させたりすることが挙げられる。   In a piping system in a plant, vibration analysis of the piping system is performed, and some measures against vibration are taken based on the analysis result. As measures against vibration, for example, resonance with a device including a rotating body or a reciprocating body can be avoided, or rigidity against vibration can be improved.

ところが、プラントにおける配管系は、配管が接続される各種機器のレイアウトや熱応力の発生等の制約上、複雑な形状とならざるを得ない。そのため、同一プラント内における同種の配管系といえども、配管系ごとに完全に同一形状にならないことが多々ある。また、同種のプラントであっても、通常、プラントごとに配管系の形状は異なる。
よって、従来の振動解析方法では、各プラントの個々の配管系に対してモデルを作成し、このモデルを用いて配管系の振動解析を行っていた。
However, the piping system in the plant has to have a complicated shape due to restrictions such as layout of various devices to which the piping is connected and generation of thermal stress. Therefore, even in the same type of piping system in the same plant, there are many cases where the piping system does not have the same shape. Moreover, even if it is the same kind of plant, the shape of a piping system differs normally for every plant.
Therefore, in the conventional vibration analysis method, a model is created for each piping system in each plant, and vibration analysis of the piping system is performed using this model.

配管系をモデル化して振動解析を行う従来の振動解析方法として、例えば非特許文献1及び2に記載されたものがある。
非特許文献1には、多スパン配管をモデル化して作成した解析モデルを用いて、この多スパン配管の振動診断を行う手法が開示されている。この手法では、対象とする多スパン配管中の配管をはり要素で、バルブを集中質量で、サポートをばね要素として扱って、多スパン配管のモデル化を行って解析モデルを作成している。また、解析モデルの振動特性を実機の振動特性に合わせるため、解析モデルの最適化処理が行われる。このようにして得られた解析モデルを用いれば、加速度計による実機データから多スパン配管の任意箇所における発生応力の評価を行うことができる。
また、非特許文献2には、加圧水型原子力発電所(PWRプラント)における配管系をモデル化し、母管の振動に起因して枝管に発生する振動応力を算出する手法が開示されている。この手法では、母管が振動せず、枝管(小口径配管)に設けられたバルブの弁箱の位置に配管系の重心位置が存在すると仮定した簡易モデルに対して、配管系の実際の重心位置の弁箱からのずれ、および、母管自体の振動を考慮に入れて修正したモデルを用いて解析が行われる。
As a conventional vibration analysis method for modeling a piping system and performing vibration analysis, for example, there are methods described in Non-Patent Documents 1 and 2.
Non-Patent Document 1 discloses a technique for diagnosing vibration of a multi-span pipe using an analysis model created by modeling the multi-span pipe. In this method, an analysis model is created by modeling a multi-span pipe by treating the pipe in the target multi-span pipe as a beam element, treating the valve as a concentrated mass, and treating the support as a spring element. In addition, the analysis model is optimized to match the vibration characteristics of the analysis model with the vibration characteristics of the actual machine. By using the analysis model obtained in this way, it is possible to evaluate the generated stress at an arbitrary location of the multi-span piping from the actual machine data obtained by the accelerometer.
Non-Patent Document 2 discloses a method of modeling a piping system in a pressurized water nuclear power plant (PWR plant) and calculating vibration stress generated in a branch pipe due to vibration of a mother pipe. In this method, the actual piping system is compared to the simplified model that assumes that the center of gravity of the piping system exists at the valve box position of the valve provided on the branch pipe (small-diameter piping) without vibration of the main pipe. Analysis is performed using a model that is corrected to take into account the deviation of the center of gravity position from the valve box and the vibration of the mother pipe itself.

田中守、他2名、「配管振動診断システムの開発(Development of Diagnostic and Monitoring System for vibration Pipes)」、三菱重工技報、三菱重工業株式会社、1996年、第33巻、第4号、p.278−281Mamoru Tanaka and two others, “Development of Diagnostic and Monitoring System for Vibration Pipes”, Mitsubishi Heavy Industries Technical Review, Mitsubishi Heavy Industries, Ltd., Vol. 33, No. 4, p. 278-281 平松美樹、他1名、「小口径配管の振動応力評価方法に関する研究(Evaluation methods of Vibration Stress of Small Bore Piping)」、INSS JOURNAL、2001年、第8巻、p.92−99Miki Hiramatsu and one other, “Evaluation methods of Vibration Stress of Small Bore Piping”, INSUS JOURNAL, 2001, Vol. 8, p. 92-99

しかしながら、非特許文献1及び2に記載の手法は、いずれも、解析対象とするプラントの配管系について個別にモデル化を行う必要があり、配管系の振動解析を行うのに多大な時間を要する。
一方、解析時間を短縮するために、配管系のうち振動への寄与が大きいと考えられる部分(揺れやすい部分)だけに限定して振動解析を行うことも考えられるが、この場合には配管系の振動特性を正確に把握することができない。そのため、所望の振動特性を実現するように配管系を設計しても、配管系を実際に組み上げて配管系に流体を流すプラント試運転時になって、配管系の振動対策が十分でないことが明らかになり、配管支持構造物の修正を余儀なくされて、コストがかさむ原因となり得る。
However, each of the methods described in Non-Patent Documents 1 and 2 needs to individually model the piping system of the plant to be analyzed, and it takes a lot of time to perform vibration analysis of the piping system. .
On the other hand, in order to shorten the analysis time, it is conceivable that the vibration analysis is limited to only the portion of the piping system that is thought to contribute greatly to vibration (the portion that easily shakes). It is impossible to accurately grasp the vibration characteristics of the. Therefore, even if the piping system is designed to achieve the desired vibration characteristics, it is clear that the piping system is not adequately equipped with vibration countermeasures during the trial operation of the plant that actually assembles the piping system and flows the fluid through the piping system. Therefore, the piping support structure is forced to be corrected, which may increase the cost.

本発明は、上述の事情に鑑みてなされたものであり、複雑な形状の配管系であっても簡便に振動解析を行うことができる配管系の振動解析方法および配管系の振動解析装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a vibration analysis method for a piping system and a vibration analysis apparatus for the piping system that can easily perform vibration analysis even for a piping system having a complicated shape. The purpose is to do.

本発明に係る配管系の振動解析方法は、配管および該配管を複数の拘束点において支持する複数の支持部材を有する配管系の振動解析方法であって、前記拘束点ごとに前記配管系を複数の要素に分割する分割工程と、前記複数の要素のそれぞれについて、固有振動数が既知である基準モデルを当てはめる基準モデル当てはめ工程と、各要素と該要素に当てはめられた基準モデルとの相違に基づく補正係数を前記複数の要素のそれぞれについて求める補正係数算出工程と、各要素に当てはめられた基準モデルの前記固有振動数に前記補正係数を乗じて、前記複数の要素のそれぞれの固有振動数を求める固有振動数算出工程とを備えることを特徴とする。   The vibration analysis method for a piping system according to the present invention is a vibration analysis method for a piping system having a piping and a plurality of support members that support the piping at a plurality of restraining points, and the piping system includes a plurality of piping systems for each restraining point. Based on the difference between the dividing step of dividing into the elements, the reference model fitting step of applying a reference model having a known natural frequency for each of the plurality of elements, and the reference model applied to each element A correction coefficient calculating step for obtaining a correction coefficient for each of the plurality of elements, and multiplying the natural frequency of a reference model applied to each element by the correction coefficient to obtain a natural frequency of each of the plurality of elements And a natural frequency calculating step.

上記配管系の振動解析方法では、配管系を拘束点ごとに分割した複数の要素のそれぞれについて基準モデルを当てはめ、各要素と基準モデルとの相違に基づいて基準モデルの既知の固有振動数を補正係数によって補正して各要素の固有振動数を求める。このように複雑な形状の配管系をそのままモデル化するのではなく、配管系を複数の要素に分割し、基準モデルとの比較に基づいて各要素の固有振動数を求めることで、配管系の振動解析を簡便に行うことができ、解析に要する時間を大幅に短縮できる。そのため、配管系のより広い範囲にわたって解析を行うことが可能になり、配管系の振動特性を正確に把握することができる。よって、プラント試運転段階になってから配管支持構造物(支持部材)の修正を余儀なくされる事態を防ぐことができる。
また、要素ごとに固有振動数が得られるため、配管系のどの箇所(要素)に振動対策を施すべきかが明確になる。よって、配管系の設計段階で、回転体や往復運動体を備えた機器との共振のおそれがなく、振動に対する剛性に優れた配管系を容易に実現できる。
In the above-mentioned vibration analysis method for piping systems, the reference model is applied to each of a plurality of elements obtained by dividing the piping system for each constraint point, and the known natural frequency of the reference model is corrected based on the difference between each element and the reference model. The natural frequency of each element is obtained by correcting with a coefficient. Instead of modeling a piping system with a complicated shape in this way, the piping system is divided into a plurality of elements, and the natural frequency of each element is obtained based on comparison with the reference model. Vibration analysis can be performed easily, and the time required for analysis can be greatly reduced. Therefore, it becomes possible to perform analysis over a wider range of the piping system, and it is possible to accurately grasp the vibration characteristics of the piping system. Therefore, it is possible to prevent a situation in which the piping support structure (support member) is forced to be corrected after the plant trial operation stage.
Further, since the natural frequency can be obtained for each element, it becomes clear which part (element) of the piping system should be subjected to vibration countermeasures. Therefore, at the piping system design stage, there is no risk of resonance with a device having a rotating body or a reciprocating body, and a piping system having excellent rigidity against vibration can be easily realized.

上記配管系の振動解析方法は、前記基準モデル当てはめ工程を行う前に、固有振動数が既知である代表モデルを複数用意する代表モデル準備工程をさらに備え、前記基準モデル当てはめ工程では、複数の前記代表モデルの中から各要素に最も近い代表モデルを前記基準モデルとして選択して各要素に当てはめてもよい。
これにより、プラントの配管系で典型的に用いられる要素を代表モデルとして予め用意しておけば、種々のプラントにおける任意の形状の配管系の振動解析を簡便かつ迅速に行うことができる。
The vibration analysis method of the piping system further includes a representative model preparation step of preparing a plurality of representative models with known natural frequencies before performing the reference model fitting step, and the reference model fitting step includes a plurality of the above-described representative model preparation steps. A representative model closest to each element from among the representative models may be selected as the reference model and applied to each element.
Thereby, if elements typically used in the piping system of the plant are prepared in advance as a representative model, vibration analysis of piping systems of arbitrary shapes in various plants can be performed easily and quickly.

上記配管系の振動解析方法は、前記補正係数算出工程を行う前に、前記代表モデルの固有振動数と該固有振動数に影響する影響因子との関係を示す関数を求める関数算出工程をさらに備え、前記補正係数算出工程では、各要素と該要素に当てはめられた前記基準モデルとの前記影響因子の相違から前記関数を用いて前記補正係数を求めてもよい。
このように、代表モデルの固有振動数とこれに影響する影響因子との関係を示す関数を予め求めておき、各要素と基準モデルとの影響因子の相違から前記関数を用いて補正係数を求めることで、各要素の正確な固有振動数を簡便かつ迅速に求めることができる。
The piping system vibration analysis method further includes a function calculation step for obtaining a function indicating a relationship between the natural frequency of the representative model and an influencing factor affecting the natural frequency before performing the correction coefficient calculation step. In the correction coefficient calculation step, the correction coefficient may be obtained using the function from the difference in the influence factors between each element and the reference model applied to the element.
In this manner, a function indicating the relationship between the natural frequency of the representative model and the influencing factors affecting the representative model is obtained in advance, and the correction coefficient is obtained using the function from the difference in influencing factors between each element and the reference model. Thus, the accurate natural frequency of each element can be obtained easily and quickly.

上記配管系の振動解析方法は、前記分割工程、前記基準モデル当てはめ工程、前記補正係数算出工程および前記固有振動数算出工程を互いに直交する2つの水平方向及び鉛直方向の3方向について繰り返してもよい。
プラントの配管系は、通常、複雑な三次元形状であるから、あらゆる方向の振動が問題になりえる。このため、1方向について解析を行っても、配管系の振動特性を正確に知ることはできないことが多い。そこで、上述のように、互いに直交する2つの水平方向及び鉛直方向の3方向について、分割工程〜固有振動数算出工程を繰り返すことで、複雑な三次元形状の配管系の振動特性を確実に把握することができる。
In the piping system vibration analysis method, the dividing step, the reference model fitting step, the correction coefficient calculation step, and the natural frequency calculation step may be repeated in two horizontal directions and three vertical directions that are orthogonal to each other. .
Plant piping systems are usually complex three-dimensional shapes, so vibrations in all directions can be a problem. For this reason, even if analysis is performed in one direction, it is often impossible to accurately know the vibration characteristics of the piping system. Therefore, as described above, by repeating the division process to the natural frequency calculation process in two directions that are orthogonal to each other in the horizontal direction and the vertical direction, the vibration characteristics of a complicated three-dimensional piping system can be reliably grasped. can do.

また、3方向について分割工程〜固有振動数算出工程を繰り返す場合、前記3方向について前記固有振動数算出工程で算出した各要素の前記固有振動数のうち最小の固有振動数を求める最小固有振動数算出工程をさらに備えてもよい。
このようにして得られた最小の固有振動数から、配管系のうちどの要素の何れの方向の振動モードについて振動対策を施すべきかを知ることができる。そのため、配管系への振動対策を効率的に行うことができる。
Further, when the division step to the natural frequency calculation step are repeated for the three directions, the minimum natural frequency for obtaining the minimum natural frequency among the natural frequencies of the elements calculated in the natural frequency calculation step for the three directions. You may further provide a calculation process.
From the minimum natural frequency obtained in this way, it is possible to know which vibration mode of which element of the piping system should be subjected to vibration countermeasures. Therefore, vibration countermeasures for the piping system can be performed efficiently.

また本発明に係る配管系の振動解析装置は、配管および該配管を複数の拘束点において支持する複数の支持部材とを備える配管系の振動解析装置であって、前記拘束点ごとに前記配管系を複数の要素に分割する分割手段と、前記複数の要素のそれぞれについて、固有振動数が既知である基準モデルを当てはめる基準モデル当てはめ手段と、各要素と該要素に当てはめられた基準モデルとの相違に基づく補正係数を前記複数の要素のそれぞれについて求める補正係数算出手段と、各要素に当てはめられた基準モデルの前記固有振動数に前記補正係数を乗じて、前記複数の要素のそれぞれの固有振動数を求める固有振動数算出手段とを備えることを特徴とする。   The piping system vibration analyzing apparatus according to the present invention is a piping system vibration analyzing apparatus including a pipe and a plurality of support members that support the pipe at a plurality of restraining points, and the piping system is provided for each of the restraining points. A difference between a dividing means for dividing the element into a plurality of elements, a reference model fitting means for applying a reference model having a known natural frequency for each of the plurality of elements, and a reference model applied to each element Correction coefficient calculation means for obtaining a correction coefficient based on each of the plurality of elements, and by multiplying the natural frequency of the reference model applied to each element by the correction coefficient, the natural frequency of each of the plurality of elements Natural frequency calculation means for obtaining

上記配管系の振動解析装置では、分割手段による配管系の分割により得られた複数の要素のそれぞれについて基準モデル当てはめ手段が基準モデルを当てはめ、固有振動数算出手段において、基準モデルの既知の固有振動数を補正係数算出手段で求めた補正係数で補正することで各要素の固有振動数を求める。このように複雑な形状の配管系をそのままモデル化するのではなく、配管系を複数の要素に分割し、基準モデルとの比較に基づいて各要素の固有振動数を求めることで、配管系の振動解析を簡便に行うことができ、解析に要する時間を大幅に短縮できる。そのため、配管系のより広い範囲にわたって解析を行うことが可能になり、配管系の振動特性を正確に把握することができる。よって、プラント試運転段階になってから配管支持構造物(支持部材)の修正を余儀なくされる事態を防ぐことができる。
また、要素ごとに固有振動数が得られるため、配管系のどの箇所(要素)に振動対策を施すべきかが明確になる。よって、配管系の設計段階で、回転体や往復運動体を備えた機器との共振のおそれがなく、振動に対する剛性に優れた配管系を容易に実現できる。
In the piping system vibration analysis apparatus, the reference model fitting means applies the reference model to each of a plurality of elements obtained by dividing the piping system by the dividing means, and the natural frequency calculation means performs the known natural vibration of the reference model. The natural frequency of each element is obtained by correcting the number with the correction coefficient obtained by the correction coefficient calculating means. Instead of modeling a piping system with a complicated shape in this way, the piping system is divided into a plurality of elements, and the natural frequency of each element is obtained based on comparison with the reference model. Vibration analysis can be performed easily, and the time required for analysis can be greatly reduced. Therefore, it becomes possible to perform analysis over a wider range of the piping system, and it is possible to accurately grasp the vibration characteristics of the piping system. Therefore, it is possible to prevent a situation in which the piping support structure (support member) is forced to be corrected after the plant trial operation stage.
Further, since the natural frequency can be obtained for each element, it becomes clear which part (element) of the piping system should be subjected to vibration countermeasures. Therefore, at the piping system design stage, there is no risk of resonance with a device having a rotating body or a reciprocating body, and a piping system having excellent rigidity against vibration can be easily realized.

また上記配管系の振動解析装置は、固有振動数が既知である複数の代表モデルが記憶された記憶手段と、オペレータとの情報のやり取りを行う表示部および入力部を有するユーザインターフェースとをさらに備え、前記基準モデル当てはめ手段は、前記記憶手段に記憶された複数の前記代表モデルの中から各要素に最も近い代表モデルを選択することを前記表示部によってオペレータに促し、オペレータが前記入力部によって選択した代表モデルを前記基準モデルとして各要素に当てはめるようになっていてもよい。
これにより、プラントの配管系で典型的に用いられる要素を代表モデルとして予め用意しておけば、種々のプラントにおける任意の形状の配管系の振動解析を簡便かつ迅速に行うことができる。
The piping system vibration analysis apparatus further includes a storage unit storing a plurality of representative models with known natural frequencies, and a user interface having a display unit and an input unit for exchanging information with an operator. The reference model fitting means urges the operator to select a representative model closest to each element from the plurality of representative models stored in the storage means, and the operator selects the representative model using the input section. The representative model may be applied to each element as the reference model.
Thereby, if elements typically used in the piping system of the plant are prepared in advance as a representative model, vibration analysis of piping systems of arbitrary shapes in various plants can be performed easily and quickly.

本発明によれば、複雑な形状の配管系をそのままモデル化するのではなく、配管系を複数の要素に分割し、基準モデルとの比較に基づいて各要素の固有振動数を求めるので、配管系の振動解析を簡便に行うことができ、解析に要する時間を大幅に短縮できる。そのため、配管系のより広い範囲にわたって解析を行うことが可能になり、配管系の振動特性を正確に把握することができる。よって、プラント試運転段階になってから配管支持構造物(支持部材)の修正を余儀なくされる事態を防ぐことができる。
また、要素ごとに固有振動数が得られるため、配管系のどの箇所(要素)に振動対策を施すべきかが明確になる。よって、配管系の設計段階で、回転体や往復運動体を備えた機器との共振のおそれがなく、振動に対する剛性に優れた配管系を容易に実現できる。
According to the present invention, instead of modeling a piping system having a complicated shape as it is, the piping system is divided into a plurality of elements, and the natural frequency of each element is obtained based on comparison with the reference model. The vibration analysis of the system can be easily performed, and the time required for the analysis can be greatly shortened. Therefore, it becomes possible to perform analysis over a wider range of the piping system, and it is possible to accurately grasp the vibration characteristics of the piping system. Therefore, it is possible to prevent a situation in which the piping support structure (support member) is forced to be corrected after the plant trial operation stage.
Further, since the natural frequency can be obtained for each element, it becomes clear which part (element) of the piping system should be subjected to vibration countermeasures. Therefore, at the piping system design stage, there is no risk of resonance with a device having a rotating body or a reciprocating body, and a piping system having excellent rigidity against vibration can be easily realized.

本発明の一実施形態に係る配管系の振動解析方法の基本概念を示す図であり、(A)は配管系を複数の要素に分割する様子を示し、(B)は各要素に基準モデルを当てはめる様子を示している。It is a figure which shows the basic concept of the vibration analysis method of the piping system which concerns on one Embodiment of this invention, (A) shows a mode that a piping system is divided | segmented into a some element, (B) shows a reference | standard model for each element. It shows how to apply. 配管系の振動解析方法のフローチャートである。It is a flowchart of the vibration analysis method of a piping system. (A)はL字型の配管及びその支持部材からなる代表モデルを示す図であり、(B)は図3(A)に示した代表モデルの固有振動数Xと各影響因子aとの関係を示すグラフである。(A) is a diagram showing a representative model consisting of L-shaped pipe and its supporting member, (B) is a natural frequency X i and the influencing factors a j of the representative model shown in FIG. 3 (A) It is a graph which shows the relationship. 三次元形状を有する配管系の一例を示す図である。It is a figure which shows an example of the piping system which has a three-dimensional shape. 図4に示した配管系をXYZ方向のそれぞれについて要素に分割する様子を示す図であり、(A)はX方向における要素分割の様子を示し、(B)はY方向における要素分割の様子を示し、(C)はZ方向における要素分割の様子を示している。It is a figure which shows a mode that the piping system shown in FIG. 4 is divided | segmented into an element about each of an XYZ direction, (A) shows the mode of element division in a X direction, (B) shows the mode of element division in a Y direction. (C) shows the state of element division in the Z direction. 配管系の振動解析装置の構成例を示す図である。It is a figure which shows the structural example of the vibration analyzer of a piping system.

以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
なお、以下では、はじめに本実施形態に係る配管系の振動解析方法について説明した後、この振動解析方法を実行するための振動解析装置について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.
In the following, a vibration analysis method for a piping system according to the present embodiment will be described first, and then a vibration analysis device for executing the vibration analysis method will be described.

図1は本実施形態に係る配管系の振動解析方法の基本概念を示す図であり、図1(A)は配管系を複数の要素に分割する様子を示し、図1(B)は各要素に基準モデルを当てはめる様子を示している。図2は、本実施形態に係る配管系の振動解析方法のフローチャートである。   FIG. 1 is a diagram showing a basic concept of a vibration analysis method for a piping system according to this embodiment. FIG. 1 (A) shows a state in which the piping system is divided into a plurality of elements, and FIG. 1 (B) shows each element. Shows how the reference model is applied to. FIG. 2 is a flowchart of the piping system vibration analysis method according to the present embodiment.

図1(A)に示すように、振動解析の対象である配管系1は、配管2及び配管2を複数の拘束点において支持する支持部材3を有する。従来の振動解析方法であれば、この配管系1全体をモデル化して振動解析を行うのであるが、本実施形態では配管系1を拘束点ごとに複数の要素に分割して振動解析を行う。   As shown in FIG. 1A, a piping system 1 that is a target of vibration analysis includes a piping 2 and a support member 3 that supports the piping 2 at a plurality of restraint points. In the case of a conventional vibration analysis method, the entire piping system 1 is modeled and vibration analysis is performed. In this embodiment, the piping system 1 is divided into a plurality of elements for each constraint point, and vibration analysis is performed.

図2に示すように、はじめに、固有振動数Xi0が既知である複数の代表モデル4(ただし、iは各代表モデルに付された番号である。)を準備しておく(ステップS2)。
代表モデル4は、プラントの配管系で典型的に用いられる要素であり、任意の形状の配管及び該配管の両端を支持する支持部材3を有する。例えば、直管及び該直管の両端を支持する支持部材3からなる要素、屈曲部を1箇所だけ有するL字型の配管及び該配管の両端を支持する支持部材3からなる要素、屈曲部を2箇所有して一の平面内で延在する配管及び該配管の両端を支持する支持部材3からなる要素、屈曲部を2箇所有して立体的に延在する配管及び該配管の両端を支持する支持部材3からなる要素、母管から分岐した配管及び該配管を支持する支持部材3からなる要素等を代表モデル4として準備しておく。各代表モデル4の固有振動数Xi0は、計算により求めてもよいし、各代表モデル4を模したモックアップ試験体を用いて実測により求めてもよい。
As shown in FIG. 2, first, a plurality of representative models 4 i (where i is a number assigned to each representative model) having a known natural frequency X i0 are prepared (step S2). .
The representative model 4 i is an element typically used in a piping system of a plant, and includes a pipe having an arbitrary shape and a support member 3 that supports both ends of the pipe. For example, an element composed of a straight pipe and a support member 3 that supports both ends of the straight pipe, an L-shaped pipe having only one bent portion, and an element composed of the support member 3 that supports both ends of the pipe, a bent portion A pipe having two places and extending in one plane and an element comprising a support member 3 that supports both ends of the pipe, a pipe having two bent parts and extending in three dimensions, and both ends of the pipe An element composed of the supporting member 3 to be supported, a pipe branched from the mother pipe, and an element composed of the supporting member 3 supporting the pipe are prepared as the representative model 4 i . Natural frequency X i0 of each representative model 4 i may be determined by calculation, may be obtained by actual measurement using a mock-up test body simulating a respective representative model 4 i.

次に、ステップS4に進んで、各代表モデル4について、固有振動数Xと影響因子aとの関係を示す関数fij(a)を準備する(ただし、iは各代表モデルに付された番号であり、jは各影響因子に付された番号である)。i番目の代表モデルの固有振動数Xとj番目の影響因子aとの間には次の関係が成立する。

Figure 0005839883
なお、影響因子が所定の値aj0のときの各代表モデル4の固有振動数Xが、上述した既知の固有振動数Xi0である。つまり、上記式(1)は、代表モデル4の各影響因子を所定値aj0から任意の値aに変化させたとき、その固有振動数が既知の値Xi0からどのように変化するかを表している。
ここでいう影響因子aとは、各代表モデルの固有振動数に影響する任意のパラメータであり、例えば、配管仕様、配管の延べ長さ、集中質点の位置、配管の屈曲部の位置、配管の分岐部の位置、配管内を流れる流体の種類、保温の有無、配管内を流れる流体の温度、配管の厚さ、配管に作用する負荷荷重、計算上の誤差などが影響因子の具体例として挙げられる。また、ここでいう関数fij(a)の形式は各影響因子aと固有振動数Xとの関係を特定可能である限り特に限定されず、上記式(1)そのものに相当する数式であってもよいし、上記式(1)に相当する固有振動数Xと影響因子aとの関係を示すグラフやテーブルであってもよい。 Next, proceeding to step S4, for each representative model 4 i , a function f ij (a j ) indicating the relationship between the natural frequency X i and the influence factor a j is prepared (where i is in each representative model). And j is a number assigned to each influencing factor). The following relationship is established between the natural frequency X i of the i-th representative model and the j-th influence factor a j .
Figure 0005839883
Note that the natural frequency X i of each representative model 4 i when the influence factor is the predetermined value a j0 is the above-described known natural frequency X i0 . That is, the above equation (1) shows how the natural frequency changes from the known value X i0 when each influence factor of the representative model 4 i is changed from the predetermined value a j0 to an arbitrary value a j. Represents.
The influence factors a j here is any parameter that affects the natural frequency of each representative models, for example, pipe specifications, total length of pipe, the position of the centralized mass, the position of the bent portion of the pipe, the pipe Specific examples of influential factors include the position of the branch of the pipe, the type of fluid flowing in the pipe, the presence or absence of heat, the temperature of the fluid flowing in the pipe, the thickness of the pipe, the load applied to the pipe, and the calculation error Can be mentioned. The form of the function f ij (a j ) here is not particularly limited as long as the relationship between each influence factor a j and the natural frequency X i can be specified, and a mathematical expression corresponding to the above formula (1) itself. It may be a graph or a table showing the relationship between the natural frequency X i corresponding to the above formula (1) and the influence factor a j .

図3(A)はL字型の配管及びその支持部材からなる代表モデル4を示す図であり、図3(B)は図3(A)に示した代表モデル4の固有振動数Xと各影響因子aとの関係を示すグラフである。
図3(A)に示すように、代表モデル4は、屈曲部5を1箇所だけ有するL字型の配管と、該配管の両端を下方から支持する支持部材3とで構成される。屈曲部5は、長さL1の直管部と長さL2の直管部との間に位置しており、この代表モデル4の延べ長さはL1+L2で表される。
図3(B)に示すように、配管の延べ長さa、配管の厚さa、配管内の流体の種類a、配管内の流体温度a、配管における屈曲部5の位置a、配管に作用する負荷荷重(配管長さ相当)aおよび計算上誤差aの合計7種類の影響因子aと代表モデル4の固有振動数Xとの関係を示す関数fi1(a)〜fi7(a)が準備されている。関数fi1(a)〜fi7(a)は、計算により求めてもよいし、代表モデル4を模したモックアップ試験体を用いて実測により求めてもよい。
FIG. 3A is a diagram showing a representative model 4 i composed of an L-shaped pipe and its support member, and FIG. 3B is a diagram showing the natural frequency X of the representative model 4 i shown in FIG. It is a graph which shows the relationship between i and each influence factor aj .
As shown in FIG. 3A, the representative model 4 i is configured by an L-shaped pipe having only one bent portion 5 and a support member 3 that supports both ends of the pipe from below. The bent portion 5 is located between the straight pipe portion and the straight tube portion of the length L2 of the length L1, total length of the representative model 4 i is represented by L1 + L2.
As shown in FIG. 3B, the total length a 1 of the pipe, the thickness a 2 of the pipe, the type of fluid a 3 in the pipe, the fluid temperature a 4 in the pipe, the position a of the bent portion 5 in the pipe 5. A function f i1 indicating a relationship between a total of seven influence factors a j of a load applied to the pipe (equivalent to the pipe length) a 6 and a calculation error a 7 and the natural frequency X i of the representative model 4 i (A 1 ) to f i7 (a 7 ) are prepared. The functions f i1 (a 1 ) to f i7 (a 7 ) may be obtained by calculation, or may be obtained by actual measurement using a mock-up specimen that represents the representative model 4 i .

続いて、図2におけるステップS6に進んで、配管系1を拘束点(支持部材3の位置)ごとに複数の要素6(ただしk=1,2,…,m)に分割する(図1(A)参照)。ここで、拘束点(支持部材3の位置)を基準にして配管系1の要素への分割を行うのは、拘束点が振動の分離点であるため(拘束点を超えて隣接する要素には振動は伝わりにくい)、各要素の振動を独立に扱うことができるからである。すなわち、拘束点ごとに配管系1を分割した各要素6は、振動を独立的に扱うことができる最小単位である。 Subsequently, the process proceeds to step S6 in FIG. 2, and the piping system 1 is divided into a plurality of elements 6 k (where k = 1, 2,..., M) for each restraint point (position of the support member 3) (FIG. 1). (See (A)). Here, the division into the elements of the piping system 1 is performed on the basis of the restraint point (the position of the support member 3) because the restraint point is a vibration separation point (the elements adjacent beyond the restraint point This is because vibration of each element can be handled independently. In other words, each element 6 k obtained by dividing the piping system 1 for each constraint point is the smallest unit that can handle vibration independently.

このようにして分割された各要素に対して、ステップS2で準備された複数の代表モデル4の中から各要素6に最も近いものを選択し、これを基準モデル7(ただしk=1,2,…,m)として各要素6に当てはめる(ステップS8)。
各要素6への基準モデル7の当てはめは、具体的には次のように行う。すなわち、図1(B)に示す例の場合、要素6が屈曲部5を2箇所だけ有する配管及びその支持部材3からなるため、これに最も近い代表モデルを選択して基準モデル7として要素6に当てはめる。また、要素6は直管及びその支持部材3からなるため、これに最も近い代表モデルを選択して基準モデル7として要素6に当てはめる。さらに、要素6は屈曲部5を1箇所だけ有する配管及びその支持部材3からなるため、これに最も近い代表モデルを選択して基準モデル7として要素6に当てはめる。
For each element divided in this way, the one closest to each element 6 k is selected from the plurality of representative models 4 i prepared in step S2, and this is selected as the reference model 7 k (where k = 1,2, ..., m) as fit to each element 6 k (step S8).
Fitting the reference model 7 k to each element 6 k, specifically performed as follows. That is, in the example shown in FIG. 1 (B), since the element 61 is made of a pipe and its supporting member 3 has a bent portion 5 only two places, as a reference model 71 selects the closest representative model to Element 6 applies to 1 Also elements 6 2 to become a straight pipe and its supporting member 3, fit the element 6 2 as reference model 7 2 selects the closest representative model thereto. Furthermore, although elements 6 m since composed of piping and the support member 3 has a bent portion 5 only one place, applying to the element 6 m as a reference model 7 m and selects the closest representative model thereto.

なお、各基準モデル7は、複数の代表モデル4の中から選択されたものであるため、当然、代表モデル4のうちいずれかに対応している。そのため、基準モデル7の固有振動数はその基準モデルに対応する代表モデル4の固有振動数Xi0(各影響因子が所定値aj0のときの固有振動数)として既知であるし、基準モデル7の固有振動数Xと各影響因子aとの関係はその基準モデルに対応する代表モデル4について算出済みである関数fij(a)をそのまま適用できる。 Each reference model 7 k is selected from a plurality of representative models 4 i , and naturally corresponds to one of the representative models 4 i . Therefore, the natural frequency of the reference model 7 k is known as the natural frequency X i0 of the representative model 4 i corresponding to the reference model (the natural frequency when each influencing factor is the predetermined value a j0 ). For the relationship between the natural frequency X i of the model 7 k and each influence factor a j , the function f ij (a j ) calculated for the representative model 4 i corresponding to the reference model can be applied as it is.

次に、ステップS4で準備された各代表モデル4の固有振動数Xと影響因子aとの関係を示す関数fij(a)を用いて、各要素と該要素に当てはめられた基準モデル7との影響因子aの相違に基づく補正係数αを算出する(ステップS10)。補正係数αは次の式から得られる。

Figure 0005839883
ただし、Xはk番目の要素4の固有振動数である。また、Xk0はk番目の要素に当てはめられた基準モデル7の固有振動数(影響因子がaj0のときの固有振動数)であって、その基準モデル7に対応する代表モデル4(ステップS8で選択された代表モデル4)の固有振動数Xi0(影響因子がaj0のときの固有振動数)から既知である。また、fkj(a)はk番目の要素6に当てはめられた基準モデル7の固有振動数Xと各影響因子aとの関係を示す関数であって、その基準モデル7に対応する代表モデル4についてステップS4で算出済みの関数fij(a)を用いる。また、aは各要素の影響因子の実際の値であり、aj0は基準モデルの影響因子の値(既知の固有振動数Xk0に対応する影響因子の値)である。
具体的には、図1(B)に示す例の場合、各要素6(k=1,2,…,m)に当てはめられた基準モデル7の各影響因子の値aj0と、各要素の各影響因子の値aとの相違を上記式(2)にて考慮し、補正係数α(k=1,2,…,m)を算出する。 Next, using the function f ij (a j) showing the relationship between the natural frequency X i of each representative model 4 i that are prepared and influence factors a j in step S4, the fitted to each element and the element A correction coefficient α k based on the difference of the influence factor a j from the reference model 7 k is calculated (step S10). The correction coefficient α k is obtained from the following equation.
Figure 0005839883
However, X k is the natural frequency of the k-th element 4 k . X k0 is the natural frequency (the natural frequency when the influence factor is a j0 ) of the reference model 7 k applied to the k-th element, and the representative model 4 i corresponding to the reference model 7 k It is known from the natural frequency X i0 (the natural frequency when the influence factor is a j0 ) of (representative model 4 i selected in step S8). Further, a function showing a relationship between f kj (a j) is the k-th element 6 natural frequency of the reference model 7 k, which is fitted to the k X k and the influencing factors a j, the reference model 7 k The function f ij (a j ) calculated in step S4 is used for the representative model 4 i corresponding to. Further, a j is the actual value of the influence factor of each element, and a j0 is the value of the influence factor of the reference model (the value of the influence factor corresponding to the known natural frequency X k0 ).
Specifically, in the case of the example shown in FIG. 1B, the value a j0 of each influencing factor of the reference model 7 k applied to each element 6 k (k = 1, 2,..., M ), The correction coefficient α k (k = 1, 2,..., M) is calculated in consideration of the difference from the value a j of each influence factor of the element in the above equation (2).

この後、各要素6に当てはめられた基準モデル7の既知の固有振動数Xk0にステップS10で得られた補正係数αを乗じて、各要素6の実際の固有振動数X(=Xk0×α)を算出する。 Thereafter, by multiplying the correction coefficient alpha k obtained in known natural frequency X k0 in step S10 of the reference model 7 k, which is fitted to each of the elements 6 k, the actual natural frequency X k of the elements 6 k (= X k0 × α k ) is calculated.

そして、ステップS14において、互いに直交する2つの水平方向及び鉛直方向の3方向について、各要素6の固有振動数Xを算出したか否かを判断する。3方向について固有振動数Xの算出が完了していなければ(ステップS14のNO判定)、ステップS6に戻って他の方向に関してステップS6〜S12の処理を再び繰り返す。
一方、3方向について固有振動数Xの算出が完了していれば(ステップS14のYES判定)、ステップS16に進み、3方向について求めた各要素6の固有振動数Xのうち最小の固有振動数を求める(3×k個の固有振動数のうち最小のものを求める)。この最小固有振動数から、配管系1のうちどの要素6の何れの方向の振動モードについて振動対策を施すべきかを知ることができる。そのため、配管系1への振動対策を効率的に行うことができる。
In step S14, it is determined whether or not the natural frequency Xk of each element 6k has been calculated in two horizontal directions and three vertical directions orthogonal to each other. About three directions unless calculated natural frequencies X k is completed (NO determination at step S14), and repeats the processing of step S6~S12 respect to the other direction back to the step S6.
On the other hand, if the calculation of the eigenfrequency X k is completed for three directions (YES determination at step S14), and proceeds to step S16, the minimum of the natural frequency of X k of the elements 6 k determined for three directions The natural frequency is obtained (the smallest of the 3 × k natural frequencies is obtained). From this minimum natural frequency, it is possible to know which element 6k in which direction in the piping system 1 should be subjected to vibration countermeasures in which direction of vibration mode. Therefore, vibration countermeasures for the piping system 1 can be efficiently performed.

ここで、互いに直交する2つの水平方向及び鉛直方向の3方向のそれぞれについて配管系1の振動解析を行う際における配管系1の要素への分割について、具体例を挙げて説明する。   Here, the division into elements of the piping system 1 when the vibration analysis of the piping system 1 is performed in each of two horizontal directions and three vertical directions orthogonal to each other will be described with a specific example.

図4は配管系1の一例を示す図である。図5は直交する2つの水平方向(XY方向)及び鉛直方向(Z方向)のそれぞれについて、図4に示した配管系1を要素に分割する様子を示す図であり、図5(A)はX方向における要素分割の様子を示し、図5(B)はY方向における要素分割の様子を示し、図5(C)はZ方向における要素分割の様子を示している。   FIG. 4 is a diagram illustrating an example of the piping system 1. FIG. 5 is a diagram showing a state in which the piping system 1 shown in FIG. 4 is divided into elements for each of two orthogonal horizontal directions (XY directions) and vertical directions (Z directions). FIG. FIG. 5B shows a state of element division in the Y direction, and FIG. 5C shows a state of element division in the Z direction.

図4に示す配管系1は、両端に機器A及び機器Bが接続されている。また配管系1は、機器A及びBの間において、2箇所の屈曲部5が存在し、支持部材によって拘束点8(8A〜8E)で支持されている。拘束点8Aは機器Aと配管系1との接続部であり、配管系1は拘束点8Aにおいて機器A(支持部材の一例)によってXYZの全方向に拘束されている。また配管系1は、拘束点8Bにおいて配管サポート9(支持部材の一例)によってZ方向にのみ拘束されており、拘束点8Cにおいて配管サポート9によってXY方向に拘束されている。また、拘束点8Dでは、配管系1は配管サポート9(支持部材の一例)によってZ方向に拘束されている。さらに、機器B(支持部材の一例)との接続部である拘束点8Eでは、配管系1はXYZの全方向に拘束されている。   The piping system 1 shown in FIG. 4 has devices A and B connected to both ends. The piping system 1 includes two bent portions 5 between the devices A and B, and is supported at the restraint points 8 (8A to 8E) by the support member. The restraint point 8A is a connection portion between the device A and the piping system 1, and the piping system 1 is restrained in all directions of XYZ by the device A (an example of a support member) at the restraint point 8A. The piping system 1 is restricted only in the Z direction by a piping support 9 (an example of a support member) at a restraint point 8B, and is restrained in the XY direction by the piping support 9 at a restraint point 8C. Further, at the restraint point 8D, the piping system 1 is restrained in the Z direction by a piping support 9 (an example of a support member). Furthermore, the piping system 1 is restrained in all directions of XYZ at a restraint point 8E which is a connection portion with the device B (an example of a support member).

図5(A)の左側に示すように、拘束点8(8A〜8E)のうちX方向に配管系1を拘束するものを抽出すると、拘束点8A,8C,8Eのみとなる。そこで配管系1を拘束点8(8A,8C,8E)ごとに分割すると、同図の右側に示すように2つの要素(61X,62X)が得られる。つまり、X方向に関して配管系1を拘束点ごとに複数の要素に分割した場合、2つの要素61X,62Xが得られ、その後ステップS8〜S12を行うことで要素61X,62Xのそれぞれついて固有振動数Xが算出される。
また、図5(B)の左側に示すように、拘束点8(8A〜8E)のうちY方向に配管系1を拘束するものを抽出すると、拘束点8A,8C,8Eのみとなる。そこで配管系1を拘束点8(8A,8C,8E)ごとに分割すると、同図の右側に示すように2つの要素(61Y,62Y)が得られる。つまり、Y方向に関して配管系1を拘束点ごとに複数の要素に分割した場合、2つの要素61Y,62Yが得られ、その後ステップS8〜S12を行うことで要素61Y,62Yのそれぞれついて固有振動数Xが算出される。
同様に、図5(C)の左側に示すように、拘束点8(8A〜8E)のうちZ方向に配管系1を拘束するものを抽出すると、拘束点8A,8B,8D,8Eのみとなる。そこで配管系1を拘束点8(8A,8B,8D,8E)ごとに分割すると、同図の右側に示すように3つの要素(61Z,62Z,63Z)が得られる。つまり、Z方向に関して配管系1を拘束点ごとに複数の要素に分割した場合、3つの要素61Z,62Z,63Zが得られ、その後ステップS8〜S12を行うことで要素61Z,62Z,63Zのそれぞれついて固有振動数Xが算出される。
本実施形態では、このようなXYZ方向における要素分割及び各要素についての固有振動数の算出が、図2におけるステップS14からステップS6に戻されることで、順に行われるようになっている。
As shown on the left side of FIG. 5 (A), when the restraint points 8 (8A to 8E) that restrain the piping system 1 in the X direction are extracted, only the restraint points 8A, 8C, and 8E are obtained. Therefore, when the piping system 1 is divided for each restraint point 8 (8A, 8C, 8E), two elements (6 1X , 6 2X ) are obtained as shown on the right side of FIG. That is, when divided into a plurality of elements piping system 1 for each constraint points in the X direction, the two elements 6 1X, 6 2X is obtained, each element 6 1X, 6 2X by performing subsequent steps S8~S12 Accordingly, the natural frequency Xk is calculated.
Further, as shown on the left side of FIG. 5B, when the restraint points 8 (8A to 8E) that restrain the piping system 1 in the Y direction are extracted, only the restraint points 8A, 8C, and 8E are obtained. Therefore, when the piping system 1 is divided for each restraint point 8 (8A, 8C, 8E), two elements (6 1Y , 6 2Y ) are obtained as shown on the right side of FIG. That is, when divided into a plurality of elements piping system 1 for each constraint points in the Y direction, the two elements 6 1Y, 6 2Y is obtained, the element 6 1Y, 6 2Y each by performing subsequent steps S8~S12 Accordingly, the natural frequency Xk is calculated.
Similarly, as shown on the left side of FIG. 5C, when the constraint points 8 (8A to 8E) that extract the piping system 1 in the Z direction are extracted, only the constraint points 8A, 8B, 8D, and 8E are obtained. Become. Therefore, when the piping system 1 is divided for each restraint point 8 (8A, 8B, 8D, 8E), three elements (6 1Z , 6 2Z , 6 3Z ) are obtained as shown on the right side of FIG. That is, when the piping system 1 is divided into a plurality of elements for each constraint point with respect to the Z direction, three elements 6 1Z , 6 2Z , 6 3Z are obtained, and then the elements 6 1Z , 6 are performed by performing steps S8 to S12. 2Z, 6 natural frequency X k with respective 3Z is calculated.
In the present embodiment, the element division in the XYZ directions and the calculation of the natural frequency for each element are sequentially performed by returning from step S14 to step S6 in FIG.

次に、上述した振動解析方法を用いた配管系の振動解析装置について説明する。図6は配管系の振動解析装置の構成例を示す図である。
同図に示すように、振動解析装置10は、主として、配管系1の振動解析に必要な処理を行うCPU20と、配管系1の振動解析に必要な情報が記憶された記憶手段(メモリ)30と、入力部42及び表示部44を有し、CPU20とオペレータとの情報のやりとりを行うユーザインターフェース40とを備える。
Next, a vibration analysis device for a piping system using the above-described vibration analysis method will be described. FIG. 6 is a diagram illustrating a configuration example of a vibration analysis apparatus for a piping system.
As shown in FIG. 1, the vibration analysis apparatus 10 mainly includes a CPU 20 that performs processing necessary for vibration analysis of the piping system 1 and storage means (memory) 30 in which information necessary for vibration analysis of the piping system 1 is stored. And an input unit 42 and a display unit 44, and a user interface 40 for exchanging information between the CPU 20 and the operator.

記憶手段30には、予め準備された複数の代表モデル4がその既知の固有振動数Xi0とともに記憶されている。また、各代表モデル4について予め求められた、固有振動数Xと影響因子aとの関係を示す関数fij(a)も記憶手段30に記憶されている。記憶手段30は、CPU20側からの要求に従って、これらの情報をCPU20側に提供する。 The storage unit 30 stores a plurality of representative models 4 i prepared in advance together with the known natural frequency X i0 . Further, a function f ij (a j ) obtained in advance for each representative model 4 i and indicating the relationship between the natural frequency X i and the influence factor a j is also stored in the storage unit 30. The memory | storage means 30 provides such information to CPU20 side according to the request | requirement from CPU20 side.

CPU20は、分割部22、基準モデル当てはめ部24、補正係数算出部26、固有振動数算出部28および最小固有振動数算出部29により構成される。
分割部22は、ユーザインターフェース40の入力部42を介してオペレータによって入力された配管系1の設計データに基づいて、配管系1を拘束点ごとに複数の要素6(k=1,2,…,m)に分割する。
基準モデル当てはめ部24は、分割部22による分割処理によって得られた要素6のそれぞれについて基準モデル7を当てはめる。具体的には、ユーザインターフェース40の表示部44を介して、記憶手段30に記憶されている複数の代表モデル4の中から各要素6に最も近いものを選択するようにオペレータに促す。そして、オペレータがユーザインターフェース40の入力部42によって選択した代表モデル4を、基準モデル7として各要素6に当てはめる。なお、オペレータの負担を軽減する観点から、基準モデル当てはめ部24は、記憶手段30に記憶された複数の代表モデル4の中から各要素6に比較的近いものだけを候補として表示部44に表示するようにしてもよい。
補正係数算出部26は、上記式(2)を用いて、各要素6と基準モデル7との影響因子aの相違に基づく補正係数αを算出する。このとき、各要素6に当てはめられた基準モデル7に対応する代表モデル4の固有振動数Xi0を記憶手段30から受け取って、該固有振動数をその基準モデル7の固有振動数Xk0として用いる。また、各要素6に当てはめられた基準モデル7に対応する代表モデル4に関して予め求められた関数fij(a)を記憶手段30から受け取って、該関数fij(a)を基準モデル7の固有振動数Xと各影響因子aとの関係を示す関数fkj(a)として用いる。
固有振動数算出部28は、各要素6に当てはめられた基準モデル7の固有振動数Xk0に補正係数算出部26にて得られた補正係数αを乗じて、各要素6の実際の固有振動数X(=Xk0×α)を算出する。
このような一連の処理を、分割部22、基準モデル当てはめ部24、補正係数算出部26および固有振動数算出部28によって繰り返し、互いに直交する2つの水平方向及び鉛直方向の3方向(XYZ方向)について、各要素6の固有振動数Xが算出される。
最小固有振動数算出部29は、固有振動数算出部28で得られた各要素6の固有振動数Xのうち最小の固有振動数を求める(3×k個の固有振動数のうち最小のものを求める)。これにより、配管系1のうちどの要素6の何れの方向の振動モードについて振動対策を施すべきかを知ることができる。なお、最小固有振動数算出部29によって求められた最小の固有振動数はユーザインターフェース40の表示部44に表示される。
The CPU 20 includes a dividing unit 22, a reference model fitting unit 24, a correction coefficient calculation unit 26, a natural frequency calculation unit 28, and a minimum natural frequency calculation unit 29.
Based on the design data of the piping system 1 input by the operator via the input unit 42 of the user interface 40, the dividing unit 22 converts the piping system 1 into a plurality of elements 6 k (k = 1, 2, ..., m).
The reference model fitting unit 24 applies the reference model 7 k to each of the elements 6 k obtained by the dividing process by the dividing unit 22. Specifically, the operator is prompted to select the one closest to each element 6 k from the plurality of representative models 4 i stored in the storage unit 30 via the display unit 44 of the user interface 40. Then, the representative model 4 i selected by the input unit 42 of the user interface 40 by the operator is applied to each element 6 k as the reference model 7 k . Note that, from the viewpoint of reducing the burden on the operator, the reference model fitting unit 24 uses only the ones that are relatively close to each element 6 k among the plurality of representative models 4 i stored in the storage unit 30 as candidates. May be displayed.
The correction coefficient calculation unit 26 calculates the correction coefficient α k based on the difference in the influence factor a j between each element 6 k and the reference model 7 k using the above equation (2). At this time, the natural frequency X i0 of the representative model 4 i corresponding to the reference model 7 k applied to each element 6 k is received from the storage means 30, and the natural frequency is obtained as the natural frequency of the reference model 7 k. Used as Xk0 . Further, receiving the function f ij a (a j) from the memory means 30 previously obtained with respect to the representative model 4 i corresponding to the reference model 7 k, which is fitted to each of the elements 6 k, a The function f ij (a j) used as a function f kj (a j) showing the relationship between the natural frequency X k and the influencing factors a j of the reference model 7 k.
The natural frequency calculation unit 28 multiplies the natural frequency X k0 of the reference model 7 k applied to each element 6 k by the correction coefficient α k obtained by the correction coefficient calculation unit 26 to obtain the value of each element 6 k . The actual natural frequency X k (= X k0 × α k ) is calculated.
Such a series of processing is repeated by the dividing unit 22, the reference model fitting unit 24, the correction coefficient calculating unit 26, and the natural frequency calculating unit 28, and two horizontal and vertical three directions (XYZ directions) orthogonal to each other. for, the natural frequency of X k of the elements 6 k is calculated.
The minimum natural frequency calculation unit 29 obtains the minimum natural frequency among the natural frequencies X k of each element 6 k obtained by the natural frequency calculation unit 28 (the minimum among the 3 × k natural frequencies). Ask for things). As a result, it is possible to know which element 6 k in which direction of the piping system 1 should be subjected to vibration countermeasures in which direction of vibration mode. The minimum natural frequency obtained by the minimum natural frequency calculation unit 29 is displayed on the display unit 44 of the user interface 40.

以上説明したように、本実施形態では、拘束点8ごとに配管系1を複数の要素6に分割する分割工程(ステップS6)と、複数の要素6のそれぞれについて、固有振動数Xk0が既知である基準モデル7を当てはめる基準モデル当てはめ工程(ステップS8)と、各要素6と該要素に当てはめられた基準モデル7との相違に基づく補正係数αを複数の要素6のそれぞれについて求める補正係数算出工程(ステップS10)と、各要素6に当てはめられた基準モデル7の固有振動数Xに補正係数αを乗じて、複数の要素6のそれぞれの固有振動数Xを求める固有振動数算出工程(ステップS12)とによって、配管系1の振動解析を行う。
このように複雑な形状の配管系1をそのままモデル化するのではなく、配管系1を複数の要素6に分割し、基準モデル7との比較に基づいて各要素6の固有振動数Xを求めることで、配管系1の振動解析を簡便に行うことができ、解析に要する時間を大幅に短縮できる。そのため、配管系1のより広い範囲にわたって解析を行うことが可能になり、配管系1の振動特性を正確に把握することができる。よって、プラント試運転段階になってから配管支持構造物(支持部材)の修正を余儀なくされる事態を防ぐことができる。
また、要素6ごとに固有振動数Xが得られるため、配管系1のどの箇所(要素6)に振動対策を施すべきかが明確になる。よって、配管系の設計段階で、回転体や往復運動体を備えた機器との共振のおそれがなく、振動に対する剛性に優れた配管系1を容易に実現できる。
As described above, in the present embodiment, dividing step of dividing the pipeline 1 into a plurality of elements 6 k for each constraint points 8 and (step S6), and for each of the plurality of elements 6 k, the natural frequency X k0 reference model 7 k as the reference model fitting process fitting (step S8), and the elements 6 k and a plurality of elements 6 k the correction coefficient alpha k based on the difference between the reference model 7 k, which is fitted to the element which is known correction coefficient calculating step of calculating for each (step S10) and, by multiplying the correction coefficient alpha k to the natural frequency X k of the reference model 7 k, which is fitted to each of the elements 6 k, each unique multiple elements 6 k by a natural frequency calculating step of calculating frequency X k (step S12), the perform vibration analysis piping system 1.
Instead of modeling the piping system 1 having a complicated shape as it is, the piping system 1 is divided into a plurality of elements 6 k , and the natural frequency of each element 6 k is compared with the reference model 7 k. by determining the X k, it is possible to easily perform vibration analysis piping system 1 can greatly reduce the time required for analysis. Therefore, it is possible to perform analysis over a wider range of the piping system 1, and the vibration characteristics of the piping system 1 can be accurately grasped. Therefore, it is possible to prevent a situation in which the piping support structure (support member) is forced to be corrected after the plant trial operation stage.
Moreover, since the resulting natural frequency X k for each element 6 k, or to be subjected to vibration measures become clear to the pipe system 1 throat point (element 6 k). Therefore, at the design stage of the piping system, there is no fear of resonance with a device having a rotating body or a reciprocating body, and the piping system 1 having excellent rigidity against vibration can be easily realized.

また、上述の実施形態では、基準モデル当てはめ工程(ステップS8)を行う前に、固有振動数Xj0が既知である代表モデル4を複数用意する代表モデル準備工程(ステップS2)を行うようにした。そして、基準モデル当てはめ工程(ステップS8)では、複数の代表モデル4の中から各要素6に最も近い代表モデルを基準モデル7として選択して各要素6に当てはめるようにした。
これにより、プラントの配管系1で典型的に用いられる要素を代表モデル4として予め用意しておけば、種々のプラントにおける任意の形状の配管系1の振動解析を簡便かつ迅速に行うことができる。
In the above-described embodiment, before the reference model fitting step (step S8), the representative model preparation step (step S2) for preparing a plurality of representative models 4 i with known natural frequencies X j0 is performed. did. Then, in the reference model fitting process (step S8), and it was set to fit the nearest representative model from among a plurality of representative model 4 i to each element 6 k is selected as reference model 7 k to each element 6 k.
Thus, if the elements typically used in the piping system 1 of the plant are prepared in advance as the representative model 4 i , vibration analysis of the piping system 1 of any shape in various plants can be performed easily and quickly. it can.

また、上述の実施形態では、補正係数算出工程(ステップS10)を行う前に、代表モデル4の固有振動数Xと該固有振動数Xに影響する影響因子aとの関係を示す関数fij(a)を求める関数算出工程(ステップS4)を行うようにした。そして、補正係数算出工程(ステップS10)では、各要素6と該要素に当てはめられた基準モデル7との影響因子aの相違から前記関数fij(a)を用いて補正係数αを求めるようにした。具体的には、上記式(2)におけるfkj(a)として、基準モデル7に対応する代表モデル4についてステップS4で算出済みの関数fij(a)を用いて補正係数αを求める。
これにより、各要素6の正確な固有振動数Xを簡便かつ迅速に求めることができる。
In the embodiment described above, prior to the correction coefficient calculation step (step S10), and shows the relationship between the influence factors a j that affects the natural frequency X i and said intrinsic frequency X i representative model 4 i A function calculation step (step S4) for obtaining the function f ij (a j ) is performed. In the correction coefficient calculation step (step S10), the correction coefficient α is calculated using the function f ij (a j ) based on the difference in the influence factor a j between each element 6 k and the reference model 7 k applied to the element. k was calculated. Specifically, the correction coefficient α using the function f ij (a j ) calculated in step S4 for the representative model 4 i corresponding to the reference model 7 k as f kj (a j ) in the above equation (2). Find k .
Thus, it is possible to obtain an accurate natural frequency X k of the elements 6 k conveniently and quickly.

また、上述の実施形態では、分割工程(ステップS6)、基準モデル当てはめ工程(ステップS8)、補正係数算出工程(ステップS10)および固有振動数算出工程(ステップS12)を、互いに直交する2つの水平方向及び鉛直方向の3方向について繰り返すようにした。
プラントの配管系は、通常、複雑な三次元形状であるから、あらゆる方向の振動が問題になりえる。このため、1方向について解析を行っても、配管系の振動特性を正確に知ることはできないことが多い。そこで、上述のように、互いに直交する2つの水平方向及び鉛直方向の3方向について、分割工程〜固有振動数算出工程を繰り返すことで、複雑な三次元形状の配管系1の振動特性を確実に把握することができる。
In the above-described embodiment, the dividing step (step S6), the reference model fitting step (step S8), the correction coefficient calculating step (step S10), and the natural frequency calculating step (step S12) are performed in two horizontal directions orthogonal to each other. It was made to repeat about three directions, a direction and a perpendicular direction.
Plant piping systems are usually complex three-dimensional shapes, so vibrations in all directions can be a problem. For this reason, even if analysis is performed in one direction, it is often impossible to accurately know the vibration characteristics of the piping system. Therefore, as described above, the vibration characteristics of the complicated three-dimensional piping system 1 can be ensured by repeating the division process to the natural frequency calculation process in two horizontal directions and a vertical direction that are orthogonal to each other. I can grasp it.

さらに、上述の実施形態では、3方向について固有振動数算出工程(ステップS12)で算出した各要素6の固有振動数Xのうち最小の固有振動数を求める最小固有振動数算出工程(ステップS16)をさらに行うようにした。
このようにして得られた最小の固有振動数から、配管系1のうちどの要素6の何れの方向の振動モードについて振動対策を施すべきかを知ることができる。そのため、配管系1への振動対策を効率的に行うことができる。
Furthermore, in the above-described embodiment, the minimum natural frequency calculating step (step) for obtaining the minimum natural frequency among the natural frequencies X k of the elements 6 k calculated in the natural frequency calculating step (step S12) in three directions. S16) was further performed.
Thus it was minimal from the natural frequency obtained in, for either direction vibration mode of which element 6 k of the pipeline 1 can know to be subjected to vibration countermeasures. Therefore, vibration countermeasures for the piping system 1 can be efficiently performed.

以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。   As mentioned above, although embodiment of this invention was described in detail, it cannot be overemphasized that this invention is not limited to this, In the range which does not deviate from the summary of this invention, various improvement and deformation | transformation may be performed.

例えば、上述の実施形態では、XYZ方向についてステップS6〜S12を繰り返す例について説明したが、特定の方向における振動解析を行えば十分である場合、その方向についてのみステップS6〜S12を行うようにしてもよい。   For example, in the above-described embodiment, an example in which steps S6 to S12 are repeated in the XYZ directions has been described. However, when it is sufficient to perform vibration analysis in a specific direction, steps S6 to S12 are performed only in that direction. Also good.

また上述の実施形態では、図2に示した振動解析方法を実施するために振動解析装置10(図6参照)を用いる例を説明したが、本発明に係る振動解析方法は振動解析装置10を用いずに行ってもよい。この際、ステップS2〜S16の全部又は一部を自動化してもよい。   In the above-described embodiment, the example in which the vibration analysis apparatus 10 (see FIG. 6) is used to implement the vibration analysis method illustrated in FIG. 2 is described. However, the vibration analysis method according to the present invention uses the vibration analysis apparatus 10. You may go without using it. At this time, all or part of steps S2 to S16 may be automated.

1 配管系
2 配管
3 支持部材
代表モデル
5 屈曲部
要素
基準モデル
8A〜8E 拘束点
9 配管サポート
10 振動解析装置
20 CPU
22 分割部
24 基準モデル当てはめ部
26 補正係数算出部
28 固有振動数算出部
29 最小固有振動数算出部
30 記憶手段(メモリ)
40 ユーザインターフェース
42 入力部
44 表示部
DESCRIPTION OF SYMBOLS 1 Piping system 2 Piping 3 Support member 4 i representative model 5 Bending part 6 k element 7 k reference model 8A-8E Restriction point 9 Piping support 10 Vibration analyzer 20 CPU
22 division unit 24 reference model fitting unit 26 correction coefficient calculation unit 28 natural frequency calculation unit 29 minimum natural frequency calculation unit 30 storage means (memory)
40 User interface 42 Input section 44 Display section

Claims (7)

配管および該配管を複数の拘束点において支持する複数の支持部材を有する配管系の振動解析方法であって、
前記拘束点ごとに前記配管系を複数の要素に分割する分割工程と、
前記複数の要素のそれぞれについて、固有振動数が既知である基準モデルを当てはめる基準モデル当てはめ工程と、
各要素と該要素に当てはめられた基準モデルとの間における、固有振動数に影響するパラメータである影響因子の相違に基づく補正係数を前記複数の要素のそれぞれについて求める補正係数算出工程と、
各要素に当てはめられた基準モデルの前記固有振動数に前記補正係数を乗じて、前記複数の要素のそれぞれの固有振動数を求める固有振動数算出工程とを備えることを特徴とする配管系の振動解析方法。
A vibration analysis method for a piping system having a piping and a plurality of support members for supporting the piping at a plurality of restraint points,
A dividing step of dividing the piping system into a plurality of elements for each of the restraint points;
A reference model fitting step of applying a reference model having a known natural frequency for each of the plurality of elements;
A correction coefficient calculation step for obtaining a correction coefficient for each of the plurality of elements based on a difference in influence factors that are parameters affecting the natural frequency between each element and the reference model applied to the element;
A vibration of a piping system, comprising: a natural frequency calculation step of obtaining the natural frequency of each of the plurality of elements by multiplying the natural frequency of the reference model applied to each element by the correction coefficient. analysis method.
前記基準モデル当てはめ工程を行う前に、固有振動数が既知である代表モデルを複数用意する代表モデル準備工程をさらに備え、
前記基準モデル当てはめ工程では、複数の前記代表モデルの中から各要素に最も近い代表モデルを前記基準モデルとして選択して各要素に当てはめることを特徴とする請求項1に記載の配管系の振動解析方法。
Before performing the reference model fitting step, further comprising a representative model preparation step of preparing a plurality of representative models with known natural frequencies,
2. The piping system vibration analysis according to claim 1, wherein, in the reference model fitting step, a representative model closest to each element is selected from the plurality of representative models as the reference model and applied to each element. Method.
前記補正係数算出工程を行う前に、前記代表モデルの固有振動数と該固有振動数に影響する影響因子との関係を示す関数を求める関数算出工程をさらに備え、
前記補正係数算出工程では、各要素と該要素に当てはめられた前記基準モデルとの前記影響因子の相違から前記関数を用いて前記補正係数を求めることを特徴とする請求項2に記載の配管系の振動解析方法。
Before performing the correction coefficient calculation step, further comprising a function calculation step for obtaining a function indicating a relationship between the natural frequency of the representative model and an influencing factor affecting the natural frequency,
3. The piping system according to claim 2, wherein, in the correction coefficient calculation step, the correction coefficient is obtained using the function from a difference in the influence factors between each element and the reference model applied to the element. Vibration analysis method.
前記分割工程、前記基準モデル当てはめ工程、前記補正係数算出工程および前記固有振動数算出工程を互いに直交する2つの水平方向及び鉛直方向の3方向について繰り返すことを特徴とする請求項1乃至3のいずれか一項に記載の配管系の振動解析方法。   4. The method according to claim 1, wherein the dividing step, the reference model fitting step, the correction coefficient calculating step, and the natural frequency calculating step are repeated in three horizontal directions and a vertical direction that are orthogonal to each other. A vibration analysis method for a piping system according to claim 1. 前記3方向について前記固有振動数算出工程で算出した各要素の前記固有振動数のうち最小の固有振動数を求める最小固有振動数算出工程をさらに備えることを特徴とする請求項4に記載の配管系の振動解析方法。   5. The piping according to claim 4, further comprising a minimum natural frequency calculating step for obtaining a minimum natural frequency among the natural frequencies of each element calculated in the natural frequency calculating step in the three directions. System vibration analysis method. 配管および該配管を複数の拘束点において支持する複数の支持部材とを備える配管系の振動解析装置であって、
前記拘束点ごとに前記配管系を複数の要素に分割する分割手段と、
前記複数の要素のそれぞれについて、固有振動数が既知である基準モデルを当てはめる基準モデル当てはめ手段と、
各要素と該要素に当てはめられた基準モデルとの間における、固有振動数に影響するパラメータである影響因子の相違に基づく補正係数を前記複数の要素のそれぞれについて求める補正係数算出手段と、
各要素に当てはめられた基準モデルの前記固有振動数に前記補正係数を乗じて、前記複数の要素のそれぞれの固有振動数を求める固有振動数算出手段とを備えることを特徴とする配管系の振動解析装置。
A vibration analysis device for a piping system comprising a piping and a plurality of supporting members that support the piping at a plurality of restraint points,
Dividing means for dividing the piping system into a plurality of elements for each of the restraint points;
A reference model fitting means for fitting a reference model having a known natural frequency for each of the plurality of elements;
Correction coefficient calculation means for obtaining a correction coefficient for each of the plurality of elements based on a difference in influencing factors that are parameters affecting the natural frequency between each element and a reference model applied to the element;
A vibration of a piping system, characterized by comprising: natural frequency calculation means for multiplying the natural frequency of a reference model applied to each element by the correction coefficient to obtain the natural frequency of each of the plurality of elements. Analysis device.
固有振動数が既知である複数の代表モデルが記憶された記憶手段と、
オペレータとの情報のやり取りを行う表示部および入力部を有するユーザインターフェースとをさらに備え、
前記基準モデル当てはめ手段は、前記記憶手段に記憶された複数の前記代表モデルの中から各要素に最も近い代表モデルを選択することを前記表示部によってオペレータに促し、オペレータが前記入力部によって選択した代表モデルを前記基準モデルとして各要素に当てはめることを特徴とする請求項6に記載の配管系の振動解析装置。
Storage means for storing a plurality of representative models with known natural frequencies;
A user interface having a display unit and an input unit for exchanging information with an operator;
The reference model fitting means prompts the operator to select a representative model closest to each element from the plurality of representative models stored in the storage means, and the operator selects the representative model using the input section. The piping system vibration analysis apparatus according to claim 6, wherein a representative model is applied to each element as the reference model.
JP2011175561A 2011-08-11 2011-08-11 Vibration analysis method for piping system Expired - Fee Related JP5839883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175561A JP5839883B2 (en) 2011-08-11 2011-08-11 Vibration analysis method for piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175561A JP5839883B2 (en) 2011-08-11 2011-08-11 Vibration analysis method for piping system

Publications (2)

Publication Number Publication Date
JP2013037649A JP2013037649A (en) 2013-02-21
JP5839883B2 true JP5839883B2 (en) 2016-01-06

Family

ID=47887188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175561A Expired - Fee Related JP5839883B2 (en) 2011-08-11 2011-08-11 Vibration analysis method for piping system

Country Status (1)

Country Link
JP (1) JP5839883B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105184070A (en) * 2015-08-31 2015-12-23 华南理工大学 Piecewise fitting method for calculating volt-second characteristic curve based on voltage integration method
CN107590321B (en) * 2017-08-25 2020-12-01 中国船舶重工集团公司第七一九研究所 Integral measurement method for pipeline vibration response
KR102289173B1 (en) * 2019-12-20 2021-08-13 삼성물산 주식회사 Apparatus and method for the analysing vibration stability of pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201163A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Vibration and noise rating apparatus and method for pipe system
JP3706048B2 (en) * 2001-06-22 2005-10-12 旭化成ホームズ株式会社 Building vibration evaluation method
JP2003132107A (en) * 2001-10-25 2003-05-09 Hitachi Ltd Piping device and design method of piping device
JP2003186947A (en) * 2001-12-20 2003-07-04 Mitsubishi Heavy Ind Ltd Air conditioning machine designing system

Also Published As

Publication number Publication date
JP2013037649A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
KR102112482B1 (en) Turbine blade fatigue life analysis using non-contact measurement and dynamical response reconstruction techniques
EP2699881B1 (en) Structural health management system and method based on combined physical and simulated data
JP6867329B2 (en) Residual stress calculation method
Pradhan et al. Normal response function method for mass and stiffness matrix updating using complex FRFs
JP5839883B2 (en) Vibration analysis method for piping system
JP6373030B2 (en) Wiring harness routing route evaluation method, system thereof, and program thereof
EP3467688B1 (en) Contact force evaluation method
JP2013145478A (en) High pressure gas facility inspection and management support system and inspection and management method of the same
KR101792702B1 (en) Apparatus for determining work order
US20110178935A1 (en) Systems And Methods Of Integrated And Automated Generation Of Work Packages
JP5946064B2 (en) Pipe stress evaluation apparatus and method
JP2004127304A (en) Assembly and welding line for automobile body and body component or equivalent, and method for identification and management of error and defect in equipment based on method of invention
JP7039784B2 (en) Life evaluation device and life evaluation method
KR101097414B1 (en) Pipe vibration estimation method
JP2014074659A (en) Abnormality detection preprocessing device, method, and program, and abnormality detection device including the same
CN103184934B (en) For the working fluid sensing system of power generation system
Liu et al. Engineering-driven factor analysis for variation source identification in multistage manufacturing processes
Loghin et al. Augmenting generic fatigue crack growth models using 3D finite element simulations and Gaussian process modeling
JP6016829B2 (en) Pipe stress analysis method and stress analysis apparatus
JP6789452B1 (en) Crack estimation device, crack estimation method, crack inspection method and failure diagnosis method
de Oliveira Gomes et al. A proposal simulation method towards continuous improvement in discrete manufacturing
JP2021071910A (en) Design support device, design support method, and design support program
JP5427765B2 (en) Creep damage diagnostic system for piping system
CN113874866A (en) Method and system for generating sensor model and method and system for measuring sensor
JP2018014035A (en) Scaffold plan creation device, scaffold plan creation method, and scaffold plan creation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R151 Written notification of patent or utility model registration

Ref document number: 5839883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees