JP5838107B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP5838107B2
JP5838107B2 JP2012063000A JP2012063000A JP5838107B2 JP 5838107 B2 JP5838107 B2 JP 5838107B2 JP 2012063000 A JP2012063000 A JP 2012063000A JP 2012063000 A JP2012063000 A JP 2012063000A JP 5838107 B2 JP5838107 B2 JP 5838107B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
valve
valve body
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012063000A
Other languages
Japanese (ja)
Other versions
JP2013194615A (en
Inventor
裕貴 中居
裕貴 中居
相馬 正浩
正浩 相馬
隆樹 板谷
隆樹 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012063000A priority Critical patent/JP5838107B2/en
Priority to PCT/JP2013/050617 priority patent/WO2013140835A1/en
Publication of JP2013194615A publication Critical patent/JP2013194615A/en
Application granted granted Critical
Publication of JP5838107B2 publication Critical patent/JP5838107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices

Description

本発明は、内燃機関に用いられる燃料噴射弁であって、駆動手段として磁気吸引力を用いることにより、弁体の開閉を行う各種燃料噴射弁に関する。燃料噴射弁の用途は、燃焼室の側面に取り付ける直噴燃料噴射弁に限らず、燃料噴射弁をプラグわきに配置する直上燃料噴射弁、吸気管に配置する吸気ポート噴射まで対応する。   The present invention relates to a fuel injection valve used in an internal combustion engine, and relates to various fuel injection valves that open and close a valve body by using a magnetic attractive force as a driving means. The use of the fuel injection valve is not limited to the direct injection fuel injection valve attached to the side surface of the combustion chamber, but corresponds to the direct fuel injection valve in which the fuel injection valve is arranged beside the plug and the intake port injection in the intake pipe.

特開平10−325378号公報には、ノズルボディに設けた燃料溜りの燃料圧力の上昇にともなってニードルをリフトさせることにより、燃料溜りの燃料をノズルサックの法線に沿う複数個の噴口(燃料噴射孔)から燃焼室に噴射させるようにしたホール式の燃料噴射ノズルにおいて、ノズルサックから燃焼室に至る主通路と、該主通路の途中から分岐して燃焼室に至る副通路で前記噴口を構成したことを特徴としたホール型燃料噴射ノズルが開示されている。このホール型燃料噴射ノズルでは、主通路から噴射された燃料による燃料噴霧のペネトレーションと副通路から噴射された燃料による燃料噴霧のペネトレーションとが異なる。   In Japanese Patent Laid-Open No. 10-325378, a needle is lifted as the fuel pressure of a fuel reservoir provided in a nozzle body increases, so that the fuel in the fuel reservoir is supplied with a plurality of nozzle holes (fuel) along the normal line of the nozzle sack. In a hall-type fuel injection nozzle that is to be injected into a combustion chamber from an injection hole), the injection port is formed by a main passage that extends from the nozzle sack to the combustion chamber and a sub-passage that branches from the middle of the main passage and reaches the combustion chamber. A hall-type fuel injection nozzle characterized by having been configured is disclosed. In the hall type fuel injection nozzle, the penetration of fuel spray by the fuel injected from the main passage is different from the penetration of fuel spray by the fuel injected from the sub-passage.

特開2004−100536号公報には、弁座と、この弁座との間で燃料通路の開閉を行う可動弁と、コイルを有して前記可動弁を駆動する駆動手段とを備え、前記燃料通路を開閉して燃料を噴射するインジェクタにおいて、燃料を噴射するオリフィス(燃料噴射孔)の上流側に、燃料に旋回力を与える燃料旋回部材を有すると共に、インジェクタの軸心に対し、オリフィスを非平行に配置し、かつ、前記オリフィスに対し、前記オリフィスの出口面を非垂直に形成することにより、燃料噴霧の長さをコントロールすることを特徴とするインジェクタが開示されている。   Japanese Patent Application Laid-Open No. 2004-100536 includes a valve seat, a movable valve that opens and closes a fuel passage between the valve seat, and a drive unit that has a coil and drives the movable valve, An injector for injecting fuel by opening and closing a passage has a fuel swirling member for imparting a swirling force to the fuel upstream of an orifice (fuel injection hole) for injecting fuel, and the orifice is not in the axial center of the injector. An injector is disclosed which is arranged in parallel and controls the length of fuel spray by forming the exit face of the orifice non-perpendicular to the orifice.

特開平10−325378号公報Japanese Patent Laid-Open No. 10-325378 特開2004−100536号公報JP 2004-100536 A

自動車の内燃機関向けの燃料噴射弁においては、噴射された燃料噴霧の形状が、エンジンの燃焼性能に影響することが知られている。筒内噴射型エンジン用のインジェクタでは、燃料噴射時の燃焼室壁面付着を避けるため、筒内の燃焼室の形状に合わせた最適形状およびペネトレーション(貫通力)の燃料噴霧を噴射することが要求されている。特に、昨今のエンジンのダウンサイジング化もあり、ペネトレーションを低減することが望まれ、燃焼室内において燃料噴霧が指向する場所によってペネトレーションを小さくすることも望まれる。燃料噴射孔を2個以上有するようなマルチホールタイプの燃料噴射弁では、燃料噴射孔毎にペネトレーションが異なるため、燃料噴射孔毎にペネトレーションを制御できることが望ましい。   In a fuel injection valve for an internal combustion engine of an automobile, it is known that the shape of the injected fuel spray affects the combustion performance of the engine. In-cylinder injectors are required to inject a fuel spray with an optimum shape and penetration (penetration force) that matches the shape of the combustion chamber in the cylinder in order to avoid adhesion of the combustion chamber wall surface during fuel injection. ing. In particular, due to recent downsizing of engines, it is desired to reduce penetration, and it is also desired to reduce penetration depending on where fuel spray is directed in the combustion chamber. In a multi-hole type fuel injection valve having two or more fuel injection holes, since the penetration differs for each fuel injection hole, it is desirable that the penetration can be controlled for each fuel injection hole.

一方で、燃料噴霧のペネトレーションは、噴射時の燃料の速度、燃料噴射孔面積に依存し、これらが大きくなるほどペネトレーションは長くなる。従って、要求される噴射量を満足しつつ、燃料速度、燃料噴射孔面積(≒孔径)を制御してやる必要がある。後者の燃料噴射孔面積で制御しようとすると、1個の燃料噴射弁でも燃料噴射孔の径が多種類となるため、生産性及び信頼性が低下する。このため、前者の燃料速度を制御する方法が望ましい。   On the other hand, the penetration of the fuel spray depends on the speed of the fuel at the time of injection and the area of the fuel injection hole, and the penetration increases as these increase. Therefore, it is necessary to control the fuel speed and the fuel injection hole area (≈hole diameter) while satisfying the required injection amount. If control is made with the latter fuel injection hole area, even with one fuel injection valve, the diameters of the fuel injection holes will be many, thus reducing productivity and reliability. For this reason, the former method of controlling the fuel speed is desirable.

上記2つの従来の燃料噴射弁では、複数の燃料噴射孔が複雑な構成をしていたり、1個の燃料噴射孔しか備えていないなど、複数の燃料噴射孔において燃料速度を個々に異ならせ、各燃料噴射孔から噴射される燃料噴霧のペネトレーションを異ならせることができる燃料噴射弁を、生産性及び信頼性を高めて提供することについての配慮が十分ではなかった。   In the above two conventional fuel injection valves, a plurality of fuel injection holes have a complicated configuration, or only one fuel injection hole is provided. Consideration for providing a fuel injection valve capable of varying the penetration of fuel spray injected from each fuel injection hole with increased productivity and reliability has not been sufficient.

本発明の目的は、燃料噴射孔を2個以上有するようなマルチホールタイプの燃料噴射弁に関して、生産性及び信頼性の低下を最小限に抑えつつ、燃料噴射孔毎の燃料の流速を個別に設定し、さらには燃料噴射孔毎の燃料噴霧のペネトレーションを設定することができる燃料噴射弁を提供することにある。   It is an object of the present invention to individually control the flow rate of fuel for each fuel injection hole while minimizing the decrease in productivity and reliability for a multi-hole type fuel injection valve having two or more fuel injection holes. Another object of the present invention is to provide a fuel injection valve capable of setting and further setting a fuel spray penetration for each fuel injection hole.

上記目的を達成するために、本発明の燃料噴射弁は、弁座と当接することによって燃料通路を閉じ、弁座から離れることによって燃料通路を開く弁体と、前記弁体の駆動手段と、前記弁座と前記弁体との当接部よりも下流側に位置する複数の燃料噴射孔と、前記弁座と前記弁体との当接部よりも上流側でかつ前記当接部の近傍で前記弁体の動きをガイドするガイドと、前記ガイドの上流側と下流側とを連通する燃料流路とを有する燃料噴射弁において、前記ガイドの上流側と下流側とを連通する前記燃料流路を、その断面積の分布が、弁体の中心軸線を囲む周方向に、不均一になるように配置したものである。   In order to achieve the above object, a fuel injection valve according to the present invention closes a fuel passage by coming into contact with a valve seat and opens a fuel passage by moving away from the valve seat, and drive means for the valve body, A plurality of fuel injection holes located downstream of the contact portion between the valve seat and the valve body, and upstream of the contact portion between the valve seat and the valve body and in the vicinity of the contact portion In the fuel injection valve having a guide that guides the movement of the valve body and a fuel flow path that communicates the upstream side and the downstream side of the guide, the fuel flow that communicates the upstream side and the downstream side of the guide The passages are arranged such that the distribution of the cross-sectional area is non-uniform in the circumferential direction surrounding the central axis of the valve element.

前記ガイドの上流側と下流側とを連通する前記燃料流路は前記ガイドを形成する部材に形成するとよい。前記ガイドの上流側と下流側とを連通する前記燃料流路を複数設け、各燃料流路の周方向における配置の間隔を不等間隔にするとよい。前記ガイドの上流側と下流側とを連通する複数の前記燃料流路のうち、少なくとも2つの燃料流路において横断面積が異なるようにするとよい。周方向に180度ずつ2つの角度範囲に分割した場合に、前記ガイドの上流側と下流側とを連通する複数の前記燃料流路の全てが、一方の角度範囲に存在するようにするとよい。前記ガイドの上流側と下流側とを連通する前記燃料流路を一つだけ設けてもよい。   The fuel flow path that communicates the upstream side and the downstream side of the guide may be formed in a member that forms the guide. A plurality of the fuel flow paths that communicate the upstream side and the downstream side of the guide may be provided, and the arrangement intervals of the fuel flow paths in the circumferential direction may be unequal. It is preferable that at least two of the plurality of fuel flow paths communicating with the upstream side and the downstream side of the guide have different cross-sectional areas. When divided into two angle ranges by 180 degrees in the circumferential direction, it is preferable that all of the plurality of the fuel flow paths communicating the upstream side and the downstream side of the guide exist in one angle range. Only one fuel flow path that communicates the upstream side and the downstream side of the guide may be provided.

本発明によれば、燃料噴射孔を2個以上有するようなマルチホールタイプの燃料噴射弁に関して、生産性及び信頼性の低下を最小限に抑えつつ、燃料噴射孔毎の燃料の流速を個別に設定し、さらには燃料噴射孔毎の燃料噴霧のペネトレーションを設定することができる。これにより、エンジンの燃焼性能を最適に設定することができる。   According to the present invention, with respect to a multi-hole type fuel injection valve having two or more fuel injection holes, the flow rate of fuel for each fuel injection hole is individually controlled while minimizing the decrease in productivity and reliability. It is possible to set the fuel spray penetration for each fuel injection hole. Thereby, the combustion performance of the engine can be set optimally.

電磁式燃料噴射弁の実施形態を示す断面図。Sectional drawing which shows embodiment of an electromagnetic fuel injection valve. 電磁式燃料噴射弁の可動子及び弁体の衝突部近傍を拡大した断面図。Sectional drawing which expanded the needle | mover of an electromagnetic fuel injection valve, and the collision part vicinity of a valve body. 本発明との比較例である燃料噴射弁におけるPRガイド部近傍の断面図。Sectional drawing of PR guide part vicinity in the fuel injection valve which is a comparative example with this invention. 本発明に係る燃料噴射弁におけるPRガイド部近傍の断面図。Sectional drawing of PR guide part vicinity in the fuel injection valve which concerns on this invention. 本発明に係るシート上流ボリューム図。The seat upstream volume figure which concerns on this invention.

以下、実施例を説明する。   Examples will be described below.

図1は、電磁式燃料噴射弁の縦断面図であり、図2は磁気吸引力を発生する磁気コア101と可動子102の近傍を拡大した拡大図である。図1及び図2に示した燃料噴射弁は通常時閉型の電磁弁(電磁式燃料噴射弁)であり、コイル105に通電されていない状態では第1の付勢ばね106によって弁体103は弁座113が形成されたノズル111に密着させられ、弁は閉じた状態になっている。この閉弁状態においては、可動子102は第2の付勢ばね108によって開弁方向に付勢され、弁体103の拡径部103aの下端面に接触している。そして、可動子102と磁気コア101との間には隙間がある状態となっている。この隙間の大きさが開弁時の弁体103のリフト量と一致し、これをストロークと呼ぶ。弁体103を磁気コア101側でガイドする第1の弁体ガイド104が弁体103を内包するハウジング110に固定されており、この第1の弁体ガイド104が第2の付勢ばね108のばね座を構成している。また、弁体103を燃料噴射孔側でガイドする第2の弁体ガイド112も弁体103を内包するハウジング110に固定されており、第2の弁体ガイド112には燃料配管側から燃料噴射孔側へと燃料を供給する燃料通路302〜305(図4参照)が設けられている。なお、第1の付勢ばね106は弁体103に設けられた拡径部103aの上端面とバネ押さえ107との間に設けられており、第1の付勢ばね106による付勢力は、磁気コア101の内径に固定されるバネ押さえ107の押し込み量によって組み立て時に調整されている。   FIG. 1 is a longitudinal sectional view of an electromagnetic fuel injection valve, and FIG. 2 is an enlarged view of the vicinity of a magnetic core 101 and a mover 102 that generate a magnetic attractive force. The fuel injection valve shown in FIGS. 1 and 2 is a normally closed electromagnetic valve (electromagnetic fuel injection valve). When the coil 105 is not energized, the valve element 103 is moved by the first biasing spring 106. The valve seat 113 is brought into close contact with the formed nozzle 111, and the valve is closed. In this valve-closed state, the mover 102 is urged in the valve opening direction by the second urging spring 108 and is in contact with the lower end surface of the enlarged diameter portion 103 a of the valve body 103. There is a gap between the mover 102 and the magnetic core 101. The size of the gap matches the lift amount of the valve body 103 when the valve is opened, and this is called a stroke. A first valve element guide 104 that guides the valve element 103 on the magnetic core 101 side is fixed to a housing 110 that contains the valve element 103, and the first valve element guide 104 is connected to the second biasing spring 108. It constitutes a spring seat. A second valve element guide 112 that guides the valve element 103 on the fuel injection hole side is also fixed to the housing 110 containing the valve element 103, and fuel injection from the fuel piping side to the second valve element guide 112. Fuel passages 302 to 305 (see FIG. 4) for supplying fuel to the hole side are provided. The first urging spring 106 is provided between the upper end surface of the enlarged diameter portion 103a provided on the valve body 103 and the spring retainer 107, and the urging force by the first urging spring 106 is magnetic. It is adjusted at the time of assembly by the pushing amount of the spring presser 107 fixed to the inner diameter of the core 101.

コイル105と磁気コア(単にコアとも言う)101とは弁体103の駆動手段となる電磁石を構成する。第1の付勢ばね106は駆動手段による駆動力の向きとは逆向き(閉弁方向)に弁体103を付勢する。また第2の付勢ばね108は第1の付勢ばね106による付勢力よりも小さい付勢力で可動子102を駆動力の向き(開弁方向)に付勢する。   The coil 105 and the magnetic core (also simply referred to as a core) 101 constitute an electromagnet serving as a driving unit for the valve body 103. The first urging spring 106 urges the valve body 103 in the direction opposite to the direction of the driving force by the driving means (the valve closing direction). The second biasing spring 108 biases the movable element 102 in the direction of the driving force (the valve opening direction) with a biasing force smaller than the biasing force by the first biasing spring 106.

コイル105に電流が流れると、磁気コア101、可動子102、ヨーク109から構成される磁気回路に磁束が生じ、可動子102と磁気コア101との間の隙間にも磁束が通過する。この結果、可動子102には磁気吸引力が作用し、生じた磁気吸引力と第2の付勢ばね108による付勢力の和が、燃料圧力による力と第1の付勢ばね106による付勢力を超えたときに可動子102は磁気コア101の側に変位する。可動子102が変位する際には、可動子側の衝突面202と弁体側の衝突面(拡径部103aの下端面)201との間で力を伝達し、弁体103も同時に変位することで、弁体103は開弁状態となる。   When a current flows through the coil 105, a magnetic flux is generated in a magnetic circuit composed of the magnetic core 101, the mover 102, and the yoke 109, and the magnetic flux passes through a gap between the mover 102 and the magnetic core 101. As a result, a magnetic attraction force acts on the mover 102, and the sum of the generated magnetic attraction force and the urging force by the second urging spring 108 is the sum of the force by the fuel pressure and the urging force by the first urging spring 106. When the angle exceeds the value, the mover 102 is displaced toward the magnetic core 101. When the movable element 102 is displaced, force is transmitted between the movable element side collision surface 202 and the valve element side collision surface 201 (lower end surface of the enlarged diameter portion 103a), and the valve element 103 is also displaced simultaneously. Thus, the valve body 103 is opened.

開弁状態からコイル105に流れている電流を停止すると、磁気回路を流れる磁束が減少し、可動子102と磁気コア101との間で働く磁気吸引力が低下する。ここで、弁体103にはたらく第1の付勢ばね106による付勢力は可動子側の衝突面201及び弁体側の衝突面202を介して可動子102に伝達される。このため、磁気吸引力と第2の付勢ばね108による付勢力の和を、燃料圧力による力と第1の付勢ばね106による付勢力の和が上回ると可動子102および弁体103は閉弁方向に変位し、弁は開弁状態となる。   When the current flowing through the coil 105 is stopped from the opened state, the magnetic flux flowing through the magnetic circuit is reduced, and the magnetic attractive force acting between the mover 102 and the magnetic core 101 is reduced. Here, the urging force of the first urging spring 106 acting on the valve body 103 is transmitted to the movable element 102 via the collision surface 201 on the movable element side and the collision surface 202 on the valve element side. Therefore, when the sum of the magnetic attractive force and the biasing force by the second biasing spring 108 exceeds the sum of the force by the fuel pressure and the biasing force by the first biasing spring 106, the mover 102 and the valve body 103 are closed. Displacement in the valve direction causes the valve to open.

図1及び図2で示されているように、弁体103が段付の棒状に形成されて弁体側の衝突面(当接面ともいう)201を形成すると共に、可動子102側は中心に弁体103の最外径よりも細い孔が設けられていることによって可動子側の衝突面(当接面ともいう)202を形成する。この結果、弁体側の衝突面201と可動子側の衝突面202との間で力の伝達がなされるため、可動子102と弁体103が分離された別部品として与えられた場合であっても電磁弁の基本的な開閉動作を行うことができる。衝突面201、202は可動子102の弁体103に対する駆動力の向きの相対変位を規制する規制手段となる。   As shown in FIGS. 1 and 2, the valve body 103 is formed in a stepped rod shape to form a collision surface (also referred to as a contact surface) 201 on the valve body side, and the mover 102 side is centered. By providing a hole that is thinner than the outermost diameter of the valve body 103, a collision surface (also referred to as a contact surface) 202 on the movable element side is formed. As a result, since force is transmitted between the collision surface 201 on the valve body side and the collision surface 202 on the mover side, the mover 102 and the valve body 103 are provided as separate parts. Can also perform basic opening and closing operation of the solenoid valve. The collision surfaces 201 and 202 serve as restricting means for restricting the relative displacement of the direction of the driving force of the movable element 102 with respect to the valve body 103.

可動子102側の衝突面202は第2の付勢ばね108による付勢力のみで弁体103側の衝突面201に当接する。また、可動子102は、弁座と当接して静止した状態から駆動力を受けた場合、動き始めるよりも前に、可動子102側の衝突面202が弁体103側の衝突面201に当接している。このとき、弁体103は弁座から離れる向きの移動については特にストッパを設けておらず、第1の付勢ばね106が縮みきった状態になったときそれ以上の移動を規制されることになる。すなわち弁座から離れる向きの移動を第1の付勢ばね106によってのみ規制されている。   The collision surface 202 on the movable element 102 abuts against the collision surface 201 on the valve body 103 side only by the urging force of the second urging spring 108. In addition, when the movable element 102 receives a driving force from a state where it is in contact with the valve seat and is stationary, the collision surface 202 on the movable element 102 side contacts the collision surface 201 on the valve body 103 side before starting to move. It touches. At this time, the valve body 103 is not provided with a stopper for the movement in the direction away from the valve seat, and the further movement is restricted when the first biasing spring 106 is fully contracted. Become. That is, the movement away from the valve seat is restricted only by the first biasing spring 106.

図3は、本発明に係る第2の弁体ガイド112との比較例である第2の弁体ガイド112′を示している。この比較例における第2の弁体ガイドの図は、図1のA−A矢視断面と同じ断面で示してある。この比較例では、全ての燃料流路(又は燃料通路とも言う)301の形状を同一にして、且つ周方向に等間隔に配置している。この燃料流路301の形状及び配置では、周方向に非周期的に流速分布を生じさせることはできず、噴霧パターンに応じた流速の制御を行うことはできず、燃料噴孔毎にペネトレーションを異ならせることは困難である。   FIG. 3 shows a second valve element guide 112 ′, which is a comparative example with the second valve element guide 112 according to the present invention. The figure of the 2nd valve body guide in this comparative example is shown by the same cross section as the AA arrow cross section of FIG. In this comparative example, all fuel flow paths (or fuel passages) 301 have the same shape and are arranged at equal intervals in the circumferential direction. In the shape and arrangement of the fuel flow path 301, the flow velocity distribution cannot be generated aperiodically in the circumferential direction, the flow velocity control according to the spray pattern cannot be performed, and the penetration is performed for each fuel injection hole. It is difficult to make it different.

図4は、図1のA−A矢視断面であり、本発明に係る第2の弁体ガイド112に形成した燃料流路(又は燃料通路とも言う)302、303、304、305の形状及び配置を示している。流路毎に流路の横断面(流れ方向に垂直な断面)の面積を異ならせている。また、各燃料流路(又は燃料通路とも言う)302〜305を周方向に不均一(非周期的)に配置している。具体的には、弁体103或いはその中心軸線115(燃料噴射弁の中心軸線と一致している)を囲む周方向において、180度ずつに2分割した角度範囲のうち、一方の角度範囲θa側に4個の燃料流路302〜305を配置し、他方の角度範囲θb側には燃料流路を配置していない。また、角度範囲θa側に配置した4個の燃料流路302〜305については、燃料流路302と燃料流路303との間の角度間隔θ1、燃料流路303と燃料流路304との間の角度間隔θ2、燃料流路304と燃料流路305との間の角度間隔θ3はそれぞれ異なるように不等間隔で配置している。こうすることにより、角度範囲θa側には大きな流路総断面積が確保され、一方で角度範囲θb側は流路断面積が確保されていないため、角度範囲θa側の燃料噴射孔に流れ込む燃料の速度と角度範囲θb側の燃料噴射孔に流れ込む燃料の速度とに差が生じることとなる。流路の総断面積が大きく確保されているほうが噴射孔に流れ込む燃料速度も大きく、流路の総断面積が小さいほうが速度も小さい。従って、噴霧のペネトレーションを短くしたい側の流速を落とすために、そちら側の燃料流路の総断面積を小さくすればよい。燃料流路302〜305の下流側では整流作用が働く場合がある。全ての燃料流路302〜305を角度範囲θa側に配置することにより、燃料流路302〜305の下流側の流れに極端な偏りを生じさせることができ、各燃料噴射孔114に流入する燃料の流速を確実に異ならせ、噴霧のペネトレーションを異ならせることが容易になる。 4 is a cross-sectional view taken along the line AA in FIG. 1, and the shapes of the fuel flow paths (or fuel passages) 302, 303, 304, 305 formed in the second valve element guide 112 according to the present invention and The arrangement is shown. The area of the cross section of the flow path (cross section perpendicular to the flow direction) is different for each flow path. Further, the fuel flow paths (or fuel passages) 302 to 305 are non-uniformly (non-periodically) arranged in the circumferential direction. Specifically, in the circumferential direction surrounding the valve body 103 or its central axis 115 (which coincides with the central axis of the fuel injection valve), one angular range θa side of the angular range divided into two by 180 degrees The four fuel flow paths 302 to 305 are arranged on the other side, and no fuel flow path is arranged on the other angle range θb side. For the four fuel flow paths 302 to 305 arranged on the angle range θa side, the angle interval θ 1 between the fuel flow path 302 and the fuel flow path 303, The angle interval θ 2 between them and the angle interval θ 3 between the fuel flow channel 304 and the fuel flow channel 305 are arranged at unequal intervals so as to be different from each other. By doing so, a large total cross-sectional area of the flow path is ensured on the angle range θa side, while a flow path cross-sectional area is not ensured on the angle range θb side, so the fuel flowing into the fuel injection holes on the angle range θa side And a speed of the fuel flowing into the fuel injection hole on the side of the angle range θb. The larger the total cross-sectional area of the flow path is, the larger the fuel speed flowing into the injection hole is, and the smaller the total cross-sectional area of the flow path is, the smaller the speed is. Therefore, in order to reduce the flow velocity on the side where spray penetration is to be shortened, the total cross-sectional area of the fuel flow path on that side may be reduced. There is a case where a rectification action works on the downstream side of the fuel flow paths 302 to 305. By disposing all the fuel flow paths 302 to 305 on the side of the angle range θa, the flow on the downstream side of the fuel flow paths 302 to 305 can be extremely biased, and the fuel flowing into each fuel injection hole 114 It becomes easy to make the flow rate of the spray different and to make the penetration of the spray different.

尚、燃料流路を燃料流路302と燃料流路303との2つで構成する場合、燃料流路302と燃料流路303のいずれか一方の燃料流路(例えば燃料流路302)から見て、周方向右回りにとった他方の燃料流路(例えば燃料流路303)までの角度間隔と、周方向左回りにとった他方の燃料流路(例えば燃料流路303)までの角度間隔とが異なっていれば、燃料通路は周方向に不均一に配置され、或いは不等間隔に配置されていることになる。この場合も、複数の燃料噴射孔114から噴射される燃料噴霧のペネトレーションが異なっていることが必要である。   When the fuel flow path is composed of the fuel flow path 302 and the fuel flow path 303, the fuel flow path is viewed from either one of the fuel flow path 302 and the fuel flow path 303 (for example, the fuel flow path 302). Thus, the angular interval to the other fuel flow path (for example, the fuel flow path 303) taken clockwise in the circumferential direction and the angular interval to the other fuel flow path (for example, the fuel flow path 303) taken in the counterclockwise direction in the circumferential direction. Are different from each other, the fuel passages are unevenly arranged in the circumferential direction or are arranged at irregular intervals. Also in this case, it is necessary that the penetration of the fuel spray injected from the plurality of fuel injection holes 114 is different.

本実施例では、角度範囲θb側には燃料流路を設けていないが、角度範囲θb側に燃料流路を設けてもよい。複数の燃料噴射孔114に流入する燃料の流速に速度差が生じ、結果として複数の燃料噴射孔114から噴射される燃料噴霧のペネトレーションに所望の差が生じるように、適宜燃料流路の横断面積、数、角度間隔を決めればよい。尚、少なくとも2つの燃料噴射孔114の間で、燃料噴霧のペネトレーションに差が生じるようにすれば良く、全ての燃料噴霧のペネトレーションの間で差が生じている必要はない。   In this embodiment, no fuel flow path is provided on the angle range θb side, but a fuel flow path may be provided on the angle range θb side. The cross-sectional area of the fuel flow path is appropriately adjusted so that a speed difference occurs in the flow velocity of the fuel flowing into the plurality of fuel injection holes 114, and as a result, a desired difference occurs in the penetration of the fuel spray injected from the plurality of fuel injection holes 114. The number and the angle interval may be determined. It should be noted that there is a difference in the fuel spray penetration between at least two fuel injection holes 114, and there is no need to have a difference between all fuel spray penetrations.

この燃料通路は1ヶであっても燃料噴射弁の軸心に対し偏芯させて配置すれば同じ効果となる。   Even if there is only one fuel passage, the same effect can be obtained if it is arranged eccentrically with respect to the axis of the fuel injection valve.

更に、この1ヶまたは複数個の燃料通路は円形に限るものではない。また、弁体103をガイドするガイド面(案内面)を切り欠くような形態で設けられてもよい。または、第2の弁体ガイド112の外周面を切り欠くような形態で設けられてもよい。あるいは、弁体の先端にボールを設けたボール弁とし、第2の弁体ガイド112がボール弁の球面をガイドするようにし、第2の弁体ガイド112によってガイドされる球面部分と球面部分との間に平面あるいは凹部で形成された切り欠き部を設けて燃料流路を形成した形態であってもよい。シート部のすぐ上流側に位置する弁体のガイド部材或いはガイド部に形成した燃料流路が、上記のいずれのような形態であっても、同様な効果が得られるようにすればよい。   Further, the one or more fuel passages are not limited to a circular shape. Moreover, you may provide in the form which notches the guide surface (guide surface) which guides the valve body 103. FIG. Or you may provide in the form which notches the outer peripheral surface of the 2nd valve body guide 112. FIG. Alternatively, the ball valve is provided with a ball at the tip of the valve body, the second valve body guide 112 guides the spherical surface of the ball valve, and the spherical portion and the spherical portion guided by the second valve body guide 112 A fuel flow path may be formed by providing a notch formed by a flat surface or a recess between the two. Even if the guide member of the valve body located immediately upstream of the seat portion or the fuel flow path formed in the guide portion is in any form as described above, the same effect may be obtained.

また、図5に本実施例のシート部上流ボリュームの設定方法を示す。弁体103と弁座113とが当接し、この当接部において燃料通路が閉じられている。この当接部は、弁体103側に構成される環状の当接部103bと、弁座113側に構成される環状の当接部113aとによって構成されており、当接部103bと当接部113aとがシート部を構成する。   FIG. 5 shows a method for setting the upstream volume of the seat portion of this embodiment. The valve body 103 and the valve seat 113 are in contact with each other, and the fuel passage is closed at this contact portion. The contact portion is configured by an annular contact portion 103b configured on the valve body 103 side and an annular contact portion 113a configured on the valve seat 113 side, and is in contact with the contact portion 103b. The portion 113a constitutes a sheet portion.

シート部上流ボリュームとは、第2の弁体ガイド112の下面から弁体103と弁座113との当接面であるシート部までの領域を言う。従来はこの領域で流速が平均化されることにより、第2の弁体ガイド112の燃料流路は、燃料噴射孔への流入速度に影響しないと考えられてきた。しかしながら、今回の研究でシート部上流ボリューム306の値が15mm3以下の場合、第2の弁体ガイド112の燃料流路が燃料噴射孔への流入速度に影響を与えるということが明らかとなった。従って、シート部上流ボリュームが15mm3以下のときには、第2の弁体ガイド112の燃料流路の横断面積、形状及び配置を制御してやることにより、噴霧のペネトレーションを制御することが可能である。 The seat part upstream volume refers to a region from the lower surface of the second valve element guide 112 to the seat part that is a contact surface between the valve element 103 and the valve seat 113. Conventionally, it has been considered that the fuel flow path of the second valve element guide 112 does not affect the flow rate into the fuel injection hole by averaging the flow velocity in this region. However, in this study, it has been clarified that when the value of the seat upstream volume 306 is 15 mm 3 or less, the fuel flow path of the second valve element guide 112 affects the flow rate into the fuel injection hole. . Therefore, when the upstream volume of the seat portion is 15 mm 3 or less, the penetration of the spray can be controlled by controlling the cross-sectional area, shape and arrangement of the fuel flow path of the second valve element guide 112.

弁体103を動かす駆動力は本実施例ではコイルを用いた電磁力を使ったものであるが、ピエゾ、磁歪で発生するものにおいても適応できる。   In this embodiment, the driving force for moving the valve body 103 uses an electromagnetic force using a coil, but the driving force can also be applied to those generated by piezo or magnetostriction.

101 磁気コア
102 可動子(アンカ)
103 弁体
104 第1の弁体ガイド
105 コイル
106 第1の付勢ばね
107 バネ押さえ
108 第2の付勢ばね
109 ヨーク
110 ハウジング
111 ノズル
112 第2の弁体ガイド
201 弁体側衝突部
202 アンカ側衝突部
301、302、303、304、305 ガイド部の燃料流路
306 シート部上流ボリューム(15mm3以下)
101 magnetic core 102 mover (anchor)
103 Valve body 104 First valve body guide 105 Coil 106 First biasing spring 107 Spring retainer 108 Second biasing spring 109 Yoke 110 Housing 111 Nozzle 112 Second valve body guide 201 Valve body side collision part 202 Anchor side collision part 301,302,303,304,305 guide unit fuel flow channel 306 seat upstream volume (15 mm 3 or less)

Claims (5)

弁座と当接することによって燃料通路を閉じ、弁座から離れることによって燃料通路を開く弁体と、前記弁体の駆動手段と、前記弁座と前記弁体との当接部よりも下流側に位置する複数の燃料噴射孔と、前記弁座と前記弁体との当接部よりも上流側でかつ前記当接部の近傍で前記弁体の動きをガイドするガイドと、前記ガイドの上流側と下流側とを連通する燃料流路とを有する燃料噴射弁において、
前記燃料流路は複数設けられ、
複数の前記燃料流路前記燃料流路の断面積の分布が、前記弁体の中心軸線を囲む周方向に、不均一になるように配置されたことを特徴とする燃料噴射弁。
A valve body that closes the fuel passage by contacting the valve seat and opens the fuel passage by moving away from the valve seat, a drive means for the valve body, and a downstream side of the contact portion between the valve seat and the valve body A plurality of fuel injection holes, a guide for guiding the movement of the valve body at a position upstream of the contact portion between the valve seat and the valve body and in the vicinity of the contact portion, and an upstream of the guide In a fuel injection valve having a fuel flow path communicating between the side and the downstream side,
A plurality of the fuel flow paths are provided,
The plurality of the fuel flow path, the distribution of the cross-sectional area of the fuel passage, circumferentially surrounding the central axis of the valve body, the fuel injection valve, characterized in that it is arranged so as to be non-uniform.
請求項1に記載の燃料噴射弁において
記燃料流路は前記ガイドを形成する部材に形成されたことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 1,
The fuel injection valve before Symbol fuel flow path, characterized in that formed in the member forming the guide.
請求項1又は2に記載の燃料噴射弁において、
複数の前記燃料流路同士の周方向における配置の間隔が不等間隔であることを特徴とする燃料噴射弁。
The fuel injection valve according to claim 1 or 2 ,
A fuel injection valve characterized in that the intervals between the plurality of fuel flow paths in the circumferential direction are unequal.
請求項1乃至3のいずれかに記載の燃料噴射弁において
数の前記燃料流路のうち、少なくとも2つの燃料流路において横断面積が異なることを特徴とする燃料噴射弁。
The fuel injection valve according to any one of claims 1 to 3 ,
Among the fuel flow path of multiple fuel injection valve, characterized in that the cross-sectional area is different in at least two fuel passages.
請求項1乃至4のいずれかに記載の燃料噴射弁において、
周方向に180度ずつ2つの角度範囲に分割した場合に、前記ガイドの上流側と下流側とを連通する複数の前記燃料流路の全てが、一方の角度範囲に存在することを特徴とする燃料噴射弁。
The fuel injection valve according to any one of claims 1 to 4 ,
When divided into two angle ranges by 180 degrees in the circumferential direction, all of the plurality of fuel flow paths communicating the upstream side and the downstream side of the guide are present in one angle range. Fuel injection valve.
JP2012063000A 2012-03-21 2012-03-21 Fuel injection valve Expired - Fee Related JP5838107B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012063000A JP5838107B2 (en) 2012-03-21 2012-03-21 Fuel injection valve
PCT/JP2013/050617 WO2013140835A1 (en) 2012-03-21 2013-01-16 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063000A JP5838107B2 (en) 2012-03-21 2012-03-21 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2013194615A JP2013194615A (en) 2013-09-30
JP5838107B2 true JP5838107B2 (en) 2015-12-24

Family

ID=49222303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063000A Expired - Fee Related JP5838107B2 (en) 2012-03-21 2012-03-21 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP5838107B2 (en)
WO (1) WO2013140835A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160237969A1 (en) * 2013-11-07 2016-08-18 Hitachi Automotive Systems, Ltd. Fuel Injection Valve
DE102016211467A1 (en) 2016-06-27 2017-12-28 Robert Bosch Gmbh Injector for injecting a liquid
JP7068488B2 (en) * 2018-10-23 2022-05-16 三菱電機株式会社 Electromagnetic fuel injection valve
JP2023003035A (en) * 2021-06-23 2023-01-11 日立Astemo株式会社 Fuel injection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134813B2 (en) * 1997-06-20 2001-02-13 トヨタ自動車株式会社 Fuel injection valve for internal combustion engine
DE19950223A1 (en) * 1999-10-19 2001-04-26 Bosch Gmbh Robert Injector for common rail injection system for IC engines has end face of valve piston larger than hole, this being larger than sealing line between needle and needle seat
JP2001317434A (en) * 2000-02-22 2001-11-16 Hitachi Ltd Fuel injection method of and fuel injection device for internal combustion engine
JP2007224929A (en) * 2007-06-11 2007-09-06 Hitachi Ltd Fuel injection valve
DE102008061400A1 (en) * 2008-12-10 2010-06-17 Man Diesel Se Fuel injection valve for an internal combustion engine

Also Published As

Publication number Publication date
JP2013194615A (en) 2013-09-30
WO2013140835A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP6082467B2 (en) Injection valve
KR101964793B1 (en) Valve assembly for an injection valve and injection valve
KR102072955B1 (en) Valve assembly and fluid injector
EP2574768A1 (en) Fuel injector
JP5838107B2 (en) Fuel injection valve
JP2013209888A (en) Fuel injection valve
EP3252302B1 (en) Fuel injection valve
JP2019196716A (en) Fuel injection device
KR101820829B1 (en) Solenoid valve for high pressure having guide structure
US11493009B2 (en) Fuel injection valve and fuel injection system
EP2960485A1 (en) Control valve
US20160237969A1 (en) Fuel Injection Valve
EP3146194B1 (en) Injector for injecting fluid
JP4135628B2 (en) Fuel injection valve
WO2017122421A1 (en) Fuel injection device
EP3009658B1 (en) Injector for injecting fluid
CN105658946B (en) Fuel injector
JP3923935B2 (en) Fuel injection valve
JP6780087B2 (en) Fuel injection device
JP2011069292A (en) Fuel injection valve
JP5756488B2 (en) Valve device
EP2811148B1 (en) Fluid injector for a combustion engine
WO2021039434A1 (en) Fuel injection device
JP7087692B2 (en) Fuel injection device
KR20190015417A (en) Valve assembly for injection valve and injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5838107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees