JP2000321135A - Spectrometer - Google Patents

Spectrometer

Info

Publication number
JP2000321135A
JP2000321135A JP11126760A JP12676099A JP2000321135A JP 2000321135 A JP2000321135 A JP 2000321135A JP 11126760 A JP11126760 A JP 11126760A JP 12676099 A JP12676099 A JP 12676099A JP 2000321135 A JP2000321135 A JP 2000321135A
Authority
JP
Japan
Prior art keywords
wavelength
beam shape
correcting means
light
shape correcting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11126760A
Other languages
Japanese (ja)
Inventor
Yasuyuki Suzuki
泰幸 鈴木
Yoshihiro Sanpei
義広 三瓶
Yoriki Okada
頼樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP11126760A priority Critical patent/JP2000321135A/en
Publication of JP2000321135A publication Critical patent/JP2000321135A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a spectrometer in which moisture resistance and temperature characteristics can be enhanced. SOLUTION: The spectrometer comprises a lens 2 for collimating an incident light, a wavelength dispersion element 9, a beam shape correcting means 10 integrated with the wavelength dispersion element 9 and directing the collimated light from the collimating lens 2 to the wavelength dispersion element 9 thus refracting the outgoing light beam from the wavelength dispersion element 9, a lens 4 for focusing the output from light beam from the beam shape correcting means 10, and a photodetector 5 for detecting the output light beam from the focus lens 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長分散素子を用
いた分光装置に関し、特に対環境性及び温度特性の改善
が可能な分光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrometer using a wavelength dispersive element, and more particularly to a spectrometer capable of improving environmental characteristics and temperature characteristics.

【0002】[0002]

【従来の技術】従来の分光装置では入射光を波長分散素
子である回折格子等に照射して波長分散された光を光検
出器で受光することにより波長毎に光を分離して検出す
るものである。
2. Description of the Related Art In a conventional spectroscope, incident light is irradiated on a diffraction grating or the like which is a wavelength dispersive element, and wavelength-dispersed light is received by a photodetector to separate and detect light for each wavelength. It is.

【0003】図4はこのような従来の分光装置の一例を
示す構成図である。図4において1は外部から光源の出
力光、若しくは、光ファイバからの出射光が入射される
入射端、2はコリメーティングレンズ、3は回折格子等
の波長分散素子、4はフォーカシングレンズ、5はフォ
トダイオードアレイ等を用いた光検出器である。
FIG. 4 is a block diagram showing an example of such a conventional spectroscopic device. In FIG. 4, reference numeral 1 denotes an incident end where output light from a light source or light emitted from an optical fiber is incident from outside, 2 is a collimating lens, 3 is a wavelength dispersion element such as a diffraction grating, 4 is a focusing lens, and 5 is a focusing lens. Is a photodetector using a photodiode array or the like.

【0004】入射端1からの出力光はコリメーティング
レンズ2により平行光に変換されて波長分散素子3に入
射される。波長分散素子3からの波長分散された光はフ
ォーカシングレンズ4により集光されて光検出器5に入
射される。
The output light from the incident end 1 is converted into parallel light by a collimating lens 2 and is incident on a wavelength dispersion element 3. The wavelength-dispersed light from the wavelength dispersion element 3 is condensed by the focusing lens 4 and is incident on the photodetector 5.

【0005】また、図5は波長分散素子3である回折格
子の一例を示す構造断面図である。図5において6はガ
ラス等で形成される基板、7は回折を生じさせるための
格子が多数設けられた樹脂のレプリカ、8は金属の反射
膜である。
FIG. 5 is a structural sectional view showing an example of a diffraction grating which is the wavelength dispersion element 3. In FIG. 5, 6 is a substrate made of glass or the like, 7 is a resin replica provided with a large number of gratings for causing diffraction, and 8 is a metal reflection film.

【0006】基板6上には多数の格子が設けられた樹脂
のレプリカ7が形成され、レプリカ7の表面には反射膜
8により覆われている。
A replica 7 of a resin having a large number of lattices is formed on a substrate 6, and the surface of the replica 7 is covered with a reflection film 8.

【0007】ここで、図4に示す従来例の動作を説明す
る。回折格子等の波長分散素子3に入射された光はその
波長により回折角が異なるので、それぞれ異なる方向に
回折光として出射され、フォーカシングレンズ4により
光検出器5を構成する各受光素子にそれぞれ集光され
る。
Here, the operation of the conventional example shown in FIG. 4 will be described. Since the light incident on the wavelength dispersion element 3 such as a diffraction grating has a different diffraction angle depending on the wavelength, the light is emitted as diffracted light in different directions, and is focused by the focusing lens 4 on each light receiving element constituting the photodetector 5. Be lighted.

【0008】例えば、図4中”FP01”、”FP0
2”及び”FP03”に位置する受光素子では異なる波
長の光が集光される。図6に示す従来例では回折格子等
の波長分散素子3を回転させる必要がないので高速性及
び信頼性に優れている。
For example, "FP01", "FP0" in FIG.
Light of different wavelengths is collected by the light receiving elements located at 2 "and" FP03. "In the conventional example shown in Fig. 6, there is no need to rotate the wavelength dispersion element 3 such as a diffraction grating, so that high speed and reliability are achieved. Are better.

【0009】例えば、回折格子等の波長分散素子3の回
折の次数を”m”、回折格子等の波長分散素子3の格子
定数を”d”、回折格子等の波長分散素子3への入射角
及び出射角を”i”及び”θ”、波長を”λ”とすれ
ば、 mλ/d=sini+sinθ (1) となる。
For example, the order of diffraction of the wavelength dispersion element 3 such as a diffraction grating is "m", the lattice constant of the wavelength dispersion element 3 such as a diffraction grating is "d", and the angle of incidence on the wavelength dispersion element 3 such as a diffraction grating. If the emission angles are “i” and “θ” and the wavelength is “λ”, then mλ / d = sini + sinθ (1)

【0010】図4に示すような分光装置をWDM(Wave
length Division Multiplxing:波長多重信号)システ
ム監視モニタ等のように狭い波長範囲を扱うように設計
した場合にはフォーカシングレンズ4の焦点距離と比較
して波長分散による光路の広がりが小さくなり、光検出
器5として1次元配列のフォトダオードアレイを用いた
時の各素子の位置と出射角はほぼ比例関係になる。
[0010] A spectroscopic device as shown in FIG.
If the wavelength division multiplexing signal is designed to handle a narrow wavelength range, such as a system monitoring monitor, the optical path spread due to chromatic dispersion becomes smaller than the focal length of the focusing lens 4 and the photodetector When a one-dimensional array of photodiode arrays is used as 5, the position of each element and the emission angle have a substantially proportional relationship.

【0011】但し、波長と出射角との関係は式(1)を
微分した、 dλ/dθ|i=(d/m)・cosθ (2) となる。
However, the relationship between the wavelength and the emission angle is dλ / dθ | i = (d / m) · cosθ (2) obtained by differentiating equation (1).

【0012】式(2)から分かるように波長と分散角は
出射角の余弦に比例することになる。この出射角は分光
装置の波長範囲、用いる回折格子の格子定数及びフォー
カンシングレンズ4の焦点距離等を用いて式(1)から
求めることができる。
As can be seen from equation (2), the wavelength and the dispersion angle are proportional to the cosine of the emission angle. This emission angle can be obtained from equation (1) using the wavelength range of the spectroscope, the lattice constant of the diffraction grating used, the focal length of the focusing lens 4, and the like.

【0013】図6はこのような分光装置の一設計例を示
す表であり、図7は各波長に対する出射角を示す表であ
る。この場合、例えば、”λ=1.55[μm]”、”
格子本数900[l/mm]”及び”32[nm]”の
波長範囲で”190個”の受光素子とすれば、平均波長
分散は”32/190=約0.17[nm]”となる。
FIG. 6 is a table showing one design example of such a spectroscopic device, and FIG. 7 is a table showing emission angles for respective wavelengths. In this case, for example, “λ = 1.55 [μm]”, “
If there are "190" light receiving elements in a wavelength range of 900 [l / mm] "and" 32 [nm] ", the average chromatic dispersion is" 32/190 = about 0.17 [nm] ". .

【0014】また、コリメーティングレンズ2として焦
点距離f2が”50mm”のものを用いると回折格子等
の波長分散素子3の使用領域は入射端1の開口数及び波
長分散素子3への入射角で決まり、”11.1[m
m]”の長軸の楕円となる。
If a lens having a focal length f2 of "50 mm" is used as the collimating lens 2, the use area of the wavelength dispersive element 3 such as a diffraction grating becomes the numerical aperture of the incident end 1 and the incident angle to the wavelength dispersive element 3. "11.1 [m
m] ".

【0015】Reileigh基準による理論分解能”
λ/Δλ”は波長分散素子3である回折格子の総溝本数
で求まるので” 900×11.1≒10000 (3) であり、 λ/Δλ=1.55/Δλ=10000 (4) ∴Δλ=1.55/10000≒0.15[nm] (5) となる。
Theoretical resolution based on Reileigh criterion ”
Since λ / Δλ ″ is determined by the total number of grooves of the diffraction grating that is the wavelength dispersion element 3, “900 × 11.1 ≒ 10000 (3), and λ / Δλ = 1.55 / Δλ = 10000 (4) ∴Δλ = 1.55 / 10000 / 0.15 [nm] (5)

【0016】また、結像の大きさ”ω”は、回折光のビ
ーム幅を”3.4[mm]”、フォーカシングレンズ4
に入射する光の半径と焦点距離との比を”NA”とすれ
ば、 ω=2・λ/(π・NA) (6) となる。
The image size "ω" is such that the beam width of the diffracted light is "3.4 [mm]" and the focusing lens 4
Assuming that the ratio between the radius of the light incident on and the focal length is “NA”, ω = 2 · λ / (π · NA) (6)

【0017】式(6)から結像の大きさは”59[μ
m]”なり、分解能は平均波長分散”0.17nm/5
0μm”との積で”0.2[nm]”となり、理論分解
能“Δλ=0.15[nm]”をやや下回り適切な値と
なる。
From the equation (6), the size of the image is "59 [μ]
m] ”and the resolution is average chromatic dispersion“ 0.17 nm / 5
The product of “0 μm” is “0.2 [nm]”, which is slightly below the theoretical resolution “Δλ = 0.15 [nm]” and is an appropriate value.

【0018】[0018]

【発明が解決しようとする課題】しかし、図4に示す従
来例では式(5)から分かるように分解能は回折格子等
の波長分散素子3で使用される領域の大きさに依存して
いるため、分解能を向上させるためには光学系を構成す
る光学部品を小さくすることが困難であり、装置の小型
化が困難であると言った問題点があった。
However, in the conventional example shown in FIG. 4, the resolution depends on the size of the area used in the wavelength dispersion element 3 such as a diffraction grating as can be seen from the equation (5). However, in order to improve the resolution, it is difficult to reduce the size of the optical components constituting the optical system, and it is difficult to reduce the size of the device.

【0019】また、図5に示すように波長分散素子3で
ある回折格子のレプリカ部分はガラス等だけによって形
成されているレンズやプリズムのような光学部品と比較
して対湿性が劣ると言った問題点があった。
Further, as shown in FIG. 5, the replica portion of the diffraction grating, which is the wavelength dispersive element 3, is inferior in moisture resistance to optical components such as lenses and prisms formed only of glass or the like. There was a problem.

【0020】さらに、図5に示す回折格子を空気中で用
いる場合には、空気の屈折率を”n air”、温度を”
T”、回折格子の格子定数を”D”、波長を”λ”とす
ると、その出射角”θ”の温度特性は、 dθ/dT=−λ/(D・cosθ)×{dD/(D・dT) +(1/nair)(dnair/dT)} (7) となる。
Further, the diffraction grating shown in FIG.
If the air has a refractive index of "n air"Temperature"
T ”, the lattice constant of the diffraction grating is“ D ”, and the wavelength is“ λ ”.
Then, the temperature characteristic of the emission angle “θ” is dθ / dT = −λ / (D · cos θ) × {dD / (D · dT) + (1 / nair) (Dnair/ DT)} (7)

【0021】式(7)において”{}”内の第1項は波
長分散素子3である回折格子の線膨張係数であり、第2
項は空気の屈折率の温度係数である。また波長の温度係
数は、 dλ/dT=(dλ/dθ)・(dθ/dT) =−λ・{dD/(D・dT) +(1/nair)(dnair/dT)} (8) となる。
In equation (7), the first term in “{}” is the linear expansion coefficient of the diffraction grating that is the wavelength dispersion element 3, and the second term is
The term is the temperature coefficient of the refractive index of air. The temperature coefficient of the wavelength is: dλ / dT = (dλ / dθ) · (dθ / dT) = − λ · {dD / (D · dT) + (1 / n air ) (dn air / dT)} (8 ).

【0022】例えば、波長を”1.55μm”としてパ
イレックスガラスを基板6とした回折格子を空気中で使
用するとその温度係数は”約3.7pm/℃”となる。
すなわち、分光装置の波長特性は回折格子の材料の線膨
張係数に起因する温度特性を有すると言った問題点があ
った。従って本発明が解決しようとする課題は、対湿性
及び温度特性の改善が可能な分光装置を実現することに
ある。
For example, when a diffraction grating having a wavelength of “1.55 μm” and Pyrex glass as the substrate 6 is used in the air, the temperature coefficient thereof becomes “about 3.7 pm / ° C.”.
That is, there is a problem that the wavelength characteristic of the spectrometer has a temperature characteristic caused by the linear expansion coefficient of the material of the diffraction grating. Therefore, an object of the present invention is to realize a spectroscopic device capable of improving humidity resistance and temperature characteristics.

【0023】[0023]

【課題を解決するための手段】このような課題を達成す
るために、本発明のうち請求項1記載の発明は、波長分
散素子を用いた分光装置において、入射光を平行光にす
るコリメーティングレンズと、波長分散素子と、この波
長分散素子と一体化され前記コリメーティングレンズか
らの前記平行光を前記波長分散素子に入射し、前記波長
分散素子の出射光を屈折させて出射するビーム形状補正
手段と、このビーム形状補正手段の出力を集光するフォ
ーカシングレンズと、このフォーカシングレンズの出力
光を検出する光検出器とを備えたことにより、回折格子
表面のレプリカにはプリズム等のビーム形状補正手段が
設けられるので耐湿性が改善されることになる。
In order to achieve the above object, according to a first aspect of the present invention, a collimator for converting incident light into parallel light in a spectrometer using a wavelength dispersive element is provided. A wavelength dispersing element, a beam integrated with the wavelength dispersing element, the parallel light from the collimating lens being incident on the wavelength dispersive element, and refracting and emitting the light emitted from the wavelength dispersive element. By providing a shape correcting means, a focusing lens for condensing the output of the beam shape correcting means, and a photodetector for detecting the output light of the focusing lens, a beam such as a prism is provided on the replica of the diffraction grating surface. Since the shape correcting means is provided, the moisture resistance is improved.

【0024】また、波長分散素子の出射光をビーム形状
補正手段で補正することにより、波長分散素子の出射角
の余弦成分に起因する非線形性がビーム形状補正手段の
余弦成分による非線形性で補償されることになり、波長
分散特性の平坦化が可能になる。また、波長分散素子と
ビーム形状補正手段を一体化した場合の温度係数をビー
ム形状補正手段の入射面での屈折による温度係数で補正
することにより、温度特性の改善が可能になる。さら
に、プリズム等のビーム形状補正手段の媒質の屈折率を
大きくすることにより、波長分解能を犠牲にすることな
く分光装置の小型化が可能になる。
Further, by correcting the light emitted from the wavelength dispersive element by the beam shape correcting means, the nonlinearity caused by the cosine component of the emission angle of the wavelength dispersive element is compensated by the nonlinearity due to the cosine component of the beam shape correcting means. As a result, the wavelength dispersion characteristics can be flattened. Further, by correcting the temperature coefficient when the wavelength dispersion element and the beam shape correcting means are integrated with the temperature coefficient due to refraction at the incident surface of the beam shape correcting means, the temperature characteristics can be improved. Further, by increasing the refractive index of the medium of the beam shape correcting means such as a prism, the size of the spectroscopic device can be reduced without sacrificing the wavelength resolution.

【0025】請求項2記載の発明は、請求項1記載の発
明である分光装置において、前記波長分散手段が、回折
格子であることにより、回折格子表面のレプリカにはプ
リズム等のビーム形状補正手段が設けられるので耐湿性
が改善されることになる。また、波長分散素子の出射光
をビーム形状補正手段で補正することにより、波長分散
素子の出射角の余弦成分に起因する非線形性がビーム形
状補正手段の余弦成分による非線形性で補償されること
になり、波長分散特性の平坦化が可能になる。また、波
長分散素子とビーム形状補正手段を一体化した場合の温
度係数をビーム形状補正手段の入射面での屈折による温
度係数で補正することにより、温度特性の改善が可能に
なる。さらに、プリズム等のビーム形状補正手段の媒質
の屈折率を大きくすることにより、波長分解能を犠牲に
することなく分光装置の小型化が可能になる。
According to a second aspect of the present invention, in the spectral device according to the first aspect of the present invention, the wavelength dispersion means is a diffraction grating. Is provided, the moisture resistance is improved. Further, by correcting the light emitted from the wavelength dispersion element by the beam shape correction means, the nonlinearity caused by the cosine component of the emission angle of the wavelength dispersion element is compensated by the nonlinearity due to the cosine component of the beam shape correction means. Thus, the wavelength dispersion characteristics can be flattened. Further, by correcting the temperature coefficient when the wavelength dispersive element and the beam shape correcting means are integrated with the temperature coefficient due to refraction at the incident surface of the beam shape correcting means, the temperature characteristics can be improved. Further, by increasing the refractive index of the medium of the beam shape correcting means such as a prism, the size of the spectroscopic device can be reduced without sacrificing the wavelength resolution.

【0026】請求項3記載の発明は、請求項1記載の発
明である分光装置において、前記ビーム形状補正手段
が、プリズムであることにより、回折格子表面のレプリ
カにはプリズム等のビーム形状補正手段が設けられるの
で耐湿性が改善されることになる。また、波長分散素子
の出射光をビーム形状補正手段で補正することにより、
波長分散素子の出射角の余弦成分に起因する非線形性が
ビーム形状補正手段の余弦成分による非線形性で補償さ
れることになり、波長分散特性の平坦化が可能になる。
また、波長分散素子とビーム形状補正手段を一体化した
場合の温度係数をビーム形状補正手段の入射面での屈折
による温度係数で補正することにより、温度特性の改善
が可能になる。さらに、プリズム等のビーム形状補正手
段の媒質の屈折率を大きくすることにより、波長分解能
を犠牲にすることなく分光装置の小型化が可能になる。
According to a third aspect of the present invention, in the spectral device according to the first aspect of the present invention, since the beam shape correcting means is a prism, a beam shape correcting means such as a prism is provided on a replica of a diffraction grating surface. Is provided, the moisture resistance is improved. Also, by correcting the light emitted from the wavelength dispersion element by the beam shape correction means,
Non-linearity due to the cosine component of the emission angle of the wavelength dispersion element is compensated for by non-linearity due to the cosine component of the beam shape correction means, and the chromatic dispersion characteristics can be flattened.
Further, by correcting the temperature coefficient when the wavelength dispersion element and the beam shape correcting means are integrated with the temperature coefficient due to refraction at the incident surface of the beam shape correcting means, the temperature characteristics can be improved. Further, by increasing the refractive index of the medium of the beam shape correcting means such as a prism, the size of the spectroscopic device can be reduced without sacrificing the wavelength resolution.

【0027】[0027]

【発明の実施の形態】以下本発明の実施の形態を図面を
用いて詳細に説明する。図1は本発明に係る分光装置の
一実施例を示す構成図である。図1において1,2,4
及び5は図4と同一符号を付してあり、9は回折格子等
の波長分散素子、10はプリズム等のビーム形状補正手
段である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the spectrometer according to the present invention. 1, 2, 4,
Reference numerals 5 and 5 denote the same components as those in FIG. 4, reference numeral 9 denotes a wavelength dispersion element such as a diffraction grating, and reference numeral 10 denotes a beam shape correcting means such as a prism.

【0028】入射端1からの出力光はコリメーティング
レンズ2により平行光に変換されプリズム等のビーム形
状補正手段10を介して回折格子等の波長分散素子9に
入射される。回折格子等の波長分散素子10からの回折
光は再びビーム形状補正手段9を介してフォーカシング
レンズ4により集光されて光検出器5に入射される。
The output light from the incident end 1 is converted into parallel light by the collimating lens 2 and is incident on a wavelength dispersion element 9 such as a diffraction grating via a beam shape correcting means 10 such as a prism. Diffracted light from a wavelength dispersive element 10 such as a diffraction grating is condensed again by the focusing lens 4 via the beam shape correcting means 9 and is incident on the photodetector 5.

【0029】ここで、図1に示す実施例を図2を用いて
説明する。図2は波長分散素子9及びビーム形状補正手
段10での光路を説明する説明図であり、図2中”IL
01”は入射光、”OL01”は出射光である。また、
基本的な動作は図6に示す従来例と同様であるので説明
は省略する。
Here, the embodiment shown in FIG. 1 will be described with reference to FIG. FIG. 2 is an explanatory diagram for explaining an optical path in the wavelength dispersion element 9 and the beam shape correcting means 10. In FIG.
“01” is incident light and “OL01” is outgoing light.
The basic operation is the same as that of the conventional example shown in FIG.

【0030】図5に示したように回折格子の表面のレプ
リカにはプリズム等のビーム形状補正手段が設けられる
ので耐湿性が改善されることになる。
As shown in FIG. 5, the replica on the surface of the diffraction grating is provided with a beam shape correcting means such as a prism, so that the moisture resistance is improved.

【0031】また、分光装置の波長分散特性は式(2)
で求められこれを変形すると、 dλ=(d/m)・cosθ・dθ (9) となり、光検出器5を構成する受光素子が等間隔である
とすると余弦成分(cosθ)に起因して波長分散に不
均一が生じることなる。言い換えれば、非線形性が存在
する。
The wavelength dispersion characteristic of the spectrometer is given by the following equation (2).
When this is deformed, dλ = (d / m) · cos θ · dθ (9), and if the light receiving elements constituting the photodetector 5 are equally spaced, the wavelength due to the cosine component (cos θ) Non-uniformity in dispersion results. In other words, there is non-linearity.

【0032】一方、屈折の式は媒質の屈折率を”n1
及び”n2 ”、入射角及び出射角を”φ”及び”ψ”と
すると、 n1・sinφ=n2・sinψ (10) となり、”φ”で微分すると、 n1・cosφ・dφ=n2・cosψ・dψ (11) となる。
On the other hand, the equation of refraction indicates that the refractive index of the medium is "n 1 ".
And “n 2 ”, and when the incident angle and the outgoing angle are “φ” and “ψ”, n 1 · sin φ = n 2 · sinψ (10), and when differentiated by “φ”, n 1 · cos φ · dφ = n 2 · cosψ · dψ (11)

【0033】式(11)から分かるように屈折角もまた
余弦成分に依存する。従って、波長分散素子9の出射角
の余弦成分に起因する非線形性を屈折(ビーム形状補正
手段10)の余弦成分による非線形性で補償することが
可能になる。
As can be seen from equation (11), the angle of refraction also depends on the cosine component. Therefore, the nonlinearity due to the cosine component of the emission angle of the wavelength dispersion element 9 can be compensated for by the nonlinearity due to the cosine component of the refraction (beam shape correcting means 10).

【0034】図2において波長分散素子9の入射角及び
出射角を”θ1 ”及び”θ2 ”、ビーム形状補正手段1
0の入射角及び出射角を”θ3 ”及び”θ4 ”とし、ビ
ーム形状補正手段10の屈折率を”n”、波長を”λ”
とすれば、 sinθ1+sinθ2=λ/(n・d) (12) dθ2/d=−dθ3/dλ (13) n・sinθ3=sinθ4 (14) となる。
In FIG. 2, the incident angle and the outgoing angle of the wavelength dispersive element 9 are “θ 1 ” and “θ 2 ”, and the beam shape correcting means 1
The incident angle and the outgoing angle of 0 are “θ 3 ” and “θ 4 ”, the refractive index of the beam shape correcting means 10 is “n”, and the wavelength is “λ”.
If, the sinθ 1 + sinθ 2 = λ / (n · d) (12) dθ 2 / d = -dθ 3 / dλ (13) n · sinθ 3 = sinθ 4 (14).

【0035】そして、式(12)から式(14)を微分
して整理することにより平均波長分散が得られ、 dθ4/dλ−cosθ3/(d・cosθ2・cosθ4) (15) となる。
Then, the average chromatic dispersion can be obtained by differentiating and rearranging the equation (14) from the equation (12), and dθ 4 / dλ−cos θ 3 / (d · cos θ 2 · cos θ 4 ) (15) Become.

【0036】さらに、式(15)を変形して、 d2θ4/dλ2=(dθ4/dλ)2 ×{sinθ4/cosθ4 −(sinθ2・cosθ4)/(n・cosθ2・cosθ3) −(sinθ3・cosθ4)/(n・cos2θ3)} (16) となる。Furthermore, by modifying the equation (15), d 2 θ 4 / dλ 2 = (dθ 4 / dλ) 2 × {sinθ 4 / cosθ 4 - (sinθ 2 · cosθ 4) / (n · cosθ 2 Cos θ 3 )-(sin θ 3 cos θ 4 ) / (n cos 2 θ 3 ) 3 (16)

【0037】ここで、この特性が線形であるために
は、”d2θ4/d2=0”であるから、式(16)を変形
して、 tanθ3/(1−n2・sin2θ3) =n・tanθ2/(n2−1) (17) となる。
Here, in order for this characteristic to be linear, “d 2 θ 4 / d 2 = 0”, so equation (16) is modified to obtain tan θ 3 / (1−n 2 · sin). 2 θ 3 ) = n · tan θ 2 / (n 2 −1) (17)

【0038】この結果、波長分散素子9の出射光をビー
ム形状補正手段10で補正することにより、波長分散素
子9の出射角の余弦成分に起因する非線形性がビーム形
状補正手段10の余弦成分による非線形性で補償される
ことになり、波長分散特性の平坦化が可能になる。
As a result, the non-linearity caused by the cosine component of the emission angle of the wavelength dispersion element 9 is corrected by the beam shape correction means 10 by correcting the light emitted from the wavelength dispersion element 9 by the beam shape correction means 10. The compensation is performed by the nonlinearity, and the chromatic dispersion characteristics can be flattened.

【0039】また、ビーム形状補正手段10であるプリ
ズム等の媒質の屈折率にも温度係数が存在するので、媒
質の空気に対する温度係数の相対値を”nr ”、絶対値
を”na ”とし、空気の屈折率を”nair ”とすれば、 nr=na/nair (18) (1/nr)(dnr/dT)=(1/na)(dna/dT) −(1/nair)(dnair/dT) (18) nair≒1,nr≒na と表される。
Further, since the temperature coefficient of the refractive index of the medium such as a prism is the beam shape correcting means 10 are present, the relative value of the temperature coefficient for air of the medium "n r", the absolute value "n a" Assuming that the refractive index of air is “n air ”, n r = n a / n air (18) (1 / n r ) (dn r / dT) = (1 / n a ) (dn a / dT ) - (expressed as 1 / n air) (dn air / dT) (18) n air ≒ 1, n r ≒ n a.

【0040】波長分散素子9とビーム形状補正手段10
を一体化した場合の温度係数を図3を用いて説明する。
図3は波長分散素子9及びビーム形状補正手段10での
光路を説明する説明図である。図3中”IL12”及
び”IL22”は入射光、図3中”OL12”及び”O
L22”は出射光であり、図3(A)は入射光”IL2
1”がビーム形状補正手段10の表面で図3表面に対し
て時計回り屈折する場合を、図3(B)は入射光”IL
22”がビーム形状補正手段10の表面で図3表面に対
して反時計回り屈折する場合ををそれぞれ示している。
The wavelength dispersion element 9 and the beam shape correcting means 10
With reference to FIG. 3, a description will be given of a temperature coefficient in the case of integrating
FIG. 3 is an explanatory diagram for explaining an optical path in the wavelength dispersion element 9 and the beam shape correcting means 10. "IL12" and "IL22" in FIG. 3 are incident light, and "OL12" and "O" in FIG.
L22 "is the outgoing light, and FIG. 3A is the incoming light" IL2 ".
FIG. 3B shows a case where 1 "is refracted clockwise with respect to the surface of FIG. 3 on the surface of the beam shape correcting means 10, and FIG.
Reference numeral 22 "denotes a case where the surface of the beam shape correction means 10 refracts counterclockwise with respect to the surface of FIG.

【0041】図3(A)の場合、入射光”IL12(若
しくは、”IL22”)”のビーム形状補正手段10に
対する入射角を”θi ”、ビーム形状補正手段10の入
射光”IL12(若しくは、”IL22”)”の屈折角
を”θ0 ”、波長分散素子9への入射角を”θ1 ”、波
長分散素子9における回折角を”θ2 ”、出射光”OL
12(若しくは、”OL22”)”が出射されるビーム
形状補正手段10の出射面への回折光の入射角を”θ
3 ”、そして、前記出射面での屈折角を”θ4 ”とすれ
ば、 nr・sinθ0=sinθi (19) dθ0=dθ1 (20) sinθ1+sinθ2=λ/(d・na) (21) dθ2=−dθ3 (22) nr・sinθ3=sinθ4 (23) となる。
In the case of FIG. 3A, the incident angle of the incident light “IL12 (or“ IL22 ”)” with respect to the beam shape correcting means 10 is “θ i ”, and the incident light “IL12 (or“ IL12 ”) of the beam shape correcting means 10 is set. , “IL22”), the refraction angle is “θ 0 ”, the incident angle to the wavelength dispersion element 9 is “θ 1 ”, the diffraction angle at the wavelength dispersion element 9 is “θ 2 ”, and the outgoing light “OL”.
12 (or “OL22”) ”, the angle of incidence of the diffracted light on the exit surface of the beam shape correcting means 10 from which the beam is emitted is represented by“ θ ”.
3 ", and the angle of refraction at the exit surface" if θ 4 ", n r · sinθ 0 = sinθ i (19) dθ 0 = dθ 1 (20) sinθ 1 + sinθ 2 = λ / (d · become n a) (21) dθ 2 = -dθ 3 (22) n r · sinθ 3 = sinθ 4 (23).

【0042】式(19)〜式(23)を温度”T”で微
分すれば、 (dnr/dT)・sinθ0+nr・cosθ0・(dθ0/dT)=0 (24) dθ0/dT=dθ1/dT (25) cosθ1・(dθ1/dT)+cosθ2・(dθ2/dT) =−λ/(d・na) ×{(1/d)(dd/dT)+(1/na)(dna/dT)} (26) dθ2/dT=−dθ3/dT (27) (dnr/dT)・sinθ3+nr・cosθ3・(dθ3/dT) =cosθ4・(dθ4/dT) (28) となる。
If the equations (19) to (23) are differentiated with respect to the temperature “T”, then (dn r / dT) · sin θ 0 + n r · cos θ 0 · (dθ 0 / dT) = 0 (24) dθ 0 / dT = dθ 1 / dT ( 25) cosθ 1 · (dθ 1 / dT) + cosθ 2 · (dθ 2 / dT) = -λ / (d · n a) × {(1 / d) (dd / dT) + (1 / n a) ( dn a / dT)} (26) dθ 2 / dT = -dθ 3 / dT (27) (dn r / dT) · sinθ 3 + n r · cosθ 3 · (dθ 3 / dT ) = Cos θ 4 · (dθ 4 / dT) (28)

【0043】式(24)〜式(28)を整理すると、 dθ4/dT=(sinθ3/cosθ4)(dnr/dT) +(nr・cosθ3/cosθ4)(dθ3/dT) =(sinθ3/cosθ4)(dnr/dT) −(nr・cosθ3/cosθ4) ×[−λ/(d・na)(1/cosθ2) ×{(1/d)(dd/dT)+(1/na)(dna/dT)} −(cosθ1/cosθ2)(dθ1/dT)] =(sinθ3/cosθ4)(dnr/dT) +λ・cosθ3/(d・cosθ2・cosθ4) ×{(1/d)(dd/dT)+(1/na)(dna/dT)} −(sinθ0・cosθ1・cosθ3)/(cosθ0・cosθ2・cosθ4) ×(dnr/dT) =tanθ4・(1/nr)・(dnr/dT) −λ・(dθ4/dλ) ×{(1/d)(dd/dT)+(1/na)(dna/dT)} −(sinθi・cosθ1・cosθ3)/(cosθ0・cosθ2・cosθ4) ×(1/nr)・(dnr/dT) (29) となる。When Equations (24) to (28) are arranged, dθ 4 / dT = (sin θ 3 / cos θ 4 ) (dn r / dT) + (n r · cos θ 3 / cos θ 4 ) (dθ 3 / dT ) = (sinθ 3 / cosθ 4 ) (dn r / dT) - (n r · cosθ 3 / cosθ 4) × [-λ / (d · n a) (1 / cosθ 2) × {(1 / d) (dd / dT) + (1 / n a) (dn a / dT)} - (cosθ 1 / cosθ 2) (dθ 1 / dT)] = (sinθ 3 / cosθ 4) (dn r / dT) + λ · cosθ 3 / (d · cosθ 2 · cosθ 4) × {(1 / d) (dd / dT) + (1 / n a) (dn a / dT)} - (sinθ 0 · cosθ 1 · cosθ 3) / (cos θ 0 · cos θ 2 · cos θ 4 ) × (dn r / dT) = tan θ 4 · (1 / n r ) · (dn r / dT) -λ · (dθ 4 / dλ) × {(1 / d) (dd / dT) + (1 / n a) (dn a / dT)} - (sinθ i · cosθ 1 · cosθ 3) / (cosθ 0 · cosθ 2 · cosθ 4) × (1 / n r) · ( dn r / dT) becomes (29).

【0044】ここで、媒質の温度係数である”(1/
r)・(dnr/dT)”は通常用いる媒質であれば正の値で
ある。この時、 dθ4/dλ<0 (1/d)(dd/dT)>0 (1/na)(dna/dT)>0 0°<θj<90° (j=i,1,2,3,4) であるので、式(29)の第1項及び第2項は正の値で
ある。
Here, the temperature coefficient of the medium is "(1 /
n r ) · (dn r / dT) ”is a positive value in a medium that is usually used. At this time, dθ 4 / dλ <0 (1 / d) (dd / dT)> 0 (1 / n a ) (dn a / dT)> 0 ° <θ j <90 ° (j = i, 1,2,3,4) Therefore, the first and second terms of the equation (29) are positive values. It is.

【0045】一方、式(29)の第3項は負の値である
ので、波長分散素子9とビーム形状補正手段10を一体
化した場合の温度係数”dθ4/dT”を低減することが
できる。
On the other hand, since the third term of the equation (29) is a negative value, the temperature coefficient “dθ 4 / dT” when the wavelength dispersion element 9 and the beam shape correcting means 10 are integrated can be reduced. it can.

【0046】また、式(29)における第1項はビーム
形状補正手段10の出射面での屈折、第2項は波長分散
素子9での回折、そして、第3項はビーム形状補正手段
10の入射面での屈折によるものである。
In the equation (29), the first term is refraction at the exit surface of the beam shape correcting means 10, the second term is diffraction at the wavelength dispersive element 9, and the third term is the beam shape correcting means 10. This is due to refraction at the entrance surface.

【0047】この結果、波長分散素子9とビーム形状補
正手段10を一体化した場合の温度係数をビーム形状補
正手段10の入射面での屈折による温度係数で補正する
ことにより、温度特性の改善が可能になる。
As a result, the temperature coefficient in the case where the wavelength dispersion element 9 and the beam shape correcting means 10 are integrated is corrected by the temperature coefficient due to refraction at the incident surface of the beam shape correcting means 10, thereby improving the temperature characteristics. Will be possible.

【0048】一方、図3(B)の場合には式(29)の
第3項の符号が”−”から”+”に変わるため温度係
数”dθ4/dT”を大きくする項だけになってしまう。
但し、媒質の温度係数である”(1/nr)・(dnr/d
T)”が負の値である媒質も存在するのでこのような媒
質を用いることにより、温度係数”dθ4/dT”の低減
も可能である。
On the other hand, in the case of FIG. 3B, the sign of the third term in the equation (29) changes from "-" to "+", so that only the term which increases the temperature coefficient "dθ 4 / dT" is obtained. Would.
However, the temperature coefficient of the medium is “(1 / n r ) · (dn r / d
Since some media have a negative value of “T)”, the use of such a media can reduce the temperature coefficient “dθ 4 / dT”.

【0049】さらに、波長分解能を犠牲にすること無く
小型化するためには回折格子の格子定数”d”を小さく
する必要があるが式(1)の右辺の上限は”2”である
ので波長”λ”が決まると格子定数”d”の最小値もま
た自ずと求まってしまう。
Further, in order to reduce the size without sacrificing the wavelength resolution, it is necessary to reduce the grating constant "d" of the diffraction grating. However, since the upper limit of the right side of the equation (1) is "2", the wavelength When "λ" is determined, the minimum value of the lattice constant "d" is naturally found.

【0050】これに対して、回折格子等の波長分散素子
9とプリズム等のビーム形状補正手段10とを一体化し
た場合には式(12)〜式(14)に示すように媒質の
屈折率”n”と格子定数”d”との積となるので屈折
率”n”が大きくなるほど格子定数”d”を小さくでき
る。
On the other hand, when the wavelength dispersion element 9 such as a diffraction grating and the beam shape correcting means 10 such as a prism are integrated, the refractive index of the medium is expressed by the equations (12) to (14). Since this is the product of "n" and the lattice constant "d", the lattice constant "d" can be reduced as the refractive index "n" increases.

【0051】言い換えれば、プリズム等のビーム形状補
正手段10の媒質の屈折率を大きくすることにより、波
長分解能を犠牲にすることなく分光装置の小型化が可能
になる。
In other words, by increasing the refractive index of the medium of the beam shape correcting means 10 such as a prism, the size of the spectrometer can be reduced without sacrificing the wavelength resolution.

【0052】なお、波長分散素子9である回折格子表面
のレプリカにプリズム等のビーム形状補正手段10を設
けが、特にプリズム等のビーム形状補正手段ではなく何
らかのウィンドウを回折格子表面に設ければ耐湿性の改
善を図ることが可能である。
The beam shape correcting means 10 such as a prism is provided on the replica of the diffraction grating surface as the wavelength dispersive element 9. In particular, if some window is provided on the surface of the diffraction grating instead of the beam shape correcting means such as the prism, the moisture resistance is improved. It is possible to improve the performance.

【0053】また、波長分散素子9とビーム形状補正手
段10を一体化する場合には波長分散素子9をビーム形
状補正手段10に貼りつけても、ビーム形状補正手段1
0に直接形成しても構わない。
When the wavelength dispersive element 9 and the beam shape correcting means 10 are integrated, even if the wavelength dispersive element 9 is attached to the beam shape correcting means 10,
0 may be directly formed.

【0054】また、波長分散素子としては回折格子を例
示したが、回折格子のみならずエシュレ格子であっても
同様に用いることが可能である。
Although a diffraction grating has been exemplified as the wavelength dispersion element, not only a diffraction grating but also an Eschler grating can be used in the same manner.

【0055】[0055]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のような効果がある。請求項1,2及
び請求項3の発明によれば、回折格子表面のレプリカに
はプリズム等のビーム形状補正手段が設けられるので耐
湿性が改善されることになる。
As is apparent from the above description,
According to the present invention, the following effects can be obtained. According to the first, second and third aspects of the present invention, the replica on the surface of the diffraction grating is provided with a beam shape correcting means such as a prism, so that the moisture resistance is improved.

【0056】また、波長分散素子の出射光をビーム形状
補正手段で補正することにより、波長分散素子の出射角
の余弦成分に起因する非線形性がビーム形状補正手段の
余弦成分による非線形性で補償されることになり、波長
分散特性の平坦化が可能になる。
Further, by correcting the light emitted from the wavelength dispersion element by the beam shape correction means, the nonlinearity caused by the cosine component of the emission angle of the wavelength dispersion element is compensated by the nonlinearity due to the cosine component of the beam shape correction means. As a result, the wavelength dispersion characteristics can be flattened.

【0057】また、波長分散素子とビーム形状補正手段
を一体化した場合の温度係数をビーム形状補正手段の入
射面での屈折による温度係数で補正することにより、温
度特性の改善が可能になる。
Further, by correcting the temperature coefficient when the wavelength dispersion element and the beam shape correcting means are integrated with the temperature coefficient due to refraction on the incident surface of the beam shape correcting means, the temperature characteristics can be improved.

【0058】さらに、プリズム等のビーム形状補正手段
の媒質の屈折率を大きくすることにより、波長分解能を
犠牲にすることなく分光装置の小型化が可能になる。
Furthermore, by increasing the refractive index of the medium of the beam shape correcting means such as a prism, the size of the spectrometer can be reduced without sacrificing the wavelength resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る分光装置の一実施例を示す構成図
である。
FIG. 1 is a configuration diagram showing one embodiment of a spectroscopic device according to the present invention.

【図2】波長分散素子及びビーム形状補正手段での光路
を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating an optical path in a wavelength dispersion element and a beam shape correction unit.

【図3】波長分散素子及びビーム形状補正手段での光路
を説明する説明図である。
FIG. 3 is an explanatory diagram illustrating an optical path in a wavelength dispersion element and a beam shape correction unit.

【図4】従来の分光装置の一例を示す構成図である。FIG. 4 is a configuration diagram illustrating an example of a conventional spectroscopic device.

【図5】波長分散素子である回折格子の一例を示す構造
断面図である。
FIG. 5 is a structural sectional view showing an example of a diffraction grating that is a wavelength dispersion element.

【図6】分光装置の一設計例を示す表である。FIG. 6 is a table showing a design example of a spectroscopic device.

【図7】各波長に対する出射角を示す表である。FIG. 7 is a table showing emission angles for respective wavelengths.

【符号の説明】[Explanation of symbols]

1 入射端 2 コリメーティングレンズ 3,9 波長分散素子 4 フォーカシングレンズ 5 光検出器 6 基板 7 レプリカ 8 反射膜 10 ビーム形状補正手段 DESCRIPTION OF SYMBOLS 1 Incident end 2 Collimating lens 3, 9 Wavelength dispersion element 4 Focusing lens 5 Photodetector 6 Substrate 7 Replica 8 Reflective film 10 Beam shape correcting means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】波長分散素子を用いた分光装置において、 入射光を平行光にするコリメーティングレンズと、 波長分散素子と、 この波長分散素子と一体化され前記コリメーティングレ
ンズからの前記平行光を前記波長分散素子に入射し、前
記波長分散素子の出射光を屈折させて出射するビーム形
状補正手段と、 このビーム形状補正手段の出力を集光するフォーカシン
グレンズと、 このフォーカシングレンズの出力光を検出する光検出器
とを備えたことを特徴とする分光装置。
1. A spectroscopic device using a wavelength dispersive element, a collimating lens for converting incident light into parallel light, a wavelength dispersive element, and the parallel light from the collimating lens integrated with the wavelength dispersive element. Beam shape correcting means for making light incident on the wavelength dispersive element, refracting and emitting light emitted from the wavelength dispersive element, a focusing lens for condensing an output of the beam shape correcting means, and output light of the focusing lens A spectroscopic device comprising: a photodetector that detects light.
【請求項2】前記波長分散手段が、 回折格子であることを特徴とする請求項1記載の分光装
置。
2. The spectroscopic device according to claim 1, wherein said wavelength dispersion means is a diffraction grating.
【請求項3】前記ビーム形状補正手段が、 プリズムであることを特徴とする請求項1記載の分光装
置。
3. The spectroscopic apparatus according to claim 1, wherein said beam shape correcting means is a prism.
JP11126760A 1999-05-07 1999-05-07 Spectrometer Withdrawn JP2000321135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11126760A JP2000321135A (en) 1999-05-07 1999-05-07 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11126760A JP2000321135A (en) 1999-05-07 1999-05-07 Spectrometer

Publications (1)

Publication Number Publication Date
JP2000321135A true JP2000321135A (en) 2000-11-24

Family

ID=14943254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11126760A Withdrawn JP2000321135A (en) 1999-05-07 1999-05-07 Spectrometer

Country Status (1)

Country Link
JP (1) JP2000321135A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885447B2 (en) * 2002-10-18 2005-04-26 Yokogawa Electric Corporation Spectrometer and optical spectrum analyzer
CN104215332A (en) * 2014-10-09 2014-12-17 苏州大学 Method and device for remotely sensing greenhouse gases
JP2015230396A (en) * 2014-06-05 2015-12-21 住友電気工業株式会社 Wavelength selection switch
JP2015230397A (en) * 2014-06-05 2015-12-21 住友電気工業株式会社 Wavelength selection switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885447B2 (en) * 2002-10-18 2005-04-26 Yokogawa Electric Corporation Spectrometer and optical spectrum analyzer
JP2015230396A (en) * 2014-06-05 2015-12-21 住友電気工業株式会社 Wavelength selection switch
JP2015230397A (en) * 2014-06-05 2015-12-21 住友電気工業株式会社 Wavelength selection switch
CN104215332A (en) * 2014-10-09 2014-12-17 苏州大学 Method and device for remotely sensing greenhouse gases

Similar Documents

Publication Publication Date Title
JP5724213B2 (en) Detection device
US8184285B2 (en) Method and apparatus using volume holographic wavelength blockers
US7605917B2 (en) Spectrometer
US5644396A (en) Spectrograph with low focal ratio
JP5517621B2 (en) High sensitivity spectrum analysis unit
EP0059706B1 (en) Dispersive optical device
JP5453730B2 (en) Spectrometer
US20110080584A1 (en) Optical System
US5642191A (en) Multi-channel imaging spectrophotometer
JP3700464B2 (en) Spectrometer
JP6097412B2 (en) Optical device
JPH11183249A (en) Spectroscope
US20010052980A1 (en) Spectroscope for measuring spectral distribution
JP2000321135A (en) Spectrometer
JPH05281041A (en) Spectroscope
JP3412706B2 (en) Optical multiplexer / demultiplexer
EP0179717A1 (en) Method for producing a corrected holographic grating, and apparatus using this grating
KR101884118B1 (en) Spectrometer based on transmission diffraction grating
JP2006343223A (en) Photodiode array
JP3367545B2 (en) Optical spectrum detector
US6583874B1 (en) Spectrometer with holographic and echelle gratings
JP2000304613A (en) Spectroscope
JPS62203024A (en) Fabry-perot spectroscope
WO2022137902A1 (en) Optical member and optical device
JPS5854310A (en) Optical system for littrow spectroscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040428