JP5837602B2 - キャパシタンスを使用してコントロールサンプルと試験流体を識別するシステムおよび方法 - Google Patents

キャパシタンスを使用してコントロールサンプルと試験流体を識別するシステムおよび方法 Download PDF

Info

Publication number
JP5837602B2
JP5837602B2 JP2013530812A JP2013530812A JP5837602B2 JP 5837602 B2 JP5837602 B2 JP 5837602B2 JP 2013530812 A JP2013530812 A JP 2013530812A JP 2013530812 A JP2013530812 A JP 2013530812A JP 5837602 B2 JP5837602 B2 JP 5837602B2
Authority
JP
Japan
Prior art keywords
reference value
electrode
capacitance
current
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013530812A
Other languages
English (en)
Other versions
JP2013539035A (ja
Inventor
ロナルド シー. シャテリエ
ロナルド シー. シャテリエ
アラステア エム. ホッジズ
アラステア エム. ホッジズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Original Assignee
Cilag GmbH International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cilag GmbH International filed Critical Cilag GmbH International
Publication of JP2013539035A publication Critical patent/JP2013539035A/ja
Application granted granted Critical
Publication of JP5837602B2 publication Critical patent/JP5837602B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Ecology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本明細書に提供されるシステムおよび方法は、医療検査、特にサンプル(例えば血液を含む生理液)内の検体の存在および/または濃度の検出の分野に関する。
生理液(例えば、血液または血漿などの血液由来産物)中の検体濃度の測定は、今日の社会において重要性が増え続けている。このようなアッセイは、検査の結果が様々な疾患状態の診断および管理において重要な役割を果たす、実験室検査、家庭用検査などを含む、多様な用途および設定における使用を見出している。対象の検体は、糖尿病管理のためのグルコース、心血管病態などを監視するためのコレステロールを含む。
検体濃度測定アッセイのための一般的な方法は電気化学に基づく。そのような方法において、水性液体サンプルが、少なくとも2つの電極、すなわち作用電極および対電極から構成される電気化学セル中のサンプル反応チャンバ内に入れられる。それらの電極は、それらを電流測定または電量測定に適するようにするインピーダンスを有する。分析される成分は試薬と反応して、検体濃度に比例する量で酸化できる(または還元できる)物質を形成できる。次いで存在する酸化できる(または還元できる)物質の量を、電気化学的に評価し、サンプル中の検体濃度に関連付ける。
自動装置、例えば電気化学試験計測器が典型的にサンプル中の検体の濃度を測定するために利用される。多くの試験計測器は、有益には、検体濃度、および通常、複数の検体濃度を計測器のメモリに保存できる。この特性は、多くの場合、以前に収集した検体レベルの平均として、一定の時間にわたる検体濃度レベルを点検する能力を使用者に与える。このような平均化は計測器に関連するアルゴリズムに従って実施される。しかしながら、システムが適切に機能することを確実にするために、使用者は、時折、血液サンプルの代わりにコントロール流体を使用する検査を実施する。このようなコントロール流体(コントロール溶液とも称される)は一般に、既知の濃度のグルコースを有する水溶液である。使用者は、コントロール溶液を用いて検査を実施でき、システムが適切に機能しているかどうかを決定するために、表示された結果と既知の濃度とを比較できる。しかしながら、一度、コントロール溶液検査を実施すると、コントロール流体のグルコース濃度は計測器のメモリに保存される。したがって、使用者が以前の検査および/または以前の検査結果の平均濃度を点検しようとする場合、その結果はコントロール流体検体レベルの濃度に歪曲される場合がある。
したがって、検査の間、コントロール溶液とサンプル流体とを識別できることが望ましい。1つの選択肢は、コントロールまたは試験流体のいずれかとして流体を手動でフラグ付けすることである。しかしながら、使用者の相互作用を最小化させ、使用し易さを増加させるために、自動化フラグ付けが好ましい。
したがって、サンプル中の検体濃度の識別に使用するための新規方法および装置を開発する目的が継続している。特定の目的は、コントロール流体または試験流体としてサンプルを自動的にフラグ付けし、それに応じて測定を保存または除外する能力を含むそのような方法および装置の開発である。特定の目的は、電気化学に基づいた検体濃度識別アッセイでの使用に適切なそのような方法の開発である。
水性非血液サンプル(例えばコントロール溶液)と血液サンプルとを識別するシステムおよび方法の種々の態様が、本明細書に提供される。1つのこのような態様において、その方法は、電位が印加され、電流が測定される電気化学セルを使用するステップを含む。本明細書にさらに記載されるのは、血液サンプルと非血液サンプルとを識別するための電気化学的方法およびシステムである。
一実施形態において、血液サンプルと非血液サンプルとを識別する方法が開示される。その方法は、第1および第2の電極を有する電気化学セル内にサンプルを導入するステップおよび第1の電極と第2の電極との間に第1の試験電位を印加するステップを含む。次いで得られた第1の過渡電流が測定される。第2の試験電位は第1の電極と第2の電極との間に印加され、次いで第2の過渡電流が測定される。同様に以下により詳細に説明するように、キャパシタンスもまた、測定され得る。その方法はまた、第1の電極と第2の電極との間に第3の試験電位を印加するステップ、および第3の過渡電流を測定するステップを含んでもよい。
第1の過渡電流に基づいて、サンプル中の酸化還元種の量に関連する第1の基準値を算出する。さらに、第2および第3の過渡電流の間に測定した電流値に基づいて、反応速度に関連する第2の基準値が算出される。第2の基準値は化学反応の完了の割合の関数であってもよい。例えば、第2の基準値は、第2の過渡電流からの少なくとも1つの電流値および第3の過渡電流からの少なくとも1つの電流値に基づいて算出した残留反応性指数であってもよい。一態様において、残留反応性指数は第2の電流値と第3の電流値の比に基づいて算出される。次いで第1および第2の基準値は、サンプルが非血液サンプルであるか、または血液サンプルであるかを決定するために使用され得る。非血液サンプルは、コントロール溶液または飲料(例えばGatorade(登録商標)などのスポーツドリンク)などの一部の他のサンプルを含んでもよい。
一態様において、測定したキャパシタンスに関連するキャパシタンスインデックスが算出される。キャパシタンスインデックスは、例えば、サンプルが導入される場合、電気化学セルの測定したキャパシタンスに比例してもよい。一部の実施形態において、キャパシタンスインデックスは、測定したキャパシタンスおよび同じ種類の電気化学セルの平均キャパシタンスに比例してもよい。例えば、キャパシタンスインデックスは、同じ種類の電気化学セルの平均キャパシタンスと測定したキャパシタンスの比であってもよい。一部の実施形態において、第3の基準値は第1の基準値にキャパシタンスインデックスを掛けることにより算出され得る。次いで第3の基準値は、サンプルが非血液サンプルであるか、または血液サンプルであるかどうか決定するために第2の基準値と併せて使用され得る。
別の態様において、その方法はサンプル中の検体の濃度を測定するステップを実施してもよい。サンプルが血液サンプルであると見出される場合、測定した濃度が保存されてもよい。反対に、サンプルが非血液サンプルであると見出される場合、測定した濃度は、フラグ付けされてもよく、別々に保存されてもよく、および/または捨てられてもよい。
一実施形態において、サンプルが非血液サンプルであるか、または血液サンプルであるかどうかを決定するために不等式が使用されてもよい。例えば、第2および第3の基準値を評価するために、実験的に導かれた識別ラインを表す式が使用されてもよい。
別の態様において、第1の試験電位を印加するステップの前に開路電位が電気化学セルに印加される。さらに、開路電位が第1の試験電位を印加するステップの後に印加されてもよい。
さらに、血液サンプルと非血液サンプルとを識別するシステムが本明細書に記載される。一実施形態において、そのシステムは、試験ストリップおよび試験計測器を含んでもよい。試験ストリップは、試験計測器および電気化学セルを接続するための電気接点を含む。試験計測器は、試験ストリップから電流データを受信するように構成されるプロセッサ、ならびに血液サンプルが、第1の基準値および第2の基準値に基づいて非血液サンプルから識別され得るように識別基準を含むデータストレージを含む。一部の実施形態において、測定したキャパシタンスに関連するキャパシタンスインデックスが算出され得る。サンプルが導入される場合、キャパシタンスインデックスは、例えば、電気化学セルの測定したキャパシタンスに比例してもよい。一部の実施形態において、キャパシタンスインデックスは、測定したキャパシタンスおよび同じ種類の電気化学セルの平均キャパシタンスに比例してもよい。例えば、キャパシタンスインデックスは、同じ種類の電気化学セルの平均キャパシタンスと測定したキャパシタンスの比を含んでもよい。一部の実施形態において、第3の基準値が、第1の基準値にキャパシタンスインデックスを掛けることによって算出され得る。次いで第3の基準値は、サンプルが非血液サンプルであるか、または血液サンプルであるかどうかを決定するために第2の基準値と併せて使用されてもよい。血液サンプルを表すデータを非血液サンプルと分離する識別基準は第2の基準値および第3の基準値から導き出され得る。例えば、識別基準は実験的に誘導される識別ラインを含んでもよい。システムはさらに、酸化還元種を実質的に欠く非血液サンプル(例えばコントロール溶液)を含んでもよい。なおさらに、識別基準を算出する方法が本明細書に記載される。識別基準は、血液サンプルと非血液サンプルとを識別するための試験計測器内にプログラムされてもよい。一実施形態において、方法は、複数の水性非血液サンプルについての第1の基準値および第2の基準値を算出するステップと、第1の基準値に基づいて第3の基準値を算出するステップであって、その第3の基準値はキャパシタンスインデックスに比例するステップと、複数の非血液サンプルについての第2の基準値および第3の基準値に基づいて識別基準を算出するステップとを含む。例えば、キャパシタンスインデックスは、同じ種類の電気化学セルの平均キャパシタンスと電気化学セルの測定したキャパシタンスの比であってもよい。別の例に関して、第1の基準値は抗酸化物質濃度を表し、第2の基準値は反応速度を表す。
一態様において、血液サンプルと水性非血液サンプルとを識別する方法が提供される。その方法は、(a)電気化学セルにサンプルを導入するステップであって、そのセルは、(i)離間した関係の2つの電極および(ii)試薬を含んでもよい、ステップを含む。その方法はさらに、(b)第1の極性を有する、第1の試験電位を電極の間に印加するステップと、セル電流を測定するステップと、(c)電気化学セルのキャパシタンスを測定するステップと、(d)第1の基準値を生成するために第1の試験電位の間に測定した少なくとも2つの電流値を合計するステップであって、その第1の基準値は、試験液体中の酸化還元種の濃度に比例するステップと、(e)測定したキャパシタンスに関連するキャパシタンスインデックスを算出するステップと、(f)血液サンプルと水性非血液サンプルとを識別するためにキャパシタンスインデックスおよび第1の基準値を使用するステップとを含んでもよい。その方法はさらに、反応速度に関連する第2の基準値を算出するステップと、血液サンプルと水性非血液サンプルとを識別するためにキャパシタンスインデックス、第1の基準値、および第2の基準値を使用するステップとを含んでもよい。例えば、第2の基準値は、残留反応性指数とも称され得る、化学反応の完了の割合の関数であってもよい。一部の例示的な実施形態において、キャパシタンスインデックスは、同じ種類の電気化学セルの平均キャパシタンスと測定したキャパシタンスの比として算出され得る。その方法はまた、第1の基準値にキャパシタンスインデックスを掛けることによって第3の基準値を算出するステップを含んでもよい。次いで第3の基準値は、サンプルが非血液サンプルであるか、または血液サンプルであるかどうかを決定するために第2の基準値と併せて使用され得る。一部の実施形態において、水性非血液サンプルはコントロール溶液であってもよい。
上記の種々の基準値は、種々の方法で決定され得、および/または算出され得る。例えば、第1の基準値はサンプル中の酸化還元種の濃度に比例し得、第1の基準値は、第1の過渡電流からの少なくとも1つの電流値に基づいて算出され得、および/または第1の基準値は、第1の過渡電流の間に測定した過渡電流の合計に基づいて算出され得る。第1の基準値が、第1の過渡電流の間に測定した電流値の合計に基づいて算出され得る実施形態において、その合計は、式
Figure 0005837602
により表わされることができ、式中、tは時間であり、isumは、時間nから時間Mまでの時間間隔の間の電流値の合計である。nからMまでの時間間隔は変化し得る。例えば、一実施形態において、時間間隔は約0.05秒〜約1.0秒の範囲の時間であってもよい。
他の実施形態において、第2の基準値はまた、種々の方法で算出され得るか、または決定され得る。例えば、第2の基準値は、第2の過渡電流からの少なくとも1つの電流値および第3の過渡電流からの少なくとも1つの電流値に基づき得るか、または第2の基準値は、第2の過渡電流のほぼ最後における第2の電流値および第3の過渡電流のほぼ最初における第3の電流値に基づき得る。他の実施形態において、第2の基準値は、第2の電流値と第3の電流値の比に基づき得、ここで、その比は、式
Figure 0005837602
により表わされることができ、式中、iは第2の電流値であり、iは第2の電流値である。例えば、一実施形態において、第2の電流値は約3.8秒で測定され得、第3の電流値は約4.15秒で測定され得る。
その方法の種々の実施形態において、システムの種々の構成要素の種々の配向および/または構造が利用されてもよい。例えば、一実施形態において、第1の電極および第2の電極は対向する面構造を有してもよく、試薬層が、第1の電極に配置されてもよく、第2の電極に配置されなくてもよい。別の実施形態において、第1の電極および第2の電極は、第1の電極に配置され、第2の電極に配置されない試薬層を有する同一平面配置を有してもよい。
その方法の種々の実施形態はまた、種々の追加または任意のステップを含んでもよい。例えば、一実施形態において、その方法は検体の濃度を測定するステップを含んでもよく、例えば、サンプルがコントロール溶液であると見出された場合、コントロールサンプルと関連する検体濃度がフラグ付けされる。さらに、一実施形態において、上記で特定したステップはさらに、サンプルがコントロール溶液であるか、または血液サンプルであるかどうかを決定するために不等式を使用するステップを含んでもよい。別の実施形態において、上記に特定したステップはさらに、サンプルがコントロール溶液であるか、または血液サンプルであるかどうかを決定するために、第3の基準値を所定の閾値と比較するステップ、および第2の基準値を所定の閾値関数(例えば、第1の基準値の関数である式)と比較するステップを含んでもよい。
種々の実施形態において、上記の識別基準は種々のソースから導き出されてもよい。例えば、一実施形態において、識別基準は、キャパシタンスインデックスを乗じたサンプル中の酸化還元濃度を表わす第1の基準値、およびサンプルと試薬の反応速度を表わす第2の基準値から導き出されてもよい。一部の実施形態において、測定したキャパシタンスに関連するキャパシタンスインデックスが算出される。キャパシタンスインデックスは、例えば、サンプルが導入される場合、電気化学セルの測定したキャパシタンスに比例され得る。一部の実施形態において、キャパシタンスインデックスは、測定したキャパシタンスおよび同じ種類の電気化学セルの平均キャパシタンスに比例され得る。例えば、キャパシタンスインデックスは、既知のキャパシタンス、例えば、同じ種類の電気化学セルの平均キャパシタンスと、測定したキャパシタンスの比であってもよい。別の実施形態において、識別基準は、実験的に誘導された識別ラインを含んでもよい。
本開示の多様な特徴は、特に添付の特許請求の範囲で説明される。かかる特徴のよりよい理解は、実例となる非制限的な実施形態および添付図面を説明する以下の発明を実施するための形態を参照することにより得ることができる。
例示的な試験ストリップの斜視図である。 図1Aの試験ストリップの分解斜視図である。 図1Aの試験ストリップの末端部分の斜視図である。 図1Aの試験ストリップの底面図である。 図1Aの試験ストリップの側面図である。 図1Aの試験ストリップの平面図である。 図4Aの矢印4B−4Bに一致する試験ストリップの末端部分の部分断面図である。 試験ストリップ導体パッドと電気的にインタフェースをとる試験計測器を示す簡略化された概略図である。 試験計測器が所定の時間間隔、複数の試験電圧を印加する試験電圧波形を示す。 図6の試験電圧波形で生成される試験過渡電流を示す。 試験計測器が、図6に比較して、所定の時間間隔、反対の極性で複数の試験電圧を印加する試験電圧波形を示す図である。 図8Aの試験電圧で生成された試験過渡電流を示す図である。 複数の血液サンプル(ダイヤモンド)およびコントロール溶液サンプル(四角)についての干渉指数と残留反応性指数との間の関係性を示すグラフである。 X軸に、キャパシタンスインデックスを乗じた干渉指数を示し、Y軸に、複数の血液サンプル(ダイヤモンド)およびコントロール溶液サンプル(四角)についての残留反応性指数を示すグラフである。
特定の例示的な実施形態が、ここで、本明細書に開示されるシステムおよび方法の構造、機能、製造、および使用の原理の全体的な理解を提供するために記載される。これらの実施形態の1つまたは複数の例は添付の図面に示される。当業者は、本明細書に具体的に記載され、添付の図面に例示されるシステムおよび方法が非限定的な例示的な実施形態であり、本開示の範囲は特許請求の範囲のみにより規定されることを理解するであろう。1つの例示的な実施形態と併せて例示され、または記載されている特徴は、他の実施形態の特徴と組み合わされてもよい。そのような修飾および変更は本開示の範囲内に含まれることを意図する。本明細書で使用される場合、あらゆる数値または範囲のための用語「約」または「およそ」は、構成要素の部分または集合体が、本明細書に説明されるその意図された目的のために機能できるようにする適切な寸法公差を示す。
本明細書に開示されるシステムおよび方法は、種々のサンプル中の種々の検体の識別における使用に好適であり、特に、全血またはその誘導体中の検体(特に対象の検体はグルコースである)の識別における使用に適している。一態様において、本開示は、試験ストリップに印加されるサンプルが水性非血液サンプル(例えばコントロール溶液)または血液サンプルであるかどうかを識別する方法の種々の実施形態を提供する。1つのそのような実施形態において、少なくとも2つの特徴が血液サンプルと非血液サンプルとを識別するために使用される。この詳細な説明は血液サンプルとコントロール溶液との識別に焦点を当てている。しかしながら、本明細書に提供されるシステムおよび方法は、種々の非血液サンプル(例えば、Gatorade(登録商標)などのスポーツドリンクを含む飲料)のいずれかから血液サンプルを識別するのに同様に適用可能である。
本明細書に提供される方法は、原則として、離間した第1および第2の電極と試薬層を有するいずれかの種類の電気化学セルと共に使用され得る。例えば、電気化学セルは試験ストリップの形態であってもよい。一態様において、試験ストリップは薄いスペーサ層により隔てられている2つの対向する電極を備え、それらの構成要素はサンプル反応室または試薬層が位置する領域を規定する。出願人は、例えば同一平面上にある電極を備えた試験ストリップを含む他のタイプの試験ストリップが、本明細書で説明される方法とともに使用され得ることを強調する。
図1Aから図4Bは、本明細書に説明される方法との使用に適した例示的な試験ストリップ62の多様な図を示す。図示されるように、試験ストリップ62は、近端部80から末端部82に伸長し、側面方向端縁56、58を有する細長い本体を含むことができる。本体59の近端部分は、複数の電極164、166、および試薬72を有する試薬反応室61を含むことができる。一方、試験ストリップ本体59の末端部分は、試験計測器と電気的に通信するために構成された機構を含むことができる。使用中、生理液またはコントロール溶液は、電気化学分析のためにサンプル反応室61に送達できる。
実例となる実施形態では、試験ストリップ62は、第1の電極層66および第2の電極層64、ならびに第1の電極層と第2の電極層との間に位置するスペーサ層60を含むことができる。第1の電極層66は、第1の電極166および、第1の電極166を第1の電気接点67に電気的に接続するための第1の接続トラック76を提供できる。同様に、第2の電極層64は、第2の電極164および、第2の電極164を第2の電気接点63に電気的に接続するための第2の接続トラック78を提供できる。
一実施形態では、サンプル反応室61は、図1Aから図4Bに示されるように、第1の電極166、第2の電極164、およびスペーサ60によって画定される。具体的には、第1の電極166および第2の電極164は、それぞれサンプル反応室61の底部および上部を画定する。スペーサ60の切欠き領域68は、サンプル反応室61の側壁を画定できる。一態様では、サンプル反応室61は、サンプル入口および/またはベントを提供するいくつかのポート70をさらに含むことができる。例えば、ポートのうちの一方は、流体サンプル入口を提供することができ、他方のポートは、ベントとしての機能を果たすことができる。
サンプル反応室61は、小さな容積を有することができる。例えば、容積は、約0.1マイクロリットルから約5マイクロリットル、好ましくは約0.2マイクロリットルから約3マイクロリットル、およびより好ましくは約0.3マイクロリットルから約1マイクロリットルに及ぶことができる。当業者によって理解されるように、サンプル反応室61は、多様な他のかかる容積を有することができる。小さなサンプル容積を提供するために、切欠き68は、約0.01cmから約0.2cm、好ましくは約0.02cmから約0.15cm、およびより好ましくは約0.03cmから約0.08cmに及ぶ面積を有することができる。同様に、当業者は、容積切欠き68が多様な他のかかる面積となることができることを理解する。さらに、第1の電極166および第2の電極164は、約1ミクロンから約500ミクロンの範囲で、好ましくは約10ミクロンから約400ミクロンの範囲で、およびより好ましくは約40ミクロンから約200ミクロンの範囲で間隔をあけることができる。他の実施形態では、かかる範囲は、多様な他の値の間で変わることができる。また、電極の密接なスペーシングは、酸化還元サイクルが発生できるようにし、第1の電極166で生成された酸化媒介物質は、第2の電極164に拡散し、還元され、その後第1の電極166に拡散して戻り、再び酸化することができる。
試験ストリップ本体59の末端部で、第1の電気接点67は、試験計測器への電気的な接続を確立するために使用できる。第2の電気接点63は、図2に示されるように、U字形のノッチ65を通して試験計測器によってアクセスされることができる。出願人は、試験ストリップ62が試験計測器に電気的に接続するために構成されたさまざまな代替電気接点を含むことができることを強調する。例えば、全体が参照により本明細書に組み込まれる、米国特許第6,379,513号は、電気化学セル接続手段を開示する。
一実施形態では、第1の電極層66および/または第2の電極層64は、金、パラジウム、炭素、銀、プラチナ、酸化スズ、イリジウム、インジウム、およびその組合せ(例えば、インジウムでドープされた酸化スズ)等の物質から形成される導電体であることができる。さらに、電極は、例えば、スパッタリング、無電解めっき、またはスクリーン印刷プロセス等の多様なプロセスによって絶縁シート(不図示)上に導電体を配置することによって形成できる。例示的な一実施形態では、第2の電極層64は、スパッタされた金電極であり得て、第1の電極層66は、スパッタされたパラジウム電極であり得る。スペーシング層60として利用できる適切な材料は、例えばプラスチック(例えば、PET、PETG、ポリイミド、ポリカーボネート、ポリスチレン)、シリコン、セラミック、ガラス、接着剤、およびその組合せ等の多様な絶縁材料を含む。
試薬層72は、長穴コーティング、管の端部からの排出、インクジェット、およびスクリーン印刷等のプロセスを使用してサンプル反応室61内部に配置できる。かかるプロセスは、例えば以下の米国特許第6,749,887号、同第6,869,411号、同第6,676,995号、および同第6,830,934号で説明され、これらの参考文献のそれぞれの全体が参照により本明細書に組み込まれる。一実施形態では、試薬層72は、少なくとも1つの媒介物質および1つの酵素を含むことができ、第1の電極166の上に付着できる。多様な媒介物質および/または酵素は、本開示の精神および範囲内にある。例えば、適切な媒介物質は、ヘキサシアノ鉄酸塩、フェロセン、フェロセン誘導体、オスミウムビビリジル錯体、およびキノン誘導体を含む。適切な酵素の例は、グルコースオキシダーゼ、ピロロキノリンキノン(PQQ)補因子をベースにしたグルコースデヒドロゲナーゼ(GDH)、ニコチンアミドアデニンジヌクレオチド(NAD)補因子をベースにしたGDH、およびFADベースのGDH[E.C.1.1.99.10]を含む。試薬層72を作るのに適切である1つの例示的な試薬調合物は、全体が参照により本明細書に組み込まれる米国公開特許出願第2004/0120848号として公開されている、「Method of Manufacturing a Sterilized and Calibrated Biosensor−Based Medical Device」と題する係属中の米国特許出願第10/242,951号に説明されている。
第1の電極166または第2の電極164のどちらかは、試験計測器の印加された試験電位の極性に応じて制限量の媒介物質を酸化または還元する作用電極として機能できる。例えば、電流制限種(current limiting species)が還元された媒介物質である場合、それは、第2の電極164に関して十分な正の電位が印加されたのである限り、第1の電極166で酸化できる。かかる状況では、第1の電極166は、作用電極の機能を果たし、第2の電極164は、対電極/基準電極の機能を果たす。試験ストリップ62について別段の記載がない限り、試験計測器100によって印加されるすべての電位は、これ以降、第2の電極164に関して記載されることに留意されるべきである。
同様に、十分に負の電位が第2の電極164に関して印加される場合、次いで、還元された媒介物質は、第2の電極164で酸化できる。かかる状況では、第2の電極164は、作用電極の機能を果たし、第1の電極166は、対電極/基準電極の機能を果たし得る。
本明細書に開示される実施形態における第1のステップは、第1の電極166、第2の電極164および試薬層72を含む試験ストリップ62の中に関心のある多量の流体サンプルを導入することを含んでもよい。流体サンプルは、全血またはその派生物もしくは部分、またはコントロール溶液であることができる。例えば血液等の流体サンプルは、ポート70を介してサンプル反応室61の中に投与できる。一態様では、ポート70および/またはサンプル反応室61は、毛細管現象によって流体サンプルがサンプル反応室61を満たすように構成できる。
図5は、試験ストリップ62の第1の電極166および第2の電極164とそれぞれ電気的に通信している第1の電気接点67および第2の電気接点63とのインタフェースを有する試験計測器100の簡略化された概略図を示す。試験計測器100は、(図2および図5に示されるように)それぞれ、第1の電気接点67および第2の電気接点63を介して第1の電極166および第2の電極164に電気的に接続するように構成できる。当業者によって理解されるように、さまざまな試験計測器は、本明細書に説明される方法とともに使用できる。ただし、一実施形態では、試験計測器は、少なくとも1つのプロセッサを含み、そしてそのプロセッサは、データ並べ替えおよび/またはデータ記憶のために構成されるだけではなく、電気化学セルの物理的性質に相互に関連がある少なくとも1つの測定されたパラメータを考慮して補正係数を計算できる計算を実行するために構成された1つまたは複数の制御部を含んでよい。マイクロプロセッサは、例えばテキサスインスツルメント(Texas Instrument)MSP 430等のミックスシグナルマイクロプロセッサ(MSP)の形をとることができる。TI−MSP 430は、ポテンシオスタット機能および電流測定機能の一部を果たすように構成することもできる。さらに、MSP 430は、揮発性メモリおよび不揮発性メモリも含むことができる。別の実施形態では、電子部品の多くは、特定用途向け集積回路の形をとるマイクロコントローラと統合できる。
図5に示されるように、電気接点67は、2つのプロング67a、67bを含むことができる。例示的な一実施形態では、試験計測器100は、プロング67a、67bに別々に接続し、したがって試験計測器100が試験ストリップ62とインタフェースをとるとき、回路は完成する。試験計測器100は、プロング67a、67b間の抵抗または電気的連続性を測定して、試験ストリップ62が試験計測器100に電気的に接続されているかどうか判断できる。出願人は、試験計測器100がさまざまなセンサおよび回路を使用して、試験ストリップ62がいつ試験計測器100に関して適切に位置決めされるのかを決定できることを強調する。
一実施形態では、試験計測器100内に配置される回路は、第1の電気接点67と第2の電気接点63との間に試験電位および/または電流を印加できる。いったん試験計測器100が、ストリップ62が挿入されたことを認識すると、試験計測器100はオンになり、流体検出モードを開始する。一実施形態では、流体検出モードは、試験計測器100に、第1の電極166と第2の電極164との間に1マイクロアンペアの定電流を印加させる。試験ストリップ62は最初乾燥しているため、試験計測器100は、試験計測器100の内部のハードウェアによって制限される最大電圧を測定する。ただし、ユーザがいったん入口70の上に流体サンプルを投与すると、これによってサンプル反応室61は充填される。流体サンプルが第1の電極166と第2の電極164との間の隙間を埋めると、試験計測器100は、(例えば全体が参照により本明細書に組み込まれる米国特許第6,193,873号に説明するように)測定電圧の減少を測定する。測定電圧は、所定の閾値未満であり、試験計測器100にグルコース検査を自動的に開始させる。
サンプル反応室61の一部だけが充填されたときに、測定電圧は、所定の閾値を下回って減少してよいことに留意されるべきである。流体が適用されたことを自動的に認識する方法は、必ずしもサンプル反応室61が完全に充填されたことを示すのではなく、サンプル反応室61内になんらかの量の流体が存在することを確認できるにすぎない。いったん試験計測器100が、流体が試験ストリップ62に適用されたと決定すると、流体がサンプル反応室61を完全に充填できるようにするために、短いがゼロ以外の時間量は、依然として必要とされてよい。
一実施形態では、いったん試験計測器100が、流体が試験ストリップ62の上に導入された(例えば投与された)と判断すると、試験計測器100は、図6に示されるように所定の時間間隔の間、試験ストリップ62に複数の試験電位を印加することによってグルコース検査を実行できる。グルコース検査時間間隔Tは、グルコース検査(ただし、必ずしもグルコース検査に関連付けられたすべての計算ではない)を実行するための時間量を表し、グルコース検査時間間隔Tは、第1の試験電位時間間隔Tの間の第1の試験電位E、第2の試験電位時間間隔Tの間の第2の試験電位E、および第3の試験電位時間間隔Tの間の第3の試験電位Eを含むことができる。さらに、図6に示されるように、第2の試験電位時間間隔Tは、一定(DC)試験電圧成分および重畳された交流(AC)、つまり発振試験電圧成分を含むことができる。重畳交流試験電圧成分は、Tcapで示される時間間隔の間印加できる。図6に示した時間間隔は、例示のみであり、本明細書により完全に記載されるような範囲であり得る。グルコース検査時間間隔Tは、例えば約1秒から約5秒に及ぶことができる。
上述されたように、第1の電極166または第2の電極164のどちらかは、試験計測器の印加された試験電位の極性に応じて制限量の媒介物質を酸化または還元する作用電極として機能できる。別段の記載がない限り、試験計測器100によって印加されるすべての電位は、これ以降、第2の電極164に関して記載されることに留意されるべきである。ただし、出願人は、試験計測器100によって印加される試験電位は、第1の電極166に関しても記載されることがあり、その場合、以下に説明される試験電位および測定電流の極性が逆転することになることを強調する。
第1の試験電位時間間隔、第2の試験電位時間間隔、および第3の試験電位時間間隔の間に測定される複数の試験電流値は、およそ1ナノ秒につき約1回の測定からおよそ100ミリ秒につき約1回の測定に及ぶ頻度で実行されてよい。出願人は、名称「第1の」、「第2の」および「第3の」が便宜上選ばれ、必ずしも試験電位が印加される順序を反映していないことを強調する。例えば、実施形態は、第1の試験電圧および第2の試験電圧の印加の前に、第3の試験電圧を印加できる電位波形を有することができる。3つの試験電圧を順次使用する実施形態が説明されているが、出願人は、グルコース検査が異なる数の開回路電圧および試験電圧を含むことができることを強調する。出願人は、グルコース検査時間間隔がどのようなさまざまな開回路電位時間間隔も含むことができることを強調する。例えば、グルコース検査時間間隔は、1つまたは複数の試験電位時間間隔の前および/または後に、2つの試験電位時間間隔および/または開回路電位時間間隔しか含むことができない。別の例示的な実施形態では、グルコース検査は、第1の時間間隔のための開回路、第2の時間間隔のための第2の試験電圧、および第3の時間間隔のための第3の試験電圧を含むことができる。
図6に示されるように、試験計測器100は、(例えば、約0秒から約1秒の範囲の)第1の試験電位時間間隔T、第1の試験電位E(例えば、図6に示されるように約−20mV)を印加してよい。例えば、第1の試験電位時間間隔Tは、ゼロ(0)秒で開始でき、図6のゼロ(0)秒の開始点で約0.1秒から約3秒、約0.2秒から約2秒、または約0.3秒から約1秒の範囲の時間の後、終了することができる。第1の試験電位時間間隔Tは、サンプル反応室61がサンプルで完全にいっぱいになるようにだけではなく、試薬層72が少なくとも部分的に溶解するまたは溶媒和になるように十分に長くてよい。
一実施形態では、試験計測器100は、計測器が、ストリップがサンプルでいっぱいになっていることを検出するときと、第2の試験電位Eが印加される前との間の期間、電極間に第1の試験電位Eを印加できる。一態様では、試験電位Eは小さい。例えば、電位は、約−1から約−100mVの範囲、好ましくは約−5mVから約−50mVの範囲、および最も好ましくは約−10mVから約−30mVの範囲であり得る。出願人は、第1の試験電位の極性が正または負の値のいずれかとして表されることができることを強調する。例えば、第1の試験電位は、第2の電極164に対して負の試験電位、または第1の電極166に対して正の試験電位のいずれかとして表されることができる。より大きな電位差を印加することと比較すると、より小さな電位は、還元媒介物質の濃度勾配を混乱させる程度はより少ないが、それでもサンプル中の酸化できる物質の測定を得るには十分である。試験電位Eは、充填の検出と、第2の試験電位Eがその期間の全体に印加される、または印加できるときとの間の時間の一部、印加できる。試験電位Eが時間の一部に使用される場合、次いで開回路が時間の残りの部分、印加される。任意のさまざまな開回路および小電圧電位の印加(それらの順序および印加される時間は本実施形態では重大ではない)の組合せは、小電位Eが印加される総期間が、サンプル内に存在する酸化できる物質の存在および/または量を示す電流測定値を得るのに十分である限り、適用できる。好ましい実施形態では、小電位Eは、充填が検出されるときと、第2の試験電位Eが印加されるときとの間の実質的に全期間、印加される。
第1の時間間隔Tの間、試験計測器100は、i(t)と呼ぶことができる、結果として生じる第1の過渡電流を測定する。過渡電流は、特定の試験電位時間間隔の間に試験計測器によって測定される複数の電流値を示す。第1の過渡電流は、第1の試験電位時間間隔を通した電流値の積分、または第1の試験電位時間間隔の時間間隔で乗算される第1の試験電位時間間隔の間に測定される平均もしくは単一電流値であることができる。いくつかの実施形態では、第1の過渡電流は、第1の試験電位時間間隔の間の多様な時間間隔を通して測定される電流値を含むことができる。一実施形態では、第1の過渡電流i(t)は、約0.05秒から約1.0秒の範囲の時間、測定できる。他の実施形態では、第1の過渡電流i(t)は、約0.1秒から約0.5秒の範囲、または約0.1秒から約0.2秒の範囲の時間などの他の所望される時間範囲の間、測定できる。以下に説明するように、第1の過渡電流の一部またはすべては、試験ストリップ62にコントロール溶液が適用されたのか、それとも血液サンプルが適用されたのかを判断するために、本明細書に説明される方法で使用できる。第1の過渡電流の大きさは、サンプル中の容易に酸化できる物質の存在によって影響を受ける。血液は、通常、第2の電極164で容易に酸化される内因性化合物および外因性化合物を含む。逆に、コントロール溶液は、コントロール溶液が酸化できる化合物を含まないように調製できる。ただし、血液サンプルの組成は変わることがあり、高粘度血液サンプルの第1の過渡電流の大きさは、通常、低粘度サンプルよりも小さくなる(いくつかの場合、コントロール溶液サンプル未満にもなる)。不完全な充填によって、第1の電極166および第2の電極164の有効面積は減少し、それによって同様に第1の過渡電流は減少する。したがって、血液サンプル中の変動のため、酸化できる物質のサンプル中での存在は、それ自体、必ずしも十分に識別的な要因ではない。
いったん第1の時間間隔T時間が経過すると、試験計測器100は、第2の試験電位時間間隔T(例えば、図6に示される約3秒)、第1の電極166と第2の電極164との間に第2の試験電位E(例えば、図6に示される約−300mV)を印加できる。第2の試験電位Eは、制限酸化電流が第2の電極164で発生するように、媒介物質酸化還元電位の十分に負の値であってよい。例えば、媒介物質としてヘキサシアノ鉄酸塩および/またはフェロシアン化物を使用するとき、第2の試験電位Eは、約−600mVから約ゼロmVに及び、好ましくは約−600mVから約−100mVに及び、より好ましくは約−300mVであることができる。同様に、図6でtcapとして示される時間間隔も、一連の時間継続してよいが、例示的な一実施形態では、それは約20ミリ秒の持続時間を有する。例示的な一実施形態では、重畳交流試験電圧成分は、第2の試験電圧Vの印加後約0.3秒から約0.32秒の後に印加され、振幅が約+/−50mVの約109Hzの周波数を有する正弦波の2つのサイクルを誘発する。試験計測器100は、第2の試験電位時間間隔Tの間、第2の過渡電流i(t)を測定できる。
第2の試験電位時間間隔Tは、制限酸化電流の大きさに基づいて、試薬反応室61内での還元媒介物質(例えば、フェロシアン化物)の生成の速度を監視するほど十分に長くてよい。還元媒介物質は、試薬層72での一連の化学反応によって生成されてよい。第2の試験電位時間間隔Tの間、制限量の還元媒介物質は、第2の電極164で酸化され、非制限量の酸化媒介物質は、第1の電極166で還元され、第1の電極166と第2の電極164との間の濃度勾配を形成する。説明するように、第2の試験電位時間間隔Tは、十分な量のヘキサシアノ鉄酸塩が、第2の電極164で生成できるように十分に長くなくてはならない。制限電流が、第3の試験電位Eの間に第1の電極166でフェロシアン化物を酸化するために測定できるように、十分な量のヘキサシアノ鉄酸塩は、第2の電極164で必要とされてよい。第2の試験電位時間間隔Tは、約0秒から約60秒に及び、好ましくは約1秒から約10秒に及び、最も好ましくは約2秒から約5秒に及ぶことができる。
図7は、第2の試験電位時間間隔Tの始まりの相対的に小さいピークipbを示し、ピークの後には(例えば、約1秒から約4秒の範囲の)第2の試験電位時間間隔の間の酸化電流の絶対値の緩やかな上昇が続く。小さなピークは、約1秒での還元媒介物質の初期枯渇のために発生する。酸化電流の緩やかな上昇は、後に第2の電極164へのその拡散が続く試薬層72によるフェロシアン化物の生成に原因を帰する。
第2の時間間隔Tが経過すると、試験計測器100は、(例えば、図6に示される約4から約5秒の範囲の)第3の試験電位時間間隔Tの間、第1の電極166と第2の電極164との間に第3の試験電位E(例えば、図6に示される約+300mV)を印加できる。第3の試験電位時間間隔Tの間、試験計測器100は、i(t)と呼ばれてよい、第3の過渡電流を測定できる。第3の過渡電流Eは、制限酸化電流が第1の電極166で測定されように、媒介物質酸化還元電位の十分に正の値であってよい。例えば、媒介物質としてヘキサシアノ鉄酸塩および/またはフェロシアン化物を使用するとき、第3の試験電位Eの大きさは、約ゼロmVから約600mVに及び、好ましくは約100mVから約600mVに及び、より好ましくは約300mVであることができる。
第2の試験電位時間間隔Tおよび第3の試験電位時間間隔Tは、それぞれ約0.1秒から約4秒に及ぶことができる。図6に示される実施形態の場合、第2の試験電位時間間隔Tは、約3秒であり、第3の試験電位時間間隔Tは、約1秒であった。上述されたように、開回路電位期間を、第2の試験電位Eと第3の試験電位Eとの間で経過できるようにすることができる。代わりに、第3の試験電位Eは、第2の試験電位Eの印加に続いて印加できる。第1の過渡電流、第2の過渡電流、または第3の過渡電流の一部は、一般にセル電流または電流値と呼ばれることができることに留意されたい。
第3の試験電位時間間隔Tは、酸化電流の大きさに基づいて、第1の電極166の近くで還元媒介物質(例えば、フェロシアン化物)の拡散を監視するほど十分に長くてよい。第3の試験電位時間間隔Tの間、制限量の還元媒介物質は、第1の電極166で酸化され、非制限量の酸化媒介物質は、第2の電極164で還元される。第3の試験電位時間間隔Tは、約0.1秒から約5秒に及び、好ましくは約0.3秒から約3秒に及び、最も好ましくは約0.5秒から約2秒に及ぶことができる。
図7は、第3の試験電位時間間隔Tの始まりの相対的に大きいピークipcを示し、ピークの後には定常電流への減少が続く。一実施形態では、第1の試験電位Eおよび第2の試験電位Eは、ともに第1の極性を有し、第3の試験電位Eは、第1の極性と反対の第2の極性を有する。ただし、出願人は、第1の試験電位、第2の試験電位、および第3の試験電位の極性は、検体濃度がどのように決定されるのかに応じて、および/または試験サンプルおよびコントロール溶液がどのように区別されるのかに応じて、選ぶことができることを強調する。
キャパシタンスの測定
いくつかの実施形態では、キャパシタンスを測定できる。キャパシタンスの測定は、本来、電極−液界面でのイオン層の形成から生じるイオン二重層キャパシタンスを測定できる。キャパシタンスの大きさは、サンプルがコントロール溶液なのか、それとも血液サンプルなのかを判断するために使用できる。例えば、コントロール溶液が反応室内部にあるときに測定されたキャパシタンスの大きさは、血液サンプルが反応室内部にあるときに測定されたキャパシタンスの大きさよりも大きいことが可能である。以下により詳しく説明するように、測定されたキャパシタンスは、コントロール溶液と血液サンプルとを識別するために種々の方法で使用できる。例えば、そのような方法は、測定されたキャパシタンスと、血液サンプルが同じ種類の電気化学セルにロードされた場合に測定された既知の平均キャパシタンスの比を使用できる。
非制限例として、試験ストリップの上でキャパシタンスの測定を実行するための方法およびメカニズムは、それぞれが全体として参照により本明細書に組み込まれる、米国特許第7,195,704号および同第7,199,594号に記載されている。キャパシタンスを測定するための例示的な1つの方法では、定数成分および発振成分を有する試験電圧が、試験ストリップに印加される。かかる例では、結果として生じる試験電流は、以下にさらに詳しく説明するように、キャパシタンス値を決定するために数学的に処理できる。
概して、制限試験電流が、明確に画定された領域(つまり、キャパシタンスの測定中に変化しない領域)を有する作用電極で発生するとき、電気化学試験ストリップでの最も正確かつ精密なキャパシタンスの測定は、実行できる。経時的に変化しない明確に画定された電極領域は、電極とスペーサとの間に密封があるときに発生することができる。試験電流は、電流がグルコース酸化または電気化学的減衰のどちらかのために急激に変化していないときには、相対的に一定である。代わりに、グルコースの酸化に起因して見られる信号の増加が、電気化学的減衰に伴う信号の減少によって実質的に平衡するどのような期間も、キャパシタンスを測定するための適切な時間間隔になり得る。
第1の電極166の面積は、おそらく、サンプルがスペーサ60と第1の電極166との間で染み込む場合、サンプルを用いた投与の後経時的に変化することができる。試験ストリップの実施形態では、試薬層72は、試薬層72の一部がスペーサ60と第1の電極層66との間にあるようにする切欠き領域68よりも大きい面積を有することができる。特定の状況下で、スペーサ60と第1の電極層66との間に試薬層72の部分を挟むと、検査中に湿潤電極面積を拡大できる。結果として漏れが検査中に発生すると、第1の電極の面積を経時的に拡大させることがあり、それは同様にキャパシタンスの測定を歪曲させることがある。
対照的に、第2の電極164の面積は、第2の電極164とスペーサ60との間には試薬層がないため、第1の電極166と比較して経時的により安定することができる。よって、サンプルは、スペーサ60と第2の電極164との間ではより染み込みにくい。検査中に面積は変化しないため、第2の電極164で制限試験電流を使用するキャパシタンスの測定は、したがってより精密であり得る。
上述され、図6に図示されるように、いったん液体が試験ストリップで検出されると、液体の充填挙動を監視するために、およびコントロール溶液と血液とを区別するために、第1の試験電位E(例えば、図7に示されるように約−20mV)は、約1秒間電極間に印加できる。式1では、試験電流は、約0.05から約1秒、使用される。この第1の試験電位Eは、セル内でのフェロシアン化物の分散が、第1の電極および第2の電極で発生する電気化学反応によって可能な限り乱されないように相対的に低くなることができる。
より大きい絶対量を有する第2の試験電位E(例えば、図6に示されるように約−300mV)は、制限電流が第2の電極164で測定できるように、第1の試験電位Eの後に印加できる。第2の試験電位Eは、AC電圧成分およびDC電圧成分を含むことができる。AC電圧成分は、第2の試験電位Eの印加後の所定の時間量で印加することができ、さらに約109ヘルツの周波数、および約+/−50ミリボルトの振幅を有する正弦波であり得る。好ましい実施形態では、所定量の時間は、第2の試験電位Eの印加後約0.3秒から約0.4秒に及ぶことができる。代わりに、所定量の時間は、時間の関数としての試験過渡電流が約ゼロの傾きを有する時間であり得る。別の実施形態では、所定量の時間は、ピーク電流値(例えば、ipb)が約50%分、減衰するために要する時間であり得る。DC電圧成分に関しては、それは第1の試験電位の始まりで印加できる。DC電圧成分は、第2の電極に関して、例えば約−300mV等の第2の電極で制限試験電流を生じさせるのに十分な大きさを有することができる。
図4Bと一致して、試薬層72は、第1の電極166の上にコーティングされ、第2の電極164の上にコーティングされておらず、それによって絶対ピーク電流ipbの大きさは、絶対ピーク電流ipcの大きさに比較して相対的に低くなる。試薬層72は、検体の存在下で還元媒介物質を生成するように構成することができ、第1の電極に近接する還元媒介物質の量は、相対的に高い絶対ピーク電流ipcに寄与できる。一実施形態では、試薬層72の少なくとも酵素部分は、サンプルが試験ストリップに導入されるときに第1の電極から第2の電極に実質的に拡散しないように構成できる。
pb後の試験電流は、およそ1.3秒で平坦な領域に落ち着き、次いで、試薬層72でコーティングできる第1の電極166で生成された還元媒介物質が試薬層72でコーティングされていない第2の電極164に拡散するにつれて、電流は、再び上昇する。一実施形態では、キャパシタンスの測定は、約1.3秒から約1.4秒で実行できる試験電流値の相対的に平坦な領域で実行できる。一般に、キャパシタンスが1秒前に測定される場合、次いでキャパシタンスの測定は、第1の過渡電流i(t)を測定するために使用できる相対的に低い第1の試験電位Eと干渉することがある。例えば、−20mVの定電圧成分の上に重畳される約±50mVの発振電圧成分は、測定された試験電流のかなりの摂動を生じさせることがある。発振電圧成分は、第1の試験電位Eと干渉するだけではなく、発振電圧成分は、約1.1秒で測定される試験電流も大幅に混乱させ、それは同様に、例えば抗酸化物質の補正係数の決定を含む、血糖測定と干渉することがある。大量の検査および実験に続いて、最終的に、約1.3秒から約1.4秒でキャパシタンスを測定すると、驚くべきことに、コントロール溶液/血液識別検査または血糖アルゴリズムに干渉しない正確かつ精密な測定を生じさせることが決定された。
第2の試験電位Eの後に、第3の試験電位E(例えば、図6に示されるように約+300mV)が印加でき、それは、試薬層72でコーティングできる第1の電極166で試験電流を測定させる。第1の電極上の試薬層の存在によって、スペーサ層と電極層との間の液体の貫通が可能になり、電極面積を増大させることができる。
図6に示されるように、例示的な実施形態では、109HzのAC試験電圧(±50mVピークツーピーク)が、時間間隔tcapの間の2つのサイクルに印加できる。第1のサイクルは、調整パルスとして使用でき、第2のサイクルは、キャパシタンスを決定するために使用できる。キャパシタンス推定値は、交流(AC)波の部分を通して試験電流を合計し、直流(DC)オフセットを差し引き、AC試験電圧振幅およびAC周波数を使用して結果を正規化することによって得ることができる。この計算は、ストリップサンプルチャンバがサンプルで充填されるときに、ストリップサンプルチャンバによって支配されるストリップのキャパシタンスの測定値を提供する。
一実施形態では、キャパシタンスは、入力AC電圧がDCオフセットと交差する時点、つまり入力電圧のAC成分がゼロである(ゼロ交点)ときのどちらかの側でのAC波の4分の1を通して試験電流を合計することによって測定できる。どのようにしてこれがキャパシタンスの測定値になるのかの導出は、さらに詳しく以下に説明される。式1は、時間間隔tcapの間の時間の関数としての電流の大きさを示すことができる。
Figure 0005837602
上式では、項i+stは、定試験電圧成分によって生じる試験電流を示す。一般に、DC電流成分は、(フェロシアン化物を生成する、継続中のグルコース反応に起因して)経時的に線形に変化すると見なされ、よって時間ゼロ(ゼロ交点)でのDC電流である定数i、および時間tと共にDC電流変化の傾きであるsによって示される。AC電流成分は、Isin(ωt+φ)によって表され、上式では、Iは電流波の振幅であり、ωはその周波数であり、φは入力電圧波に対するその位相シフトである。項ωは2πfとして表すこともでき、上式では、fはヘルツ単位のAC波の周波数である。項Iはまた、式2に示されるように表すことができる。
Figure 0005837602
上式では、Vは印加電圧信号の振幅であり、|Z|は複素インピーダンスの大きさである。項|Z|は、式22に示されるように表すこともできる。
Figure 0005837602
上式では、Rはインピーダンスの実部であり、Cはキャパシタンスである。
式1は、ゼロ交点の前の4分の1波長からゼロ交点の後の4分の1波長に統合し、式4を生じさせることができる。
Figure 0005837602
式4は、式5に簡略化できる。
Figure 0005837602
式2を式1に代入し、次いで式4に代入し、次いで再配列することによって、式6が生じる。
Figure 0005837602
式6の積分項は、式7に示される電流の合計を使用して近似できる。
Figure 0005837602
上式では、試験電流iは、ゼロ交点の前の4分の1波形からゼロ交点を越えた4分の1波形に合計される。式7を式6に代入すると、式8が生じる。
Figure 0005837602
上式では、DCオフセット電流iは、ゼロ交点周辺の1つの完全な正弦周期を通して試験電流を平均することで得ることができる。
別の実施形態では、キャパシタンスの測定値は、電圧ゼロ交点の周辺ではなく、むしろ電流の最大AC成分の周辺で電流を合計することによって得ることができる。よって、式7では、電圧ゼロ交点のどちらかの側で1/4波長を合計するのではなく、試験電流は電流最大値の周辺の1/4波長を合計することができる。これは、AC励起に対応する回路素子が純粋なコンデンサであり、したがってφがπ/2であると仮定するのに等しい。よって、式5は、式9に変形できる。
Figure 0005837602
流れている電流のDCつまり実成分がAC励起で使用される電圧の範囲で印加される電圧とは無関係となるように、コーティングされていない電極が分極されるので、これは、この場合では妥当な仮定であると考えられる。したがって、AC励起に対応するインピーダンスの実部は無限であり、純粋な容量素子を暗示する。次いで式9が式6とともに使用され、積分近似を必要としない簡略化されたキャパシタンス式を生じさせる。最終結果は、電圧交点の周辺ではなく、むしろ電流の最大AC成分の周辺で電流を合計するときのキャパシタンスの測定値がより精密であったという点である。
CS/血液識別試験
一実施形態において、コントロール溶液(CS)の特徴は、コントロール溶液を血液と識別するために使用される。例えば、サンプル中の酸化還元種の存在および/または濃度、反応速度、ならびに/あるいはキャパシタンスは、コントロール溶液を血液と識別するために使用され得る。本明細書に開示される方法は、サンプル中の酸化還元濃度を表わす第1の基準値およびサンプルと試薬の反応速度を表わす第2の基準値を算出するステップを含んでもよい。一実施形態において、第1の基準値は干渉酸化電流であり、第2の基準値は反応完了の割合である。一部の実施形態において、第3の基準値は第1の基準値にキャパシタンスインデックスを掛けることによって算出され得る。キャパシタンスインデックスは、キャパシタンスであるか、またはキャパシタンス値に関連する、例えば比例する任意の算出された値であってもよい。キャパシタンスインデックスは、例えば、測定されたキャパシタンス、既知または所定のキャパシタンス、あるいはそれらの任意の組み合わせであってもよい。キャパシタンスインデックスはまた、任意の上記のキャパシタンスおよび実験的に導き出された定数に関連してもよい。例示的な実施形態において、キャパシタンスインデックスは、既知のキャパシタンスと測定したキャパシタンスの比または測定したキャパシタンスと既知のキャパシタンスの比であってもよい。既知のキャパシタンスは、試験ストリップが電流試験について使用されているものと同じ種類の試験ストリップ内に血液サンプルがロードされた場合に測定した平均キャパシタンスであってもよい。測定したキャパシタンスは、例えば上記に説明したアルゴリズムを使用して測定されてもよい。
一実施形態において、CS/血液識別試験は第1の基準値および第2の基準値を含んでもよい。第1の値は第1の時間間隔T内の電流値に基づいて算出されてもよく、第2の基準値は、第2の時間間隔Tおよび第3の時間間隔Tの両方の間の電流値に基づいてもよい。一実施形態において、第1の基準値は、図6の試験電圧波形を使用した場合、第1の時間の過渡電流の間に得た電流値を合計することにより得られてもよい。非限定的な例として、第1の基準値isumは、式10:
Figure 0005837602
により表わされることができ、式中、isumは電流値の合計であり、tは時間である。上記で説明したように、一部の実施形態において、第1の基準値はキャパシタンスインデックスを乗じられてもよく、そのキャパシタンスインデックスは、既知のキャパシタンスと測定したキャパシタンスの比であってもよい。このような実施形態において、第3の基準値icapsumは、式11:
Figure 0005837602
により表わされることができ、式中、Cavは既知の平均キャパシタンスであり、Cは測定したキャパシタンスであり、tは時間である。式11の例示的な実施形態において、CavとCの比はキャパシタンスインデックスと称されてもよく、それは上記により詳細に説明している。1つの例示的な実施形態において、本発明の一実施形態に係る例示的な試験ストリップについての既知の平均キャパシタンスCavは約582ナノファラッドである。
時々、残留反応性指数と称される第2の基準値は、式12:
Figure 0005837602
(式中、absは絶対値関数を表わし、3.8および4.15は、この特定の例に関して、第2および第3の時間間隔のそれぞれの時間(秒)を表わす)
により示される第2の時間間隔および第3の時間間隔の間の電流値の比Yにより得られ得る。
識別基準は、サンプルが、式10の第1の基準値または式11の第3の基準値、および式12の第2の基準値に基づいてコントロール溶液であるか、または血液であるかどうかを決定するために使用され得る。例えば、式10の第1の基準値または式11の第3の基準値は所定の閾値と比較されてもよく、式12の第2の基準値は所定の閾値関数と比較されてもよい。所定の閾値は例えば約12マイクロアンペアであってもよい。所定の閾値関数は式10または式11の第1の基準値を使用する関数に基づいてもよい。より具体的には、式13により例示するように、isumまたはicapsumのいずれかの算出した値はXにより表わされ、所定の閾値関数Fpdtは、
Figure 0005837602
(式中、Zは例えば約0.2などの定数であり得る)
であり得る。したがって、CS/血液識別試験は、isumまたはicapsumが、所定の閾値、例えば12マイクロアンペア以上である場合、および式12に示すように第2の時間間隔と第3の時間間隔の間の電流値の比Yが、所定の閾値関数Fpdtの値未満である場合、血液としてサンプルを識別でき、そうでない場合、サンプルはコントロール溶液である。一実施形態において、CS/血液識別試験はまた、例えば式14により表わされ得る:
Figure 0005837602
図9は、第1の基準値isumと、時々、複数の血液サンプルおよびコントロール溶液サンプルについての残留反応性指数と称される第2の基準値との関係を示すグラフである。第1の基準値isumをX軸に、時々、残留反応性指数と称される第2の基準値をY軸にプロットすることによって、血液とコントロール溶液との間の分離が観察され得る。識別ラインは、サンプルがコントロール溶液であるか、または血液であるかどうかを決定するために描かれ得る。図9において、第1の基準値isumは、約t=0.05から約t=1の間の第1の過渡電流の間に得た電流値の合計であり、第2の基準値は
Figure 0005837602
である。
第1の基準値をX軸に、時々、残留反応性指数と称される第2の基準値をY軸にプロットすることによって、血液とコントロール溶液との分離が観察され得る。電流値が、時々、残留反応性指数と称される第2の基準値について選択された時間(例えば3.8、4.15)は、実験的に見出されたものであることに留意すべきである。多数の電流比を、血液とコントロール溶液サンプルとを識別するそれらの能力について評価した。血液とコントロール溶液サンプルとの有意な分離が生じるように見出されたので、第2の基準値について使用した比を選択した。
図10は、複数の血液サンプルおよびコントロール溶液サンプルについての第3の基準値icapsumと、時々、残留反応性指数と称される第2の基準値との関係を示すグラフである。図10において、第1の基準値icapsumは、約t=0.05から約t=1の間の第1の時間の過渡電流の間に得た電流値の合計に、既知のキャパシタンスと測定したキャパシタンスの比を乗じている。図10に示すように、キャパシタンスインデックスによる第1の基準値の修飾は、コントロール溶液と血液サンプルとの改良された識別を与える。
本明細書に記載される方法において、第1の基準値isumまたは第3の基準値icapsumおよび時々、残留反応性指数と称される第2の基準値のこの統計的分析から得た情報は、コントロール溶液と血液サンプルとを識別するために試験計測器により使用され得る。試験計測器は、第1の基準値isumまたは第3の基準値icapsumおよび第2の基準値を算出でき、コントロール溶液と血液サンプルとを識別するために導き出された識別ライン(または識別ラインを表わす式)と関連するそれらの値を使用できる。
血糖アルゴリズム
サンプルが血液サンプルとして識別される場合、血糖アルゴリズムが試験電流値で実施され得る。図1A〜4Bに示すように試験ストリップが対向する面または対向する構造を有し、図6または図8Aに示すように電位波形が試験ストリップに適用されると想定すると、グルコース濃度[G]は、式15:
Figure 0005837602
に示すようにグルコースアルゴリズムを使用して算出され得る。
式15において、[G]はグルコース濃度であり、iは第1の電流値であり、iは第2の電流値であり、iは第3の電流値であり、項p、Z、およびaは、実験的に導き出された校正定数である。式15の誘導は、2005年9月30日に出願された、「Method and Apparatus for Rapid Electrochemical Analysis」という発明の名称の係属中の米国公開特許出願第2007/0074977号(米国出願第11/240,797号)(その全体は本明細書に参照として組み込まれる)に見出され得る。式15における全ての試験電流値(例えば、i、i、およびi)は電流の絶対値を使用する。第1の電流値iおよび第2の電流値iは第3の過渡電流から算出され、第3の電流値iは第2の過渡電流から算出される。出願人は、「第1の」、「第2の」および「第3の」という名称は簡便性のために選択し、電流値が算出される順序を必ずしも反映しているわけではないことに留意すべきである。さらに、式15に示した全ての電流値(例えば、i、iおよびi)は電流の絶対値を使用する。
一実施形態において、iは第3の過渡電流の間に収集した1つ以上の電流値に基づき得、iは第2の過渡電流の間に収集した1つ以上の電流値に基づき得る。別の実施形態において、iは第3の過渡電流のほぼ最後に収集した1つ以上の電流値に基づき得、iは第2の過渡電流のほぼ最初に収集した1つ以上の電流値に基づき得る。iおよびiの両方は、それぞれの時間間隔の一部の間の合計、積分、または平均を使用して算出され得る。
別の実施形態において、項iは、式16:
Figure 0005837602
に示したより正確なグルコース濃度を可能にするために第2および第3の過渡電流からピーク電流値を含むように定義され得る。
項ipbは第2の試験電位時間間隔Tについてのピーク電流値を表わし、項ipcは第3の試験電位時間間隔Tについてのピーク電流値を表わす。項issは定常電流の推定値であり、それは継続中の化学反応の非存在下で第3の試験電位Eの印加後に長い時間発生すると予測される電流である。issを算出するための方法の一部の例は、米国特許第5,942,102号および同第6,413,410号(その各々はその全体が本明細書に参照として組み込まれる)に見出され得る。生理学的サンプル中の干渉の原因となるピーク電流値の使用は、2006年3月31日に出願された、「Methods and Apparatus for Analyzing a Sample in the Presence of Interferents」という発明の名称の米国公開特許出願第2007/0227912号(米国特許第11/278,341号)(その全体は本明細書に参照として組み込まれる)に記載されている。
一実施形態において、式15および式16は、血液またはコントロール溶液のいずれかについてのグルコース濃度を算出するために一緒に使用されてもよい。別の実施形態において、式15および式16のアルゴリズムが、第1のセットの校正係数(すなわち、a、p、およびzgr)と共に血液のために使用されてもよく、第2のセットの校正係数が、コントロール溶液について使用されてもよい。2つの異なるセットの校正係数を使用する場合、試験流体とコントロール溶液とを識別するための本明細書に記載される方法は、検体濃度の算出の有効性を改良できる。
さらに、サンプルがコントロール溶液(血液とは対照的に)であると試験計測器が決定する場合、試験計測器はコントロールサンプルの得られたグルコース濃度を保存でき、使用者は、試験サンプルの濃度データをコントロール溶液のデータとは別に点検できる。例えば、コントロール溶液についてのグルコース濃度は、別のデータベースに保存されてもよく、フラグ付けされてもよく、および/または捨てられてもよい(すなわち、保存されないか、または短時間保存される)。
図6および7に例示した例は、試薬でコーティングされていない電極が電圧測定のための基準電極として作用する場合、正として第3の印加された電圧と共に負として第1および第2の印加された電圧の極性を示す。しかしながら、試薬でコーティングされた電極が電圧測定のための基準電極として作用する場合、印加された電圧は図6に例示した順序に対する反対の極性であってもよい。例えば、図8Aおよび8Bの好ましい実施形態において、第1および第2の印加された電圧の極性は正であり、第3の印加された電圧の極性は負である。両方の場合、試薬でコーティングされていない電極が、第1および第2の印加された電圧の間、陽極として作用し、試薬でコーティングされた電極が、第3の印加された電圧の間、陽極として作用するので、グルコースの算出は同じである。
コントロール溶液を認識できる別の利点は、試験計測器が、コントロール溶液の試験の結果(例えばグルコース濃度)を、コントロール溶液の予測されるグルコース濃度と自動的に比較するようにプログラムされ得るということである。例えば、試験計測器は、コントロール溶液についての予測されるグルコースレベルを用いて予めプログラムされてもよい。代替として、使用者はコントロール溶液について予測されるグルコース濃度を入力できる。試験計測器がコントロール溶液を認識する場合、計測器が適正に機能するかどうかを決定するために、試験計測器は、測定したコントロール溶液のグルコース濃度を、予測されるグルコース濃度と比較できる。測定したグルコース濃度が予測される範囲外である場合、試験計測器は、使用者に警告するように警告メッセージを出力できる。
当業者は、上記の実施形態に基づいて本明細書に開示されているシステムおよび方法のさらなる特徴および利点を理解するだろう。したがって、本明細書に開示されるシステムおよび方法は、添付の特許請求の範囲により示されることを除いて、特定に示され、記載されているものに限定されない。本明細書に引用される全ての刊行物および参照文献は、それらの全体が本明細書に明確に参照として組み込まれる。

Claims (29)

  1. 血液サンプルと水性非血液サンプルを識別する方法であって、
    (a)サンプルが電気化学セルに導入される場合、第1の電極と第2の電極との間に第1の試験電位を印加し、第1の過渡電流を測定するステップと、
    (b)前記第2の電極において還元した媒介物質を酸化するのに十分である第2の試験電位を、前記第1の電極と前記第2の電極との間に印加し、第2の過渡電流を測定するステップと、
    (c)前記サンプルが前記電気化学セルに導入されたときの前記電気化学セルのキャパシタンスを測定するステップと、
    (d)前記第1の電極において還元した媒介物質を酸化するのに十分である第3の試験電位を、前記第1の電極と前記第2の電極との間に印加し、第3の過渡電流を測定するステップと、
    (e)前記第1の過渡電流に基づいて、第1の基準値を算出するステップと、
    (f)前記第2および第3の過渡電流に基づいて、第2の基準値を算出するステップと、
    (g)少なくとも測定した前記キャパシタンスに基づいて、キャパシタンスインデックスを算出するステップと、
    (h)前記第1の基準値および前記キャパシタンスインデックスに基づいて、第3の基準値を算出するステップと、
    (i)前記第2および第3の基準値に基づいて、前記サンプルが血液サンプルまたは水性非血液サンプルであるかどうかを決定するステップと、
    を含む、方法。
  2. 前記キャパシタンスインデックスが、前記電気化学セルの測定した前記キャパシタンスに比例する、請求項1に記載の方法。
  3. 前記キャパシタンスインデックスが、同じ種類の電気化学セルの平均キャパシタンスと前記電気化学セルの測定した前記キャパシタンスの比である、請求項2に記載の方法。
  4. 前記第1の基準値が、前記第1の過渡電流からの少なくとも1つの電流値に基づいて算出される、請求項1に記載の方法。
  5. 前記第1の基準値が、前記第1の過渡電流の間に測定した電流値の合計に基づいて算出される、請求項1に記載の方法。
  6. 前記合計が、式
    Figure 0005837602
    (式中、tは時間であり、isumはn時からM時までの時間間隔の間の電流値の合計である)
    により表される、請求項5に記載の方法。
  7. 前記第2の基準値は、前記第1の電極および前記第2の電極で発生する電気化学反応の完了の割合に基づく、請求項1に記載の方法。
  8. 前記第2の基準値は、前記第2の過渡電流からの少なくとも1つの電流値および前記第3の過渡電流からの少なくとも1つの電流値に基づく、請求項1に記載の方法。
  9. 前記第2の基準値は、前記第2の過渡電流のほぼ最後における第2の電流値および前記第3の過渡電流のほぼ最初における第3の電流値に基づく、請求項1に記載の方法。
  10. 前記第2の基準値は、前記第2の電流値と前記第3の電流値の比に基づく、請求項9に記載の方法。
  11. 前記サンプル中のグルコースの濃度を測定するステップをさらに含む、請求項1に記載の方法。
  12. 前記サンプルが水性非血液サンプルであると見出された場合、前記水性非血液サンプルと関連するグルコースの濃度がフラグ付けされる、請求項11に記載の方法。
  13. ステップ(i)が、前記サンプルが水性非血液サンプルまたは血液サンプルであるかどうかを決定するために以下の2つの不等式
    Figure 0005837602
    を使用するステップをさらに含み、
    ここで、Yは前記第2の基準値であり、i capsum は前記第3の基準値であり、Zは定数である、
    請求項1に記載の方法。
  14. ステップ(i)が、
    前記第2の基準値を所定の閾値式と比較するステップと、
    前記サンプルが水性非血液サンプルまたは血液サンプルであるかどうかを決定するために前記第3の基準値を所定の閾値と比較するステップと、
    をさらに含む、請求項1に記載の方法。
  15. 前記所定の閾値式が前記第3の基準値の関数である、請求項14に記載の方法。
  16. 前記水性非血液サンプルがコントロールサンプルを含む、請求項1に記載の方法。
  17. 血液サンプルと水性非血液サンプルとを識別するシステムであって、前記システムは、
    (a)試験計測器および電気化学セルを接続するための電気接点を含む試験ストリップであって、前記電気化学セルは、
    (i)離間した関係の第1の電極および第2の電極と、
    (ii)試薬と
    を含む、試験ストリップと、
    (b)前記試験ストリップから電流データを受信するように適合されたプロセッサを含む試験計測器、ならびに血液サンプルが、第1の基準値、第2の基準値、およびキャパシタンスインデックスに基づいて水性非血液サンプルから識別され得るように識別基準を含むデータストレージと、
    を含み、
    前記第1の基準値は、前記血液サンプル又は前記水性非血液サンプルが前記電気化学セルに導入されたときの前記第1の電極および前記第2の電極の間に第1の試験電位を印加し、第1の過渡電流を測定し、前記第1の過渡電流に基づいて前記第1の基準値を算出することによって求められ、
    前記第2の基準値は、前記第2の電極において還元した媒介物質を酸化するのに十分である第2の試験電位を、前記第1の電極と前記第2の電極との間に印加し、第2の過渡電流を測定し、前記第1の電極において還元した媒介物質を酸化するのに十分である第3の試験電位を、前記第1の電極と前記第2の電極との間に印加し、第3の過渡電流を測定し、前記第2および第3の過渡電流に基づいて前記第2の基準値を算出することによって求められ、
    前記キャパシタンスインデックスは、前記血液サンプル又は前記水性非血液サンプルが前記電気化学セルに導入されたときの前記電気化学セルのキャパシタンスを測定し、少なくとも測定した前記キャパシタンスに基づいて、前記キャパシタンスインデックスを算出することによって求められる
    システム。
  18. 前記識別基準が、抗酸化物質濃度を表す第1の基準値および反応速度を表す第2の基準値から誘導される、請求項17に記載のシステム。
  19. 前記識別基準が、実験的に導かれた識別ラインを含む、請求項17に記載のシステム。
  20. 前記キャパシタンスインデックスが、同じ種類の電気化学セルの平均キャパシタンスと前記電気化学セルの測定したキャパシタンスの比を含む、請求項17に記載のシステム。
  21. 前記水性非血液サンプルが、コントロール溶液である、請求項17に記載のシステム。
  22. 血液サンプルと水性非血液サンプルとを識別するための試験計測器内でプログラミングするための識別基準を算出する方法であって、
    (a)複数の水性非血液サンプルについての第1の基準値および第2の基準値を算出するステップと、
    (b)前記第1の基準値に基づいて第3の基準値を算出するステップであって、前記第3の基準値はキャパシタンスインデックスに比例する、ステップと、
    (c)複数の水性非血液サンプルについての前記第2の基準値および前記第3の基準値に基づいて識別基準を算出するステップと、
    を含み、
    前記第1の基準値および第2の基準値を算出するステップは、
    電気化学セルの第1の電極および第2の電極の間に第1の試験電位を印加し、第1の過渡電流を測定し、前記第1の過渡電流に基づいて前記第1の基準値を算出し、
    前記第2の電極において還元した媒介物質を酸化するのに十分である第2の試験電位を、前記第1の電極と前記第2の電極との間に印加し、第2の過渡電流を測定し、前記第1の電極において還元した媒介物質を酸化するのに十分である第3の試験電位を、前記第1の電極と前記第2の電極との間に印加し、第3の過渡電流を測定し、前記第2および第3の過渡電流に基づいて、前記第2の基準値を算出することを含み、
    前記第3の基準値を算出するステップは、
    前記血液サンプル又は前記水性非血液サンプルが前記電気化学セルに導入されたときの前記電気化学セルのキャパシタンスを測定し、少なくとも測定した前記キャパシタンスに基づいて、前記キャパシタンスインデックスを算出し、前記第1の基準値および前記キャパシタンスインデックスに基づいて、前記第3の基準値を算出することを含む、
    方法。
  23. 前記第1の基準値が抗酸化物質濃度を表し、前記第2の基準値が反応速度を表す、請求項22に記載の方法。
  24. サンプルが導入される場合、前記キャパシタンスインデックスが、同じ種類の電気化学セルの平均キャパシタンスと前記電気化学セルの測定したキャパシタンスの比を含む、請求項22に記載の方法。
  25. 前記複数の水性非血液サンプルが複数のコントロール溶液を含む、請求項22に記載の方法。
  26. 血液サンプルと水性非血液サンプルとを識別する方法であって、
    (a)サンプルを電気化学セルに導入するステップであって、前記電気化学セルは、
    (i)離間した関係の2つの電極と、
    (ii)試薬と
    を含む、ステップと、
    (b)第1の極性を有する第1の試験電位を前記電極の間に印加し、セル電流を測定するステップと、
    (c)前記サンプルが前記電気化学セルに導入されたときの前記電気化学セルのキャパシタンスを測定するステップと、
    (d)第1の基準値を生成するために前記第1の試験電位の間に測定した少なくとも2つの電流値を合計するステップと、
    (e)測定した前記キャパシタンスに関連するキャパシタンスインデックスを算出するステップと、
    (f)血液サンプルと水性非血液サンプルとを識別するために前記キャパシタンスインデックスおよび前記第1の基準値を使用するステップと、
    を含み、
    前記第1の基準値は、前記セル電流に基づいて算出することによって求められ、
    前記キャパシタンスインデックスは、少なくとも測定した前記キャパシタンスに基づいて、前記キャパシタンスインデックスを算出することによって求められる、
    方法。
  27. 反応速度に関連する第2の基準値を算出するステップと、血液サンプルと水性非血液サンプルとを識別するために前記キャパシタンスインデックス、前記第1の基準値、および前記第2の基準値を使用するステップと、をさらに含む、請求項26に記載の方法。
  28. 前記水性非血液サンプルがコントロール溶液を含む、請求項26に記載の方法。
  29. 前記キャパシタンスインデックスが、同じ種類の電気化学セルの平均キャパシタンスおよび前記電気化学セルの測定したキャパシタンスの比を含む、請求項26に記載の方法。
JP2013530812A 2010-09-30 2011-09-30 キャパシタンスを使用してコントロールサンプルと試験流体を識別するシステムおよび方法 Active JP5837602B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/895,067 US8617370B2 (en) 2010-09-30 2010-09-30 Systems and methods of discriminating between a control sample and a test fluid using capacitance
US12/895,067 2010-09-30
PCT/IB2011/002431 WO2012042373A1 (en) 2010-09-30 2011-09-30 Systems and methods of discriminating between a control sample and a test fluid using capacitance

Publications (2)

Publication Number Publication Date
JP2013539035A JP2013539035A (ja) 2013-10-17
JP5837602B2 true JP5837602B2 (ja) 2015-12-24

Family

ID=45094040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530812A Active JP5837602B2 (ja) 2010-09-30 2011-09-30 キャパシタンスを使用してコントロールサンプルと試験流体を識別するシステムおよび方法

Country Status (11)

Country Link
US (4) US8617370B2 (ja)
EP (2) EP3537139B1 (ja)
JP (1) JP5837602B2 (ja)
KR (1) KR101861993B1 (ja)
CN (1) CN103250050B (ja)
AU (1) AU2011309764B2 (ja)
BR (1) BR112013007679A2 (ja)
CA (1) CA2811851C (ja)
ES (2) ES2740839T3 (ja)
RU (1) RU2621153C2 (ja)
WO (1) WO2012042373A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656058A1 (en) * 2010-12-22 2013-10-30 Roche Diagnostics GmbH Systems and methods to compensate for sources of error during electrochemical testing
US20130188709A1 (en) 2012-01-25 2013-07-25 Sachin G. Deshpande Video decoder for tiles with absolute signaling
US10168313B2 (en) * 2013-03-15 2019-01-01 Agamatrix, Inc. Analyte detection meter and associated method of use
GB2515299B (en) * 2013-06-18 2015-12-30 Suresensors Ltd Methods and apparatus for determining analyte in a sample
US20170038331A1 (en) * 2015-08-05 2017-02-09 Lifescan Scotland Limited System and method for compensating sample-related measurements based on polarization effects of test strips

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
US6319471B1 (en) 1992-07-10 2001-11-20 Gambro, Inc. Apparatus for producing blood component products
US5385846A (en) 1993-06-03 1995-01-31 Boehringer Mannheim Corporation Biosensor and method for hematocrit determination
US5781455A (en) 1993-11-02 1998-07-14 Kyoto Daiichi Kagaku Co., Ltd. Article of manufacture comprising computer usable medium for a portable blood sugar value measuring apparatus
US5620579A (en) 1995-05-05 1997-04-15 Bayer Corporation Apparatus for reduction of bias in amperometric sensors
US6413410B1 (en) 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
AUPN363995A0 (en) 1995-06-19 1995-07-13 Memtec Limited Electrochemical cell
US6174420B1 (en) 1996-11-15 2001-01-16 Usf Filtration And Separations Group, Inc. Electrochemical cell
US6638415B1 (en) 1995-11-16 2003-10-28 Lifescan, Inc. Antioxidant sensor
AUPN661995A0 (en) 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US6521110B1 (en) 1995-11-16 2003-02-18 Lifescan, Inc. Electrochemical cell
US6241862B1 (en) 1996-02-14 2001-06-05 Inverness Medical Technology, Inc. Disposable test strips with integrated reagent/blood separation layer
GB9607898D0 (en) * 1996-04-17 1996-06-19 British Nuclear Fuels Plc Improvements in and relating to sensors
US5858648A (en) 1996-11-04 1999-01-12 Sienna Biotech, Inc. Assays using reference microparticles
US6632349B1 (en) 1996-11-15 2003-10-14 Lifescan, Inc. Hemoglobin sensor
WO1998035225A1 (en) 1997-02-06 1998-08-13 E. Heller & Company Small volume in vitro analyte sensor
AUPO581397A0 (en) 1997-03-21 1997-04-17 Memtec America Corporation Sensor connection means
US8071384B2 (en) * 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US7390667B2 (en) 1997-12-22 2008-06-24 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC phase angle measurements
US7407811B2 (en) 1997-12-22 2008-08-05 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC excitation
US7494816B2 (en) 1997-12-22 2009-02-24 Roche Diagnostic Operations, Inc. System and method for determining a temperature during analyte measurement
US6475360B1 (en) 1998-03-12 2002-11-05 Lifescan, Inc. Heated electrochemical cell
WO1999060391A1 (en) 1998-05-20 1999-11-25 Arkray, Inc. Method and apparatus for electrochemical measurement using statistical technique
US6830934B1 (en) 1999-06-15 2004-12-14 Lifescan, Inc. Microdroplet dispensing for a medical diagnostic device
EP1080209A2 (en) 1998-10-21 2001-03-07 Arch Development Corporation Methods of treatment of type 2 diabetes
US6475372B1 (en) 2000-02-02 2002-11-05 Lifescan, Inc. Electrochemical methods and devices for use in the determination of hematocrit corrected analyte concentrations
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
US6193873B1 (en) 1999-06-15 2001-02-27 Lifescan, Inc. Sample detection to initiate timing of an electrochemical assay
US7045054B1 (en) 1999-09-20 2006-05-16 Roche Diagnostics Corporation Small volume biosensor for continuous analyte monitoring
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
JP4050434B2 (ja) 1999-11-29 2008-02-20 松下電器産業株式会社 サンプルの弁別方法
ES2238254T3 (es) 1999-12-27 2005-09-01 Matsushita Electric Industrial Co., Ltd. Biosensor.
US6895263B2 (en) 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US7890295B2 (en) 2000-02-23 2011-02-15 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6571651B1 (en) 2000-03-27 2003-06-03 Lifescan, Inc. Method of preventing short sampling of a capillary or wicking fill device
RU2278612C2 (ru) 2000-07-14 2006-06-27 Лайфскен, Инк. Иммуносенсор
US6797150B2 (en) 2001-10-10 2004-09-28 Lifescan, Inc. Determination of sample volume adequacy in biosensor devices
IL156007A0 (en) 2001-10-10 2003-12-23 Lifescan Inc Electrochemical cell
US7018843B2 (en) 2001-11-07 2006-03-28 Roche Diagnostics Operations, Inc. Instrument
US6872298B2 (en) 2001-11-20 2005-03-29 Lifescan, Inc. Determination of sample volume adequacy in biosensor devices
US6749887B1 (en) 2001-11-28 2004-06-15 Lifescan, Inc. Solution drying system
US6689411B2 (en) 2001-11-28 2004-02-10 Lifescan, Inc. Solution striping system
US6856125B2 (en) * 2001-12-12 2005-02-15 Lifescan, Inc. Biosensor apparatus and method with sample type and volume detection
US6946067B2 (en) 2002-01-04 2005-09-20 Lifescan, Inc. Method of forming an electrical connection between an electrochemical cell and a meter
US7601249B2 (en) 2002-02-10 2009-10-13 Agamatrix, Inc. Method and apparatus for assay of electrochemical properties
US7697966B2 (en) 2002-03-08 2010-04-13 Sensys Medical, Inc. Noninvasive targeting system method and apparatus
US20030180814A1 (en) 2002-03-21 2003-09-25 Alastair Hodges Direct immunosensor assay
US20060134713A1 (en) 2002-03-21 2006-06-22 Lifescan, Inc. Biosensor apparatus and methods of use
US6743635B2 (en) 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US6964871B2 (en) 2002-04-25 2005-11-15 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US6780645B2 (en) 2002-08-21 2004-08-24 Lifescan, Inc. Diagnostic kit with a memory storing test strip calibration codes and related methods
AU2003234944A1 (en) 2002-08-27 2004-03-18 Bayer Healthcare, Llc Methods of Determining Glucose Concentration in Whole Blood Samples
US7291256B2 (en) 2002-09-12 2007-11-06 Lifescan, Inc. Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays
US20040120848A1 (en) 2002-12-20 2004-06-24 Maria Teodorczyk Method for manufacturing a sterilized and calibrated biosensor-based medical device
EP1467206A1 (en) 2003-04-08 2004-10-13 Roche Diagnostics GmbH Biosensor system
KR100554649B1 (ko) 2003-06-09 2006-02-24 주식회사 아이센스 전기화학적 바이오센서
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US7597793B2 (en) 2003-06-20 2009-10-06 Roche Operations Ltd. System and method for analyte measurement employing maximum dosing time delay
US7723099B2 (en) 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
WO2005054840A1 (ja) 2003-12-04 2005-06-16 Matsushita Electric Industrial Co., Ltd. 血液成分の測定方法およびそれに用いるセンサならびに測定装置
JP4717637B2 (ja) 2004-01-07 2011-07-06 アークレイ株式会社 試薬部の配置を改良した分析用具および分析方法
KR20070027527A (ko) 2004-03-31 2007-03-09 바이엘 헬스케어, 엘엘씨 바이오센서용 임계치 기반 보정 함수의 실행방법 및 이를위한 장치
RU2006144458A (ru) 2004-05-14 2008-06-20 БАЙЕР ХЕЛТКЭР ЭлЭлСи (US) Способы осуществления корректировки по гематокриту в анализах глюкозы и устройства для этого
AU2005246314B2 (en) 2004-05-14 2009-04-23 Bayer Healthcare Llc Voltammetric systems for assaying biological analytes
US7188515B2 (en) 2004-09-24 2007-03-13 The Regents Of The University Of Michigan Nanoliter viscometer for analyzing blood plasma and other liquid samples
US7418285B2 (en) * 2004-12-29 2008-08-26 Abbott Laboratories Analyte test sensor and method of manufacturing the same
US20060206018A1 (en) 2005-03-04 2006-09-14 Alan Abul-Haj Method and apparatus for noninvasive targeting
US7964089B2 (en) * 2005-04-15 2011-06-21 Agamatrix, Inc. Analyte determination method and analyte meter
WO2007053191A2 (en) 2005-06-03 2007-05-10 University Of Texas System Electrochemistry and electrogenerated chemiluminescence with a single faradaic electrode
GB0511270D0 (en) 2005-06-03 2005-07-13 Hypoguard Ltd Test system
AR054851A1 (es) 2005-07-20 2007-07-18 Bayer Healthcare Llc Amperometria regulada
US20070024287A1 (en) 2005-08-01 2007-02-01 Mesa Laboratories, Inc. Apparatus and method for measuring liquid conductivity and electrode series capacitance
US7749371B2 (en) 2005-09-30 2010-07-06 Lifescan, Inc. Method and apparatus for rapid electrochemical analysis
ES2716136T3 (es) 2005-09-30 2019-06-10 Ascensia Diabetes Care Holdings Ag Voltamperometría controlada
US8163162B2 (en) 2006-03-31 2012-04-24 Lifescan, Inc. Methods and apparatus for analyzing a sample in the presence of interferents
US20070235346A1 (en) 2006-04-11 2007-10-11 Popovich Natasha D System and methods for providing corrected analyte concentration measurements
TWI309489B (en) 2006-09-26 2009-05-01 Delta Electronics Inc Foldable electrical connector and power supply apparatus using the same
WO2008049075A2 (en) 2006-10-18 2008-04-24 Agamatrix, Inc. Electrochemical determination of analytes
US8409424B2 (en) 2006-12-19 2013-04-02 Apex Biotechnology Corp. Electrochemical test strip, electrochemical test system, and measurement method using the same
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US7751864B2 (en) 2007-03-01 2010-07-06 Roche Diagnostics Operations, Inc. System and method for operating an electrochemical analyte sensor
US8080153B2 (en) 2007-05-31 2011-12-20 Abbott Diabetes Care Inc. Analyte determination methods and devices
AU2008279070B2 (en) 2007-07-26 2012-12-13 Nipro Diagnostics, Inc. System and methods for determination of analyte concentration using time resolved amperometry
CA2693498A1 (en) 2007-08-06 2009-02-12 Bayer Healthcare Llc System and method for automatic calibration
US8778168B2 (en) * 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
US7783442B2 (en) 2007-10-31 2010-08-24 Medtronic Minimed, Inc. System and methods for calibrating physiological characteristic sensors
CN102076867A (zh) 2008-05-13 2011-05-25 通用原子公司 用于直接测定糖化血红蛋白百分比的电化学生物传感器
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
US8221994B2 (en) 2009-09-30 2012-07-17 Cilag Gmbh International Adhesive composition for use in an immunosensor
US8877034B2 (en) 2009-12-30 2014-11-04 Lifescan, Inc. Systems, devices, and methods for measuring whole blood hematocrit based on initial fill velocity
US8101065B2 (en) 2009-12-30 2012-01-24 Lifescan, Inc. Systems, devices, and methods for improving accuracy of biosensors using fill time
US9445139B2 (en) 2010-10-05 2016-09-13 Microsoft Technology Licensing, Llc Authenticated content discovery

Also Published As

Publication number Publication date
US20140151245A1 (en) 2014-06-05
KR20130122738A (ko) 2013-11-08
CA2811851A1 (en) 2012-04-05
CA2811851C (en) 2019-01-08
CN103250050B (zh) 2015-12-16
US20140151243A1 (en) 2014-06-05
US20120080323A1 (en) 2012-04-05
EP2622336A1 (en) 2013-08-07
AU2011309764B2 (en) 2014-01-09
RU2621153C2 (ru) 2017-05-31
US20140151244A1 (en) 2014-06-05
US9575027B2 (en) 2017-02-21
EP3537139A1 (en) 2019-09-11
EP2622336B1 (en) 2019-05-22
EP3537139B1 (en) 2022-11-09
US9575026B2 (en) 2017-02-21
CN103250050A (zh) 2013-08-14
US8617370B2 (en) 2013-12-31
AU2011309764A1 (en) 2013-04-11
JP2013539035A (ja) 2013-10-17
RU2013119959A (ru) 2014-11-10
ES2937949T3 (es) 2023-04-03
KR101861993B1 (ko) 2018-05-30
ES2740839T3 (es) 2020-02-06
WO2012042373A1 (en) 2012-04-05
US10151724B2 (en) 2018-12-11
BR112013007679A2 (pt) 2016-08-09

Similar Documents

Publication Publication Date Title
RU2292841C2 (ru) Способ определения адекватности объема пробы в устройствах биодатчиков
JP4891821B2 (ja) 生理学的サンプルから対照溶液を判別するシステム及び方法
JP6184322B2 (ja) 電気化学センサの安定性改善のためのシステムおよび方法
JP5185044B2 (ja) 生理学的サンプルから対照溶液を判別するシステム及び方法
EP2138841B1 (en) System and method for measuring an analyte in a sample
RU2441223C2 (ru) Система обнаружения состояния недостаточного заполнения для электрохимического биосенсора
EP2601520B1 (en) Method for improved accuracy for temperature correction of glucose results for control solution
JP5837602B2 (ja) キャパシタンスを使用してコントロールサンプルと試験流体を識別するシステムおよび方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250