JP5836479B2 - 時間領域分光装置および時間領域分光分析システム - Google Patents

時間領域分光装置および時間領域分光分析システム Download PDF

Info

Publication number
JP5836479B2
JP5836479B2 JP2014507012A JP2014507012A JP5836479B2 JP 5836479 B2 JP5836479 B2 JP 5836479B2 JP 2014507012 A JP2014507012 A JP 2014507012A JP 2014507012 A JP2014507012 A JP 2014507012A JP 5836479 B2 JP5836479 B2 JP 5836479B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
pulsed light
pulse
time domain
variable delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014507012A
Other languages
English (en)
Other versions
JPWO2013145020A1 (ja
Inventor
宝弘 中村
宝弘 中村
白水 信弘
信弘 白水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2013145020A1 publication Critical patent/JPWO2013145020A1/ja
Application granted granted Critical
Publication of JP5836479B2 publication Critical patent/JP5836479B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、時間領域分光装置および時間領域分光分析システムに関し、特に、テラヘルツ(0.1〜100THz)領域の分光装置に適用して有効な技術に関する。
例えば、特許文献1、特許文献2には、フェムト秒パルスレーザを2台用いた非同期サンプリング方式の時間領域分光装置が開示されている。
特開2011−242180 米国出願公開公報 US2010/0002737
例えば、時間領域分光装置には、パルス幅が1ps以下の光パルス列を出力するフェムト秒パルスレーザと、ポンプ光であるパルスレーザの光パルスによってテラヘルツまでの広帯域のテラヘルツパルス電波を放出する光伝導スイッチなどのパルス発生器と、プローブ光である光パルスが入力されたタイミングのパルス電波強度を検出するパルス検出器が備わっている。また、時間領域分光装置では、ポンプ光に対するプローブ光の検出器への入力タイミングを変化させて、放出されたテラヘルツパルス電波を時間領域において複数点で観測する必要がある。そのため、従来は、特許文献1における図1のように、プローブ光の光路に可変遅延器を設けて、遅延器が提供する遅延時間を変化させながら観測する必要があった。遅延器には、反射鏡の位置を機械式に変化させる構造が用いられるため、遅延時間の制御時間が長くなり、測定にかかる時間が数秒から数分と長くなる問題があった。この問題に対し、フェムト秒パルスレーザを2台用いて、ポンプ光とプローブ光を供給するレーザを個別に用意し、2台のパルス周期を少しだけ変えることで可変遅延器を削除して高速化する非同期サンプリング方式の時間領域分光装置が開発されている(特許文献1)。この方式を用いることで機械式の制御機構が不要となるため高速化に適しているが、高価なフェムト秒パルスレーザが2台も必要となるため、時間領域分光装置の価格が高額になる問題がある。さらに、レーザパルスのジッタによって信号と雑音の比(SN比)が悪化する問題がある。ジッタとは、レーザパルスのタイミングの分布であるため、ジッタの増大によりポンプ光とプローブ光の時間差が揺らぐ。したがって、所要の時間差からのずれが生じ、フーリエ変換するときに周波数の雑音となりSN比が劣化する問題がある。
上述した装置が高額になる問題に対しては、1台のフェムト秒パルスレーザを用いて可変遅延器制御による遅延変化をなくす差周波同期サンプリング方式が開発されている(特許文献2)。この方式では、ポンプ光もプローブ光も同じレーザから供給されるが、プローブ光は光パルスN周期分(Nは正の整数)の遅延を介して供給される。また、レーザのパルス周期は連続的に変化するように制御される。プローブ光をポンプ光に対して1周期分遅らせることで、プローブ光とポンプ光のタイミング差が連続的に変化する。その結果テラヘルツ電磁波パルスを異なるタイミングで検出し、複数点を取得することでテラヘルツ電磁波パルスの波形を取得することができる。
以上のように差周波同期サンプリング方式は、機械式の制御機構を不要とすることができ高速化に適しているが、ジッタによってSN比が劣化する問題は非同期サンプリング方式と同様に残る。レーザのパルス周期を変化させる必要があり、パルス周期が固定の場合に対してジッタは増大する。
以上のようなジッタによるSN比劣化の問題以外に、差周波同期サンプリング方式にはいくつかの課題がある。図7は、本発明の前提として検討した時間領域分光装置において、その概略構成例を示すブロック図である。図7に示す時間領域分光装置(TDS: Time−domain spectroscopy)は、フェムト秒パルスレーザ(fsL: Femto−second pulse laser)19、光パルス周期制御装置(PCON: Pulse controller)23、パルス発生器(GEN: Pulse generator)15、パルス検出器(DET: Pulse detector)14、遅延器(DEL: Delayer)101を備えている。fsL19の出力する光パルス周期は、PCON23から入力される電圧またはクロックなどの制御信号により制御され、出力された光パルスはハーフミラーなどによって2つに分岐される。分岐された片方の光パルスは、ポンプ光としてGEN15に入射され、GEN15からテラヘルツパルス電波が放出される。他方の光パルスは、遅延器によって光パルス周期1周期分の遅延時間を経て、プローブ光としてDET14に入射され、プローブ光が入力されたタイミングにおいてDET14に伝播したテラヘルツパルス電波の信号強度に応じた電流IDETがDET14から出力される。図7の構成例における一つ目の課題は、プローブ光用の遅延器DEL101が生成する遅延時間の変動である。図8は、正しい動作をしているときのポンプ光パルスとプローブ光パルスの波形を示している。正しい動作をするときは、プローブ光パルスのタイミングがポンプ光の前後をスイープするように制御されている。従来の遅延器101は、例えば所要の光路長分のファイバケーブルで構成される。しかしながらファイバケーブルにより提供される遅延時間は、ファイバケーブル周辺の温度や気圧の影響を受けるため、温度や気圧の変化により変動する。したがって図9に示すようにプローブ光のタイミングがずれて最も信号の大きい範囲を取得できなくなり、検出器の出力信号が低下してSN比が劣化する恐れがある。SN比が劣化するため、それを補うために測定回数を多くして積算して平均する必要が生じ、分析にかかる時間が長くなる恐れがある。
二つ目の課題は、パルスレーザの制御信号に対する非線形性による問題である。図10にパルスレーザの制御信号に対するパルス周期の逆数(すなわちパルスの繰返し周波数)の制御特性例を示す。パルスレーザのパルス周期制御は、電圧で制御する方法やクロックを入力してクロックに同期させる方法などがあるが、ここでは電圧で制御する方法を考える。理想的には点線で示したように線形に制御されるが、実際には実線で示すような非線形特性を示す。制御特性が非線形特性を示すパルスレーザを用いて正確にポンプ光とプローブ光のタイミング差を制御するには、例えば、PLL(Phase Locked Loop)回路を用いてフィードバックによりパルスレーザのパルス周期を制御する方法がある。しかしながらPLL回路には基準となる基準周波数発生器が必要であり、その基準周波数によるスプリアスがパルスレーザ出力に重畳される。スプリアスもジッタの一部であるため、SN比が劣化してしまう恐れがある。SN比が劣化するため、それを補うために測定回数を多くして積算して平均する必要が生じ、分析にかかる時間が長くなる恐れがある。
本願において開示される発明のうち、代表的な実施の形態の概要を簡単に説明すれば、次のとおりである。
時間領域分光装置であって、入力されたパルス光を分岐する分岐部と、前記分岐部で分岐された一方の前記パルス光のタイミングを遅延させる可変遅延器と、前記分岐部で分岐された他方の前記パルス光を電磁波へ変換する電磁波発生器と、前記電磁波発生器から照射された電磁波を受けた測定対象物を通過したパルスと、前記可変遅延器から出力された前記パルスとから、測定データを検出する検出器と、前記電磁波発生器に入力される前の前記パルス光と、前記可変遅延器から出力された前記パルス光との位相差を比較する比較器とを有し、前記比較器で得られた結果を前記可変遅延器にフィードバックすることを特徴とする。
あるいは、時間領域分光装置であって、入力されたパルス光を分岐する分岐部と、前記分岐部で分岐された一方の前記パルス光のタイミングを遅延させる可変遅延器と、前記分岐部で分岐された他方の前記パルス光を電磁波へ変換する電磁波発生器と、前記電磁波発生器から照射された電磁波を受けた測定対象物を通過したパルスと、前記可変遅延器から出力された前記パルスとから、測定データを検出する検出器と、前記電磁波発生器に入力される前の前記パルス光と、前記可変遅延器から出力された前記パルス光との位相差を比較する比較器とを有し、前記比較器で得られたデータと、前記測定データとを用いて、前記測定対象物の測定結果を得ることを特徴とする。
本発明によれば、時間領域分光装置および時間領域分光分析システムにおいて、分析される周波数スペクトルのSN比を向上させることができる。
本発明の実施の形態1による時間領域分光装置の概略的な構成例を示すブロック図である。 図1の時間領域分光装置における、その各ノードの信号波形を示す説明図である。 図1の時間領域分光装置において、その計算機にて行うデータ処理方法の説明図である。 従来の時間領域分光装置を用いた時の、一回の遅延時間スイープで得られるフーリエ変換後の周波数スペクトルと雑音を表す説明図である。 本発明の時間領域分光装置を用いた時の、一回の遅延時間スイープで得られるフーリエ変換後の周波数スペクトルと雑音を表す説明図である。 本発明の実施の形態2による時間領域分光分析システムの概略的な構成例を示す図である。 本発明の前提として検討した時間領域分光装置の概略的な構成例を示すブロック図である。 図7の時間領域分光装置のポンプ光とプローブ光のパルス波形を示した説明図である。 図7の時間領域分光装置が正常動作でない時のポンプ光とプローブ光のパルス波形を示した説明図である。 フェムト秒パルスレーザのパルス繰返し周波数の制御特性の一例を示す説明図である。 本発明の実施の形態2の変形例による時間領域分光分析システムの概略的な構成例を示す図である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、実施の形態のフェムト秒パルスレーザは、特に制限されないが、ファイバレーザ、チタンサファイアレーザなどの固体レーザ、ネオジウム・ガラスレーザ、もしくは半導体レーザを用いることが望ましい。さらに、フェムト秒パルスレーザのパルス幅は100フェムト秒以下であることが望ましいが、100フェムト秒を超えるパルスレーザを除外するものではない。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
《時間領域分光装置の概略構成》
図1は、本発明の実施の形態1による差周波同期サンプリング方式の時間領域分光装置の概略的な構成例を示すブロック図である。図1に示す時間領域分光装置は、フェムト秒パルスレーザ(fsL:femt second LASER)19、光パルス周期制御装置(PCON)23、パルス発生器(GEN: Pulse generator)15、パルス検出器(DET: Pulse detector)14、可変遅延器(VDEL: Variable delayer)1、フォトディテクタ(PDET: Photo detector)12、13、位相比較器(PFD: Phase frequency detector)9、低周波透過フィルタ(LPF:Low Pass Filter)2、3、アナログ・ディジタル変換器(ADC: Analog−to−digital convertor)4、5、検出器出力処理部(OPU: Output processing unit)6、計算機(PC:Personal Computer)10、PC10で解析された結果を表示する表示装置(DIS:Display)11を備えている。
レーザ19はパルス光を周期T(繰返し周波数fRES=1/T)おきに出力する。また、レーザ19は、上記の周期を可変するための周期可変端子を備えている。fRESは特に限定するものではないが、100MHz程度である。
PCON23の出力はレーザ19の周期可変端子に入力され、レーザ19が出力する光パルスの周期Tを制御する。PCON23の出力は、レーザ19の周期制御機構により形態が異なるが、電圧またはクロック信号である。本実施例では電圧信号とし、サイン波や三角波、鋸波などの周期的な信号(周期TCON、周波数fCON)とする。レーザ19から出力された光パルスは、ミラー等の分岐部によりVDEL1へ入射する光とGEN15へ入射する光に分岐される。
GEN15やDET14は、特に限定はされないが、一般的に低温成長GaAs光伝導スイッチや、InGaAs光伝導スイッチ、またはDAST結晶が用いられる。GEN15に入射された光パルス(ポンプ光)によりGEN15に自由電子を励起させ、印加された電圧によって自由電子が加速されてテラヘルツ電磁波パルスが発生する。すなわち、入射された光パルスに応じた電磁波パルスを発生させ、電磁波パルスは測定対象物18へと照射される。
VDEL1は、特に限定はされないが、ピエゾ素子などを含み、遅延時間を制御するための遅延時間制御端子を設けている可変遅延器である。遅延制御端子に入力される電圧信号や電流信号によって、VDEL1に入射された光パルス信号がVDEL1から出力されるまでに費やされる光パルス通過時間が制御される。VDEL1により提供される遅延時間は、光パルスの周期TのN倍(Nは正の整数)付近で制御される。
DET14に入射された光パルス(プローブ光)によりDET14に自由電子が励起され、その瞬間のDET14位置におけるテラヘルツ電場(GEN15で発生し、測定対象物18を通過してDET14に入射するテラヘルツ電磁波)に比例した電流信号を出力する。DET14から出力された電流信号は、OPU6において電圧信号に変換されて増幅され、データとなってフーリエ変換を行う計算機PC10に入力される。
フーリエ変換を実施する際に、ポンプ光とプローブ光のタイミング差が明らかであれば、そのタイミング差を用いてフーリエ変換を実施することで周波数領域のデータに変換されるが、課題で述べたVDEL1が提供する遅延時間が変動したり、ジッタが重畳されたりすると、所要のタイミング差との誤差が生じSN比が劣化する。
この問題に対し、PDET12、13、およびPFD9、LPF2で構成される帰還構成によって課題を解決できる。PDET12と13により、それぞれポンプ光とプローブ光の光パルスが電気信号に変換される。変換された電気信号をPFD9で比較し、両者のタイミング差を検出する。検出されたタイミング差は電気信号として出力され、LPF2によって低周波信号のみ透過してVDEL1に入力される。LPF2の遮断周波数は、PCON23が出力する制御信号の周波数fCONに比べて十分小さい必要があり、10分の1以下であることが望ましい。PDET12、13、およびPFD9、LPF2で構成される帰還構成は、ポンプ光とプローブ光のタイミング差の平均値を0にするための帰還構成であるため、LPF2の遮断周波数がfCON以上であると、タイミング差を常に0にするようにVDEL1が制御されてしまうためである。LPF2の遮断周波数がfCONに比べて十分小さければ、fCONよりも遅いゆっくりとした変動のみをキャンセルするように機能する。温度や気圧などの変動は緩やかであるため、この帰還構成により十分に補償することができる。また、ジッタの低周波成分もこの帰還構成により補償することができる。発明した帰還構成を用いることでフーリエ変換後のデータのSN比を向上できるため、データの積算回数を減らして高速化することができる。
さらに、LPF2の遮断周波数以上のジッタ成分とレーザ19の非線形特性によるSN比劣化に対しては、LPF3とADC4を用いたタイミング差情報の抽出機構によって解決できる。PFD9から出力される電気信号は、LPF3にも入力される。LPF3の遮断周波数は、fCON以上である必要があり、fCONの3倍以上であることが望ましい。LPF3の出力はADC4によりディジタル信号に変換されて計算機へ入力される。LPF3の出力は、ポンプ光とプローブ光のタイミング差の変遷情報を含んでおり、LPF3の遮断周波数をfCONの3倍以上とすることで、レーザ19の非線形特性のうち2次歪と3次歪成分までを含む。さらに、上記の帰還構成で補償できないLPF3の遮断周波数以上のジッタ成分も含む。したがって、LPF3の出力を実際のポンプ光とプローブ光のタイミング差情報として計算機に送り、このタイミング差を用いてフーリエ変換を行うことで、レーザ19の非線形特性とLPF2の遮断周波数以上のジッタ成分によるSN比劣化を改善することができる。発明したタイミング差情報の抽出機構を用いることで、レーザ19の非線形特性とLPF2の遮断周波数以上のジッタ成分によるSN比劣化を改善できるため、上述した帰還構成のみを用いた場合に比べてフーリエ変換後のデータのSN比をさらに向上でき、データの積算回数を減らして高速化することができる。
上記の帰還構成と、タイミング差情報の抽出機構は、どちらか一方でもSN比改善効果が期待できる。なお、後者のみを適用する場合には、温度や気圧変動、および低周波のジッタ成分を抽出のため積算時間を長くする必要がある。fsLのパルス周期制御信号の周波数の逆数1/fCONで一回のタイミング差のスイープが終了するが、1/fCONよりも長い時間の積算が必要となるため、測定時間を長くする必要がある。両者を併用した場合には、SN比改善効果に加え、測定時間の短縮も可能となる。
以上を踏まえ、本実施例に記載の発明は、時間領域分光装置であって、入力されたパルス光を分岐する分岐部と、分岐部で分岐された一方のパルス光のタイミングを遅延させる可変遅延器1と、分岐部で分岐された他方のパルス光を電磁波へ変換する電磁波発生器15と、電磁波発生器15から照射された電磁波を受けた測定対象物18を通過したパルスと、可変遅延器1から出力されたパルスとから、測定データを検出する検出器14と、電磁波発生器15に入力される前のパルス光と、可変遅延器1から出力されたパルス光との位相差を比較する比較器9とを有し、比較器9で得られた結果を可変遅延器1にフィードバックすることを特徴とする。
あるいは、時間領域分光装置であって、入力されたパルス光を分岐する分岐部と、分岐部で分岐された一方のパルス光のタイミングを遅延させる可変遅延器1と、分岐部で分岐された他方のパルス光を電磁波へ変換する電磁波発生器15と、電磁波発生器15から照射された電磁波を受けた測定対象物18を通過したパルスと、可変遅延器1から出力されたパルスとから、測定データを検出する検出器14と、電磁波発生器14に入力される前のパルス光と、可変遅延器1から出力されたパルス光との位相差を比較する比較器9とを有し、比較器9で得られたデータと、測定データとを用いて、測定対象物18の測定結果を得ることを特徴とする。
図1の構成における各ノード(A,B,C,D,E)の電圧または電流波形を図2に示す。図2では、PCON23からはサイン波が出力され、それによりレーザ19のパルス周期が制御されている。A点B点では、それぞれポンプ光とプローブ光の光パルスが電圧信号に変換される。PFD9では、両者の電圧信号のタイミング差に比例した信号が出力される。ここではPFD9を一般的な構成であるチャージポンプ回路と容量C1で構成する例を示す。C´の波形はチャージポンプ回路から出力される電流信号の波形であり、PDET12と13の電圧波形のタイミング差に比例したパルス幅となる。チャージポンプ回路から出力される電流パルスはC1をチャージ・ディスチャージし、PFD9の電圧出力はCの波形となる。PFD9の出力はLPF3と2に入力され、それぞれD,Eの波形となる。DではfCON以上の周波数成分がLPF3を通過するため、PCON23出力に近い波形となり、さらに、ジッタやレーザ19の非線形特性を含んだ信号となっている。Eでは、fCONよりも十分に小さい周波数までしか透過しないため、PCON23出力の1周期分だけを見ると、ほとんど変化がないが、温度や気圧変動に対しては変動する波形となる。
《検出器出力処理部の構成例》
図1には、時間領域分光装置システムにおいて、その検出器出力処理部OPU6の詳細な構成例も示している。従来のロックインアンプを用いた検出器出力処理方式を用いても所用のデータに処理することは可能であるが、本構成を用いることでより高速化することができる。図1の例では、DET14の出力電流信号は電流電圧変換増幅器(IV−AMP: Current−to−voltage amplifier)8により電圧信号となり増幅され、増幅された電圧信号はサンプル・アンド・ホールド回路(SHC: Sample−and−hold circuit)7によって、別途入力されるPDET13または12の出力信号をクロックとするため、各プローブ光パルス入射タイミングにおける検出器出力となり、ADC5によりディジタル信号に変換されて計算機PC10へ送られる。このような構成にすることで、全てのプローブ光パルスの入射タイミングにおける検出器出力をモニタすることが可能となる。そのため、従来のロックインアンプを用いた検出方式に比べて高速化することができる。
《計算機PCでの処理》
図3は、計算機PC10で行う処理を模式化した物である。計算機PC10には、検出器出力処理部から出力されるテラヘルツ電波の強度情報と、タイミング差情報の抽出機構から出力されるポンプ光とプローブ光のタイミング差情報が入力される。強度情報のデータレートは、光パルスの繰返し周波数fRESまでの速度であり、タイミング差情報は、LPF3の遮断周波数によるが、fCONの3倍程度までのデータレートである。タイミング差情報は、強度情報のデータレートまで補完され、強度情報と1対1に対応される。両者の情報を用いてフーリエ変換を実行し、周波数と位相情報が抽出され、表示装置に表示される。計算機PC10には、上記の処理を行うためのソフトウェアがインストールされる。これにより、時間領域分光装置による分析を高速化することができる。
《実施例1の効果》
図4は、本発明を適用する前の時間領域分光装置を用いて、積算・平均化せずに分析したテラヘルツ電波の周波数スペクトルの例である。実線は信号を、点線は雑音を示している。図5は、本発明を適用して、積算・平均化せずに分析したテラヘルツ電波のスペクトルの例である。図4に比べて、雑音を低減できるため、少ない積算回数でも所要のSN比を実現でき、分析を高速化することができる。
(実施の形態2)
図6は、実施例1の時間領域分光装置を応用した時間領域分光分析システムである。時間領域分光装置と、可動サンプルステージ(MST: Movable stage)25とテラヘルツ電磁波スイープ機構(TWS: Terahertz−wave sweeper)24を備えている。MST25には、分析対象となる測定対象物29が乗せられる。TWS24に設置されたテラヘルツ電磁波発生部26から測定対象物29に向けて電磁波パルスが照射され、測定対象物29を通過した電磁波パルスは、テラヘルツ電磁波検出部28に入射する。この時、透過した電磁波以外の反射波や散乱波を検出したい場合には、変形例(図11)のように、測定対象物29のテラヘルツ電磁波発生部26側にテラヘルツ電磁波検出部28を設けてもよい。
テラヘルツ電磁波発生部26内には少なくとも、実施例1で用いたGEN15やPDET12が、テラヘルツ電磁波検出部28内には少なくとも、実施例1で用いたDET14やPDET13が格納されている。また処理部27には、実施例1の時間領域分光装置で用いた、レーザ19や計算機10等が格納され、テラヘルツ電磁波発生部26やテラヘルツ電磁波検出部28と光学的または電気的に接続され、信号のやり取りを行っている。
TWS24は測定対象物29に進行方向に対して垂直方向にテラヘルツ波をスイープするための機構である。
以上をまとめると、本実施例の時間領域分光分析システムは、入力されたパルス光を分岐する分岐部と、分岐部で分岐された一方のパルス光のタイミングを遅延させる可変遅延器と、分岐部で分岐された他方のパルス光を電磁波へ変換する電磁波発生器と、電磁波発生器から照射された電磁波を受けた測定対象物を通過したパルスまたは測定対象物で反射したパルスと、可変遅延器から出力されたパルスとから、測定データを検出する検出器と、電磁波発生器に入力される前の前記パルス光と、可変遅延器から出力されたパルス光との位相差を比較する比較器とを有し、比較器で得られた結果を可変遅延器にフィードバックすることを特徴とする時間領域分光装置と、測定対象物を設置する可動サンプルステージと、電磁波スイープ機構とを有すること特徴とする。
この時間領域分光分析システムを用いることで、実施例1の効果に加え、測定対象物29の2次元情報を得ることができる。さらに、高速に分析することが可能となる。
1:可変遅延器(VDEL)
2、3:低周波透過フィルタ(LPF)
4、5:アナログ・ディジタル変換器(ADC)
6:検出器出力処理部(OPU)
7:サンプル・アンド・ホールド回路(SHC)
8:電流電圧変換増幅器(IV−AMP)
9:位相比較器(PFD)
10:計算機(PC)
11:表示装置(DIS)
12、13:フォトディテクタ(PDET)
14:パルス検出器(DET)
15:パルス発生器(GEN)
16、17:レンズ
18:測定対象物
19:フェムト秒パルスレーザ
20:テラヘルツ電磁波
21:ポンプ光
22:プローブ光
23:光パルス周期制御装置(PCON)
24:テラヘルツ電磁波スイープ機構(TWS)
25:可動サンプルステージ(MST)
26、27:テラヘルツ時間領域分光装置(TDS)
29:測定対象物
101:遅延器(DEL)

Claims (9)

  1. 入力されたパルス光を分岐する分岐部と、
    前記分岐部で分岐された一方の前記パルス光のタイミングを遅延させる可変遅延器と、
    前記分岐部で分岐された他方の前記パルス光に応じた電磁波を発生させる電磁波発生器と、
    前記電磁波発生器から照射された電磁波を受けた測定対象物を通過したパルスと、前記可変遅延器から出力された前記パルスとから、測定データを検出する検出器と、
    前記電磁波発生器に入力される前の前記パルス光と、前記可変遅延器から出力された前記パルス光との位相差を比較する比較器とを有し、
    前記比較器からの出力信号のうち、前記パルス光の周期制御に用いる信号の周期よりも低い周波数の信号を前記可変遅延器にフィードバックすることを特徴とする時間領域分光装置。
  2. 請求項1に記載の時間領域分光装置であって、
    前記比較器で得られたデータと、前記測定データとを用いて、前記測定対象物の測定結果を得ることを特徴とする時間領域分光装置。
  3. 請求項1に記載の時間領域分光装置であって、
    前記パルス光の周期制御に用いる信号の周期よりも低い周波数の信号は、1周期分ではほぼ変化しないが、温度または気圧変動に対しては変動する波形の信号であることを特徴とする時間領域分光装置。
  4. 入力されたパルス光を分岐する分岐部と、
    前記分岐部で分岐された一方の前記パルス光のタイミングを遅延させる可変遅延器と、
    前記分岐部で分岐された他方の前記パルス光を電磁波へ変換する電磁波発生器と、
    前記電磁波発生器から照射された電磁波を受けた測定対象物を通過したパルスと、前記可変遅延器から出力された前記パルスとから、測定データを検出する検出器と、
    前記電磁波発生器に入力される前の前記パルス光と、前記可変遅延器から出力された前記パルス光との位相差を比較する比較器とを有し、
    前記比較器で得られたデータと、前記測定データとを用いて、前記測定対象物の測定結果を得ることを特徴とする時間領域分光装置。
  5. 請求項4に記載の時間領域分光装置であって、
    周波数フィルタと、情報処理部とをさらに有し、
    前記比較器で得られたデータは前記周波数フィルタを通過し、前記情報処理部において、前記測定データとともに情報処理されることを特徴とする時間領域分光装置。
  6. 請求項5に記載の時間領域分光装置であって、
    前記周波数フィルタが透過する信号の周波数は、前記パルス光の周波数(fcon)より高いことを特徴とする時間領域分光装置。
  7. 請求項6に記載の時間領域分光装置であって、
    第1のフォトディテクタと第2のフォトディテクタと、をさらに有し、
    前記電磁波発生器に入力される前の前記パルス光は、前記第1のフォトディテクタによって、前記可変遅延器から出力された前記パルス光は、前記第2のフォトディテクタによってそれぞれ電気信号へと変換され、前記比較器に入力されることを特徴とする時間領域分光装置。
  8. 請求項7記載の時間領域分光装置であって、
    前記パルス光を出射するレーザと、
    前記レーザに前記パルス光のパルス周期を制御するための電圧信号を入力する周期制御装置と、をさらに有し、
    前記周期制御装置からの出力信号波形は、正弦波/三角波/鋸波状のいずれかであることを特徴とする時間領域分光装置。
  9. 入力されたパルス光を分岐する分岐部と、前記分岐部で分岐された一方の前記パルス光のタイミングを遅延させる可変遅延器と、前記分岐部で分岐された他方の前記パルス光を電磁波へ変換する電磁波発生器と、前記電磁波発生器から照射された電磁波を受けた測定対象物を通過したパルスまたは前記測定対象物で反射したパルスと、前記可変遅延器から出力された前記パルスとから、測定データを検出する検出器と、前記電磁波発生器に入力される前の前記パルス光と、前記可変遅延器から出力された前記パルス光との位相差を比較する比較器とを有し、
    前記比較器からの出力信号のうち、前記パルス光の周期制御に用いる信号の周期よりも低い周波数の信号を前記可変遅延器にフィードバックすることを特徴とする時間領域分光装置と、
    測定対象物を設置する可動サンプルステージと、
    電磁波スイープ機構とを有すること特徴とする時間領域分光分析システム。
JP2014507012A 2012-03-30 2012-03-30 時間領域分光装置および時間領域分光分析システム Expired - Fee Related JP5836479B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002221 WO2013145020A1 (ja) 2012-03-30 2012-03-30 時間領域分光装置および時間領域分光分析システム

Publications (2)

Publication Number Publication Date
JPWO2013145020A1 JPWO2013145020A1 (ja) 2015-08-03
JP5836479B2 true JP5836479B2 (ja) 2015-12-24

Family

ID=49258393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014507012A Expired - Fee Related JP5836479B2 (ja) 2012-03-30 2012-03-30 時間領域分光装置および時間領域分光分析システム

Country Status (3)

Country Link
US (1) US9335261B2 (ja)
JP (1) JP5836479B2 (ja)
WO (1) WO2013145020A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551686B1 (en) * 2013-03-09 2017-01-24 William F. Griffith Apparatus and method of non-invasive analysis and identification of physical materials in real time
WO2018170824A1 (en) * 2017-03-23 2018-09-27 The University Of Hong Kong Real-time optical spectro-temporal analyzer and method
EP3742151A4 (en) * 2018-01-19 2021-10-13 Gtheranostics Co., Ltd. SCANNING PROBE MICROSCOPE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0101004D0 (sv) * 2001-03-21 2001-03-21 Astrazeneca Ab New measuring technique
JP4029138B2 (ja) * 2002-05-20 2008-01-09 富士通株式会社 周波数シンセサイザ回路
WO2006092874A1 (ja) 2005-03-01 2006-09-08 Osaka University 高分解・高速テラヘルツ分光計測装置
US7808636B2 (en) * 2007-01-11 2010-10-05 Rensselaer Polytechnic Institute Systems, methods, and devices for handling terahertz radiation
US7877009B2 (en) * 2007-12-20 2011-01-25 3M Innovative Properties Company Method and system for electrochemical impedance spectroscopy
JP5600374B2 (ja) * 2007-12-21 2014-10-01 株式会社栃木ニコン テラヘルツ分光装置
DE202008009021U1 (de) 2008-07-07 2008-10-09 Toptica Photonics Ag Elektronisch gesteuerte optische Abtastung
JP5445775B2 (ja) 2010-05-16 2014-03-19 大塚電子株式会社 超高分解テラヘルツ分光計測装置

Also Published As

Publication number Publication date
WO2013145020A1 (ja) 2013-10-03
US9335261B2 (en) 2016-05-10
JPWO2013145020A1 (ja) 2015-08-03
US20150028211A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5764566B2 (ja) モード同期レーザによる光信号処理
US7675037B2 (en) Method and apparatus for measuring terahertz time-domain spectroscopy
JP5445775B2 (ja) 超高分解テラヘルツ分光計測装置
JP5455721B2 (ja) テラヘルツ波測定装置及び測定方法
JP2008020268A (ja) テラヘルツ波応答測定装置
JP5284184B2 (ja) テラヘルツ波の時間波形を取得するための装置及び方法
JP5836479B2 (ja) 時間領域分光装置および時間領域分光分析システム
Kehrer et al. Synchronous detection of longitudinal and transverse bunch signals at a storage ring
JP5386582B2 (ja) 光測定装置およびトリガ信号生成装置
WO2020009150A1 (ja) 高速スキャンフーリエ変換分光装置及び分光方法
JP5461079B2 (ja) 光測定装置
JP2006266908A (ja) テラヘルツパルス光測定装置および測定方法
JP3378502B2 (ja) 光信号波形測定方法
CN112880824A (zh) 超短光脉冲放大压缩系统cep的噪声测量、稳定控制方法及系统
JP2010169541A (ja) テラヘルツ波を用いる測定装置
Liu et al. Measurement of terahertz pulses using electronically controlled optical sampling (ECOPS)
US11300502B1 (en) Time-wavelength optical sampling systems and methods for determining composition of a sample based on detected pulses of different durations
JP2005106751A (ja) 位相特性測定装置
Yang et al. Time-wavelength optical sampling based on laser cavity tuning
Liu et al. A single quantum cascade laser frequency comb Fourier transform spectroscopy by repetition rate tuning
Zhang et al. Real-time Rapid-scanning Time-domain Terahertz Radiation Registration System with Single-digit Femtosecond Delay-axis Precision
JP2023091329A (ja) テラヘルツ波形検出装置、テラヘルツ波形の検出方法
Hiller et al. A setup for single shot electro optical bunch length measurements at the ANKA storage ring
Potvin et al. Dual-comb Spectroscopy of Oxygen in ambient air around 765 nm Using Frequency-Doubled Combs
US9153939B1 (en) System and method for generating and utilizing sample trigger blanking to obviate spurious data and increase sweep rate in an akinetic path-based swept laser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

LAPS Cancellation because of no payment of annual fees