JP5834567B2 - Detection device and method for manufacturing spectroscopic device - Google Patents

Detection device and method for manufacturing spectroscopic device Download PDF

Info

Publication number
JP5834567B2
JP5834567B2 JP2011157590A JP2011157590A JP5834567B2 JP 5834567 B2 JP5834567 B2 JP 5834567B2 JP 2011157590 A JP2011157590 A JP 2011157590A JP 2011157590 A JP2011157590 A JP 2011157590A JP 5834567 B2 JP5834567 B2 JP 5834567B2
Authority
JP
Japan
Prior art keywords
light
angle
incident
diffraction grating
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011157590A
Other languages
Japanese (ja)
Other versions
JP2013024625A (en
Inventor
藤井 永一
永一 藤井
尼子 淳
淳 尼子
山田 耕平
耕平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011157590A priority Critical patent/JP5834567B2/en
Publication of JP2013024625A publication Critical patent/JP2013024625A/en
Application granted granted Critical
Publication of JP5834567B2 publication Critical patent/JP5834567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、分光装置、検出装置及び分光装置の製造方法等に関する。   The present invention relates to a spectroscopic device, a detection device, a method for manufacturing a spectroscopic device, and the like.

従来、ラマン分光器等の分光装置に用いられている回折格子の多くは反射型である。反射型の回折格子として、例えば断面が鋸歯状に形成されたブレーズ化格子がある(例えば、特許文献1に記載の回折格子)。   Conventionally, most of diffraction gratings used in spectroscopic devices such as a Raman spectroscope are of a reflective type. As a reflection type diffraction grating, for example, there is a blazed grating whose cross section is formed in a sawtooth shape (for example, a diffraction grating described in Patent Document 1).

特開2004−354176号公報JP 2004-354176 A

しかしながら、反射型の回折格子には、波長分解能を向上させることと、高回折効率が得られる波長帯域を広げることの両立が困難であるという課題がある。例えば、ブレーズ化回折格子では、断面形状がブレーズ化されていることで、回折効率が向上する。しかしながら、ブレーズ化回折格子では、波長分解能を向上するために格子周期を短くすると、高回折効率が得られる波長帯域がきわめて狭くなってしまう。   However, the reflective diffraction grating has a problem that it is difficult to improve both wavelength resolution and widen the wavelength band where high diffraction efficiency can be obtained. For example, in a blazed diffraction grating, the diffraction efficiency is improved because the cross-sectional shape is blazed. However, in a blazed diffraction grating, if the grating period is shortened in order to improve the wavelength resolution, the wavelength band where high diffraction efficiency can be obtained becomes extremely narrow.

本発明の幾つかの態様によれば、波長分解能と回折効率をともに向上し、しかも反射損失を低減できる透過型回折格子を用いた分光装置、検出装置及び分光装置の製造方法等を提供できる。   According to some aspects of the present invention, it is possible to provide a spectroscopic device, a detection device, a spectroscopic device manufacturing method, and the like using a transmission diffraction grating that can improve both wavelength resolution and diffraction efficiency and reduce reflection loss.

(1)本発明の一態様は、
入射光を透過する透過型回折格子を含む分光装置であって、
前記透過型回折格子は、基材より第1方向に沿って周期的に突出する複数の突起を有し、前記複数の突起の各々が傾斜面を有し、前記傾斜面は、前記基材に垂直な基準線に対して傾斜し、
前記透過型回折格子への入射光の入射角度を前記基準線に対して角度αとし、回折光の回折角度を前記基準線に対して角度βとする場合に、
前記入射角度αは、前記傾斜面に対するブラッグ角度θよりも小さい角度であり、
前記回折角度βは、前記ブラッグ角度θよりも大きい角度であり、
前記複数の突起の各々は、前記傾斜面からの前記第1方向での距離が異なるに従い、前記複数の突起の各々と空気との界面に至る前記基材からの突出高さが異なる第1反射防止構造を有する分光装置に関する。
(1) One aspect of the present invention is
A spectroscopic device including a transmissive diffraction grating that transmits incident light,
The transmission diffraction grating has a plurality of protrusions that periodically protrude from the base material along the first direction, each of the plurality of protrusions has an inclined surface, and the inclined surface is formed on the base material. Tilted with respect to a vertical reference line,
When the incident angle of incident light to the transmission diffraction grating is an angle α with respect to the reference line, and the diffraction angle of the diffracted light is an angle β with respect to the reference line,
The incident angle α is an angle smaller than the Bragg angle θ with respect to the inclined surface,
The diffraction angle β is an angle larger than the Bragg angle θ,
Each of the plurality of protrusions has a different protrusion height from the base material reaching the interface between each of the plurality of protrusions and air as the distance in the first direction from the inclined surface differs. The present invention relates to a spectroscopic device having a prevention structure.

本発明の一態様によれば、突起の傾斜面が、基準線に対して傾斜され、配列される。そして、透過型回折格子に対する入射光が、ブラッグ角度θよりも小さい角度αで入射され、透過型回折格子による回折光が、ブラッグ角度θよりも大きい角度βで出射される。これにより、波長分解能を向上し、高回折効率を得られる波長帯域を広げること等が可能になる。   According to one aspect of the present invention, the inclined surfaces of the protrusions are inclined with respect to the reference line and arranged. Then, incident light with respect to the transmissive diffraction grating is incident at an angle α smaller than the Bragg angle θ, and diffracted light by the transmissive diffraction grating is emitted at an angle β larger than the Bragg angle θ. Thereby, it becomes possible to improve the wavelength resolution and widen the wavelength band where high diffraction efficiency can be obtained.

さらに本発明の一態様によれば、第1方向では、突起と空気との界面での屈折率の変化が滑らかとなり、急激な屈折率差が生じない。このため、突起に入射される光はほとんど反射されることなく突起に到達し、反射損失が低減される。   Furthermore, according to one aspect of the present invention, in the first direction, the change in the refractive index at the interface between the protrusion and the air becomes smooth, and a sharp refractive index difference does not occur. For this reason, the light incident on the protrusion reaches the protrusion almost without being reflected, and the reflection loss is reduced.

(2)本発明の一態様では、前記第1反射防止構造は、前記突起の自由端部に形成することができる。突起の自由端部をフラットにするものと比較して、突起の自由端部での反射損失を低減できる。   (2) In one aspect of the present invention, the first antireflection structure can be formed at a free end of the protrusion. The reflection loss at the free end of the protrusion can be reduced as compared with the flat end of the protrusion.

(3)本発明の一態様では、前記第1反射防止構造は、前記突起の基端部にも形成することができる。突起の基端部(突起間の底部)をフラットにするものと比較して、突起の自由端部での反射損失を低減できる。   (3) In one aspect of the present invention, the first antireflection structure can also be formed at the base end of the protrusion. The reflection loss at the free end portion of the protrusion can be reduced as compared with the case where the base end portion (bottom portion between the protrusions) of the protrusion is made flat.

(4)本発明の一態様では、前記複数の突起の各々は、前記第1方向と直交する第2方向に沿って、一側面から他側面に向けて延在形成され、
前記複数の突起の各々は、前記一側面からの前記第2方向での距離が異なるに従い、前記複数の突起の各々と空気との界面に至る前記基材からの突出高さが異なる第2反射防止構造をさらに有することができる。
(4) In one aspect of the present invention, each of the plurality of protrusions is formed to extend from one side surface to the other side surface along a second direction orthogonal to the first direction.
Each of the plurality of projections has a second projection height different from the base material reaching the interface between each of the plurality of projections and air as the distance in the second direction from the one side surface is different. It can further have a prevention structure.

こうすると、第2方向でも、突起と空気との界面での屈折率の変化が滑らかとなり、急激な屈折率差が生じない。このため、反射損失がさらに低減される。   In this way, even in the second direction, the change in the refractive index at the interface between the protrusion and air becomes smooth, and a sharp refractive index difference does not occur. For this reason, the reflection loss is further reduced.

(5)本発明の一態様では、前記基準線に対する前記傾斜面の傾斜角度をφとする場合に、前記傾斜面は、前記第1方向に周期P/cosφで配列され、前記入射光は、前記基準線に垂直な平面に平行で、前記傾斜面の配列方向に垂直な直線偏光とすることができる。   (5) In one aspect of the present invention, when the inclination angle of the inclined surface with respect to the reference line is φ, the inclined surface is arranged with a period P / cos φ in the first direction, and the incident light is Linearly polarized light parallel to a plane perpendicular to the reference line and perpendicular to the arrangement direction of the inclined surfaces can be obtained.

このようにすれば、傾斜面を基準線に対して角度φで傾斜させて配列し、その傾斜面に平行で基準線に垂直な直線偏光を透過型回折格子に対して入射し、その回折光を得ることができる。   In this way, the inclined surface is arranged at an angle φ with respect to the reference line, linearly polarized light parallel to the inclined surface and perpendicular to the reference line is incident on the transmission diffraction grating, and the diffracted light Can be obtained.

(6)本発明の他の態様は、
上述した分光装置と、
標的物からの散乱光または反射光を、前記ブラッグ角度θよりも小さい前記入射角度αで前記分光装置に入射させる光学系と、
前記分光装置からの回折光を検出する検出器と、
を含む検出装置に関する。
(6) Another aspect of the present invention is:
The spectroscopic device described above;
An optical system that causes scattered light or reflected light from a target to enter the spectroscopic device at the incident angle α smaller than the Bragg angle θ;
A detector for detecting diffracted light from the spectroscopic device;
It is related with the detection apparatus containing.

このような検出装置によれば、回折格子での反射損失が低減されるので、回折光の光量を増大させて検出器での信号レベルを大きくすることができる。   According to such a detection apparatus, since the reflection loss at the diffraction grating is reduced, the amount of diffracted light can be increased to increase the signal level at the detector.

(7)本発明のさらに他の態様は、
基材に塗布されたレジストに対して第1のレーザー光と第2のレーザー光を入射して、前記レジストを干渉露光し、
前記干渉露光されたレジストを現像し、
前記基材の平面に向かう垂線に対して傾斜角度φで傾斜し、かつ、前記基材を露出することなくレジストパターンを形成する分光装置の製造方法に関する。この製法により、第1反射構造を有する回折格子を製造することができる。
(7) Still another aspect of the present invention is
The first laser beam and the second laser beam are incident on the resist applied to the base material, and the resist is subjected to interference exposure.
Developing the interference exposed resist;
The present invention relates to a method of manufacturing a spectroscopic device that is inclined at an inclination angle φ with respect to a normal line that faces the plane of the base material and that forms a resist pattern without exposing the base material. With this manufacturing method, a diffraction grating having a first reflecting structure can be manufactured.

(8)本発明のさらに他の態様は、
前記基材に塗布されたレジストをレーザー干渉露光し、
前記基材を90度回転してレーザー干渉露光し、
前記干渉露光されたレジストを現像し、
前記基材の平面に向かう垂線に対して傾斜角度φで傾斜し、かつ、前記基材を露出することなくレジストパターンを形成する分光装置の製造方法に関する。この製法により、第2反射構造を有する回折格子を製造することができる。
(8) Still another aspect of the present invention provides:
Laser interference exposure of the resist applied to the substrate,
The substrate is rotated 90 degrees to perform laser interference exposure,
Developing the interference exposed resist;
The present invention relates to a method of manufacturing a spectroscopic device that is inclined at an inclination angle φ with respect to a normal line that faces the plane of the base material and that forms a resist pattern without exposing the base material. With this manufacturing method, it is possible to manufacture a diffraction grating having a second reflecting structure.

本実施形態の比較例であるブレーズ化回折格子を示す図である。It is a figure which shows the blazed diffraction grating which is a comparative example of this embodiment. 比較例における回折角度に対する波長分解能の特性図である。It is a characteristic view of the wavelength resolution with respect to the diffraction angle in a comparative example. 図3(A)は、本実施形態の傾斜構造の回折格子の構成例の断面図であり、図3(B)は、傾斜面の周期構造によるブラッグ反射の説明図である。FIG. 3A is a cross-sectional view of a configuration example of a diffraction grating having an inclined structure according to the present embodiment, and FIG. 3B is an explanatory diagram of Bragg reflection by a periodic structure of an inclined surface. 本実施形態における回折角度に対する波長分解能の特性図である。It is a characteristic view of the wavelength resolution with respect to the diffraction angle in this embodiment. 図5(A)は、傾斜角度0°とした場合の入射角度に対する回折効率の特性図であり、図5(B)は、本実施形態における入射角度に対する回折効率の特性図である。FIG. 5A is a characteristic diagram of diffraction efficiency with respect to the incident angle when the tilt angle is 0 °, and FIG. 5B is a characteristic diagram of diffraction efficiency with respect to the incident angle in the present embodiment. 図6(A)は、傾斜角度0°とした場合の波長λに対する回折効率の特性図であり、図6(B)は、本実施形態における波長λに対する回折効率の特性図である。6A is a characteristic diagram of diffraction efficiency with respect to the wavelength λ when the tilt angle is 0 °, and FIG. 6B is a characteristic diagram of diffraction efficiency with respect to the wavelength λ in the present embodiment. 図7(A)、図7(B)は、基材の平面に反射防止膜を形成した回折格子の説明図である。7A and 7B are explanatory diagrams of a diffraction grating in which an antireflection film is formed on the plane of the base material. 図8(A)、図8(B)は、第1,第2反射防止構造を有する回折格子の説明図である。8A and 8B are explanatory diagrams of a diffraction grating having first and second antireflection structures. 図9(A)〜図9(D)は、回折格子の製造方法についての説明図。FIG. 9A to FIG. 9D are explanatory diagrams of a method for manufacturing a diffraction grating. 図10(A)、図10(B)は、検出装置の第1の構成例を示す図である。10A and 10B are diagrams illustrating a first configuration example of the detection device. 図11(A)、図11(B)は、検出装置の第2の構成例を示す図である。FIG. 11A and FIG. 11B are diagrams illustrating a second configuration example of the detection device.

以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are indispensable as means for solving the present invention. Not necessarily.

1.比較例
上述のように、ブレーズ化回折格子では、波長分解能と回折効率の両立が困難であるという課題がある。この点について、図1、図2を用いて説明する。
1. Comparative Example As described above, the blazed diffraction grating has a problem that it is difficult to achieve both wavelength resolution and diffraction efficiency. This point will be described with reference to FIGS.

図1に、本実施形態の比較例として、ブレーズ化回折格子の例を示す。図1に示すように、ブレーズ化回折格子の格子周期をPaとし、入射光の波長をλaとし、入射光の入射角度をαaとし、回折光の回折角度をβaとする。   FIG. 1 shows an example of a blazed diffraction grating as a comparative example of the present embodiment. As shown in FIG. 1, the grating period of the blazed diffraction grating is Pa, the wavelength of incident light is λa, the incident angle of incident light is αa, and the diffraction angle of diffracted light is βa.

まず、波長分解能について考える。回折格子の波長分解能Δβ/Δλは下式(1)で表される。下式(1)より、波長分解能Δβ/Δλを高めるためには、格子周期Paを小さくし、回折角度βaを大きくすればよいことがわかる。   First, consider wavelength resolution. The wavelength resolution Δβ / Δλ of the diffraction grating is expressed by the following equation (1). From the following equation (1), it can be seen that in order to increase the wavelength resolution Δβ / Δλ, the grating period Pa should be reduced and the diffraction angle βa should be increased.

Δβ/Δλ=1/(Pa・cosβa) (1)
図2は、上式(1)において波長λa=633nm、格子周期Pa=333nmとした
場合の、回折角度βaに対する波長分解能Δβ/Δλの特性例である。この例では、波長と格子周期の比はλa/Pa=1.9である。このとき、図2に示すように、回折角度βaを70°とすると、波長分解能Δβ/Δλはおよそ0.009まで向上する。
Δβ / Δλ = 1 / (Pa · cos βa) (1)
FIG. 2 is a characteristic example of the wavelength resolution Δβ / Δλ with respect to the diffraction angle βa when the wavelength λa = 633 nm and the grating period Pa = 333 nm in the above equation (1). In this example, the ratio between the wavelength and the grating period is λa / Pa = 1.9. At this time, as shown in FIG. 2, when the diffraction angle βa is 70 °, the wavelength resolution Δβ / Δλ is improved to about 0.009.

次に、回折効率について考える。反射型回折格子の場合には、その断面形状をブレーズ化することで回折効率を高めることが可能である。しかしながら、波長分解能Δβ/Δλを向上するために格子周期Paを小さくすると、断面形状をブレーズ化しても高い回折効率を得ることは難しい(最新 回折光学素子 技術全集,技術情報協,p.107-p.120(2004))。このように、ブレーズ化回折格子等の反射型回折格子では、高い波長分解能と高い
回折効率を同時に実現することは困難となってしまう。
Next, the diffraction efficiency will be considered. In the case of a reflective diffraction grating, the diffraction efficiency can be increased by blazing the cross-sectional shape. However, if the grating period Pa is reduced in order to improve the wavelength resolution Δβ / Δλ, it is difficult to obtain high diffraction efficiency even if the cross-sectional shape is blazed (the latest diffractive optical element technology, Technical Information Cooperation, p.107-). p.120 (2004)). As described above, it is difficult to achieve high wavelength resolution and high diffraction efficiency at the same time in a reflective diffraction grating such as a blazed diffraction grating.

例えば、ラマン分光器等の分光装置では、高い波長分解能と高い回折効率を広い波長域で同時に満足する回折格子が求められている。ラマン分光では、試料からの散乱光は、主にレイリー散乱光とラマン散乱光である(以下では、レイリー散乱波長λrayに対してラマン散乱波長λray+Δλとなるストークス成分に注目する)。このラマン分光では、実用上課題となることがいくつかある。まず、ラマン散乱光の強度は、レイリー散乱光の強度と比べて極めて微弱である。次に、ラマン分光により物質を特定する場合、試料から散乱されるラマン散乱光を0.5nm程度の波長分解能で分光する必要がある。さらに、レイリー散乱光とラマン散乱光の波長差は100nm程度である。これらの点を考慮すると、ラマン分光に使用される回折格子では、可視から近赤外(波長400nm〜1100nm)において0.5nm程度の高い波長分解能を得られることが要求される。加えて、100nm程度の広い波長帯域において高い回折効率が得られることが要求される。   For example, in a spectroscopic device such as a Raman spectrometer, there is a demand for a diffraction grating that simultaneously satisfies high wavelength resolution and high diffraction efficiency in a wide wavelength range. In Raman spectroscopy, scattered light from a sample is mainly Rayleigh scattered light and Raman scattered light (hereinafter, attention is paid to a Stokes component having a Raman scattered wavelength λray + Δλ with respect to a Rayleigh scattered wavelength λray). This Raman spectroscopy has several practical problems. First, the intensity of Raman scattered light is extremely weak compared to the intensity of Rayleigh scattered light. Next, when a substance is specified by Raman spectroscopy, it is necessary to separate Raman scattered light scattered from the sample with a wavelength resolution of about 0.5 nm. Further, the wavelength difference between the Rayleigh scattered light and the Raman scattered light is about 100 nm. Considering these points, a diffraction grating used for Raman spectroscopy is required to obtain a high wavelength resolution of about 0.5 nm in the visible to near infrared (wavelength 400 nm to 1100 nm). In addition, high diffraction efficiency is required to be obtained in a wide wavelength band of about 100 nm.

2.広波長帯域にて高い回折効率を得る回折格子の傾斜構造
本実施形態では、ブラッグ反射を生じる周期構造を傾斜させて、回折角度を大きくするとともに格子周期をより大きく取れるようにすることで、波長分解能の向上と回折効率の広帯域化を行う。図3(A)〜図6(B)を用いて、この本実施形態の透過型回折格子に(以下回折格子と省略する)ついて説明する。なお、以下では、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法や比率を実際のものとは適宜に異ならせてある。
2. In this embodiment, the tilt structure of the diffraction grating that obtains high diffraction efficiency in a wide wavelength band is tilted so that the diffraction angle is increased and the grating period is increased to increase the wavelength. Improve resolution and widen the diffraction efficiency. The transmission diffraction grating of this embodiment (hereinafter abbreviated as a diffraction grating) will be described with reference to FIGS. In the following, the dimensions and ratios of the respective constituent elements are appropriately changed from the actual ones in order to make each constituent element recognizable on the drawing.

ここで、以下では、回折格子を表面増強ラマン散乱分光に用いる場合について説明するが、本実施形態ではこの場合に限定されず、回折格子を種々の分光手法に利用することが可能である。   Here, the case where a diffraction grating is used for surface-enhanced Raman scattering spectroscopy will be described below, but the present embodiment is not limited to this case, and the diffraction grating can be used for various spectroscopic techniques.

図3(A)に、本実施形態の透過型回折格子の構成例の断面図を示す。この回折格子は、表面凹凸型の回折格子である。誘電体から成る基材100(基板)は、第1方向Xに沿って周期的に突出する複数の突起110を有し、複数の突起110の各々が傾斜面140(または傾斜面141)を有し、傾斜面140(または傾斜面141)は、基材100に垂直な基準線130に対して傾斜している。複数の突起110は、第1方向Aと直交する第2方向Y(紙面と直交する方向)に延びている。なお、図3(A)は、基材100の平面に垂直で複数の突起110の配列方向に平行な面での断面図である。   FIG. 3A shows a cross-sectional view of a configuration example of the transmission diffraction grating of the present embodiment. This diffraction grating is a surface uneven type diffraction grating. The base material 100 (substrate) made of a dielectric has a plurality of protrusions 110 that periodically protrude in the first direction X, and each of the plurality of protrusions 110 has an inclined surface 140 (or an inclined surface 141). In addition, the inclined surface 140 (or the inclined surface 141) is inclined with respect to the reference line 130 perpendicular to the substrate 100. The plurality of protrusions 110 extend in a second direction Y (a direction orthogonal to the paper surface) orthogonal to the first direction A. 3A is a cross-sectional view taken along a plane that is perpendicular to the plane of the substrate 100 and parallel to the direction in which the plurality of protrusions 110 are arranged.

基材100は、入射光を透過する石英ガラス基板等の誘電体により形成され、四角形平板状や円板状に形成される。入射光を透過するとは、入射光の波長(使用波長)に対して透明な場合だけでなく、入射光量の一部を透過する半透明な場合を含むものとする。   The base material 100 is formed of a dielectric such as a quartz glass substrate that transmits incident light, and is formed in a rectangular flat plate shape or a disc shape. Transmitting incident light includes not only the case of being transparent with respect to the wavelength (use wavelength) of the incident light but also the case of being translucent to transmit a part of the amount of incident light.

複数の突起110は、誘電体(例えば基材100と同じ誘電体)により形成され、基材100の平面に平行な第1方向Xに沿って周期P/cosφ(格子間隔)で配列される。基材100の平面とは、例えば複数の突起110が形成される側の基材100の表面101(第1面)に平行な面である。複数の突起110は、基準線130に対して角度φ(φ>0°)だけ傾斜して形成される。より具体的には、複数の突起110には、基準線130に対して角度φで傾斜する傾斜面140(または傾斜面141)が形成される。基準線130とは、傾斜角度φや入射角度α、回折角度βの基準となる線であり、例えば基材100の平面に対する垂線(法線)である。傾斜面140は、傾斜面140に垂直な方向での周期がPであり、回折光(ブラッグ反射光)は、この周期Pの周期構造により生じる。なお、使用波長λと格子周期Pが1.0<λ/P<2.0を満たすことが望ましい。また、格子周期Pが200〜1100nmであり、複数の突起110の高さが500〜3000nmであることが望ましい。また、傾斜角度がφ<45°であることが望ましい。   The plurality of protrusions 110 are formed of a dielectric (for example, the same dielectric as the base material 100), and are arranged at a period P / cosφ (lattice interval) along a first direction X parallel to the plane of the base material 100. The plane of the base material 100 is a surface parallel to the surface 101 (first surface) of the base material 100 on the side where the plurality of protrusions 110 are formed, for example. The plurality of protrusions 110 are formed to be inclined with respect to the reference line 130 by an angle φ (φ> 0 °). More specifically, the plurality of protrusions 110 are formed with inclined surfaces 140 (or inclined surfaces 141) that are inclined at an angle φ with respect to the reference line 130. The reference line 130 is a reference line for the tilt angle φ, the incident angle α, and the diffraction angle β, and is, for example, a perpendicular (normal line) to the plane of the substrate 100. The inclined surface 140 has a period P in a direction perpendicular to the inclined surface 140, and diffracted light (Bragg reflected light) is generated by a periodic structure of this period P. Note that it is desirable that the operating wavelength λ and the grating period P satisfy 1.0 <λ / P <2.0. Moreover, it is desirable that the grating period P is 200 to 1100 nm and the height of the plurality of protrusions 110 is 500 to 3000 nm. Further, it is desirable that the inclination angle is φ <45 °.

図3(A)に示すように、回折格子には波長λの入射光が角度αで入射し、回折光が角度βで基材100の裏面102(第2面)側に透過する。ここで、基材100の裏面102とは、複数の突起110が形成されない側の面である。このとき、傾斜角度φで傾斜する回折格子の波長分解能Δβ/Δλは、下式(2)で表される。なお、下式(2)でφ=0とすると上式(1)が得られ、傾斜がない場合の波長分解能を表す式となる。   As shown in FIG. 3A, incident light having a wavelength λ is incident on the diffraction grating at an angle α, and the diffracted light is transmitted to the back surface 102 (second surface) side of the substrate 100 at an angle β. Here, the back surface 102 of the base material 100 is a surface on the side where the plurality of protrusions 110 are not formed. At this time, the wavelength resolution Δβ / Δλ of the diffraction grating tilted at the tilt angle φ is expressed by the following equation (2). When φ = 0 in the following equation (2), the above equation (1) is obtained, which represents the wavelength resolution when there is no inclination.

Δβ/Δλ=cosφ/(P・cosβ) (2)
次に、本実施形態による波長分解能と回折効率を向上させる手法について説明する。図3(B)に示すように、本実施形態では傾斜面140(または傾斜面141)の周期構造によるブラッグ反射を利用している。図3(B)では、便宜的に傾斜角度φ=0°の場合について考える。ブラッグ反射を生じる入射光の入射角度をブラッグ角度θとすると、ブラッグ条件は下式(3)で表される。ブラッグ角度θは、傾斜面140に対する角度である。また、nは空気(広義には媒質)の屈折率である。
Δβ / Δλ = cosφ / (P · cosβ) (2)
Next, a method for improving the wavelength resolution and diffraction efficiency according to the present embodiment will be described. As shown in FIG. 3B, in this embodiment, Bragg reflection by the periodic structure of the inclined surface 140 (or inclined surface 141) is used. In FIG. 3B, the case where the tilt angle φ = 0 ° is considered for convenience. When the incident angle of the incident light causing the Bragg reflection is the Bragg angle θ, the Bragg condition is expressed by the following expression (3). The Bragg angle θ is an angle with respect to the inclined surface 140. N is the refractive index of air (medium in a broad sense).

2nPsinθ=λ (3)
比較例で説明したように、波長分解能Δβ/Δλを大きくするためにはブラッグ角度θ(回折角度)を大きくする必要がある。上式(3)より、ブラッグ角度θを大きくすると、Pを小さくしなければならないことが分かる。しかしながら、比較例で説明したように、Pを小さくすると回折効率の高い波長帯域が狭くなってしまう。そこで、本実施形態では、図3(A)に示すように複数の突起110を傾斜させることで、回折角度βを大きくしている。このとき、入射角度αは近似的にα=θ−φであり、回折角度βは近似的にβ=θ+φである。このように、複数の突起110を傾斜させることで回折角度βよりもブラッグ角度θを小さくできるため、回折角度βにより波長分解能Δβ/Δλを大きくするとともに、φ=0°の場合に比べて周期Pをより大きな値にできる。
2nPsinθ = λ (3)
As described in the comparative example, in order to increase the wavelength resolution Δβ / Δλ, it is necessary to increase the Bragg angle θ (diffraction angle). From the above equation (3), it is understood that when the Bragg angle θ is increased, P must be decreased. However, as described in the comparative example, when P is reduced, the wavelength band with high diffraction efficiency is narrowed. Therefore, in the present embodiment, the diffraction angle β is increased by inclining the plurality of protrusions 110 as shown in FIG. At this time, the incident angle α is approximately α = θ−φ, and the diffraction angle β is approximately β = θ + φ. As described above, since the Bragg angle θ can be made smaller than the diffraction angle β by inclining the plurality of protrusions 110, the wavelength resolution Δβ / Δλ is increased by the diffraction angle β, and the period is longer than that in the case where φ = 0 °. P can be set to a larger value.

このようにして、回折角度βを大きくして波長分解能を向上することと、必要な波長分解能が得られる範囲で周期Pをできるだけ大きくして回折効率を広帯域化することを同時に実現できる。なお、後述するように、厳密には入射角度α=θ−φ、回折角度β=θ+φであるとは限らない。   In this way, it is possible to simultaneously improve the wavelength resolution by increasing the diffraction angle β and increase the diffraction efficiency in a wide band by increasing the period P as much as possible within a range in which the necessary wavelength resolution can be obtained. As will be described later, strictly speaking, the incident angle α = θ−φ and the diffraction angle β = θ + φ are not always satisfied.

図4に、回折角度βに対する波長分解能Δβ/Δλの特性例を示す。図4は、波長λ=633nm、格子周期P=366nm、傾斜角度φ=10°の場合の例であり、1次透過回折光のブラッグ角度はθ=59.9°である。格子周期P=366nmは、上述の比較例での格子周期Pa=333nmに比べて10%大きい値である。また、上式(2)より、この回折格子の波長分解能は、周期がP/cosφ=366/cos(10°)=372nmである傾斜がない回折格子の波長分解能と同じである。   FIG. 4 shows a characteristic example of the wavelength resolution Δβ / Δλ with respect to the diffraction angle β. FIG. 4 shows an example in which the wavelength λ = 633 nm, the grating period P = 366 nm, and the tilt angle φ = 10 °. The Bragg angle of the first-order transmitted diffracted light is θ = 59.9 °. The grating period P = 366 nm is 10% larger than the grating period Pa = 333 nm in the above-described comparative example. Further, from the above equation (2), the wavelength resolution of this diffraction grating is the same as the wavelength resolution of the diffraction grating without inclination with a period of P / cos φ = 366 / cos (10 °) = 372 nm.

突起の傾斜がないφ=0°の場合には、回折角度がブラッグ角度θ=59.9°の近傍で、1次回折光の回折効率は最大となる。このとき、図4に示すように、波長分解能はΔβ/Δλ=0.005にとどまる。一方、突起をφ=10°傾斜させた場合には、回折角度はβ=73°まで広がるため、波長分解能はφ=0°の場合から約1.8倍向上してΔβ/Δλ=0.009以上となる。これは、上述の比較例と同等の波長分解能である。このように、回折格子を角度φ=10°で傾斜させることで、回折角度β=73°の近傍において高い回折効率を実現している。   When φ = 0 ° with no protrusion inclination, the diffraction efficiency of the first-order diffracted light becomes maximum when the diffraction angle is in the vicinity of the Bragg angle θ = 59.9 °. At this time, as shown in FIG. 4, the wavelength resolution remains at Δβ / Δλ = 0.005. On the other hand, when the protrusion is tilted by φ = 10 °, the diffraction angle extends to β = 73 °, so that the wavelength resolution is improved by about 1.8 times from the case of φ = 0 °, and Δβ / Δλ = 0. 009 or more. This is a wavelength resolution equivalent to that of the comparative example described above. Thus, by tilting the diffraction grating at an angle φ = 10 °, high diffraction efficiency is realized in the vicinity of the diffraction angle β = 73 °.

図5(A)、図5(B)に、入射角度αに対する回折効率の特性例を示す。この例は、波長λ=633nm、格子周期P=366nm、突起の高さが745nmである場合の特性例である。また、突起の基材(及び突起群)は石英ガラスであり、その屈折率を1.46とする。入射光は直線偏光であり、その偏光方向(偏光方位)は突起の溝と平行である。   5A and 5B show examples of the characteristics of diffraction efficiency with respect to the incident angle α. In this example, the wavelength λ is 633 nm, the grating period P is 366 nm, and the height of the protrusion is 745 nm. The base material (and the group of protrusions) of the protrusions is quartz glass, and the refractive index is 1.46. Incident light is linearly polarized light, and its polarization direction (polarization direction) is parallel to the groove of the protrusion.

図5(A)のA1に示すように、回折格子の傾斜がないφ=0°の場合には、入射角度αがブラッグ角度59.9°の近傍であるときに高い回折効率が得られる。入射角度αが59.9°のとき、回折角度βも59.9°である。一方、図5(B)のB1に示すように、回折格子の傾斜がφ=10°の場合は、入射角度αが43°の近傍となるときに高い回折効率が得られる。この特性から、例えば入射角度αを46°とすると、回折角度βは73°となる。このとき、図4で上述のように、波長分解能Δβ/Δλは1.8倍向上しておよそ0.009となる。   As shown by A1 in FIG. 5A, when φ = 0 ° without the tilt of the diffraction grating, a high diffraction efficiency is obtained when the incident angle α is in the vicinity of the Bragg angle 59.9 °. When the incident angle α is 59.9 °, the diffraction angle β is also 59.9 °. On the other hand, as shown by B1 in FIG. 5B, when the inclination of the diffraction grating is φ = 10 °, a high diffraction efficiency is obtained when the incident angle α is in the vicinity of 43 °. From this characteristic, for example, when the incident angle α is 46 °, the diffraction angle β is 73 °. At this time, as described above with reference to FIG. 4, the wavelength resolution Δβ / Δλ is improved by 1.8 times to about 0.009.

このように、回折格子を10°傾斜させることにより、比較例と比べて格子周期が10%大きい条件においても、波長分解能Δβ/Δλを比較例同等の0.009に高めることが可能となる。これは、回折格子を傾斜させブラッグ角度をシフトさせることで、回折角度βを十分に大きくとることができるためである。   Thus, by tilting the diffraction grating by 10 °, the wavelength resolution Δβ / Δλ can be increased to 0.009, which is equivalent to that of the comparative example, even under a condition where the grating period is 10% larger than that of the comparative example. This is because the diffraction angle β can be made sufficiently large by tilting the diffraction grating and shifting the Bragg angle.

図6(A)、図6(B)に、波長λに対する回折効率の特性例を示す。この例は、波長λ=633nm、格子周期P=333nm(図6(A))、P=366nm(図6(B))の場合の特性例である。また、入射光は直線偏光であり、その偏光方向は格子の溝と平行である。   6A and 6B show examples of the diffraction efficiency characteristics with respect to the wavelength λ. This example is a characteristic example when the wavelength λ = 633 nm, the grating period P = 333 nm (FIG. 6A), and P = 366 nm (FIG. 6B). Further, the incident light is linearly polarized light, and its polarization direction is parallel to the grooves of the grating.

比較例で上述のように、格子周期Pが比較的小さい条件であれば、突起を傾斜させなくても高い波長分解能Δβ/Δλを期待できる。しかしながら、格子周期Pを小さくすると高い回折効率が得られる波長帯域が狭くなってしまう。具体的には、図6(A)に示すように、格子周期Pが333nmの条件では、例えば0.8以上の高い回折効率が得られる波長帯域が560nm〜640nmと狭く、ラマン分光に求められる波長帯域100nmを確保できない。これは、高い回折効率が得られる波長帯域の長波長端が回折領域(例えばλ/P≦2)と非回折領域(λ/P>2)の境界に近接しているためである。   As described above in the comparative example, if the grating period P is relatively small, a high wavelength resolution Δβ / Δλ can be expected without tilting the protrusion. However, if the grating period P is reduced, the wavelength band in which high diffraction efficiency is obtained becomes narrow. Specifically, as shown in FIG. 6A, under the condition where the grating period P is 333 nm, for example, the wavelength band in which high diffraction efficiency of 0.8 or more is obtained is as narrow as 560 nm to 640 nm, and is required for Raman spectroscopy. The wavelength band of 100 nm cannot be secured. This is because the long wavelength end of the wavelength band where high diffraction efficiency is obtained is close to the boundary between the diffraction region (for example, λ / P ≦ 2) and the non-diffractive region (λ / P> 2).

一方、図6(B)に示すように、格子周期Pが366nmの条件では、高い回折効率が得られる波長帯域の長波長端が回折領域と非回折領域の境界から離れる。そのため、0.8以上の高い回折効率が得られる波長帯域が長波長側に広がって565nm〜675nmとなり、ラマン分光に求められる波長帯域100nmを確保できる。   On the other hand, as shown in FIG. 6B, under the condition where the grating period P is 366 nm, the long wavelength end of the wavelength band where high diffraction efficiency is obtained is separated from the boundary between the diffraction region and the non-diffraction region. Therefore, the wavelength band where high diffraction efficiency of 0.8 or more is obtained extends to the long wavelength side to be 565 nm to 675 nm, and the wavelength band required for Raman spectroscopy can be ensured to be 100 nm.

さて、ブレーズ化格子等の反射型回折格子では、波長分解能を向上するために回折角度βと周期Pを小さくする必要があるため、波長分解能と回折効率の帯域幅を共に向上することが困難であるという課題があった。   In a reflective diffraction grating such as a blazed grating, it is necessary to reduce the diffraction angle β and the period P in order to improve the wavelength resolution, so it is difficult to improve both the wavelength resolution and the bandwidth of the diffraction efficiency. There was a problem that there was.

この点、本実施形態は、入射光を透過する透過型回折格子(広義には分光装置)である。図3(A)に示すように、透過型回折格子は、第1の誘電体により形成される傾斜面140(または傾斜面141)を有する。この傾斜面140は、基準線130に対して角度φで傾斜し、傾斜面140に垂直な方向での周期がPとなるように配列される。透過型回折格子への入射光の入射角度は基準線130に対して角度αであり、回折光の回折角度は基準線130に対して角度βである。この場合、入射光は、傾斜面140の周期Pで決まるブラッグ角度θよりも小さい入射角度α(α<θ)で入射される。回折光は、ブラッグ角度θよりも大きい回折角度β(β>θ)で回折される。   In this respect, the present embodiment is a transmission diffraction grating (spectrometer in a broad sense) that transmits incident light. As shown in FIG. 3A, the transmissive diffraction grating has an inclined surface 140 (or an inclined surface 141) formed of a first dielectric. The inclined surface 140 is inclined at an angle φ with respect to the reference line 130 and is arranged so that the period in the direction perpendicular to the inclined surface 140 is P. The incident angle of incident light on the transmissive diffraction grating is an angle α with respect to the reference line 130, and the diffraction angle of the diffracted light is an angle β with respect to the reference line 130. In this case, the incident light is incident at an incident angle α (α <θ) smaller than the Bragg angle θ determined by the period P of the inclined surface 140. The diffracted light is diffracted at a diffraction angle β (β> θ) larger than the Bragg angle θ.

これにより、波長分解能を向上し、高回折効率の帯域を広げることが可能になる。具体的には、傾斜面140が周期Pで配列されることで、回折格子に1次元の周期的誘電率分布が形成される。そして、図5(B)に示すように、この誘電率分布を格子表面に対して例えばφ=10°傾斜させることで、傾斜がない場合のブラッグ角度θ=59.9°よりも入射角度α=43°を浅くし、傾斜がない場合のブラッグ角度θ=59.9°よりも透過回折角度β=73°を深くできる。すなわち、誘電率分布を傾斜させることにより、最大回折効率が得られる光入射角度αをブラッグ角度θから浅い角度へシフトさせている。これにより、回折格子の周期Pが比較的大きい条件でも、その波長分解能Δβ/Δλを十分に高めることができる。このようにして、本実施形態では高い波長分解能(例えば図4)と高い回折効率を広い波長帯域で(例えば図6(B))同時に満足させている。例えば、本実施形態をラマン分光へ応用した場合、広い波長帯域を有する微弱なラマン散乱光を高効率に光検出器へ導くことが可能となる。   As a result, it is possible to improve the wavelength resolution and widen the band of high diffraction efficiency. Specifically, when the inclined surfaces 140 are arranged with a period P, a one-dimensional periodic dielectric constant distribution is formed in the diffraction grating. Then, as shown in FIG. 5B, the dielectric constant distribution is inclined, for example, by φ = 10 ° with respect to the grating surface, so that the incident angle α is greater than the Bragg angle θ = 59.9 ° when there is no inclination. = 43 ° is shallow, and the transmission diffraction angle β = 73 ° can be made deeper than the Bragg angle θ = 59.9 ° when there is no inclination. That is, by tilting the dielectric constant distribution, the light incident angle α at which the maximum diffraction efficiency is obtained is shifted from the Bragg angle θ to a shallow angle. As a result, even when the period P of the diffraction grating is relatively large, the wavelength resolution Δβ / Δλ can be sufficiently increased. Thus, in this embodiment, high wavelength resolution (for example, FIG. 4) and high diffraction efficiency are simultaneously satisfied in a wide wavelength band (for example, FIG. 6B). For example, when this embodiment is applied to Raman spectroscopy, it becomes possible to guide weak Raman scattered light having a wide wavelength band to a photodetector with high efficiency.

また、信号光と迷光を分離する点においても、従来必須とされていた高価なバンドパスフィルターが不要になるという効果も期待できる。すなわち、高い波長分解能が得られるため、ラマン散乱光とレイリー散乱光が十分分離され、遮断特性が急峻なフィルターを用いる必要がなくなる。また、本実施形態の回折格子は透過型であるため、レンズや鏡等の光学要素の配置の自由度を高くでき、分光装置を小型化することができる。   In addition, in terms of separating the signal light and the stray light, an effect that an expensive band-pass filter, which has been conventionally required, is unnecessary can be expected. That is, since a high wavelength resolution can be obtained, it is not necessary to use a filter that sufficiently separates Raman scattered light and Rayleigh scattered light and has a sharp cutoff characteristic. Moreover, since the diffraction grating of this embodiment is a transmission type, the freedom degree of arrangement | positioning of optical elements, such as a lens and a mirror, can be made high, and a spectroscopic apparatus can be reduced in size.

なお、図3(A)に示す断面において、入射光の入射角度αは、例えば基準線130に対して例えば反時計回り(正の方向)の角度である。この場合、傾斜面140の傾斜角度φは、基準線130に対して時計回り(負の方向)の角度である。   In the cross section shown in FIG. 3A, the incident angle α of incident light is, for example, an angle counterclockwise (positive direction) with respect to the reference line 130, for example. In this case, the inclination angle φ of the inclined surface 140 is a clockwise (negative direction) angle with respect to the reference line 130.

また、本実施形態では、透過型回折格子に対する入射光は、傾斜面140に平行で基準線130に垂直な直線偏光である。   In the present embodiment, the incident light with respect to the transmissive diffraction grating is linearly polarized light parallel to the inclined surface 140 and perpendicular to the reference line 130.

このようにすれば、格子の溝(周期的誘電率分布)に平行な直線偏光を入射光として入射できる。これにより、上述のような回折効率特性(例えば図5(B)のB1に示す特性)を実現できる。なお、本実施形態ではこの場合に限定されず、入射光が、傾斜面140に平行で基準線130に垂直な偏光成分を含んでいればよい。   In this way, linearly polarized light parallel to the grooves of the grating (periodic permittivity distribution) can be incident as incident light. Thereby, the diffraction efficiency characteristics as described above (for example, the characteristics indicated by B1 in FIG. 5B) can be realized. Note that the present embodiment is not limited to this case, and it is sufficient that the incident light includes a polarization component parallel to the inclined surface 140 and perpendicular to the reference line 130.

また、本実施形態では、図3(A)に示すように、透過型回折格子は、基準線130に垂直な平面(例えば表面101)を有する基材100に、第1の誘電体により形成される複数の突起110が、基材100の平面に平行な方向に沿って周期P/cosφで配列されることで形成される。そして、複数の突起110には、基準線130に対して角度φで傾斜する傾斜面140が形成される。   In the present embodiment, as shown in FIG. 3A, the transmission diffraction grating is formed on the base material 100 having a plane (for example, the surface 101) perpendicular to the reference line 130 by the first dielectric. The plurality of protrusions 110 are arranged with a period P / cosφ along a direction parallel to the plane of the substrate 100. The plurality of protrusions 110 are formed with inclined surfaces 140 that are inclined with respect to the reference line 130 at an angle φ.

このようにすれば、複数の突起110が周期的に配列されることで、傾斜面140に垂直な方向での周期がPである傾斜面140を実現できる。これにより、傾斜した凹凸型の透過型回折格子を実現できる。   In this way, by arranging the plurality of protrusions 110 periodically, the inclined surface 140 whose period in the direction perpendicular to the inclined surface 140 is P can be realized. Thereby, an inclined concavo-convex transmissive diffraction grating can be realized.

また、本実施形態では、傾斜角度φは、基材100の平面に垂直に投影した平面視において、複数の突起110の隣り合う突起が重ならないように設定される。   In the present embodiment, the inclination angle φ is set so that adjacent projections of the plurality of projections 110 do not overlap in a plan view projected perpendicularly to the plane of the substrate 100.

このようにすれば、突起がオーバーラップしない傾斜角度φに設定されることで複数の突起110の高さが抑制され、複数の突起110の製造を容易化できる。また、回折効率等のシミュレーションを高精度に行うことができるため、信頼性の高い設計が可能になる。   In this way, the height of the plurality of protrusions 110 is suppressed by setting the inclination angle φ at which the protrusions do not overlap, and the manufacture of the plurality of protrusions 110 can be facilitated. In addition, since simulation such as diffraction efficiency can be performed with high accuracy, a highly reliable design is possible.

図7(A)、図7(B)を用いて、反射防止膜付の回折格子340について説明する。図7(A)に示す配置例では、回折格子340の凹凸面側(複数の格子110が配列された表面101側)から入射光が入射される。一方、図7(B)の配置例では、回折格子340の裏面102側から入射光が入射される。いずれの配置例でも、基材100の裏面102側には反射防止膜190が形成されている。この反射防止膜190により、回折光または入射光の反射が抑制されるため、理論値に近い高い回折効率を実現できる。なお、回折効率の波長依存性や角度依存性は光の入射方向により多少異なるため、上記配置例のうち特性がより優れた配置で回折格子を使用することが望ましい。   A diffraction grating 340 with an antireflection film will be described with reference to FIGS. In the arrangement example shown in FIG. 7A, incident light is incident from the concave and convex surface side of the diffraction grating 340 (the surface 101 side on which the plurality of gratings 110 are arranged). On the other hand, in the arrangement example of FIG. 7B, incident light enters from the back surface 102 side of the diffraction grating 340. In any arrangement example, an antireflection film 190 is formed on the back surface 102 side of the substrate 100. Since the reflection of diffracted light or incident light is suppressed by the antireflection film 190, high diffraction efficiency close to the theoretical value can be realized. In addition, since the wavelength dependency and angle dependency of the diffraction efficiency are slightly different depending on the incident direction of light, it is desirable to use the diffraction grating in an arrangement having more excellent characteristics in the above arrangement examples.

特に図7(A)にすれば、回折角度βの大きい回折光が基材100の裏面102で反射されて、裏面102側への透過回折光が減少してしまうことを抑制できる。これにより、効率よく透過回折光を取り出せるため、高感度なセンシングが可能になる。また、入射光が基材100を通過せずに傾斜面140に入射されるため、高効率な回折光を得ることができる。   In particular, if FIG. 7A is used, it can be suppressed that diffracted light having a large diffraction angle β is reflected by the back surface 102 of the substrate 100 and transmitted diffracted light toward the back surface 102 is reduced. Thereby, since the transmitted diffracted light can be extracted efficiently, highly sensitive sensing becomes possible. Further, since the incident light is incident on the inclined surface 140 without passing through the substrate 100, highly efficient diffracted light can be obtained.

3.さらに反射防止構造を有する回折格子
本実施形態では、図8(A)(B)に示すように、図3(A)に示す格子周期構造を傾斜させた透過型回折格子に、図7(A)(B)の反射防止膜とは異なる反射防止構造をさらに付加している。
3. Further, in the present embodiment, as shown in FIGS. 8A and 8B, a transmission type diffraction grating having the grating periodic structure shown in FIG. ) An antireflection structure different from the antireflection film of (B) is further added.

図8(A)は、傾斜面140からの第1方向Xでの距離が異なるに従い、突起110と空気との界面までの突出高さが異なる第1反射防止構造150,160を示している。一方の第1反射防止構造150は、突起110の自由端部に形成され、突起110の自由端部が例えばテーパー状(先細り状)に形成されることで、突起110と空気との界面までの突出高さがX方向にて徐々に変化している。他方の第1反射防止構造160は、突起110の基端部(突起110間の溝115の底部)に形成され、例えば溝115の底部が丸みを帯びることで、突起110と空気との界面までの突出高さ(溝115の深さ)がX方向にて徐々に変化している。   FIG. 8A shows the first antireflection structures 150 and 160 having different protrusion heights to the interface between the protrusion 110 and the air as the distance from the inclined surface 140 in the first direction X is different. One first antireflection structure 150 is formed at the free end portion of the protrusion 110, and the free end portion of the protrusion 110 is formed in a tapered shape (tapered shape), for example, to reach the interface between the protrusion 110 and the air. The protruding height gradually changes in the X direction. The other first antireflection structure 160 is formed at the base end portion of the projection 110 (the bottom portion of the groove 115 between the projections 110). For example, the bottom portion of the groove 115 is rounded up to the interface between the projection 110 and air. The protrusion height (depth of the groove 115) gradually changes in the X direction.

このようにすると、高さ方向Zに対して、突起110の自由端部及び基端部にてX−Y平面の横断面積が徐々に変化し、それにより第1方向Xでは、突起110と空気との界面での屈折率の変化が滑らかとなり、急激な屈折率差が生じない。このため、突起110に入射される光はほとんど反射されることなく突起110に到達する。   In this way, with respect to the height direction Z, the cross-sectional area of the XY plane gradually changes at the free end portion and the base end portion of the protrusion 110, so that in the first direction X, the protrusion 110 and the air The change in the refractive index at the interface with the surface becomes smooth, and a sharp refractive index difference does not occur. For this reason, the light incident on the protrusion 110 reaches the protrusion 110 with almost no reflection.

図8(B)では、複数の突起110の各々が、第1方向Xと直交する第2方向Yに沿って、一側面111から他側面(図示せず)に向けて延在形成され、一側面111からの第2方向Yでの距離が異なるに従い、突起110と空気との界面までの突出高さが異なる第2反射防止構造170,180を示している。   In FIG. 8B, each of the plurality of protrusions 110 is formed to extend from one side surface 111 to the other side surface (not shown) along a second direction Y orthogonal to the first direction X. The second antireflection structures 170 and 180 having different protrusion heights to the interface between the protrusion 110 and the air as the distance in the second direction Y from the side surface 111 is different are shown.

一方の第2反射防止構造170は、突起110の自由端部に形成され、突起110の頂部が波形に形成されることで、突起110と空気との界面までの突出高さがY方向にて徐々に変化している。他方の第2反射防止構造180は、突起110の基端部(突起110間の溝115の底部)に形成され、例えば溝115の最深部が波形に形成されることで、突起110と空気との界面までの突出高さ(溝115の深さ)がY方向にて徐々に変化している。   On the other hand, the second antireflection structure 170 is formed at the free end of the protrusion 110, and the top of the protrusion 110 is formed in a corrugated shape so that the protrusion height to the interface between the protrusion 110 and the air is in the Y direction. It is gradually changing. The other second antireflection structure 180 is formed at the base end portion of the projection 110 (the bottom portion of the groove 115 between the projections 110). For example, the deepest portion of the groove 115 is formed in a corrugated shape. The protrusion height to the interface (depth of the groove 115) gradually changes in the Y direction.

このようにすると、第1反射防止構造150,160にさらに加えて、高さ方向Zに対して、突起110の自由端部及び基端部にてX−Y平面の横断面積が徐々に変化し、それにより第2方向Yでも、突起110と空気との界面での屈折率の変化が滑らかとなり、急激な屈折率差が生じない。このため、突起110に入射される光の反射はさらに低減される。   In this way, in addition to the first antireflection structures 150 and 160, the cross-sectional area of the XY plane gradually changes at the free end and the base end of the protrusion 110 with respect to the height direction Z. Thereby, also in the second direction Y, the change in the refractive index at the interface between the protrusion 110 and the air becomes smooth, and a sharp refractive index difference does not occur. For this reason, the reflection of the light incident on the protrusion 110 is further reduced.

なお、本実施形態では、一方の第1反射構造150を有するものであれば、他方の第1反射構造160、さらには第2反射構造170または180を任意的に付加するものであってもよい。また、第1,第2方向X,Yにて突起110と空気との界面までの突出高さ(溝115の深さ)が徐々に変化するものであれば、第1,第2反射防止構造150〜180の形状についてもランダム構造等の種々の変形実施が可能である。   In the present embodiment, as long as one of the first reflection structures 150 is provided, the other first reflection structure 160 and further the second reflection structure 170 or 180 may be arbitrarily added. . If the protrusion height (depth of the groove 115) to the interface between the protrusion 110 and the air in the first and second directions X and Y changes gradually, the first and second antireflection structures. Various modifications such as a random structure can be performed on the shapes of 150 to 180.

4.製造方法
図9(A)〜図9(D)を用いて、傾斜した突起100及び反射防止構造150(160,170,180)を有する透過型回折格子の製造方法について説明する。
4). Manufacturing Method A manufacturing method of a transmission diffraction grating having the inclined protrusion 100 and the antireflection structure 150 (160, 170, 180) will be described with reference to FIGS. 9A to 9D.

まず、図8(A)のレジストパターン潜像形成について説明する。図9(A)に示すように、石英ガラス基板200上にレジスト210を、通常よりも厚く例えば約1.2μmの厚さで塗布する。そして、入射角度θ1のレーザー光LS1と入射角度θ2のレーザー光LS2を照射し、レジスト210をレーザー干渉露光する。このとき、レジストパターンが基板200に底付しないように感光する露光量、例えば30秒で露光する。この露光量30秒は、レジスト210の膜厚0.8μm時に基板200に底付きする露光量であり、膜厚を1.2μmと厚くすることで、基板200まで底付せず、溝115の底部が丸みを帯び、第1反射防止構造160の潜像が形成される。さらにバイアス露光(干渉させない露光)を例えば5秒行うことで、突起110の自由端部がテーパー状(先細り状)に形成され、第1反射防止構造150の潜像が形成される。以上の露光を連続して実施し、レジスト210中に図8(A)に示すレジストパターンの潜像を形成する。露光の順番は問わない。なお、バイアス露光を実施するには、例えば図9(A)の片側の経路だけで干渉させずに露光することで実施可能である。   First, the formation of the resist pattern latent image in FIG. As shown in FIG. 9A, a resist 210 is applied on a quartz glass substrate 200 to a thickness larger than usual, for example, about 1.2 μm. Then, the laser beam LS1 having an incident angle θ1 and the laser beam LS2 having an incident angle θ2 are irradiated, and the resist 210 is subjected to laser interference exposure. At this time, exposure is performed with an exposure amount, for example, 30 seconds, so that the resist pattern does not bottom the substrate 200. This exposure amount of 30 seconds is the exposure amount that bottoms on the substrate 200 when the resist 210 has a film thickness of 0.8 μm. By increasing the film thickness to 1.2 μm, the substrate 200 is not bottomed, and the groove 115 The bottom is rounded and a latent image of the first antireflection structure 160 is formed. Further, by performing bias exposure (exposure not causing interference) for 5 seconds, for example, the free end portion of the protrusion 110 is tapered (tapered), and a latent image of the first antireflection structure 150 is formed. The above exposure is continuously performed to form a latent image of the resist pattern shown in FIG. The order of exposure does not matter. Note that the bias exposure can be performed, for example, by performing exposure without causing interference through only one path in FIG. 9A.

次に、図8(B)のレジストパターン潜像形成について説明する。図8(A)と同じく、図9(A)に示すように、石英ガラス基板200上にレジスト210を、通常よりも厚く例えば約1.2μmの厚さで塗布する。そして、入射角度θ1のレーザー光LS1と入射角度θ2のレーザー光LS2を照射し、レジスト210をレーザー干渉露光する。このとき、レジストパターンが基板200に底付しないように感光する露光量、例えば30秒で露光する。この露光量30秒は、レジスト210の膜厚0.8μm時に基板200に底付きする露光量であり、膜厚を1.2μmと厚くすることで、基板200まで底付せず、溝115の底部が丸みを帯び、第1反射防止構造160の潜像が形成される。次に、基板200を90度回転させ、例えば5秒干渉露光すると、突起110の自由端部がテーパー状(先細り状)に形成され、第2反射防止構造170の潜像が形成される。この第2反射防止構造170は突起110と空気との界面までの突出高さがY方向にて徐々に変化している。次に、石英基板200の表裏を逆にして配置し、裏面側より例えば5秒間干渉露光すると、突起110の基端部(突起110間の溝115の底部)に第2反射防止構造180の潜像が形成される。第2反射防止構造180は、突起110と空気との界面までの突出高さ(溝115の深さ)がY方向にて徐々に変化している。以上の露光を連続して実施し、レジスト210中に図8(B)に示すレジストパターンの潜像を形成する。露光の順番は問わない。   Next, the formation of the resist pattern latent image in FIG. 8B will be described. As in FIG. 8A, as shown in FIG. 9A, a resist 210 is applied on the quartz glass substrate 200 to a thickness greater than usual, for example, about 1.2 μm. Then, the laser beam LS1 having an incident angle θ1 and the laser beam LS2 having an incident angle θ2 are irradiated, and the resist 210 is subjected to laser interference exposure. At this time, exposure is performed with an exposure amount, for example, 30 seconds, so that the resist pattern does not bottom the substrate 200. This exposure amount of 30 seconds is the exposure amount that bottoms on the substrate 200 when the resist 210 has a film thickness of 0.8 μm. By increasing the film thickness to 1.2 μm, the substrate 200 is not bottomed, and the groove 115 The bottom is rounded and a latent image of the first antireflection structure 160 is formed. Next, when the substrate 200 is rotated 90 degrees and subjected to interference exposure for 5 seconds, for example, the free end portion of the protrusion 110 is tapered (tapered), and a latent image of the second antireflection structure 170 is formed. In the second antireflection structure 170, the protrusion height to the interface between the protrusion 110 and the air gradually changes in the Y direction. Next, when the quartz substrate 200 is placed upside down and subjected to interference exposure for 5 seconds from the back side, for example, the second antireflection structure 180 is hidden in the base end of the protrusion 110 (the bottom of the groove 115 between the protrusions 110). An image is formed. In the second antireflection structure 180, the protrusion height (depth of the groove 115) to the interface between the protrusion 110 and air gradually changes in the Y direction. The above exposure is continuously performed to form a latent image of the resist pattern shown in FIG. The order of exposure does not matter.

干渉露光による干渉縞の間隔Dは、下式(4)で表される。λsは、レーザー光LS1、LS2の波長である。また、レジスト中の干渉縞の傾斜角度φは下式(5)で表される。nは、露光波長λsに対するレジスト210の屈折率である。また、θ2>θ1とする。 The distance D between the interference fringes due to the interference exposure is expressed by the following expression (4). λs is the wavelength of the laser beams LS1 and LS2. Further, the inclination angle φ of the interference fringes in the resist is expressed by the following formula (5). n r is the refractive index of the resist 210 with respect to the exposure wavelength λs. Further, θ2> θ1.

D=λs/(sin(θ1)+sin(θ2)) (4)
φ=(sin−1(sin(θ2)/n)−sin−1(sin(θ1)))/2
(5)
例えば、干渉露光用のレーザー光源は、連続発振のHe−Cdレーザー(波長λs=325nm)であり、レジスト210はポジ型レジストであり、レジスト膜厚は1.2μmである。また、例えば、レーザー光の入射角度はθ1=9.1°、θ2=45.7°であり、レジストの屈折率はn=1.60である。このとき、上式(4)より、基板200の平面に平行な方向での干渉縞の間隔はD=372nmである。また、上式(5)より、干渉縞の傾斜φは約10°(φ=10.4°)である。傾斜に垂直な方向での干渉縞の周期は、D・cosφ=366nmである。このようにして、基板200の法線に対する干渉角度を左右(θ1とθ2)で非対称にして、傾斜した干渉縞の潜像をレジスト210中に形成する。
D = λs / (sin (θ1) + sin (θ2)) (4)
φ = (sin −1 (sin (θ2) / n r ) −sin −1 (sin (θ1))) / 2
(5)
For example, the laser light source for interference exposure is a continuous wave He—Cd laser (wavelength λs = 325 nm), the resist 210 is a positive resist, and the resist film thickness is 1.2 μm. Further, for example, the incident angles of the laser light are θ1 = 9.1 ° and θ2 = 45.7 °, and the refractive index of the resist is n r = 1.60. At this time, from the above equation (4), the interval between the interference fringes in the direction parallel to the plane of the substrate 200 is D = 372 nm. Further, from the above equation (5), the inclination φ of the interference fringes is about 10 ° (φ = 10.4 °). The period of the interference fringes in the direction perpendicular to the inclination is D · cos φ = 366 nm. In this manner, the interference angle with respect to the normal line of the substrate 200 is asymmetrical on the left and right sides (θ1 and θ2), and a latent image of inclined interference fringes is formed in the resist 210.

次に、図9(B)に示すように、露光されたレジスト210を現像し、10°傾斜した1次元のレジストパターン220を得る。ここで、レジストパターン220の下層にレジスト210が残存しており、レジストパターン220の自由端部と基端部とには、図8(A)に示す突起110の第1反射防止構造150,160と同様な構造が形成される。   Next, as shown in FIG. 9B, the exposed resist 210 is developed to obtain a one-dimensional resist pattern 220 inclined by 10 °. Here, the resist 210 remains below the resist pattern 220, and the first antireflection structures 150 and 160 of the protrusion 110 shown in FIG. 8A are provided at the free end and the base end of the resist pattern 220. A similar structure is formed.

次に、図9(C)に示すように、レジストパターン220をマスクとして、斜め10°の方向から石英ガラス基板を異方性ドライエチングする。エッチングガスには、例えばCFやCHFやCを用いる。図9(C)はエッチング途中であり、図9(D)に示すように、レジストパターンがなくなるまで、オーバーエッチングを行う。エッチングガスの流量やガス構成等の条件を変えることで選択比を制御することができる。基板200とレジスト210に対する選択比を1:1とすると、レジストパターン220と同じ形状の複数の突起240を形成することができる。また、選択比を適宜変えることで、レジストパターン深さを自在に変えることもできる。さらに、エッチング条件を途中で変えてもよい。突起110の自由端部及び基端部のエッチング処理だけ、エッチング圧力やエッチングガスの構成を変化させると、反射防止構造150、160、170、180の傾斜を制御することができる。このようにして、10°傾斜し、第1反射構造250,260を有する複数の突起240が、基材230の表面に配列された1次元の透過型回折格子が形成される。 Next, as shown in FIG. 9C, the quartz glass substrate is anisotropically dry etched from an oblique direction of 10 ° using the resist pattern 220 as a mask. For example, CF 4 , CHF 3, or C 2 F 6 is used as the etching gas. FIG. 9C is in the middle of etching, and as shown in FIG. 9D, over etching is performed until the resist pattern disappears. The selection ratio can be controlled by changing the conditions such as the flow rate of the etching gas and the gas composition. When the selection ratio with respect to the substrate 200 and the resist 210 is 1: 1, a plurality of protrusions 240 having the same shape as the resist pattern 220 can be formed. Further, the resist pattern depth can be freely changed by appropriately changing the selection ratio. Furthermore, the etching conditions may be changed midway. If the etching pressure and the configuration of the etching gas are changed only by the etching processing of the free end portion and the base end portion of the protrusion 110, the inclination of the antireflection structures 150, 160, 170, and 180 can be controlled. In this manner, a one-dimensional transmissive diffraction grating in which a plurality of protrusions 240 inclined by 10 ° and having the first reflecting structures 250 and 260 are arranged on the surface of the base material 230 is formed.

なお、上記では基材100と同じ石英ガラスにより複数の突起240を形成する例を説明したが、本実施形態はこれに限定されない。例えば、図9(B)に示すレジストパターン220に樹脂(ポリマー)を充填し、その樹脂を硬化させ、レジストパターン220を剥離することで、基材100とは異なる素材で複数の突起240を形成してもよい。また、レジストパターン220から金型を作製することができ、同様に樹脂の転写によって、複数の突起240を量産することもできる。   In addition, although the example which forms the some protrusion 240 by the quartz glass same as the base material 100 was demonstrated above, this embodiment is not limited to this. For example, the resist pattern 220 shown in FIG. 9B is filled with a resin (polymer), the resin is cured, and the resist pattern 220 is peeled to form a plurality of protrusions 240 using a material different from the substrate 100. May be. In addition, a mold can be produced from the resist pattern 220, and a plurality of protrusions 240 can be mass-produced by transferring a resin.

さらに、図8(A)第1反射防止構造150、160および図8(B)に示す第2反射防止構造170、180は、周期構造を説明したが、ランダム構造であってもよい。   Furthermore, although the first antireflection structures 150 and 160 shown in FIG. 8A and the second antireflection structures 170 and 180 shown in FIG. 8B have been described as periodic structures, they may be random structures.

以下、ランダム構造の作製方法を示す。上記干渉露光で形成したレジストパターンにAgを蒸着すると、突起110の自由端部及び基端部に直径数nmから数十nmのAgアイランドが形成される。次にAgアイランド付きレジストパターンをマスクとして、CF等のガスを用い、ドライエッチングを行う。すると、突起110の自由端部に第1反射防止構造150、160がランダムに形成される。(図示せず)このとき望ましくはAgの膜厚は5〜10nmがよい。5nm前後にすると、ドライエッチング処理で、マスクとして機能したAgアイランドが適度に後退し、突起110の自由端部に第1反射防止構造150、160がランダムに形成できる。エッチング条件を変化させると様々な形状が可能である。 Hereinafter, a method for producing a random structure will be described. When Ag is vapor-deposited on the resist pattern formed by the interference exposure, Ag islands having a diameter of several nanometers to several tens of nanometers are formed at the free end and the base end of the protrusion 110. Next, dry etching is performed using a gas such as CF 4 by using the resist pattern with an Ag island as a mask. Then, the first antireflection structures 150 and 160 are randomly formed on the free ends of the protrusions 110. At this time, the film thickness of Ag is preferably 5 to 10 nm. When the thickness is about 5 nm, the Ag island functioning as a mask is appropriately retracted by the dry etching process, and the first antireflection structures 150 and 160 can be randomly formed on the free ends of the protrusions 110. Various shapes are possible by changing the etching conditions.

5.検出装置
図10(A)、図10(B)に、本実施形態の回折格子が適用される検出装置の第1の構成例を示す。この検出装置は、ラマンセンサー300(センサーチップ、光デバイス)、第1の凹面鏡310、バンドパスフィルター320、偏光板330、回折格子340、第2の凹面鏡350、アレイ光検出器360(検出器)、光源370、エッジフィルター380を含む。この検出装置は、1つの回折格子340と2つの凹面鏡310、350が所定の位置関係に配置されたシングル分光装置である。なお、以下では、ラマン分光測定を行うための検出装置について説明するが、本実施形態の回折格子は、他の分光手法を用いた検出装置にも適用できる。
5. Detection Device FIGS. 10A and 10B show a first configuration example of a detection device to which the diffraction grating of the present embodiment is applied. This detection apparatus includes a Raman sensor 300 (sensor chip, optical device), a first concave mirror 310, a bandpass filter 320, a polarizing plate 330, a diffraction grating 340, a second concave mirror 350, and an array photodetector 360 (detector). , A light source 370 and an edge filter 380. This detection apparatus is a single spectroscopic apparatus in which one diffraction grating 340 and two concave mirrors 310 and 350 are arranged in a predetermined positional relationship. In the following, a detection apparatus for performing Raman spectroscopic measurement will be described. However, the diffraction grating of the present embodiment can also be applied to a detection apparatus using another spectroscopic technique.

図10(B)に示すように、光源370からのレーザー光は、エッジフィルター380により反射され、ラマンセンサー300上の試料390(標的物)に照射される。例えば、光源370は、連続発振のHe−Neレーザー(波長633nm、出力20mW)である。レーザー光が照射された試料390は、ラマンセンサー300による表面増強ラマン散乱により、レイリー散乱光とラマン散乱光を発生させる。これらの散乱光は、エッジフィルター380に入射される。このエッジフィルター380は、レーザー光の波長(633nm)の光を反射し、それより長波長の光を透過する。すなわち、エッジフィルター380によりレイリー散乱光は反射され、ラマン散乱光は透過される。透過したラマン散乱光は凹面鏡310に入射され、凹面鏡310により平行光にされる。   As shown in FIG. 10B, the laser light from the light source 370 is reflected by the edge filter 380 and irradiated on the sample 390 (target object) on the Raman sensor 300. For example, the light source 370 is a continuous oscillation He—Ne laser (wavelength 633 nm, output 20 mW). The sample 390 irradiated with the laser light generates Rayleigh scattered light and Raman scattered light by surface enhanced Raman scattering by the Raman sensor 300. These scattered lights are incident on the edge filter 380. The edge filter 380 reflects light having a wavelength of laser light (633 nm) and transmits light having a longer wavelength. That is, Rayleigh scattered light is reflected by the edge filter 380 and Raman scattered light is transmitted. The transmitted Raman scattered light is incident on the concave mirror 310 and converted into parallel light by the concave mirror 310.

次に、図10(A)に示すように、凹面鏡310からの反射光は、バンドパスフィルター320と偏光板330を通過し、回折格子340に所定の入射角度αで入射される。バンドパスフィルター320は、さらにレイリー散乱光を遮断し、ラマン散乱光のみを透過する。偏光板330は、回折格子340への入射光を直線偏光にし、その偏光方位を回折格子340の溝と平行にする。回折格子340への入射光は、回折角度βで透過回折され、分光される。分光されたラマン散乱光は、波長毎に僅かに異なる回折角度であり、各波長では平行光である。この分光されたラマン散乱光は、凹面鏡350へ入射され、凹面鏡350によりアレイ光検出器360上に集光され、スペクトル分布を形成する。そして、アレイ光検出器360によりラマン散乱光のスペクトル分布が検出される。   Next, as shown in FIG. 10A, the reflected light from the concave mirror 310 passes through the band-pass filter 320 and the polarizing plate 330 and enters the diffraction grating 340 at a predetermined incident angle α. The bandpass filter 320 further blocks Rayleigh scattered light and transmits only Raman scattered light. The polarizing plate 330 makes incident light on the diffraction grating 340 linearly polarized light and makes its polarization direction parallel to the grooves of the diffraction grating 340. Incident light on the diffraction grating 340 is transmitted and diffracted at a diffraction angle β and split. The spectrally scattered Raman scattered light has a slightly different diffraction angle for each wavelength, and is parallel light at each wavelength. The spectrally scattered Raman scattered light is incident on the concave mirror 350 and is collected on the array photodetector 360 by the concave mirror 350 to form a spectral distribution. The array photodetector 360 detects the spectral distribution of the Raman scattered light.

次に、この検出装置の波長分解能について具体的に説明する。アレイ光検出器360上でのレイリー散乱光の位置をX(λ)とし、ラマン散乱光(ストークス光)の位置をX(λ+Δλ)とすると、これらの位置間の距離は下式(6)で表される。ここで、fは凹面鏡350の集光距離(焦点距離)、Δβ/Δλは回折格子の波長分解能である。   Next, the wavelength resolution of this detection apparatus will be specifically described. If the position of Rayleigh scattered light on the array photodetector 360 is X (λ) and the position of Raman scattered light (Stokes light) is X (λ + Δλ), the distance between these positions is expressed by the following equation (6). expressed. Here, f is the focusing distance (focal length) of the concave mirror 350, and Δβ / Δλ is the wavelength resolution of the diffraction grating.

X(λ+Δλ)−X(λ)=f・Δλ・(Δβ/Δλ) (6)
上式(6)より、波長分解能Δβ/Δλが十分に大きい場合には、凹面鏡の集光距離fが短くても、ラマン散乱光とレイリー散乱光の間を広く分光できることがわかる。そのため、本実施形態の高分解能な回折格子を用いることで、凹面鏡350の集光距離fを短くし、各構成要素をコンパクトに配置して分光器を小型化できる。
X (λ + Δλ) −X (λ) = f · Δλ · (Δβ / Δλ) (6)
From the above equation (6), it can be seen that when the wavelength resolution Δβ / Δλ is sufficiently large, even if the condensing distance f of the concave mirror is short, the spectrum between the Raman scattered light and the Rayleigh scattered light can be widely dispersed. Therefore, by using the high-resolution diffraction grating of the present embodiment, the condensing distance f of the concave mirror 350 can be shortened, each component can be arranged compactly, and the spectrometer can be downsized.

例えば、図3(A)等で説明した回折格子では、回折格子の周期は366nm(2700本/mm)であり、傾斜角度は10°であり、波長分解能は0.009rad/nmである。この場合、焦点距離f=10mmの凹面鏡を用いて、波長差Δλ=0.5nmの2つの散乱光成分をアレイ光検出器360の上で45μm離すことができる。この距離は、一般的なアレイ光検出器を用いて十分に解像できる距離である。このように、本実施形態の回折格子を用いることで、集光距離の短い凹面鏡でも十分な分解能を実現できる。また、レイリー散乱光からラマン散乱光までの距離は、45μm×100/0.5=9mm程度となる。この距離は、レイリー散乱光とラマン散乱光を十分に分離できる距離である。そのため、レイリー散乱光を遮断するためのバンドパスフィルター320の特性に対する負荷は大きく軽減される。検出精度が比較的低くてもよい分光用途では、バンドパスフィルター320の省略が可能である。   For example, in the diffraction grating described in FIG. 3A and the like, the period of the diffraction grating is 366 nm (2700 lines / mm), the tilt angle is 10 °, and the wavelength resolution is 0.009 rad / nm. In this case, using a concave mirror with a focal length f = 10 mm, two scattered light components having a wavelength difference Δλ = 0.5 nm can be separated by 45 μm on the array photodetector 360. This distance is a distance that can be sufficiently resolved using a general array photodetector. Thus, by using the diffraction grating of this embodiment, sufficient resolution can be realized even with a concave mirror with a short condensing distance. The distance from Rayleigh scattered light to Raman scattered light is about 45 μm × 100 / 0.5 = 9 mm. This distance is a distance at which Rayleigh scattered light and Raman scattered light can be sufficiently separated. Therefore, the load on the characteristics of the bandpass filter 320 for blocking Rayleigh scattered light is greatly reduced. For spectral applications where the detection accuracy may be relatively low, the bandpass filter 320 can be omitted.

図11(A)、図11(B)に、本実施形態の回折格子が適用される検出装置の第2の構成例を示す。この検出装置は、ラマンセンサー300、バンドパスフィルター320、偏光板330、回折格子340、凹面鏡350、アレイ光検出器360、光源370、エッジフィルター380、レンズ400を含む。この検出装置は、1つの回折格子340と1つの凹面鏡350が所定の位置関係に配置されたシングル分光装置である。なお、図10(A)、図10(B)で説明した構成要素と同一の要素には同一の符号を付し、適宜説明を省略する。   11A and 11B show a second configuration example of a detection apparatus to which the diffraction grating of the present embodiment is applied. This detection device includes a Raman sensor 300, a bandpass filter 320, a polarizing plate 330, a diffraction grating 340, a concave mirror 350, an array photodetector 360, a light source 370, an edge filter 380, and a lens 400. This detection device is a single spectroscopic device in which one diffraction grating 340 and one concave mirror 350 are arranged in a predetermined positional relationship. Note that the same components as those described in FIGS. 10A and 10B are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

図11(B)に示すように、光源370からのレーザー光は、エッジフィルター380により反射され、ラマンセンサー300上の試料390(標的物)に照射される。試料390からの散乱光は、エッジフィルター380に入射され、ラマン散乱光が透過される。透過したラマン散乱光はレンズ400に入射され、レンズ400により平行光にされる。   As shown in FIG. 11B, the laser light from the light source 370 is reflected by the edge filter 380 and irradiated onto the sample 390 (target object) on the Raman sensor 300. The scattered light from the sample 390 is incident on the edge filter 380, and the Raman scattered light is transmitted. The transmitted Raman scattered light enters the lens 400 and is converted into parallel light by the lens 400.

次に、図11(A)に示すように、レンズ400からの平行光は、バンドパスフィルター320と偏光板330を通過し、回折格子340に所定の入射角度αで入射される。レンズ400は、試料390からの散乱光をもれなく平行度の高い平行光線にして回折格子340に入射させため、回折格子340は、その波長分解能を十分に発揮するとともに極微弱光を分光できる。回折格子340への入射光は、回折角度βで透過回折され、分光される。分光されたラマン散乱光は、凹面鏡350へ入射され、凹面鏡350によりアレイ光検出器360上に集光され、アレイ光検出器360によりスペクトル分布が検出される。   Next, as shown in FIG. 11A, the parallel light from the lens 400 passes through the bandpass filter 320 and the polarizing plate 330 and is incident on the diffraction grating 340 at a predetermined incident angle α. Since the lens 400 causes the scattered light from the sample 390 to enter the diffraction grating 340 as a parallel light beam having a high degree of parallelism, the diffraction grating 340 can sufficiently exhibit its wavelength resolution and can divide extremely weak light. Incident light on the diffraction grating 340 is transmitted and diffracted at a diffraction angle β and split. The spectrally scattered Raman scattered light is incident on the concave mirror 350, is condensed on the array photodetector 360 by the concave mirror 350, and the spectral distribution is detected by the array photodetector 360.

この第2の構成例によれば、上記第1の構成例と同様に、短い集光距離(例えばf=10mm)の凹面鏡350で十分な分解能(例えば45μm/0.5nm)を得たり、バンドパスフィルター320の負荷を軽減することができる。また、検出装置の構成が空間に占める体積を第1の構成例よりもさらに小さくし、検出装置をコンパクトにできる。また、第2の構成例では平行な散乱光をエッジフィルター380へ入射させるため、エッジフィルター380の波長選択作用をより効果的に利用できる。   According to the second configuration example, a sufficient resolution (for example, 45 μm / 0.5 nm) can be obtained with the concave mirror 350 having a short condensing distance (for example, f = 10 mm) or a band can be obtained as in the first configuration example. The load on the pass filter 320 can be reduced. Also, the volume of the space occupied by the configuration of the detection device can be made smaller than that of the first configuration example, and the detection device can be made compact. In the second configuration example, since parallel scattered light is incident on the edge filter 380, the wavelength selection action of the edge filter 380 can be used more effectively.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語(回折格子、センサーチップ、検出器等)と共に記載された用語(透過型回折格子、ラマンセンサー、アレイ光検出器等)は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また回折格子、分光装置、検出装置等の構成、動作も本実施形態で説明したものに限定に限定されず、種々の変形実施が可能である。   Although the present embodiment has been described in detail as described above, it will be easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. Accordingly, all such modifications are intended to be included in the scope of the present invention. For example, in the specification or drawings, terms (transmission diffraction gratings, Raman sensors, array photodetectors, etc.) described at least once together with different terms (diffraction gratings, sensor chips, detectors, etc.) having a broader meaning or the same meaning are used. The different terms can be used anywhere in the specification or drawings. Further, the configuration and operation of the diffraction grating, the spectroscopic device, the detection device, and the like are not limited to those described in this embodiment, and various modifications can be made.

100 基材、101 基材の表面、102 基材の裏面、110 複数の突起、
130 基準線、140,141 傾斜面、150,160 第1反射構造、
170,180 第2反射構造、190 反射防止膜、200 石英ガラス基板、
210 レジスト、220 レジストパターン、230 基材、240 複数の突起、
300 ラマンセンサー、310 凹面鏡、320 バンドパスフィルター、
330 偏光板、340 回折格子、350 凹面鏡、360 アレイ光検出器、
370 光源、380 エッジフィルター、390 試料、400 レンズ、
P 周期、φ 傾斜角度、α 入射角度、β 回折角度、θ ブラッグ角度、
λ 波長、Δβ/Δλ 波長分解能、LS1 第1のレーザー光、
LS2 第2のレーザー光、θ1 第1のレーザー光の入射角度、
θ2 第2のレーザー光の入射角度、λs 露光波長、f 集光距離
100 base material, 101 front surface of base material, 102 back surface of base material, 110 plural protrusions,
130 reference line, 140, 141 inclined surface, 150, 160 first reflective structure,
170,180 second reflection structure, 190 antireflection film, 200 quartz glass substrate,
210 resist, 220 resist pattern, 230 base material, 240 multiple protrusions,
300 Raman sensor, 310 concave mirror, 320 bandpass filter,
330 polarizing plate, 340 diffraction grating, 350 concave mirror, 360 array photodetector,
370 light source, 380 edge filter, 390 sample, 400 lens,
P period, φ tilt angle, α incident angle, β diffraction angle, θ Bragg angle,
λ wavelength, Δβ / Δλ wavelength resolution, LS1 first laser beam,
LS2 second laser light, θ1 incident angle of the first laser light,
θ2 Incident angle of the second laser beam, λs exposure wavelength, f focusing distance

Claims (7)

入射光を透過する透過型回折格子を含む分光装置と、
標的物に光を入射する光源と、
前記標的物からのラマン散乱光を前記入射光として前記分光装置に入射させる光学系と、
前記ラマン散乱光が前記分光装置により回折されて得られた回折光のスペクトルを検出する検出器と、を含み、
前記透過型回折格子は、基材より第1方向に沿って周期的に突出する複数の突起を有し、前記複数の突起の各々が傾斜面を有し、前記傾斜面は、前記基材に垂直な基準線に対して傾斜し、
前記入射光の波長λと、前記傾斜面に垂直な方向における前記傾斜面の周期Pとの比λ/Pは、1.0<λ/P<2.0であり、
前記光学系は、前記傾斜面に対するブラッグ角度θよりも小さい、前記基準線に対する入射角αで、前記ラマン散乱光を前記透過型回折格子に入射し、
前記検出器は、前記ブラッグ角度θよりも大きい、前記基準線に対する入射角βで回折された前記回折光のスペクトルを検出し、
前記複数の突起の各々は、前記傾斜面からの前記第1方向での距離が異なるに従い、前記複数の突起の各々と空気との界面に至る前記基材からの突出高さが異なる第1反射防止構造を有することを特徴とする検出装置
A spectroscopic device including a transmissive diffraction grating that transmits incident light ;
A light source that impinges light on the target;
An optical system for allowing Raman scattered light from the target to enter the spectroscopic device as the incident light;
A detector for detecting a spectrum of diffracted light obtained by diffracting the Raman scattered light by the spectroscopic device,
The transmission diffraction grating has a plurality of protrusions that periodically protrude from the base material along the first direction, each of the plurality of protrusions has an inclined surface, and the inclined surface is formed on the base material. Tilted with respect to a vertical reference line,
The ratio λ / P between the wavelength λ of the incident light and the period P of the inclined surface in the direction perpendicular to the inclined surface is 1.0 <λ / P <2.0.
The optical system enters the Raman scattered light into the transmission diffraction grating at an incident angle α with respect to the reference line, which is smaller than a Bragg angle θ with respect to the inclined surface ,
The detector detects a spectrum of the diffracted light diffracted at an incident angle β with respect to the reference line, which is larger than the Bragg angle θ ;
Each of the plurality of protrusions has a different protrusion height from the base material reaching the interface between each of the plurality of protrusions and air as the distance in the first direction from the inclined surface differs. A detection device having a prevention structure.
請求項1において、
前記第1反射防止構造は、前記突起の自由端部に形成されていることを特徴とする検出装置
In claim 1,
The detection apparatus, wherein the first antireflection structure is formed at a free end of the protrusion.
請求項2において、
前記第1反射防止構造は、前記突起の基端部にも形成されていることを特徴とする検出装置
In claim 2,
The detection device, wherein the first antireflection structure is also formed at a base end portion of the protrusion.
請求項1乃至3のいずれかにおいて、
前記複数の突起の各々は、前記第1方向と直交する第2方向に沿って、一側面から他側面に向けて延在形成され、
前記複数の突起の各々は、前記一側面からの前記第2方向での距離が異なるに従い、前記複数の突起の各々と空気との界面に至る前記基材からの突出高さが異なる第2反射防止構造をさらに有することを特徴とする検出装置
In any one of Claims 1 thru | or 3,
Each of the plurality of protrusions is formed to extend from one side surface to the other side surface along a second direction orthogonal to the first direction,
Each of the plurality of projections has a second projection height different from the base material reaching the interface between each of the plurality of projections and air as the distance in the second direction from the one side surface is different. A detection device further comprising a prevention structure.
請求項1乃至4のいずれかにおいて、
前記基準線に対する前記傾斜面の傾斜角度をφとする場合に、
前記傾斜面は、前記第1方向に周期P/cosφで配列され、
前記入射光は、前記基準線に垂直な平面に平行で、前記傾斜面の配列方向に垂直な直線偏光であることを特徴とする検出装置
In any one of Claims 1 thru | or 4,
When the inclination angle of the inclined surface with respect to the reference line is φ,
The inclined surfaces are arranged with a period P / cosφ in the first direction,
The detection apparatus according to claim 1, wherein the incident light is linearly polarized light parallel to a plane perpendicular to the reference line and perpendicular to an arrangement direction of the inclined surfaces.
基材に塗布されたレジストに対して第1のレーザー光と第2のレーザー光を入射して、
前記レジストを干渉露光し、
前記干渉露光されたレジストを現像し、
前記基材を露出することなく覆うレジスト膜と、前記基材の平面に向かう垂線に対して傾斜角度φで傾斜するレジストパターンを形成する請求項1乃至5のいずれかに記載の分光装置の製造方法。
The first laser beam and the second laser beam are incident on the resist applied to the substrate,
Interference exposure of the resist;
Developing the interference exposed resist;
6. The spectroscopic device according to claim 1 , wherein a resist film that covers the base material without being exposed and a resist pattern that is inclined at an inclination angle φ with respect to a normal line that faces the plane of the base material are formed. Method.
前記基材に塗布されたレジストをレーザー干渉露光し、
前記基材を90度回転してレーザー干渉露光し、
前記干渉露光されたレジストを現像し、
前記基材を露出することなく覆うレジスト膜と、前記基材の平面に向かう垂線に対して傾斜角度φで傾斜するレジストパターンを形成する請求項4記載の分光装置の製造方法。
Laser interference exposure of the resist applied to the substrate,
The substrate is rotated 90 degrees to perform laser interference exposure,
Developing the interference exposed resist;
The method for manufacturing a spectroscopic device according to claim 4 , wherein a resist film that covers the base material without being exposed and a resist pattern that is inclined at an inclination angle φ with respect to a perpendicular line that extends toward a plane of the base material.
JP2011157590A 2011-07-19 2011-07-19 Detection device and method for manufacturing spectroscopic device Expired - Fee Related JP5834567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157590A JP5834567B2 (en) 2011-07-19 2011-07-19 Detection device and method for manufacturing spectroscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157590A JP5834567B2 (en) 2011-07-19 2011-07-19 Detection device and method for manufacturing spectroscopic device

Publications (2)

Publication Number Publication Date
JP2013024625A JP2013024625A (en) 2013-02-04
JP5834567B2 true JP5834567B2 (en) 2015-12-24

Family

ID=47783162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157590A Expired - Fee Related JP5834567B2 (en) 2011-07-19 2011-07-19 Detection device and method for manufacturing spectroscopic device

Country Status (1)

Country Link
JP (1) JP5834567B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079679A1 (en) 2017-10-20 2019-04-25 Magic Leap, Inc. Configuring optical layers in imprint lithography processes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506949A (en) * 1983-05-27 1985-03-26 Rca Corporation Diffractive color separation filter
US5009484A (en) * 1989-05-03 1991-04-23 Advanced Environmental Research Group Diffraction gratings having high efficiencies
JPH1096807A (en) * 1996-09-19 1998-04-14 Dainippon Printing Co Ltd Holographic optical element and its production
JPWO2004081620A1 (en) * 2003-03-13 2006-06-15 旭硝子株式会社 Diffraction element and optical device
CN100386653C (en) * 2003-03-13 2008-05-07 旭硝子株式会社 Diffraction element and optical device
JP2007187732A (en) * 2006-01-11 2007-07-26 Sumitomo Electric Ind Ltd Diffractive optical element and its manufacturing method
CN102360092B (en) * 2007-06-19 2014-05-07 阿尔卑斯电气株式会社 Optical element and method for manufacturing same

Also Published As

Publication number Publication date
JP2013024625A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5724213B2 (en) Detection device
US9041924B2 (en) Transmissive diffraction grating and detection apparatus
US7408712B2 (en) Polarization-selectively blazed, diffractive optical element
JP4310080B2 (en) Diffractive optical element and optical system and optical apparatus provided with the same
JP4800437B2 (en) Broadband wire grid polarizer for the visible spectrum
US7986407B2 (en) Method and apparatus using volume holographic wavelength blockers
US20110000881A1 (en) Method of manufacturing an optical integrated nanospectrometer
JP2003255113A (en) Light separation element and optical appliance using the same
US8169703B1 (en) Monolithic arrays of diffraction gratings
JP2013007830A5 (en)
JP2779102B2 (en) Multi-wavelength interferometer
US11536981B2 (en) Diffractive optical element, projection device, and measurement device
JP2015028528A (en) Transmission diffractive optical element and measuring apparatus
JP2002169022A (en) Optical element, spectroscopic device and integrated optical device using the same
JP2009121986A (en) Spectral apparatus
JP5834567B2 (en) Detection device and method for manufacturing spectroscopic device
US8441729B2 (en) Optical arrangement, method of use, and method for determining a diffraction grating
JP2011106842A (en) Diffraction grating spectrometer
KR101884118B1 (en) Spectrometer based on transmission diffraction grating
US9594198B2 (en) Optical focusing device
Lu et al. Polarization-insensitive two-dimensional reflective grating with high-diffraction efficiency for spaceborne CO2 imaging spectrometer
JP6358710B2 (en) Diffractive optical element
JP2006259439A (en) Demultiplexing element and demultiplexing method
JP2000321135A (en) Spectrometer
JP6455933B2 (en) Diffractive optical element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees