JP5827101B2 - Hydrogen generator and fuel cell - Google Patents

Hydrogen generator and fuel cell Download PDF

Info

Publication number
JP5827101B2
JP5827101B2 JP2011239417A JP2011239417A JP5827101B2 JP 5827101 B2 JP5827101 B2 JP 5827101B2 JP 2011239417 A JP2011239417 A JP 2011239417A JP 2011239417 A JP2011239417 A JP 2011239417A JP 5827101 B2 JP5827101 B2 JP 5827101B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
solution
reaction vessel
hydrogen generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011239417A
Other languages
Japanese (ja)
Other versions
JP2013095631A (en
Inventor
一貴 譲原
一貴 譲原
考応 柳▲瀬▼
考応 柳▲瀬▼
昇 石曽根
昇 石曽根
須田 正之
正之 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011239417A priority Critical patent/JP5827101B2/en
Publication of JP2013095631A publication Critical patent/JP2013095631A/en
Application granted granted Critical
Publication of JP5827101B2 publication Critical patent/JP5827101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は水素発生装置及び燃料電池に関する。   The present invention relates to a hydrogen generator and a fuel cell.

燃料電池は、固体高分子電解質膜を挟んでアノードとカソードを有する発電部を有し、アノード側に例えば水素やメタノール等の燃料流体を供給し、カソード側に例えば酸素や空気等の酸化用流体を供給し、電気化学反応により電力を発生する。   The fuel cell has a power generation unit having an anode and a cathode with a solid polymer electrolyte membrane sandwiched between them, supplying a fuel fluid such as hydrogen or methanol to the anode side, and an oxidizing fluid such as oxygen or air to the cathode side And generates electric power by an electrochemical reaction.

燃料流体として水素を低エネルギーで得る方法として、ケミカルハイドライドと呼ばれる金属水素化物(例えば、水素化ホウ素リチウムや水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化アルミニウムナトリウム)を加水分解する方法が知られている。   As a method of obtaining hydrogen with low energy as a fuel fluid, a method of hydrolyzing a metal hydride called chemical hydride (for example, lithium borohydride, sodium borohydride, lithium aluminum hydride, sodium aluminum hydride) is known. ing.

金属水素化物を加水分解して水素を得る場合、常温に近い低温で加水分解反応が進むため、効率よく水素を得ることができる。反面、水素発生量を制御することが難しいという問題があった。   When hydrolyzing a metal hydride to obtain hydrogen, the hydrolysis reaction proceeds at a low temperature close to room temperature, so that hydrogen can be obtained efficiently. On the other hand, there was a problem that it was difficult to control the hydrogen generation amount.

この問題に対し、金属水素化物を含む金属水素化物水溶液のpHを調節することで、加水分解の反応速度を制御する、水素発生技術が知られている(例えば、特許文献1参照)。この技術は、金属水素化物水溶液のpHが低い程反応速度が増加し、pHが高い程反応速度が低下することを利用している。反応槽内の金属水素化物と金属水素化物に付加する水の量を制御することにより、金属水素化物水溶液のpHを変化させる。これにより、加水分解の反応速度を変化させ、要求量に応じた水素を生成させることができる。   In order to solve this problem, a hydrogen generation technique is known in which the reaction rate of hydrolysis is controlled by adjusting the pH of a metal hydride aqueous solution containing a metal hydride (see, for example, Patent Document 1). This technique uses the fact that the reaction rate increases as the pH of the aqueous metal hydride solution decreases, and the reaction rate decreases as the pH increases. The pH of the metal hydride aqueous solution is changed by controlling the amount of metal hydride in the reaction vessel and the amount of water added to the metal hydride. Thereby, the reaction rate of hydrolysis can be changed, and hydrogen corresponding to the required amount can be generated.

特開2002−128502号公報JP 2002-128502 A

しかしながら、この特許文献1の技術によるとpHの制御を反応槽の金属水素化物への水の投入により行うので、例えば、水素を発生させている状態から水素の発生を停止させる場合など、pHを大幅に変化させるために大量の水の投入する必要がある。水を循環再利用する構成も提案されているが、循環のための流路やポンプなどの複雑な機構が必要となる。また、大量の水を導入するため、水素の発生を停止させるまでの時間がかかってしまい、余剰な水素が発生してしまうといった、水素の要求量への追従性が悪いという問題がある。このようなことから、特許文献1の技術によると、また、大型化が避けられず、小型化を必要とする機器に適用するには向かない技術である。水素の要求量の変化が大きく、頻繁に変化する機器に適用するには向かない技術である。   However, according to the technique of Patent Document 1, since the pH is controlled by adding water to the metal hydride in the reaction tank, the pH can be reduced, for example, when hydrogen generation is stopped from a state where hydrogen is generated. It is necessary to add a large amount of water to make a drastic change. A configuration in which water is circulated and reused has been proposed, but complicated mechanisms such as a circulation channel and a pump are required. In addition, since a large amount of water is introduced, it takes time until hydrogen generation is stopped, and there is a problem that followability to the required amount of hydrogen is poor. For this reason, according to the technique of Patent Document 1, an increase in size is inevitable, and the technique is not suitable for application to a device that requires a reduction in size. This is a technology that is not suitable for use in equipment that has a large change in demand for hydrogen and that changes frequently.

本発明は上記状況に鑑みてなされたものであり、水素の発生量を容易に制御することができる小型化が可能な水素発生装置及び燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hydrogen generator and a fuel cell that can be easily reduced in size and that can easily control the amount of hydrogen generated.

上記課題を解決するための本発明の水素発生装置の第一の特徴は、水素発生溶液を貯留する水素発生溶液室と、水素発生溶液と混合することで水素を発生する反応促進溶液を貯留する反応容器と、反応容器の内部に配置され、水素発生溶液と反応促進溶液とを混合する反応部とを備え、反応部は、反応促進溶液に浸漬し、鉛直上下方向に少なくとも2箇所の開口部を有する反応流路を備えることを要旨とする。
かかる特徴によれば、鉛直上下方向に少なくとも2箇所の開口部を有する反応流路を備える反応部が、反応促進溶液に浸漬して備えられるので、水素の発生量を制御する為に大掛かりな機構を必要せず、小型化が可能な水素発生装置とすることが可能になる。
The first feature of the hydrogen generator of the present invention for solving the above problems is that a hydrogen generating solution chamber for storing a hydrogen generating solution and a reaction promoting solution for generating hydrogen by mixing with the hydrogen generating solution are stored. A reaction vessel disposed inside the reaction vessel, and a reaction part for mixing the hydrogen generating solution and the reaction promoting solution, the reaction part being immersed in the reaction promoting solution and having at least two openings in the vertical vertical direction The gist is to provide a reaction flow path having
According to such a feature, since the reaction part including the reaction flow path having at least two openings in the vertical vertical direction is provided by being immersed in the reaction promoting solution, a large-scale mechanism is used to control the amount of hydrogen generated. Therefore, it is possible to provide a hydrogen generator that can be reduced in size.

本発明の水素発生装置の第二の特徴は、第1の特徴の水素発生装置において、反応部は、水素発生溶液を反応流路に流入する流入部を有することを要旨とする。
かかる特徴によれば、水素発生溶液を流入部を通じて反応部に流入させることができ、反応部での水素発生反応を確実に行うことができる。
The second feature of the hydrogen generator of the present invention is summarized in that, in the hydrogen generator of the first feature, the reaction part has an inflow part for allowing the hydrogen generation solution to flow into the reaction channel.
According to this feature, the hydrogen generating solution can be caused to flow into the reaction part through the inflow part, and the hydrogen generation reaction in the reaction part can be performed reliably.

本発明の水素発生装置の第三の特徴は、第1または2の特徴の水素発生装置において、流入部の流入口は、反応流路に鉛直上下方向に配置された開口部の位置に対し、鉛直方向略中央に備えられることを要旨とする。
かかる特徴によれば、流入口が、反応流路に鉛直上下方向に配置された開口部の位置に対し、鉛直方向略中央に備えられるので、反応部での水素発生により、反応流路に鉛直方向上向きの流れを生じさせ、鉛直方向下側の開口からの反応促進溶液を流入させると共に、反応容器に貯蔵される反応促進溶液を攪拌循環することができ、簡易な構造で、安定した水素発生反応を維持することができる。
A third feature of the hydrogen generator of the present invention is the hydrogen generator of the first or second feature, wherein the inlet of the inflow portion is positioned relative to the position of the opening arranged vertically in the reaction channel. The gist is that it is provided at substantially the center in the vertical direction.
According to this feature, the inflow port is provided substantially at the center in the vertical direction with respect to the position of the opening arranged vertically in the reaction channel. It is possible to generate a flow upward in the direction, let the reaction promoting solution flow in from the opening in the lower vertical direction, and to stir and circulate the reaction promoting solution stored in the reaction vessel, with a simple structure, stable hydrogen generation The reaction can be maintained.

本発明の水素発生装置の第四の特徴は、第1から3のいずれかの特徴の水素発生装置において、反応流路は、筒状であることを要旨とする。
かかる特徴によれば、反応流路を筒状とすることで、反応流路を容易に製作することができ、小型が可能である。
The gist of the fourth feature of the hydrogen generator of the present invention is that, in the hydrogen generator of any one of the first to third features, the reaction channel is cylindrical.
According to this feature, the reaction channel can be easily manufactured by making the reaction channel cylindrical, and the size can be reduced.

本発明の水素発生装置の第五の特徴は、第3または4のいずれかの特徴の水素発生装置において、反応流路の断面積は、流入口が備えられた位置から、開口部に向い拡大することを要旨とする。
かかる特徴によれば、断面積が、流入口が備えられた位置から、開口部に向い拡大する反応流路とすることにより、より確実に反応部へ反応促進溶液を流入させると共に、反応容器に貯蔵される反応促進溶液を攪拌循環することができる。
According to a fifth feature of the hydrogen generator of the present invention, in the hydrogen generator of the third or fourth feature, the cross-sectional area of the reaction channel increases from the position where the inflow port is provided toward the opening. The gist is to do.
According to such a feature, the reaction promoting solution flows more reliably into the reaction section and the reaction container is introduced into the reaction vessel by making the cross-sectional area a reaction flow path that expands from the position where the inflow port is provided toward the opening. The stored reaction promoting solution can be circulated with stirring.

本発明の水素発生装置の第六の特徴は、第1から5のいずれかの特徴の水素発生装置において、反応容器は、反応部を複数備えることを要旨とする。
かかる特徴によれば、複数の反応部を有することで、繊細な制御が可能である。また、水素発生能力を増大させることが可能となる。
The sixth feature of the hydrogen generator of the present invention is summarized in that, in the hydrogen generator of any one of the first to fifth features, the reaction vessel includes a plurality of reaction units.
According to this feature, delicate control is possible by having a plurality of reaction parts. In addition, the hydrogen generation capacity can be increased.

本発明の水素発生装置の第七の特徴は、第1から6のいずれかの特徴の水素発生装置において、反応容器は、拡縮部を備え、容積が変化することを要旨とする。
かかる特徴によれば、反応部を確実に反応促進溶液に浸漬された状態を維持することができるので、安定した水素供給が可能となる。
A seventh feature of the hydrogen generator of the present invention is that, in the hydrogen generator of any one of the first to sixth features, the reaction vessel includes an expansion / contraction part, and the volume changes.
According to this feature, the reaction part can be reliably maintained immersed in the reaction promoting solution, so that stable hydrogen supply is possible.

本発明の水素発生装置の第八の特徴は、第1から7のいずれかの特徴の水素発生装置において、水素発生溶液は、金属水素化物を含む強アルカリ水溶液であり、反応促進溶液は酸性溶液であることを要旨とする。
かかる特徴によれば、水素発生溶液の水素発生に使用する前の水素発生を抑制し保存性を高め、反応促進溶液との混合により速やかな水素発生を行うことができ、水素の発生量を容易に制御することができる。
An eighth feature of the hydrogen generator of the present invention is the hydrogen generator of any one of the first to seventh features, wherein the hydrogen generating solution is a strong alkaline aqueous solution containing a metal hydride, and the reaction promoting solution is an acidic solution. It is a summary.
According to such a feature, hydrogen generation of the hydrogen generation solution before being used for hydrogen generation can be suppressed, storage stability can be improved, and rapid hydrogen generation can be performed by mixing with the reaction promoting solution. Can be controlled.

本発明の水素発生装置の第九の特徴は、第1から8のいずれかの特徴の水素発生装置において、水素発生溶液室が貯留する水素発生溶液と反応容器が貯留する反応促進溶液との量の比は、反応容器で水素発生溶液と反応促進溶液とが混合した混合溶液のpHが7以下となる比であることを特徴とする。   According to a ninth feature of the hydrogen generator of the present invention, in the hydrogen generator of any one of the first to eighth features, the amount of the hydrogen generating solution stored in the hydrogen generating solution chamber and the reaction promoting solution stored in the reaction vessel This ratio is characterized in that the pH of the mixed solution in which the hydrogen generating solution and the reaction promoting solution are mixed in the reaction vessel is 7 or less.

本発明の水素発生装置の第九の特徴は、第1から8のいずれかの特徴の水素発生装置において、水素発生溶液の反応部への導入量を制御する制御部を有し、制御部は、反応容器で水素発生溶液と反応促進溶液とが混合した混合溶液のpHが7以下となるように、導入量を制御することを要旨とする。
かかる特徴によれば、反応容器で水素発生溶液と反応促進溶液とが混合した混合溶液のpHが7以下とすることにより、確実に水素発生反応を制御することができる。
According to a ninth feature of the hydrogen generator of the present invention, in the hydrogen generator according to any one of the first to eighth features, the hydrogen generator has a control unit that controls the amount of hydrogen generation solution introduced into the reaction unit. The gist is to control the introduction amount so that the pH of the mixed solution obtained by mixing the hydrogen generating solution and the reaction promoting solution in the reaction vessel is 7 or less.
According to this feature, the hydrogen generation reaction can be reliably controlled by setting the pH of the mixed solution in which the hydrogen generation solution and the reaction promoting solution are mixed in the reaction vessel to 7 or less.

本発明の燃料電池の第一の特徴は、第1から10のいずれかの特徴の水素発生装置に発電部を接続することを要旨とする。
かかる特徴によれば、大掛かりな機構を要さずに水素の発生量を容易に制御することができる小型化が可能な水素発生装置を備えた燃料電池とすることが可能になる。
The gist of the first feature of the fuel cell of the present invention is that the power generation unit is connected to the hydrogen generator having any one of the first to tenth features.
According to this feature, it is possible to provide a fuel cell including a hydrogen generator that can be downsized and can easily control the amount of hydrogen generated without requiring a large-scale mechanism.

本発明によれば、大掛かりな機構を要さずに必要量の水素を発生させることができる水素発生装置を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the hydrogen generator which can generate a required quantity of hydrogen, without requiring a large-scale mechanism.

また、本発明によれば、大掛かりな機構を要さずに必要量の水素を発生させることができる水素発生装置を備え、燃料ロスの少ない燃料電池を提供することが可能になる。   In addition, according to the present invention, it is possible to provide a fuel cell that includes a hydrogen generator that can generate a necessary amount of hydrogen without requiring a large-scale mechanism and that has less fuel loss.

本発明の水素発生装置の全体の概略構成図である。It is a schematic block diagram of the whole hydrogen generator of this invention. 水素発生装置の反応部を表す構成図である。It is a block diagram showing the reaction part of a hydrogen generator. 水素発生装置の反応部を表す構成図である。It is a block diagram showing the reaction part of a hydrogen generator. 水素発生装置の反応部を含む反応容器を表す構成図である。It is a block diagram showing the reaction container containing the reaction part of a hydrogen generator. 水素発生装置の反応部を含む反応容器を表す構成図である。It is a block diagram showing the reaction container containing the reaction part of a hydrogen generator. 水素発生装置の反応部を含む反応容器を表す構成図である。It is a block diagram showing the reaction container containing the reaction part of a hydrogen generator. 水素発生装置の反応部を表す構成図である。It is a block diagram showing the reaction part of a hydrogen generator. 本発明の燃料電池の全体の概略構成図である。1 is an overall schematic configuration diagram of a fuel cell of the present invention.

(実施の形態1)
図1から図2に基づいて水素発生装置の一実施例を説明する。
図1には本発明の一実施例に係る水素発生装置の全体の概略構成、図2には反応部4の構成を示している。
図1に示すように、水素発生装置1はケース7の内部に反応部4が格納される反応容器3と、水素発生溶液を貯蔵する水素発生溶液室2とを有する。反応容器3は、水素発生溶液との混合により水素発生反応を促進する反応促進溶液を貯蔵する。水素発生溶液室2と反応容器3に格納される反応部4とは、送液管5によって接続される。反応部4は、反応室3に貯蔵される反応促進溶液に浸漬するよう配置される。
(Embodiment 1)
An embodiment of the hydrogen generator will be described with reference to FIGS.
FIG. 1 shows an overall schematic configuration of a hydrogen generator according to an embodiment of the present invention, and FIG. 2 shows a configuration of a reaction unit 4.
As shown in FIG. 1, the hydrogen generator 1 includes a reaction vessel 3 in which a reaction unit 4 is stored in a case 7, and a hydrogen generation solution chamber 2 that stores a hydrogen generation solution. The reaction vessel 3 stores a reaction promoting solution that promotes a hydrogen generating reaction by mixing with the hydrogen generating solution. The hydrogen generating solution chamber 2 and the reaction unit 4 stored in the reaction vessel 3 are connected by a liquid feeding pipe 5. The reaction unit 4 is disposed so as to be immersed in the reaction promoting solution stored in the reaction chamber 3.

また、反応容器3は、反応部4で生成された水素を反応容器3から排出する排出流路10を備える。排出流路10は、水素を消費する機器12と、接続部11を介して接続され、水素発生装置1で生成した水素が機器12に供給される。接続部11を着脱可能な構造とすることで、水素発生装置1を交換可能なカートリッジとして構成とすることができる。   In addition, the reaction vessel 3 includes a discharge channel 10 that discharges hydrogen generated in the reaction unit 4 from the reaction vessel 3. The discharge flow path 10 is connected to a device 12 that consumes hydrogen via a connection unit 11, and hydrogen generated by the hydrogen generator 1 is supplied to the device 12. By making the connecting portion 11 detachable, the hydrogen generator 1 can be configured as a replaceable cartridge.

また、反応促進溶液や反応で生じる副生成物などの反応容器3の内容物や、反応部4での反応に伴う溶液の飛沫などの反応容器3からの流出を防止する為に、排出路10に通じる反応室3内に気液分離膜13を設けてもよい。   Further, in order to prevent the contents of the reaction vessel 3 such as the reaction promoting solution and the by-product generated by the reaction, and the droplets of the solution accompanying the reaction in the reaction unit 4 from flowing out from the reaction vessel 3, the discharge path 10 A gas-liquid separation membrane 13 may be provided in the reaction chamber 3 leading to.

図1に示す水素発生装置1における水素発生溶液室2から反応部4への送液方式は、プランジャ8を介して加圧バネ9で水素発生溶液を加圧し水素発生溶液を反応部4に供給する方式である。さらに、送液管5に逆止弁6を配置することにより、反応容器3の内部の圧力が加圧バネ9の荷重による水素発生溶液室2の圧力よりも低い場合に反応部4に水素発生溶液が送られ、また、反応容器3の内部の圧力が加圧バネ9の荷重による水素発生溶液室2の圧力よりも低い場合に停止する動作が得られる。すなわち、ポンプなどの送液機器を使用しない機構によって反応容器3の内部の圧力を維持することができる。また、水素発生溶液の圧力により、反応容器3の内部の圧力が設定されるので、加圧バネ9のバネ力を変更することにより、任意に反応容器3の圧力調整すなわち、水素発生装置1から出力する水素圧力の設定が可能である。本実施例では、送液ポンプなどの送液機器を用いない方式を示したが、水素発生溶液の送液方法を限定するものではなく、送液ポンプなどの送液機器を用い、必要な水素の圧力や流量により、水素発生溶液の送液量を制御することも可能である。液送ポンプとしては、定量性があるダイヤフラム式、プランジャ式など、容積式ポンプが好ましく、液体の漏洩や薬品への耐性の高いダイヤフラム式が好ましい。   In the hydrogen generating apparatus 1 shown in FIG. 1, the liquid supply system from the hydrogen generating solution chamber 2 to the reaction unit 4 is pressurized with the pressurizing spring 9 through the plunger 8 and supplied to the reaction unit 4. It is a method to do. Furthermore, by arranging a check valve 6 in the liquid feeding pipe 5, hydrogen is generated in the reaction section 4 when the pressure inside the reaction vessel 3 is lower than the pressure in the hydrogen generating solution chamber 2 due to the load of the pressure spring 9. When the solution is sent and the pressure inside the reaction vessel 3 is lower than the pressure in the hydrogen generating solution chamber 2 due to the load of the pressure spring 9, an operation of stopping is obtained. That is, the pressure inside the reaction vessel 3 can be maintained by a mechanism that does not use a liquid delivery device such as a pump. Further, since the pressure inside the reaction vessel 3 is set by the pressure of the hydrogen generating solution, the pressure of the reaction vessel 3 can be arbitrarily adjusted by changing the spring force of the pressurizing spring 9, that is, from the hydrogen generator 1. The output hydrogen pressure can be set. In this example, a method that does not use a liquid-feeding device such as a liquid-feeding pump has been shown. However, the method for feeding the hydrogen generating solution is not limited, and a liquid-feeding device such as a liquid-feeding pump is used to It is also possible to control the amount of the hydrogen generating solution fed by the pressure and flow rate. As the liquid feed pump, a positive displacement pump such as a diaphragm type or a plunger type having a quantitative property is preferable, and a diaphragm type having high resistance to liquid leakage or chemicals is preferable.

また、ケース7の内部に反応容器3と水素発生溶液室2を配置する構成ではなく、送液管5を着脱可能な構造とし、反応容器3と水素発生溶液室2を別体の構造とすることも可能である。また、反応室4に水素発生溶液室2を配置することも可能であり、さらに、水素発生溶液室2を水素発生溶液の消費と共に縮小する可撓性の材質で形成することにより、水素発生溶液室4の容積を有効に活用することができ、水素発生装置1の体積を縮小することもできる。   In addition, the reaction vessel 3 and the hydrogen generating solution chamber 2 are not arranged in the case 7, but the liquid feeding tube 5 is detachable, and the reaction vessel 3 and the hydrogen generating solution chamber 2 are separated. It is also possible. It is also possible to arrange the hydrogen generating solution chamber 2 in the reaction chamber 4, and further, by forming the hydrogen generating solution chamber 2 from a flexible material that shrinks as the hydrogen generating solution is consumed, The volume of the chamber 4 can be used effectively, and the volume of the hydrogen generator 1 can be reduced.

水素発生溶液には、加水分解型の金属水素化物の水溶液を用いる。金属水素化物は、例えば、水素化ホウ素塩、水素化アルミニウム塩、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化アルミニウムリチウム等が挙げられる。特に、水素化ホウ素ナトリウムが好ましい。金属水素化物の加水分解の反応速度は、pH依存性があり、pHが高い程、反応速度が低下する。水溶液として貯蔵するために、pHが高い強アルカリ溶液とすることにより、加水分解反応による水素の発生を抑制し、安全に貯蔵保管することができる。   As the hydrogen generation solution, an aqueous solution of hydrolyzed metal hydride is used. Examples of the metal hydride include a borohydride salt, an aluminum hydride salt, sodium borohydride, lithium borohydride, lithium aluminum hydride, and the like. In particular, sodium borohydride is preferable. The reaction rate of metal hydride hydrolysis is pH-dependent, and the higher the pH, the lower the reaction rate. In order to store it as an aqueous solution, by using a strong alkaline solution having a high pH, generation of hydrogen due to a hydrolysis reaction can be suppressed and storage can be performed safely.

本実施例では、12%水素化ホウ素ナトリウム、40%水酸化ナトリウムの水溶液を用いた。また、この溶液のpHは14であり、水溶液中での金属水素化物の加水分解が抑制されているpHが高い強アルカリ溶液である。反応促進溶液は、酸性水溶液を用いる。   In this example, an aqueous solution of 12% sodium borohydride and 40% sodium hydroxide was used. Further, the pH of this solution is 14, which is a strong alkaline solution having a high pH at which hydrolysis of the metal hydride in the aqueous solution is suppressed. An acidic aqueous solution is used as the reaction promoting solution.

例えば、塩酸、硫酸、リン酸等の無機酸や、酢酸、琥珀酸、りんご酸等の有機酸の酸性水溶液を用いることにより、強アルカリの金属水素化物水溶液のpHを変化させ反応速度を制御することができる。また、酸性水溶液は、強酸とすることが望ましい。これにより、金属水素化物水溶液のpHを速やかに変化させることができ、水素発生の制御性を高めることができる。
本実施例では、貯蔵や送液など構成部材の選択及び取り扱いが比較的容易なリン酸を用いる。
For example, by using an acidic aqueous solution of an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid, or an organic acid such as acetic acid, succinic acid or malic acid, the reaction rate is controlled by changing the pH of the strong alkali metal hydride aqueous solution. be able to. The acidic aqueous solution is preferably a strong acid. Thereby, pH of metal hydride aqueous solution can be changed rapidly and controllability of hydrogen generation can be improved.
In this embodiment, phosphoric acid is used which is relatively easy to select and handle components such as storage and liquid feeding.

水素を消費する機器12の水素消費流量に追従して、水素供給を行うためには、水素発生溶液と反応促進溶液の加水分解反応の反応性を高めて短時間で反応を完了させることが必要である。特に、水素の消費が急激に小さくなった際に、速やかに加水分解反応を停止することは、余剰な水素の発生を抑制できることで、反応容器などを耐圧構造とする必要がなくなり、水素発生装置やそれを使用する機器を軽量、小型にすることが出来ることから、重要である。   In order to supply hydrogen following the hydrogen consumption flow rate of the device 12 that consumes hydrogen, it is necessary to increase the reactivity of the hydrolysis reaction between the hydrogen generating solution and the reaction promoting solution and complete the reaction in a short time. It is. In particular, when the consumption of hydrogen suddenly decreases, the rapid termination of the hydrolysis reaction can suppress the generation of excess hydrogen, eliminating the need for the reaction vessel to have a pressure-resistant structure, and the hydrogen generator. It is important because it can reduce the weight and size of the equipment that uses it.

本実施例の水素発生装置1は、反応容器3に貯蔵された反応促進溶液に、水素発生溶液を導入する。すなわち、過剰量の反応促進溶液である酸性水溶液に対して、少量の金属水素化物の水溶液である水素発生溶液を導入することとなる。これにより、反応容器3の反応部4に導入された水素発生溶液のpHは、速やかに低下し、水素発生溶液に含まれる金属水素化物の加水分解反応を速やかに完了することができる。   The hydrogen generator 1 of the present embodiment introduces the hydrogen generating solution into the reaction promoting solution stored in the reaction vessel 3. That is, a hydrogen generation solution that is an aqueous solution of a small amount of metal hydride is introduced into an acidic aqueous solution that is an excessive amount of the reaction promoting solution. As a result, the pH of the hydrogen generating solution introduced into the reaction section 4 of the reaction vessel 3 quickly decreases, and the hydrolysis reaction of the metal hydride contained in the hydrogen generating solution can be completed quickly.

また、反応容器3に貯蔵される反応促進溶液の量は、所望の水素発生溶液を導入後の混合溶液のpHが7以下となる様に、貯蔵される反応促進溶液と水素発生溶液の割合が設定される。また、反応容器3に貯蔵される反応促進溶液の量を特に規定せずに、所望の水素発生溶液を導入後の混合溶液のpHが7以下となる様に、水素発生溶液の導入量を調節する制御部を設けてもよい。さらに、pH6以下となる量が望ましい。水素発生溶液に水素化ホウ素ナトリウム、水酸化ナトリウムの水溶液を用い、反応促進溶液にリン酸水溶液を用いる場合、所望の水素発生溶液を導入後の水素発生溶液と反応促進溶液の割合を、水素化ホウ素ナトリウムと水酸化ナトリウムのmol数の和とリン酸のmol数を等molとしたとき、導入後(反応後)の溶液のpHはpH4程度であり、早い反応速度を維持することが可能である。この割合に基づき、水素発生溶液に12%水素化ホウ素ナトリウム、40%水酸化ナトリウムの水溶液を用い、反応促進溶液に85%リン酸水溶液を用いた場合、体積比は、1:1.26。重量比は、1:1.52となる。   The amount of the reaction promoting solution stored in the reaction vessel 3 is such that the ratio of the stored reaction promoting solution to the hydrogen generating solution is such that the pH of the mixed solution after introducing the desired hydrogen generating solution is 7 or less. Is set. Further, the amount of the hydrogen generating solution introduced is adjusted so that the pH of the mixed solution after introducing the desired hydrogen generating solution is 7 or less without particularly defining the amount of the reaction promoting solution stored in the reaction vessel 3. A control unit may be provided. Further, an amount that makes the pH 6 or less is desirable. When an aqueous solution of sodium borohydride or sodium hydroxide is used for the hydrogen generating solution and an aqueous phosphoric acid solution is used for the reaction promoting solution, the ratio of the hydrogen generating solution to the reaction promoting solution after introducing the desired hydrogen generating solution is determined by hydrogenation. When the sum of the number of moles of sodium boron and sodium hydroxide and the number of moles of phosphoric acid are equal, the pH of the solution after introduction (after reaction) is about pH 4, and it is possible to maintain a fast reaction rate. is there. Based on this ratio, when an aqueous solution of 12% sodium borohydride and 40% sodium hydroxide is used for the hydrogen generating solution and an 85% aqueous phosphoric acid solution is used for the reaction promoting solution, the volume ratio is 1: 1.26. The weight ratio is 1: 1.52.

この様に、反応容器3に貯蔵される反応促進溶液に対する、導入する水素発生溶液の割合を規定することにより、所望の水素発生溶液の導入を終えるまでの間において、反応を持続することができ、さらに余剰な水素の発生を抑制し、水素を消費する機器12の水素消費流量に追従して、水素供給を行うことができる。また、上記の水素発生溶液に含まれる水は、水素化ホウ素ナトリウムに対して、8.4倍(mol)であり、水素化ホウ素ナトリウムの加水分解に充分な量である。   Thus, by defining the ratio of the hydrogen generating solution to be introduced to the reaction promoting solution stored in the reaction vessel 3, the reaction can be continued until the introduction of the desired hydrogen generating solution is completed. Further, generation of surplus hydrogen can be suppressed, and hydrogen can be supplied following the hydrogen consumption flow rate of the device 12 that consumes hydrogen. Further, the water contained in the hydrogen generation solution is 8.4 times (mol) with respect to sodium borohydride, which is an amount sufficient for hydrolysis of sodium borohydride.

また、反応促進溶液にも水は含まれ、水素化ホウ素ナトリウムの加水分解に充分な水の量であり、水溶液中での金属水素化物の加水分解を抑制できるpHが高い強アルカリ溶液としながら、水素発生溶液の水素化ホウ素ナトリウムの濃度をさらに増加させ重量(体積)あたりの水素発生量を増加させることも可能である。   In addition, the reaction promoting solution contains water, the amount of water is sufficient for hydrolysis of sodium borohydride, and a strong alkaline solution having a high pH that can suppress hydrolysis of metal hydride in an aqueous solution. It is also possible to further increase the concentration of sodium borohydride in the hydrogen generation solution to increase the amount of hydrogen generation per weight (volume).

反応部4は、図2に示すように、反応流路14を有し、送液管5が接続され、送液管5から反応流路14に水素発生溶液を流入する流入口15が、反応流路14の開口の位置に対し、鉛直方向略中央に配置される。反応流路14は、パイプ状の端部が開口した筒形状であり反応促進溶液や発生した水素を流通する。図2には、円筒状の反応流路14を示したが、形状はこれに限らず多角形状でも良く、反応促進溶液や発生した水素を流通する筒形状のものが適用できる。   As shown in FIG. 2, the reaction unit 4 has a reaction flow path 14, to which a liquid feeding pipe 5 is connected, and an inlet 15 into which the hydrogen generating solution flows into the reaction flow path 14 from the liquid feeding pipe 5 With respect to the position of the opening of the flow path 14, it is arranged at the substantially vertical center. The reaction channel 14 has a cylindrical shape with an open pipe-shaped end, and circulates the reaction promoting solution and the generated hydrogen. Although the cylindrical reaction flow path 14 is shown in FIG. 2, the shape is not limited to this, and a polygonal shape may be used, and a cylindrical shape in which the reaction promoting solution and generated hydrogen are circulated can be applied.

流入口15から水素発生溶液が反応流路14に導入される。このとき、反応部4は、反応容器3内の反応促進溶液に浸漬されているため、反応流路14は、反応促進溶液で満たされているので、流入口15から反応流路14に導入された水素発生溶液は、反応促進溶液と接触し水素を発生する。   A hydrogen generating solution is introduced into the reaction channel 14 from the inlet 15. At this time, since the reaction unit 4 is immersed in the reaction promoting solution in the reaction vessel 3, the reaction channel 14 is filled with the reaction promoting solution, so that the reaction channel 14 is introduced into the reaction channel 14 from the inlet 15. The hydrogen generating solution comes into contact with the reaction promoting solution to generate hydrogen.

図1に示すように、反応部4は、反応流路14の開口を鉛直方向の上下の位置になるよう反応容器3に配置される。これにより、反応流路14内で水素発生溶液と反応促進溶液の接触により発生した水素は、反応流路14の鉛直方向上向きに移動し反応流路14の鉛直方向上側の開口から反応容器3に排出される。このとき、反応流路14に鉛直方向上向きの流れが生じ、水素と共に反応後の溶液が排出され、鉛直方向下側の開口から反応促進溶液が流入する。これにより、反応流路14に反応後の溶液が滞留することがないので、反応流路14内の反応促進溶液のpHの上昇が抑制され、水素発生速度が低下することなく、水素発生反応を維持することができる。   As shown in FIG. 1, the reaction part 4 is arrange | positioned at the reaction container 3 so that the opening of the reaction flow path 14 may be in the vertical position. As a result, hydrogen generated by the contact between the hydrogen generating solution and the reaction promoting solution in the reaction channel 14 moves upward in the vertical direction of the reaction channel 14 and enters the reaction vessel 3 from the opening in the vertical direction of the reaction channel 14. Discharged. At this time, an upward flow in the vertical direction is generated in the reaction flow path 14, the solution after the reaction is discharged together with hydrogen, and the reaction promoting solution flows from the opening in the lower side in the vertical direction. Thereby, since the solution after the reaction does not stay in the reaction channel 14, the increase in pH of the reaction promoting solution in the reaction channel 14 is suppressed, and the hydrogen generation reaction is performed without decreasing the hydrogen generation rate. Can be maintained.

この動作によって、反応容器3に貯蔵される反応促進溶液が、攪拌循環される。これにより、反応容器3の溶液pHの偏りを抑制することができるので、所望の水素発生溶液の導入を終えるまでの間において、反応を持続することができ、余剰な水素の発生を抑制し、水素を消費する機器12の水素消費流量に追従して、水素供給を行うことができる。   By this operation, the reaction promoting solution stored in the reaction vessel 3 is stirred and circulated. Thereby, since the bias of the solution pH in the reaction vessel 3 can be suppressed, the reaction can be continued until the introduction of the desired hydrogen generation solution is completed, and the generation of excess hydrogen is suppressed, Hydrogen supply can be performed following the hydrogen consumption flow rate of the device 12 that consumes hydrogen.

また、図3に示すように、反応流路14の流路断面面積を流入口15が配置される反応流路14の流路方向中央で小さく、両端部に向かって大きくすることにより、発生した水素を反応流路14から反応容器3への移動をより円滑に行うことができる。   Further, as shown in FIG. 3, it is generated by reducing the channel cross-sectional area of the reaction channel 14 at the center in the channel direction of the reaction channel 14 where the inflow port 15 is arranged and increasing toward both ends. Hydrogen can be transferred from the reaction channel 14 to the reaction vessel 3 more smoothly.

また、図4に示すように、反応促進溶液を貯蔵する反応容器3の一部に隔壁114を設け、反応容器3の内壁との間の空間を反応流路14とすることができる。筒状の流路部材を使用することなく、より簡易な構造で同様の効果を得ることができる。   Further, as shown in FIG. 4, a partition 114 can be provided in a part of the reaction vessel 3 for storing the reaction promoting solution, and a space between the inner wall of the reaction vessel 3 can be used as the reaction channel 14. The same effect can be obtained with a simpler structure without using a cylindrical flow path member.

また、ひとつの反応部4が反応容器3に配置された例について説明したが、反応部4を反応容器3に複数配置することもできる。複数の反応部4にそれぞれ送液管5を配置し、水素発生溶液を導入する。それぞれの水素発生溶液の供給を制御することにより、複数の反応部4のそれぞれの発生量を制御できるので、水素消費流量の変動への追従が容易である。また、反応部4あたりの反応量を少なくできるので、より繊細な発生量の制御が可能であり、水素を消費する機器の水素消費流量に合わせて水素を発生することができる。また、複数の反応部4を備えることにより、水素発生能力を増大させることができるので、水素消費流量の大きな機器への適用が可能となる。
以上の構成において、上述した水素発生装置1では、大掛かりな機構を要さずに必要量の水素を確実に発生させることが可能になる。
Further, although an example in which one reaction unit 4 is arranged in the reaction vessel 3 has been described, a plurality of reaction units 4 can be arranged in the reaction vessel 3. A liquid feeding pipe 5 is arranged in each of the plurality of reaction units 4 to introduce a hydrogen generating solution. By controlling the supply of each hydrogen generating solution, the amount of each of the plurality of reaction units 4 can be controlled, so that it is easy to follow the fluctuation of the hydrogen consumption flow rate. Moreover, since the reaction amount per reaction part 4 can be reduced, more delicate control of the generation amount is possible, and hydrogen can be generated in accordance with the hydrogen consumption flow rate of the device that consumes hydrogen. Moreover, since the hydrogen generation capability can be increased by providing the plurality of reaction units 4, it can be applied to a device having a large hydrogen consumption flow rate.
In the above configuration, the above-described hydrogen generator 1 can reliably generate a necessary amount of hydrogen without requiring a large mechanism.

(実施の形態1の第1変更例)
図5は、反応容器3構造の変更例を示す。
図5に示す反応容器3は、反応容器3の容積を可変とする拡縮部21を備える。また、拡縮部21の動きに追従するように、排出流路10は伸縮可能な構造を備える。また、反応部4の構造は、前述の実施の形態1の反応部4と同様の構造であり、反応容器3に貯留される反応促進溶液に浸漬され配置される。図5(a)は、反応容器3に水素発生溶液が導入される前の状態を示す。また、図5(b)は、反応容器3に水素発生溶液が導入されている状態、または導入された後の状態を示す。反応容器3の溶液体積に従い、反応容器3の容積空間が変化することで、反応容器3の溶液が少ない水素発生反応の初期においては、反応部4を確実に反応促進溶液に浸漬された状態を維持することができ、確実に水素発生反応と反応促進溶液の攪拌を行い、安定した水素供給が可能となる。また、反応容器3の溶液が多い水素発生反応の中期・後期おいては、反応容器3の容積空間を十分に確保する事ができ、持続的な水素発生反応を実現できる。
(First modification of the first embodiment)
FIG. 5 shows a modified example of the structure of the reaction vessel 3.
The reaction container 3 shown in FIG. 5 includes an expansion / contraction part 21 that makes the volume of the reaction container 3 variable. Moreover, the discharge flow path 10 is provided with a structure which can be expanded-contracted so that the movement of the expansion / contraction part 21 may be followed. Moreover, the structure of the reaction part 4 is the same structure as the reaction part 4 of above-mentioned Embodiment 1, and is immersed and arrange | positioned at the reaction promotion solution stored in the reaction container 3. FIG. FIG. 5A shows a state before the hydrogen generating solution is introduced into the reaction vessel 3. FIG. 5B shows a state where the hydrogen generating solution is introduced into the reaction vessel 3 or a state after the introduction. By changing the volume space of the reaction vessel 3 according to the solution volume of the reaction vessel 3, the reaction unit 4 is reliably immersed in the reaction promoting solution at the initial stage of the hydrogen generation reaction with a small amount of solution in the reaction vessel 3. The hydrogen generation reaction and the reaction accelerating solution can be reliably agitated to stably supply hydrogen. In addition, in the middle and later stages of the hydrogen generation reaction with a large amount of solution in the reaction vessel 3, a sufficient volume space of the reaction vessel 3 can be secured, and a continuous hydrogen generation reaction can be realized.

(実施の形態1の第2変更例)
図6は、反応容器3構造の変更例を示す。
図6に示す反応容器3は、反応容器3の容積を可変とする拡縮部21を備えることは、実施の形態1の第1変更例と同様である。本実施例は、水素排出室22に反応容器3を収容する点が、実施の形態1の第1変更例と異なる。
(Second modification of the first embodiment)
FIG. 6 shows a modified example of the structure of the reaction vessel 3.
The reaction container 3 shown in FIG. 6 includes the expansion / contraction part 21 that makes the volume of the reaction container 3 variable, similar to the first modification of the first embodiment. This example differs from the first modification of the first embodiment in that the reaction vessel 3 is accommodated in the hydrogen discharge chamber 22.

反応容器3内で発生した水素は、水素(気体)のみを排出する気液分離膜13を通じて水素排出室22に排出される。水素排出室22は、反応容器3から排出された水素を受容する空間を有し、排出流路10に接続される。これにより、排出流路10と反応容器3を独立した構造とすることができ、反応容器3や排出流路10の配置の自由度が向上し、水素発生装置1の接続機器の形状に合わせた水素発生装置1の形状設計が可能となる。また、反応容器3に気体である水素のみを排出する気液分離膜13を上下に配置する構造が可能となる。これにより、反応容器3の姿勢に因らず、反応容器3から水素を水素排出室22に排出し、排出流路10から排出することが可能となる。   Hydrogen generated in the reaction vessel 3 is discharged to the hydrogen discharge chamber 22 through the gas-liquid separation membrane 13 that discharges only hydrogen (gas). The hydrogen discharge chamber 22 has a space for receiving hydrogen discharged from the reaction vessel 3 and is connected to the discharge flow path 10. As a result, the discharge flow path 10 and the reaction vessel 3 can be made independent structures, the degree of freedom of the arrangement of the reaction vessel 3 and the discharge flow path 10 is improved, and the shape of the connecting device of the hydrogen generator 1 is adjusted. The shape of the hydrogen generator 1 can be designed. Moreover, the structure which arrange | positions the gas-liquid separation film | membrane 13 which discharge | releases only hydrogen which is gas in the reaction container 3 up and down is attained. Thereby, hydrogen can be discharged from the reaction container 3 to the hydrogen discharge chamber 22 and discharged from the discharge flow path 10 regardless of the posture of the reaction container 3.

(実施の形態1の第3変更例)
図7は、反応部4および反応容器3の変更例を示す。
図7(a)に示す反応部4は、複数の反応流路14を有する。複数の反応流路14は、流入口15を中心に概放射状に配置されることが望ましい。図7は、3つの反応流路14を配置した例である。図7(b)この反応部4を収めた反応容器3を示す。図7(b)に示す反応容器3は、4面に水素を排出する気液分離膜13を備え、内部に反応促進溶液を貯蔵した状態において、反応容器3の姿勢に因らず反応容器3から水素を排出することが出来る。このとき、図6に示す反応容器3の構造と同様に、水素排出室22を設け、反応容器3から排出された水素を受容し排出流路10に排出する構造とすることが望ましい。これにより、反応容器3の姿勢に因らず安定して水素発生供給が可能となる。
(Third modification of the first embodiment)
FIG. 7 shows a modified example of the reaction unit 4 and the reaction vessel 3.
The reaction unit 4 shown in FIG. 7A has a plurality of reaction channels 14. It is desirable that the plurality of reaction channels 14 be arranged substantially radially around the inlet 15. FIG. 7 shows an example in which three reaction channels 14 are arranged. FIG. 7 (b) shows the reaction vessel 3 containing the reaction section 4. The reaction vessel 3 shown in FIG. 7B is provided with a gas-liquid separation membrane 13 that discharges hydrogen on four sides, and the reaction vessel 3 is stored regardless of the posture of the reaction vessel 3 in a state where the reaction promoting solution is stored inside. Hydrogen can be discharged from At this time, similarly to the structure of the reaction vessel 3 shown in FIG. 6, it is desirable to provide a hydrogen discharge chamber 22 to receive the hydrogen discharged from the reaction vessel 3 and discharge it to the discharge channel 10. Thereby, hydrogen generation and supply can be stably performed regardless of the posture of the reaction vessel 3.

(実施の形態2)
図8に基づいて本発明の燃料電池を説明する。図8には本発明の水素発生措置の一実施例を燃料電池の一部として構成する場合の燃料電池全体を示している。
図8の燃料電池の全体図は、図1に示した水素発生装置1を発電部30に接続している。発電部30には燃料極室32が備えられ、燃料極室32は燃料電池セル31の燃料極35に接する空間を構成している。燃料極室32には水素発生装置1の排出流路10が接続されている。水素発生装置1で発生した水素は排出流路10から燃料極室32に送られ、燃料極35での燃料電池反応で消費される。
(Embodiment 2)
The fuel cell of the present invention will be described based on FIG. FIG. 8 shows the entire fuel cell in the case where one embodiment of the hydrogen generation measure of the present invention is configured as a part of the fuel cell.
In the overall view of the fuel cell in FIG. 8, the hydrogen generator 1 shown in FIG. The power generation unit 30 includes a fuel electrode chamber 32, and the fuel electrode chamber 32 forms a space in contact with the fuel electrode 35 of the fuel cell 31. A discharge passage 10 of the hydrogen generator 1 is connected to the fuel electrode chamber 32. Hydrogen generated in the hydrogen generator 1 is sent from the discharge channel 10 to the fuel electrode chamber 32 and consumed by the fuel cell reaction at the fuel electrode 35.

上述した燃料電池は、大掛かりな機構を要さずに必要量の水素を発生させることができる水素発生装置を備え、燃料ロスの少ない燃料電池となる。   The above-described fuel cell includes a hydrogen generator that can generate a necessary amount of hydrogen without requiring a large-scale mechanism, and is a fuel cell with little fuel loss.

本発明は、水素発生装置の産業分野で利用することができる。
また、本発明は、水素発生装置を備えた燃料電池の産業分野で利用することができる。
The present invention can be used in the industrial field of hydrogen generators.
The present invention can also be used in the industrial field of fuel cells equipped with a hydrogen generator.

1 水素発生装置
2 水素発生溶液室
3 反応容器
4 反応部
5 送液管
6 逆止弁
7 ケース
8 プランジャ
9 加圧バネ
10 排出流路
11 接続部
12 水素消費機器
13 気液分離膜
14 反応流路
15 流入部
21 拡縮部
22 水素排出室
30 燃料電池
31 電池セル
32 燃料極室
33 酸化剤極
34 固体高分子電解質膜
35 燃料極
114 隔壁
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2 Hydrogen generating solution chamber 3 Reaction container 4 Reaction part 5 Liquid supply pipe 6 Check valve 7 Case 8 Plunger 9 Pressurization spring 10 Discharge flow path 11 Connection part 12 Hydrogen consumption apparatus 13 Gas-liquid separation membrane 14 Reaction flow Path 15 Inflow portion 21 Expansion / contraction portion 22 Hydrogen discharge chamber 30 Fuel cell 31 Battery cell 32 Fuel electrode chamber 33 Oxidant electrode 34 Solid polymer electrolyte membrane 35 Fuel electrode 114 Partition

Claims (9)

金属水素化物を含む強アルカリ水溶液である水素発生溶液を貯留する水素発生溶液室と、
前記水素発生溶液と混合することで水素を発生する酸性溶液である反応促進溶液を貯留する反応容器と、
前記反応容器の内部に配置され、前記水素発生溶液と前記反応促進溶液とを混合する反応部とを備え、
前記反応部は、前記反応促進溶液に浸漬し、鉛直上下方向に少なくとも2箇所の開口部を有する反応流路を備えており、
前記反応容器は、拡縮部を備え、容積が変化することを特徴とする水素発生装置。
A hydrogen generation solution chamber for storing a hydrogen generation solution which is a strong alkaline aqueous solution containing a metal hydride ;
A reaction vessel that stores a reaction promoting solution that is an acidic solution that generates hydrogen by mixing with the hydrogen generating solution;
A reaction part disposed inside the reaction vessel and mixing the hydrogen generating solution and the reaction promoting solution;
The reaction section is immersed in the reaction promoting solution and includes a reaction flow path having at least two openings in the vertical vertical direction ,
The said reaction container is equipped with an expansion / contraction part, and the volume changes, The hydrogen generator characterized by the above-mentioned .
前記反応部は、前記水素発生溶液を前記反応流路に流入する流入部を有することを特徴とする請求項1に記載の水素発生装置。   The hydrogen generation apparatus according to claim 1, wherein the reaction unit includes an inflow unit through which the hydrogen generation solution flows into the reaction channel. 前記流入部の流入口は、前記反応流路に鉛直上下方向に配置された前記開口部の位置に対し、鉛直方向略中央に備えられることを特徴とする請求項1または2に記載の水素発生装置。   3. The hydrogen generation according to claim 1, wherein an inflow port of the inflow portion is provided at a substantially vertical center with respect to a position of the opening portion arranged vertically in the reaction flow path. apparatus. 前記反応流路は、筒状であることを特徴とする請求項1から3のいずれか一項に記載の水素発生装置。   The hydrogen generating apparatus according to any one of claims 1 to 3, wherein the reaction channel is cylindrical. 前記反応流路の断面積は、前記流入口が備えられた位置から、前記開口部に向い拡大することを特徴とする請求項3または4のいずれか一項に記載の水素発生装置。   5. The hydrogen generation apparatus according to claim 3, wherein a cross-sectional area of the reaction flow channel is enlarged toward the opening from a position where the inflow port is provided. 6. 前記反応容器は、前記反応部を複数備えることを特徴とする請求項1から5のいずれか一項に記載の水素発生装置。   The hydrogen generating apparatus according to claim 1, wherein the reaction vessel includes a plurality of the reaction units. 前記水素発生溶液室が貯留する前記水素発生溶液と前記反応容器が貯留する前記反応促進溶液との量の比は、
前記反応容器で前記水素発生溶液と前記反応促進溶液とが混合した混合溶液のpHが7以下となる比であることを特徴とする請求項1からのいずれか一項に記載の水素発生装置。
The ratio of the amount of the hydrogen generating solution stored in the hydrogen generating solution chamber and the reaction promoting solution stored in the reaction vessel is:
The hydrogen generation apparatus according to any one of claims 1 to 6 , wherein the pH of the mixed solution obtained by mixing the hydrogen generating solution and the reaction promoting solution in the reaction vessel is 7 or less. .
前記水素発生溶液の前記反応部への導入量を制御する制御部を有し、
前記制御部は、前記反応容器で前記水素発生溶液と前記反応促進溶液とが混合した混合溶液のpHが7以下となるように、前記導入量を制御することを特徴する請求項1からのいずれか一項に記載の水素発生装置。
A control unit for controlling the amount of the hydrogen generating solution introduced into the reaction unit;
Wherein the control unit is configured such that the pH of the hydrogen generating solution and the reaction accelerator solution and is mixed with the mixed solution in the reaction vessel becomes 7 or less, of claims 1 to 6 which controls said introduction amount The hydrogen generator as described in any one of Claims.
請求項1からのいずれか一項に記載の水素発生装置に発電部を接続することを特徴とする燃料電池。 A fuel cell, wherein a power generation unit is connected to the hydrogen generator according to any one of claims 1 to 8 .
JP2011239417A 2011-10-31 2011-10-31 Hydrogen generator and fuel cell Expired - Fee Related JP5827101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239417A JP5827101B2 (en) 2011-10-31 2011-10-31 Hydrogen generator and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239417A JP5827101B2 (en) 2011-10-31 2011-10-31 Hydrogen generator and fuel cell

Publications (2)

Publication Number Publication Date
JP2013095631A JP2013095631A (en) 2013-05-20
JP5827101B2 true JP5827101B2 (en) 2015-12-02

Family

ID=48617970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239417A Expired - Fee Related JP5827101B2 (en) 2011-10-31 2011-10-31 Hydrogen generator and fuel cell

Country Status (1)

Country Link
JP (1) JP5827101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12043740B2 (en) 2017-04-20 2024-07-23 Electronics And Telecommunications Research Institute Light transmittance control film and composition for the light transmittance control film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6869799B2 (en) * 2017-04-28 2021-05-12 株式会社デイトナ A hydrogen gas generator, an internal combustion engine to which this is applied, and a generator using this internal combustion engine as a drive source.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936635B2 (en) * 2002-07-08 2007-06-27 大浩研熱株式会社 Fluid convection nozzle device
JP2004244262A (en) * 2003-02-13 2004-09-02 Sharp Corp Hydrogen generation method
JP2006281157A (en) * 2005-04-04 2006-10-19 Okuto:Kk Bubbling type precipitation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12043740B2 (en) 2017-04-20 2024-07-23 Electronics And Telecommunications Research Institute Light transmittance control film and composition for the light transmittance control film

Also Published As

Publication number Publication date
JP2013095631A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP4627997B2 (en) Fuel cell system
US20100092843A1 (en) Venturi pumping system in a hydrogen gas circulation of a flow battery
CN101233074B (en) Hydrogen generation apparatus and fuel cell system
US20210180197A1 (en) Water electrolysis system and control method thereof
CN109346746B (en) Oxygen supply device and method for fuel cell for closed space
US10014540B2 (en) Hydrogen generator having reactant pellet with concentration gradient
US20160204457A1 (en) Method For Operating A Fuel Cell Stack
US9174843B2 (en) Valve having concentric fluid paths
JP5827101B2 (en) Hydrogen generator and fuel cell
US20090110974A1 (en) Flow channel and fuel cell system
CN106887630A (en) High-temperature fuel cell stack, fuel cell system and system control method
JP4822158B2 (en) HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD
KR101899626B1 (en) Gas generator with combined gas flow valve and pressure relief vent
JP2013193937A (en) Hydrogen generator and fuel cell
JP5909337B2 (en) Hydrogen generator and fuel cell
US9005321B2 (en) Hydrogen generator system with liquid interface
JP2014118619A (en) Water electrolysis apparatus
JP5868121B2 (en) Hydrogen generator and fuel cell
CN108666601A (en) Electric light charging is flushed with hydrogen fuel cell
JP4712007B2 (en) Fuel cell system
JP4995435B2 (en) Fuel cell system
KR101149509B1 (en) Apparatus for load following fuel cell power generation system in a ship and method thereof
US20070125696A1 (en) Device and method for increasing the concentration of fuel in a liquid flow supplied to the anode of a fuel cell
JP5118986B2 (en) Fuel cell fuel system
CN118223040A (en) Water treatment method and electrochemical reaction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151015

R150 Certificate of patent or registration of utility model

Ref document number: 5827101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees