JP4822158B2 - HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD - Google Patents

HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD Download PDF

Info

Publication number
JP4822158B2
JP4822158B2 JP2006213913A JP2006213913A JP4822158B2 JP 4822158 B2 JP4822158 B2 JP 4822158B2 JP 2006213913 A JP2006213913 A JP 2006213913A JP 2006213913 A JP2006213913 A JP 2006213913A JP 4822158 B2 JP4822158 B2 JP 4822158B2
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
solution
reactor
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006213913A
Other languages
Japanese (ja)
Other versions
JP2008037699A (en
Inventor
孝史 皿田
考応 柳瀬
徹 尾崎
恒昭 玉地
一貴 譲原
文晴 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006213913A priority Critical patent/JP4822158B2/en
Publication of JP2008037699A publication Critical patent/JP2008037699A/en
Application granted granted Critical
Publication of JP4822158B2 publication Critical patent/JP4822158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池、水素エンジンといった水素を必要とする装置や水素貯蔵容器に効率よく水素を供給するための水素発生装置及び水素発生方法に関する。   The present invention relates to a hydrogen generation apparatus and a hydrogen generation method for efficiently supplying hydrogen to an apparatus that requires hydrogen, such as a fuel cell or a hydrogen engine, and a hydrogen storage container.

また、本発明は、水素を効率よく供給することができる水素発生装置を備えた燃料電池設備に関する。   The present invention also relates to a fuel cell facility provided with a hydrogen generator capable of efficiently supplying hydrogen.

近年のエネルギー問題や環境問題の高まりから、より高いエネルギー密度で、排出物がクリーンな電源が要求されている。水素発生により発電する燃料電池や内燃機関(水素エンジン)は、既存電池の数倍のエネルギー密度を有する発電機であり、エネルギー効率が高く、また、排出ガスに含まれる窒素酸化物や硫黄酸化物がない、もしくは、少ないといった特徴がある。従って、次世代の電源デバイスとしての要求に合った極めて有効なデバイスであると言える。   Due to the recent increase in energy problems and environmental problems, there is a demand for a power source with higher energy density and clean emissions. Fuel cells and internal combustion engines (hydrogen engines) that generate electricity by generating hydrogen are generators that have several times the energy density of existing batteries, have high energy efficiency, and contain nitrogen oxides and sulfur oxides contained in exhaust gases. There is a feature that there is no or few. Therefore, it can be said that it is a very effective device meeting the demand as a next-generation power supply device.

水素を利用した発電装置は、地域分散電源、ビル、家庭ジェネレーション、自動車、携帯機器等あらゆる業種を対象としている。いずれの場合も所定量の水素を速やかに供給する必要があり、また、特に自動車や携帯機器においては発電装置を設置するスペースの関係上、また電力を消費する装置に発電した電力を効率よく送るために、水素供給器及び水素発生材料を高水素貯蔵密度にし、低エネルギーで水素を発生させることが求められている。   Power generation devices using hydrogen are targeted at all types of industries such as regional distributed power sources, buildings, household generations, automobiles, and portable devices. In either case, it is necessary to supply a predetermined amount of hydrogen promptly. In particular, in automobiles and portable devices, the generated power is efficiently sent to a device that consumes power because of the space for installing the power generation device. Therefore, it is required that the hydrogen supplier and the hydrogen generating material have a high hydrogen storage density and generate hydrogen with low energy.

従来、水素を低エネルギーで得る方法として、ケミカルハイドライドと呼ばれる錯体水素化物を加水分解する方法が知られている。例えば錯体水素化物の一種である水素化ホウ素リチウムや水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化アルミニウムナトリウムをアルカリ水溶液に溶解し、その水溶液を貴金属触媒に供給して接触させ、水素発生方法を起こす方法、水やアルコールを錯体水素化物に供給して、水素発生反応を起こす方法などが知られている(例えば、特許文献1参照)。   Conventionally, as a method of obtaining hydrogen with low energy, a method of hydrolyzing a complex hydride called chemical hydride is known. For example, lithium borohydride, sodium borohydride, lithium aluminum hydride, and sodium aluminum hydride, which are a kind of complex hydrides, are dissolved in an alkaline aqueous solution, and the aqueous solution is supplied to and contacted with a noble metal catalyst. There are known a method for causing a hydrogen generation reaction by supplying water or alcohol to a complex hydride (for example, see Patent Document 1).

この場合、水素発生反応の反応物は、錯体水素化物と水であり、触媒は水素発生反応を促進する促進剤の効果がある。水素発生反応を起こして水素を得る場合、反応で生成される金属含有物や泡等の生成物が存在し、流路に流通抵抗が存在する等、水素発生装置に少なからず影響を与えてしまう。   In this case, the reactants of the hydrogen generation reaction are a complex hydride and water, and the catalyst has an effect of a promoter that promotes the hydrogen generation reaction. When hydrogen is generated by causing a hydrogen generation reaction, products such as metal-containing materials and bubbles generated by the reaction are present, and flow resistance is present in the flow path. .

このため、水素発生装置において、分離器を設けることにより水素を効率よく無駄のない状態で精製することが考えられている(例えば、特許文献2参照)。   For this reason, in a hydrogen generator, it is considered to purify hydrogen efficiently and without waste by providing a separator (see, for example, Patent Document 2).

即ち、水素発生装置は、反応器と分離器がポンプと弁を介して水タンクに接続された構成となっている。分離器では不純物と水と水素を分離することができ、分離器内の上澄みの水は再利用される。このため、生成される水素純度を向上することができる。併せて、水の再利用によって、水タンク容積の低減、装置の小型化を図ることができる。   That is, the hydrogen generator has a configuration in which a reactor and a separator are connected to a water tank via a pump and a valve. In the separator, impurities, water and hydrogen can be separated, and the supernatant water in the separator is reused. For this reason, the hydrogen purity produced | generated can be improved. In addition, the water tank volume can be reduced and the apparatus can be miniaturized by reusing water.

しかし、従来の水素発生装置は、水を反応器に送る動力としてポンプを用いているが、ポンプの駆動と制御に電力を消費してしまい、併せて、ポンプの制御部があるため、体積が大きくなり、小型化や高容量化に不適当であった。   However, the conventional hydrogen generator uses a pump as power to send water to the reactor, but consumes electric power for driving and controlling the pump, and in addition, there is a pump control unit, so the volume is large. It became large and unsuitable for downsizing and high capacity.

また、分離器に移動した金属水素化物と分離器内の水とが反応して水素が発生する。分離器に移動した金属水素化物を速やかに全量反応させることが好ましいが、反応生成物として泡等が多く発生し金属水素化物の表面を覆い、反応を阻害するので反応時間がかかり、水素量の制御が困難であった。併せて、分離手段である部屋を別途備える技術であるので、スペースが必要であり、小型化できなかった。   Further, the metal hydride moved to the separator reacts with the water in the separator to generate hydrogen. It is preferable to react the entire amount of the metal hydride transferred to the separator quickly, but the reaction product has many bubbles and covers the surface of the metal hydride and hinders the reaction. It was difficult to control. In addition, since it is a technology that separately provides a room as a separating means, a space is required, and the size cannot be reduced.

以上より、水素発生器の水供給に電力を持たないこと、併せて分離器を使用せずに反応生成物である泡等を除去し水素発生制御を容易にすることが課題であった。   From the above, it has been a problem that there is no power in the water supply of the hydrogen generator, and in addition, it is easy to control hydrogen generation by removing bubbles and the like as reaction products without using a separator.

特開2003−206101号公報JP 2003-206101 A 特開2002−154803号公報JP 2002-154803 A

本発明は上記状況に鑑みてなされたもので、発生した水素及び反応生成物を促進剤水溶液に通すことにより少ないスペースで水素発生制御を容易にし、また水素発生による圧力を用いることにより、電力を用いることなく促進剤水溶液の移動を可能にした水素発生装置及び水素発生方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and facilitates hydrogen generation control in a small space by passing the generated hydrogen and reaction product through an aqueous accelerator solution, and uses the pressure generated by hydrogen generation to reduce power. It is an object of the present invention to provide a hydrogen generation apparatus and a hydrogen generation method that can move a promoter aqueous solution without using it.

また、本発明は上記状況に鑑みてなされたもので、発生した水素及び反応生成物を促進剤水溶液に通すことにより少ないスペースで水素発生制御を容易にし、また水素発生による圧力を用いることにより、電力を用いることなく促進剤水溶液の移動を可能にした水素発生装置を備えた燃料電池設備を提供することを目的とする。   Further, the present invention has been made in view of the above situation, by passing the generated hydrogen and reaction product through an aqueous accelerator solution to facilitate hydrogen generation control in a small space, and by using the pressure generated by hydrogen generation, It is an object of the present invention to provide a fuel cell facility equipped with a hydrogen generator that enables movement of an aqueous promoter solution without using electric power.

上記目的を達成するための本発明の第1の態様は、固体反応物を収容し、内部で水素を発生させる反応器と、前記反応器内にあって前記固体反応物を収容する収容室と、前記反応器の前記収容室に前記収容室の体積を可変とする流体室と、前記固体反応物との接触により水素を発生させる促進剤水溶液を収容する溶液貯蔵器と、前記反応器と前記溶液貯蔵器とを連絡し、前記反応器からの水素を前記溶液貯蔵器に送出する、前記溶液貯蔵器側の端部が前記促進剤水溶液に接触する流体流路と、前記溶液貯蔵器と前記流体室とを連絡し、前記溶液貯蔵器からの水素を前記反応器の前記流体室に送出する水素流路と、前記溶液貯蔵器に設けられ、前記溶液貯蔵器に送出された水素を排出する第1水素排出路と、前記流体室に設けられ、前記流体室に送出された水素を排出する第2水素排出路と、水素の発生と排出による前記流体室を介しての前記収容室内の減圧により、前記流体流路の促進剤水溶液の流通と、前記水素流路及び前記第1水素排出路及び前記第2水素排出路の水素の流通を制御すると共に、水素を前記流体流路に流通させて反応生成物を促進剤水溶液に接触させる制御手段と、を備えることを特徴とする水素発生装置にある。   In order to achieve the above object, a first aspect of the present invention includes a reactor that contains a solid reactant and generates hydrogen therein, and a storage chamber in the reactor that contains the solid reactant. A fluid chamber in which the volume of the storage chamber is variable in the storage chamber of the reactor; a solution reservoir that stores an aqueous solution of a promoter that generates hydrogen by contact with the solid reactant; the reactor; A fluid channel in communication with the solution reservoir and delivering hydrogen from the reactor to the solution reservoir, an end on the solution reservoir side contacting the promoter solution, the solution reservoir, and the solution reservoir A hydrogen flow path that communicates with the fluid chamber and delivers hydrogen from the solution reservoir to the fluid chamber of the reactor; and is provided in the solution reservoir and discharges the hydrogen delivered to the solution reservoir. A first hydrogen discharge passage, and the fluid chamber, A second hydrogen discharge path for discharging the delivered hydrogen, and a flow of the promoter aqueous solution in the fluid flow path by depressurization of the storage chamber through the fluid chamber due to generation and discharge of hydrogen, and the hydrogen flow path And a control means for controlling the flow of hydrogen in the first hydrogen discharge path and the second hydrogen discharge path, and for causing hydrogen to flow through the fluid flow path and bringing the reaction product into contact with the promoter aqueous solution. The hydrogen generator is characterized by the following.

第1の態様では、水素の発生と排出による溶液貯蔵器内の圧力変動に応じて制御手段を制御し、水溶液流路である流体流路を通して促進剤水溶液を水素発生反応の固体反応物側に移動させ、促進剤水溶液を固体反応物に接触させて水素を発生させ、循環路である流体流路を通して発生した水素を含む反応生成物を溶液貯蔵器に循環させて促進剤水溶液に接触させ、促進剤水溶液に接触させることにより生成物を除去し、生成物が除去された水素を排出路から排出する。これにより、生成物を除去するための部屋を備えることなく、併せて、流体の移動のための駆動源を備えず、少ないスペースで泡や金属含有物等の生成物を除去した状態の水素を排出して消費部に供給することができる。   In the first aspect, the control means is controlled in accordance with the pressure fluctuation in the solution reservoir due to the generation and discharge of hydrogen, and the promoter aqueous solution is transferred to the solid reactant side of the hydrogen generation reaction through the fluid flow channel that is the aqueous solution flow channel. Moving, bringing the promoter aqueous solution into contact with the solid reactant to generate hydrogen, circulating the reaction product containing hydrogen generated through the fluid flow path, which is a circulation path, to the solution reservoir to contact the promoter aqueous solution, The product is removed by contacting with the aqueous promoter solution, and the hydrogen from which the product has been removed is discharged from the discharge path. As a result, without providing a room for removing the product, in addition, without a drive source for moving the fluid, hydrogen in a state where products such as bubbles and metal inclusions are removed in a small space. It can be discharged and supplied to the consumer.

上記目的を達成するための本発明の第2の態様は、固体反応物を収容し、内部で水素を発生させる反応器と、前記反応器内にあって前記固体反応物を収容する収容室と、前記反応器の前記収容室に前記収容室の体積を可変とする流体室と、前記固体反応物との接触により水素を発生させる促進剤水溶液を収容する溶液貯蔵器と、前記反応器の前記収容室と前記溶液貯蔵器とを連絡し、前記溶液貯蔵器からの促進剤水溶液を前記収容室の前記固体反応物に供給する第1流体流路と、前記反応器の前記収容室と前記溶液貯蔵器とを連絡し、前記反応器で発生した反応生成物を前記溶液貯蔵器の促進剤水溶液に接触させる第2流体流路と、前記溶液貯蔵器と前記反応器の前記流体室とを連絡し、前記溶液貯蔵器からの水素を前記流体室に送る水素流路と、水素の発生と排出による前記流体室を介しての前記収容室内の減圧により、前記第1流体流路の前記促進剤水溶液の流通と、前記水素流路及び前記第1水素排出路及び前記第2水素排出路の水素の流通を制御すると共に、水素を前記第2流体流路に流通させて前記反応生成物を前記促進剤水溶液に接触させる制御手段と、を備えることを特徴とする水素発生装置にある。   In order to achieve the above object, a second aspect of the present invention includes a reactor that contains a solid reactant and generates hydrogen therein, and a storage chamber in the reactor that contains the solid reactant. A fluid chamber in which the volume of the storage chamber is variable in the storage chamber of the reactor, a solution reservoir that stores an aqueous solution of a promoter that generates hydrogen by contact with the solid reactant, and the reactor A first fluid flow path that communicates between the storage chamber and the solution reservoir and supplies the aqueous solution of the accelerator from the solution reservoir to the solid reactant in the storage chamber; the storage chamber of the reactor; and the solution A second fluid flow path communicating with the reservoir and contacting the reaction product generated in the reactor with the promoter aqueous solution of the solution reservoir; and the solution reservoir and the fluid chamber of the reactor. And a hydrogen flow for sending hydrogen from the solution reservoir to the fluid chamber. And by depressurization of the storage chamber through the fluid chamber due to generation and discharge of hydrogen, the flow of the promoter aqueous solution in the first fluid channel, the hydrogen channel, the first hydrogen discharge channel, and the Control means for controlling the flow of hydrogen in the second hydrogen discharge passage, and for causing hydrogen to flow through the second fluid flow path and bringing the reaction product into contact with the promoter aqueous solution. In the generator.

第2の態様では、水素の発生と排出による溶液貯蔵器内の圧力変動に応じて制御手段を制御し、水溶液流路である第1流体流路を通して促進剤水溶液を水素発生反応の固体反応物側に移動させ、促進剤水溶液を固体反応物に接触させて水素を発生させ、循環路である第2流体流路を通して発生した水素を含む反応生成物を溶液貯蔵器に循環させて促進剤水溶液に接触させ、促進剤水溶液に接触させることにより生成物を除去し、生成物が除去された水素を排出路から排出する。これにより、生成物を除去するための部屋を備えることなく、しかも、流体の移動のための駆動源を備えることなく、少ないスペースで泡や金属含有物等の生成物を除去した状態の水素を排出して消費部に供給することができる。   In the second aspect, the control means is controlled in accordance with the pressure fluctuation in the solution reservoir due to the generation and discharge of hydrogen, and the promoter aqueous solution is passed through the first fluid flow path that is the aqueous solution flow path, and the solid reaction product of the hydrogen generation reaction. To the side, the aqueous solution of the promoter is brought into contact with the solid reactant to generate hydrogen, and the reaction product containing hydrogen generated through the second fluid flow path, which is a circulation path, is circulated to the solution reservoir to promote the aqueous solution of the accelerator. The product is removed by contacting with the aqueous solution of the accelerator, and the product-removed hydrogen is discharged from the discharge passage. As a result, hydrogen in a state where products such as bubbles and metal inclusions are removed in a small space without providing a room for removing the product and without providing a drive source for fluid movement. It can be discharged and supplied to the consumer.

併せて、反応器と溶液貯蔵器とを連結する流体流路が溶液貯蔵器の促進剤水溶液を反応器の固体反応物に供給する水溶液流路である第1流体流路と反応器で発生した水素を溶液貯蔵器に循環させて反応生成物を促進剤水溶液に接触させる循環路である第2流体流路の2本の流体流路から構成されることにより、第1流体流路と第2流体流路の流体流路の配管径を変えて、流量調節ができるようになり、水素量の制御がしやすくなる。   In addition, a fluid channel connecting the reactor and the solution reservoir is generated in the first fluid channel and the reactor, which is an aqueous solution channel that supplies the promoter aqueous solution of the solution reservoir to the solid reactant of the reactor. The first fluid channel and the second fluid channel are constituted by two fluid channels of the second fluid channel, which is a circulation channel for circulating hydrogen through the solution reservoir and bringing the reaction product into contact with the promoter aqueous solution. The flow rate can be adjusted by changing the pipe diameter of the fluid channel of the fluid channel, and the amount of hydrogen can be easily controlled.

本発明の第3の態様は、前記第2水素排出路の途中部に前記水素流路が接続され、接続部を挟んで前記流体室の反対側の前記第2水素排出路に前記第1水素排出路が接続され、前記制御手段は、前記水素流路に設けられ水素の前記溶液貯蔵器から前記流体室への流通のみを許容する逆止弁と、前記第2水素排出路に設けられ所定圧力以上で閉じる圧力制御弁と、前記第1水素排出路に設けられ前記圧力制御弁が閉じる時の前記所定圧力を下回ると閉じる弁体を有する定圧閉止弁を備えたことを特徴とする第1もしくは第2の態様に記載の水素発生装置にある。   According to a third aspect of the present invention, the hydrogen flow path is connected to an intermediate portion of the second hydrogen discharge path, and the first hydrogen is connected to the second hydrogen discharge path on the opposite side of the fluid chamber across the connection section. A discharge path is connected, and the control means is provided in the hydrogen flow path and a check valve that allows only the flow of hydrogen from the solution reservoir to the fluid chamber, and is provided in the second hydrogen discharge path. A pressure control valve that closes above a pressure; and a constant pressure shut-off valve that is provided in the first hydrogen discharge passage and has a valve body that closes when the pressure control valve is below the predetermined pressure when the pressure control valve is closed. Or it exists in the hydrogen generator as described in a 2nd aspect.

第3の態様では、溶液貯蔵器から流体室への水素の流通のみを許容する逆止弁が流体室からの水素の逆流を防止し、溶液貯蔵器の水素を流体室に送り、第2水素排出路に設けられた圧力制御弁が、所定圧力以上で閉じて流体室内の水素の流入を制御し、第1水素排出路に設けられた定圧閉止弁が、前記圧力制御弁が閉じる所定圧力より下回ると閉じることで、液体貯蔵器内の水素の流出及び流入を制御することによって、流体室及び収容室を減圧させて、流体の移動のための駆動源を備えることなく溶液容器の促進剤水溶液を反応器の固体反応物に供給することができる。   In the third aspect, the check valve that allows only the flow of hydrogen from the solution reservoir to the fluid chamber prevents the backflow of hydrogen from the fluid chamber, sends the hydrogen in the solution reservoir to the fluid chamber, and the second hydrogen The pressure control valve provided in the discharge passage is closed above a predetermined pressure to control the inflow of hydrogen in the fluid chamber, and the constant pressure shut-off valve provided in the first hydrogen discharge passage is higher than the predetermined pressure at which the pressure control valve is closed. By closing below, by controlling the outflow and inflow of hydrogen in the liquid reservoir, the fluid chamber and the storage chamber are depressurized and the promoter aqueous solution in the solution container is provided without a drive source for fluid movement Can be fed to the solid reactant of the reactor.

本発明の第4の態様は、前記第2水素排出路の途中部に前記水素流路が接続され、前記接続部を挟んで前記流体室の反対側の前記第2水素排出路に前記第1水素排出路が接続され、前記制御手段は、前記水素流路に設けられ水素の前記溶液貯蔵器から前記流体室への流通のみを許容する前記逆止弁と、前記第1水素排出路と前記第2水素排出路の前記接続部に設けられ所定圧以上の時に前記第1水素排出路が流通し、所定圧を下回った時に前記第2水素排出路が流通する三方弁を備えたことを特徴とする第1もしくは第2の態様に記載の水素発生装置にある。   According to a fourth aspect of the present invention, the hydrogen flow path is connected to an intermediate portion of the second hydrogen discharge path, and the first hydrogen discharge path on the opposite side of the fluid chamber with the connection section interposed therebetween. A hydrogen discharge path is connected, and the control means is provided in the hydrogen flow path and allows only the flow of hydrogen from the solution reservoir to the fluid chamber; the first hydrogen discharge path; A three-way valve is provided at the connection portion of the second hydrogen discharge path, and the first hydrogen discharge path flows when the pressure exceeds a predetermined pressure, and the second hydrogen discharge path flows when the pressure falls below the predetermined pressure. It exists in the hydrogen generator as described in the 1st or 2nd aspect.

第4の態様では、溶液貯蔵器から流体室への水素の流通のみを許容する逆止弁が流体室からの水素の逆流を防止し、溶液貯蔵器の水素を流体室に送り、第1水素排出路と第2水素排出路の接続部に設けられた三方弁が、所定圧以上の時に溶液容器側の排出路である第1水素排出路を流通し、液体貯蔵器内の水素を排出する。一方、所定圧を下回った時に圧力室側の排出路である第2水素排出路を流通し、圧力室の水素を排出する。このように液体貯蔵器及び圧力室の水素の流出及び流入を制御することによって流体室及び収容室を減圧させて、流体の移動のための駆動源を備えることなく溶液容器の促進剤水溶液を反応器の固体反応物に供給することができる。   In the fourth aspect, the check valve that allows only the flow of hydrogen from the solution reservoir to the fluid chamber prevents the backflow of hydrogen from the fluid chamber, and sends the hydrogen in the solution reservoir to the fluid chamber. A three-way valve provided at the connection between the discharge passage and the second hydrogen discharge passage circulates through the first hydrogen discharge passage which is the discharge passage on the solution container side when the pressure is higher than a predetermined pressure, and discharges hydrogen in the liquid reservoir. . On the other hand, when the pressure falls below a predetermined pressure, the second hydrogen discharge passage which is the discharge passage on the pressure chamber side is circulated to discharge hydrogen from the pressure chamber. By controlling the outflow and inflow of hydrogen in the liquid reservoir and the pressure chamber in this way, the fluid chamber and the storage chamber are depressurized, and the accelerator solution in the solution container is reacted without a drive source for fluid movement. The reactor can be fed to a solid reactant.

本発明の第5の態様は、前記定圧閉止弁の所定圧を制御するのはばねであることを特徴とする第3の態様に記載の水素発生装置にある。   According to a fifth aspect of the present invention, in the hydrogen generator according to the third aspect, the predetermined pressure of the constant pressure shut-off valve is controlled by a spring.

第5の態様では、所定圧をばねで制御することにより、促進剤水溶液の移動を抑制できる。   In the fifth aspect, the movement of the aqueous accelerator solution can be suppressed by controlling the predetermined pressure with a spring.

本発明の第6の態様は、前記圧力制御弁の設定圧力は、前記溶液貯蔵器の内圧を基準として開弁圧が設定されていることを特徴とする第3の態様に記載の水素発生装置にある。   A sixth aspect of the present invention is the hydrogen generator according to the third aspect, wherein the set pressure of the pressure control valve is set to a valve opening pressure based on the internal pressure of the solution reservoir. It is in.

第6の態様では、溶液貯蔵器の内圧が低下した際に、即ち、水素の消費が進んだ際に、促進剤水溶液を固体反応物側に流通させて水素を発生させることができる。   In the sixth aspect, when the internal pressure of the solution reservoir decreases, that is, when the consumption of hydrogen proceeds, the aqueous accelerator solution can be circulated to the solid reactant side to generate hydrogen.

本発明の第7の態様は、前記三方弁の設定圧力は、前記溶液貯蔵器の内圧を基準として開弁圧が設定されていることを特徴とする第4の態様に記載の水素発生装置にある。   According to a seventh aspect of the present invention, in the hydrogen generator according to the fourth aspect, the set pressure of the three-way valve is set to a valve opening pressure with reference to an internal pressure of the solution reservoir. is there.

第7の態様では、溶液貯蔵器の内圧が低下した際に、即ち、水素の消費が進んだ際に、促進剤水溶液を固体反応物側に流通させて水素を発生させることができる。   In the seventh aspect, when the internal pressure of the solution reservoir decreases, that is, when the consumption of hydrogen proceeds, hydrogen can be generated by flowing the aqueous accelerator solution to the solid reactant side.

本発明の第8の態様は、前記流体流路の前記溶液貯蔵器への開口端が前記促進剤水溶液の中に配されていることを特徴とする第1〜第7のいずれかの態様に記載の水素発生装置にある。   According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the open end of the fluid flow path to the solution reservoir is disposed in the promoter aqueous solution. In the hydrogen generator described.

第8の態様では、流体流路からの生成物を確実に促進剤水溶液に接触させることができる。   In the eighth aspect, the product from the fluid flow path can be reliably brought into contact with the promoter aqueous solution.

本発明の第9の態様は、前記反応器の前記流体室と前記収容室とを仕切り、併せて前記流体室と前記収容室の体積を可変にする手段は変形許容部材であることを特徴とする第1もしくは第2の態様に記載の水素発生装置にある。   According to a ninth aspect of the present invention, the means for partitioning the fluid chamber and the storage chamber of the reactor and making the volume of the fluid chamber and the storage chamber variable is a deformation allowing member. The hydrogen generator according to the first or second aspect is provided.

第9の様態では、水素の発生状況及び排出状況に応じて流体室の体積が変更され、収容室の圧力を変えることができる。   In the ninth aspect, the volume of the fluid chamber is changed according to the generation state and discharge state of hydrogen, and the pressure in the storage chamber can be changed.

本発明の第10の態様は、前記反応器の前記流体室と前記収容室とを仕切り、併せて前記流体室と前記収容室の体積を可変にする手段である前記変形許容部材は可撓性の膜であることを特徴とする第9の態様に記載の水素発生装置にある。   According to a tenth aspect of the present invention, the deformation allowing member that is a means for partitioning the fluid chamber and the storage chamber of the reactor and making the volume of the fluid chamber and the storage chamber variable is flexible. The hydrogen generator according to the ninth aspect is characterized by being a film of the above.

第10の態様では、水素の発生状況及び排出状況に応じて流体室の体積が変更され、収容室の圧力を変えることができる。   In the tenth aspect, the volume of the fluid chamber is changed in accordance with the generation state and discharge state of hydrogen, and the pressure in the storage chamber can be changed.

本発明の第11の態様は、前記促進剤水溶液が移動する前記流体流路の配管口にフィルターを取り付けたことを特徴とする第1〜第10のいずれかの態様に記載の水素発生装置にある。   An eleventh aspect of the present invention is the hydrogen generator according to any one of the first to tenth aspects, wherein a filter is attached to a piping port of the fluid flow path through which the promoter aqueous solution moves. is there.

第11の態様では、反応器に生成物が混入するのを防ぐことができる。   In the eleventh aspect, the product can be prevented from being mixed into the reactor.

本発明の第12の態様は、第1〜第11のいずれかの態様に記載の水素発生装置の排出路が燃料電池の燃料極に接続され、発生した水素が負極室に供給されることを特徴とする燃料電池設備にある。   According to a twelfth aspect of the present invention, the discharge path of the hydrogen generator according to any one of the first to eleventh aspects is connected to the fuel electrode of the fuel cell, and the generated hydrogen is supplied to the negative electrode chamber. The fuel cell equipment is featured.

第12の態様では、生成物を除去するための部屋を備えることなく、少ないスペースで泡や金属含有物等の生成物を除去した状態の水素を排出して消費部に供給することができる水素発生装置を備えた燃料電池設備とすることができる。   In the twelfth aspect, without providing a room for removing the product, hydrogen can be supplied to the consumption unit by discharging hydrogen in a state where products such as bubbles and metal-containing materials are removed in a small space. It can be set as the fuel cell equipment provided with the generator.

上記目的を達成するための本発明の第13の態様は、水素発生反応の促進剤の水溶液である促進剤水溶液を水素発生反応の固体反応物に接触させることで水素を発生させるに際し、水素の発生により加圧力を発生させて発生加圧力とし、発生した加圧力と水素排出により固体反応物を収容する反応器内の仕切られた部屋が減圧することで、促進剤水溶液を移動させる一方、水素と共に発生した生成物を促進剤水溶液に接触させて生成物を除去することを特徴とする水素発生方法にある。   The thirteenth aspect of the present invention for achieving the above object is that when hydrogen is generated by bringing an aqueous solution of an accelerator, which is an aqueous solution of an accelerator of a hydrogen generation reaction, into contact with a solid reactant of the hydrogen generation reaction, The generated pressurized pressure is generated to generate the generated pressurized pressure, and the partitioned chamber in the reactor containing the solid reactant is decompressed by the generated applied pressure and hydrogen discharge, thereby moving the aqueous solution of the accelerator, while And a product generated together with the aqueous accelerator solution to remove the product.

第13の態様では、生成物を除去するための部屋を備えることなく、併せて、流体の移動のための駆動源を備えることなく、少ないスペースで泡や金属含有物等の生成物を除去した状態の水素を排出して消費部に供給することができる。   In the thirteenth aspect, products such as bubbles and metal-containing materials are removed in a small space without providing a room for removing the products and without providing a drive source for fluid movement. The hydrogen in the state can be discharged and supplied to the consumption unit.

本発明の第14の態様は、水素発生反応の促進剤の水溶液である促進剤水溶液を水素発生反応の固体反応物に接触させることで水素を発生させるに際し、水素の発生により加圧力を発生させて発生加圧力とし、発生した加圧力と水素排出により固体反応物を収容する反応器内の仕切られた部屋が減圧することで、促進剤水溶液を移動させることを特徴とする水素発生方法にある。   In a fourteenth aspect of the present invention, when hydrogen is generated by bringing an aqueous solution of an accelerator, which is an aqueous solution of an accelerator for a hydrogen generation reaction, into contact with a solid reactant of the hydrogen generation reaction, an applied pressure is generated by the generation of hydrogen. The hydrogen generation method is characterized in that the aqueous solution of the accelerator is moved by reducing the pressure of the partitioned chamber in the reactor containing the solid reactant by the generated pressure and hydrogen discharge. .

第14の態様では、流体の移動のための駆動源を備えることなく、少ないスペースで泡や金属含有物等の生成物を除去した状態の水素を排出して消費部に供給することができる。   In the fourteenth aspect, without providing a drive source for fluid movement, hydrogen in a state where products such as bubbles and metal-containing materials are removed can be discharged and supplied to the consumption unit in a small space.

本発明の第15の態様は、水素発生反応の促進剤の水溶液である促進剤水溶液を水素発生反応の固体反応物に接触させることで水素を発生させるに際し、水素と共に発生した生成物を促進剤水溶液に接触させて生成物を除去することを特徴とする水素発生方法にある。   According to a fifteenth aspect of the present invention, when hydrogen is generated by bringing an aqueous solution of an accelerator, which is an aqueous solution of an accelerator for a hydrogen generation reaction, into contact with a solid reactant of the hydrogen generation reaction, the product generated together with the hydrogen is promoted. A method for generating hydrogen is characterized in that the product is removed by contact with an aqueous solution.

第15の態様では、生成物を除去するための部屋を備えることなく、少ないスペースで泡や金属含有物等の生成物を除去した状態の水素を排出して消費部に供給することができる。   In the fifteenth aspect, hydrogen in a state where products such as bubbles and metal-containing materials are removed can be discharged and supplied to the consumption unit in a small space without providing a room for removing the products.

本発明の第16の態様は、前記反応生成物が除去された水素を発生加圧力により排出することを特徴とする第13もしくは第14の態様に記載の水素発生方法にある。   A sixteenth aspect of the present invention is the hydrogen generation method according to the thirteenth or fourteenth aspect, wherein the hydrogen from which the reaction product has been removed is discharged by a generated pressure.

第16の態様では、流体の移動のための駆動源を備えることなく、少ないスペースで泡や金属含有物等の生成物を除去した状態の水素を排出して消費部に供給することができる。   In the sixteenth aspect, without providing a drive source for fluid movement, hydrogen in a state where products such as bubbles and metal-containing materials are removed can be discharged and supplied to the consumption unit in a small space.

本発明の水素発生装置及び水素発生方法は、流体の移動のための駆動源を備えることなく、少ないスペースで固体反応物と促進剤水溶液を接触させて得られた反応生成物から泡や金属含有物等の生成物を除去した状態の水素を供給することができる水素発生装置及び水素発生方法となる。   The hydrogen generating apparatus and the hydrogen generating method of the present invention include bubbles and metals from a reaction product obtained by contacting a solid reactant with an aqueous accelerator solution in a small space without providing a drive source for fluid movement. A hydrogen generation apparatus and a hydrogen generation method capable of supplying hydrogen in a state where a product such as a product is removed.

また、本発明の燃料電池設備は、少ないスペースで固体反応物と促進剤水溶液を接触させて得られた反応生成物から泡や金属含有物等の生成物を除去した状態の水素を供給することができる水素発生装置を備えた燃料電池設備となる。   In addition, the fuel cell facility of the present invention supplies hydrogen in a state where products such as bubbles and metal-containing materials are removed from a reaction product obtained by contacting a solid reactant and an aqueous accelerator solution in a small space. This is a fuel cell facility equipped with a hydrogen generator capable of

(第1実施形態例に係る水素発生装置)
図1乃至図5に基づいて第1実施形態例を説明する。
(Hydrogen generator according to the first embodiment)
A first embodiment will be described with reference to FIGS.

図1には本発明の第1実施形態例に係る水素発生装置の概略構成、図2には定圧閉止弁の断面、図3及び図4には圧力制御弁の断面、図5には水素発生処理の流れを示してある。   FIG. 1 shows a schematic configuration of a hydrogen generator according to a first embodiment of the present invention, FIG. 2 shows a cross section of a constant pressure shut-off valve, FIGS. 3 and 4 show a cross section of a pressure control valve, and FIG. The flow of processing is shown.

図1に示すように、水素発生装置1は、反応器2を備え、反応器2内の収容室8には水素発生反応の固体反応物としてのワーク3が貯蔵されている。反応器2に隣接して溶液貯蔵器としての溶液容器4が備えられ、溶液容器4には水素発生の促進剤の水溶液である促進剤水溶液5が貯蔵されている。   As shown in FIG. 1, the hydrogen generator 1 includes a reactor 2, and a work 3 as a solid reaction product of a hydrogen generating reaction is stored in a storage chamber 8 in the reactor 2. A solution container 4 serving as a solution reservoir is provided adjacent to the reactor 2, and an accelerator aqueous solution 5 that is an aqueous solution of a hydrogen generation accelerator is stored in the solution container 4.

本実施形態例では、ワーク3に水素化ホウ素ナトリウム(SBH)を用い、促進剤水溶液5にはリンゴ酸水溶液を用いた。このワーク3と促進剤水溶液5については、後でさらに詳細に説明する。また、本実施形態例では、水溶液流路として送液管13を例に挙げて説明しているが、水溶液流路としては反応器2と溶液容器4を連絡するために内部空間を繋ぐ孔や溝及び蓋を用いることも可能である。   In this embodiment, sodium borohydride (SBH) was used for the work 3 and malic acid aqueous solution was used for the accelerator aqueous solution 5. The work 3 and the accelerator aqueous solution 5 will be described in detail later. In the present embodiment, the liquid supply pipe 13 is described as an example of the aqueous solution flow path. However, as the aqueous solution flow path, a hole for connecting the internal space to connect the reactor 2 and the solution container 4 is used. It is also possible to use grooves and lids.

反応器2と溶液容器4は流体流路としての送液管13により接続され、溶液容器4の促進剤水溶液5が反応器2に収容されているワーク3に送られる。溶液容器4の促進剤水溶液5が送液管13から反応器2のワーク3に供給されることにより、促進剤水溶液5がワーク3に接触して反応し水素等の反応生成物が生成される。併せて、送液管13は反応器2で反応を起こし発生した反応生成物を溶液容器4に送っている。送液管13は、溶液容器4内の端部(開口端)が促進剤水溶液5中に配されており、反応生成物は促進剤水溶液5と接触するので反応生成物中の水素を巻き込んだ泡や金属含有物等の生成物は促進剤水溶液5中に溶解あるいは沈殿して、水素から除去される。これにより、水素は純度を増すので、化学反応が円滑に進められる。   The reactor 2 and the solution container 4 are connected by a liquid feeding pipe 13 as a fluid flow path, and the promoter aqueous solution 5 in the solution container 4 is sent to the work 3 accommodated in the reactor 2. When the promoter aqueous solution 5 in the solution container 4 is supplied from the liquid feeding tube 13 to the workpiece 3 of the reactor 2, the promoter aqueous solution 5 comes into contact with the workpiece 3 and reacts to generate a reaction product such as hydrogen. . In addition, the liquid feeding pipe 13 sends the reaction product generated by the reaction in the reactor 2 to the solution container 4. The liquid feeding tube 13 is arranged at the end (open end) in the solution container 4 in the promoter aqueous solution 5, and the reaction product is in contact with the promoter aqueous solution 5, so that hydrogen in the reaction product is involved. Products such as foam and metal-containing materials are dissolved or precipitated in the aqueous accelerator solution 5 and removed from the hydrogen. This increases the purity of hydrogen, so that the chemical reaction proceeds smoothly.

反応器2は可撓する弾性膜6により、ワーク3が格納され反応が起こる部分である収容室8と、流体が出入りすることにより圧力が変動する圧力室7とに仕切られている。圧力室7が減圧することにより弾性膜6が上方に変形移動すると、収容室8が減圧するので、溶液容器4の促進剤水溶液5が反応器2に移動する。   The reactor 2 is partitioned by a flexible elastic film 6 into a storage chamber 8 where the work 3 is stored and a reaction takes place, and a pressure chamber 7 in which the pressure varies as fluid enters and exits. When the elastic membrane 6 is deformed and moved upward due to the pressure chamber 7 being depressurized, the storage chamber 8 is depressurized, so that the promoter aqueous solution 5 in the solution container 4 moves to the reactor 2.

尚、弾性膜6は例えば、可撓性の袋状部材、あるいは、シリンジ構造を持つ可変手段であっても構わず、圧力室7の体積を変えることができるものであれば特に限定されない。   The elastic membrane 6 may be, for example, a flexible bag-like member or a variable means having a syringe structure, and is not particularly limited as long as the volume of the pressure chamber 7 can be changed.

反応器2内の圧力室7と溶液容器4は、水素導管14により接続されている。溶液容器4には泡や金属含有物等を除去した水素が貯留されているが、その貯留した水素が水素導管14を通り圧力室7へと移動する。水素導管14には、逆止弁10が備え付けられており、水素の溶液容器4から圧力室7方向のみの移動を許容し、水素導管14内を移動する水素の逆流を防止する。水素導管14内を水素が移動することにより圧力室7内は加圧される。   The pressure chamber 7 in the reactor 2 and the solution container 4 are connected by a hydrogen conduit 14. The solution container 4 stores hydrogen from which bubbles and metal-containing materials have been removed. The stored hydrogen moves through the hydrogen conduit 14 to the pressure chamber 7. The hydrogen conduit 14 is provided with a check valve 10, which allows movement of the hydrogen from the solution container 4 only in the direction of the pressure chamber 7, and prevents backflow of hydrogen moving in the hydrogen conduit 14. As the hydrogen moves through the hydrogen conduit 14, the pressure chamber 7 is pressurized.

反応器2内にある圧力室7には圧力室7に貯留する水素を排出する圧力室側排出路16があり、圧力室側排出路16(第2水素排出路)の先端がレギュレータ12と排出部17に連結しており、排出された水素は、水素消費部に繋がっている。また、圧力室側排出路16とレギュレータ12の経路には溶液容器4内に貯留する水素を排出する溶液容器側排出路15(第1水素排出路)の先端が接続している。   The pressure chamber 7 in the reactor 2 has a pressure chamber side discharge passage 16 for discharging hydrogen stored in the pressure chamber 7, and the tip of the pressure chamber side discharge passage 16 (second hydrogen discharge passage) discharges from the regulator 12. It is connected to the unit 17, and the discharged hydrogen is connected to the hydrogen consumption unit. Further, the tip of a solution container side discharge path 15 (first hydrogen discharge path) for discharging hydrogen stored in the solution container 4 is connected to the pressure chamber side discharge path 16 and the path of the regulator 12.

溶液容器側排出路15(第1水素排出路)には溶液容器4内に貯留した水素の排出を制御する定圧閉止弁9が設けられており、溶液容器4内に貯留した水素圧が所定圧以上になると、定圧閉止弁9が開き、溶液容器4内に貯留した水素が溶液容器側排出路15を通り、圧力室側排出路16との接続部を経てレギュレータ12を介して排出部17へと排出される。逆に、溶液容器4内に貯留した水素圧が所定圧を下回ると、定圧閉止弁9は閉じ、排出路を絶たれた水素が溶液容器4内に貯留され、溶液容器4内が徐々に加圧する。加圧を続け、溶液容器4の内圧が所定圧以上になると、上記のように定圧閉止弁9が開き、水素が排出される。   The solution container side discharge passage 15 (first hydrogen discharge passage) is provided with a constant pressure closing valve 9 for controlling the discharge of hydrogen stored in the solution container 4, and the hydrogen pressure stored in the solution container 4 is set to a predetermined pressure. When the above is reached, the constant pressure shut-off valve 9 is opened, and the hydrogen stored in the solution container 4 passes through the solution container side discharge path 15, passes through the connection portion with the pressure chamber side discharge path 16, and goes to the discharge section 17 through the regulator 12. And discharged. On the other hand, when the hydrogen pressure stored in the solution container 4 falls below a predetermined pressure, the constant pressure shut-off valve 9 is closed, the hydrogen that has been cut off the discharge path is stored in the solution container 4, and the solution container 4 is gradually added. Press. When the pressurization is continued and the internal pressure of the solution container 4 becomes a predetermined pressure or more, the constant pressure shut-off valve 9 is opened as described above, and hydrogen is discharged.

圧力室側排出路16(第2水素排出路)には圧力室7に貯留した水素の排出を制御する圧力制御弁11が設けられており、溶液容器4内に貯留した水素圧が所定圧を下回ると、圧力制御弁11が開き、圧力室7に貯留した水素が圧力室側排出路16を通り、溶液容器側排出路15との接続部を経てレギュレータ12を介して排出部17へと排出される。この水素の移動により圧力室7内は減圧するので、弾性膜6が上方に変形移動することで収容室8が減圧する。収容室8が減圧することにより、溶液容器4内の促進剤水溶液5が反応器2に移動し、ワーク3と接触して水素を発生する。逆に、溶液容器4内に貯留した水素圧が所定圧以上になると、圧力制御弁11は閉じ、排出路を絶たれた水素が圧力室7内に貯留され、圧力室7内は徐々に加圧する。圧力室7内が加圧を続け、弾性膜6が下方に変形移動し収容室8を加圧するので、溶液容器4から反応器2への促進剤水溶液5の移動が止まる。圧力室7内の加圧が続き、溶液容器4内の水素が定圧閉止弁9を介して排出されると、溶液容器4内の水素圧が所定圧を下回り、圧力制御弁11が開く。   The pressure chamber side discharge passage 16 (second hydrogen discharge passage) is provided with a pressure control valve 11 for controlling the discharge of hydrogen stored in the pressure chamber 7, and the hydrogen pressure stored in the solution container 4 has a predetermined pressure. When the pressure falls below, the pressure control valve 11 opens, and the hydrogen stored in the pressure chamber 7 passes through the pressure chamber side discharge passage 16 and is discharged to the discharge portion 17 via the regulator 12 through the connection portion with the solution container side discharge passage 15. Is done. Since the inside of the pressure chamber 7 is depressurized by the movement of hydrogen, the accommodating chamber 8 is depressurized by the elastic film 6 being deformed and moved upward. When the storage chamber 8 is depressurized, the promoter aqueous solution 5 in the solution container 4 moves to the reactor 2 and comes into contact with the workpiece 3 to generate hydrogen. On the contrary, when the hydrogen pressure stored in the solution container 4 becomes a predetermined pressure or more, the pressure control valve 11 is closed, and the hydrogen whose discharge path is cut off is stored in the pressure chamber 7, and the pressure chamber 7 is gradually increased. Press. Since the inside of the pressure chamber 7 continues to be pressurized and the elastic membrane 6 is deformed and moved downward to pressurize the storage chamber 8, the movement of the promoter aqueous solution 5 from the solution container 4 to the reactor 2 is stopped. When pressurization in the pressure chamber 7 continues and hydrogen in the solution container 4 is discharged through the constant pressure closing valve 9, the hydrogen pressure in the solution container 4 falls below a predetermined pressure, and the pressure control valve 11 opens.

詳細は後述するが、前記所定圧は、例えば、大気圧と水素圧(溶液容器4の内圧)との関係で設定されている。つまり、圧力制御弁11の設定圧力は溶液容器4の内圧を基準として開弁圧が設定されているので、溶液容器4から圧力制御弁11へ破線矢印を付し、その様子を図1に示した。   Although details will be described later, the predetermined pressure is set, for example, in relation to atmospheric pressure and hydrogen pressure (internal pressure of the solution container 4). That is, since the set pressure of the pressure control valve 11 is set to the valve opening pressure with reference to the internal pressure of the solution container 4, a broken line arrow is attached from the solution container 4 to the pressure control valve 11, and the state is shown in FIG. It was.

レギュレータ12により、反応器2の圧力室7と溶液容器4の両方からの水素排出量が調整される。尚、レギュレータ12により圧力室7と溶液容器4との水素排出量の割合を制御することもできるが、定圧弁を用いて一定の水素圧で水素を排出することも可能である。   The regulator 12 adjusts the amount of hydrogen discharged from both the pressure chamber 7 and the solution container 4 of the reactor 2. Although the regulator 12 can control the ratio of the hydrogen discharge amount between the pressure chamber 7 and the solution container 4, it is also possible to discharge hydrogen at a constant hydrogen pressure using a constant pressure valve.

上述した水素発生装置1は、促進剤水溶液5が反応器2のワーク3に供給されることにより水素が発生され、反応器2で生成された水素(水素、水素を巻き込んだ泡等)は促進剤水溶液5に接触した後に水素導管14から圧力室7に貯留され、溶液容器4内が大気圧以上の時は、溶液容器側排出路15から水素消費部に送られる。促進剤水溶液5の移動及び生成された水素の移動は、生成時の水素の圧力により定圧閉止弁9及び圧力制御弁11の開閉制御により行われる。このため、水素の生成及び水素の移動のための動力を必要とせず、促進剤水溶液5を供給するためのポンプ等が不要になる。   In the hydrogen generator 1 described above, hydrogen is generated by supplying the promoter aqueous solution 5 to the work 3 of the reactor 2, and hydrogen generated in the reactor 2 (hydrogen, bubbles entrained with hydrogen, etc.) is promoted. After coming into contact with the aqueous solution 5, the hydrogen is stored in the pressure chamber 7 from the hydrogen conduit 14, and is sent from the solution container side discharge path 15 to the hydrogen consuming part when the inside of the solution container 4 is at atmospheric pressure or higher. The movement of the promoter aqueous solution 5 and the movement of the generated hydrogen are performed by opening / closing control of the constant pressure closing valve 9 and the pressure control valve 11 by the pressure of hydrogen at the time of generation. For this reason, the power for production | generation of hydrogen and movement of hydrogen is not required, and the pump etc. for supplying the promoter aqueous solution 5 become unnecessary.

図1に図記号として示した定圧閉止弁9の構造について、図2に基づいて詳細に説明する。   The structure of the constant pressure shut-off valve 9 shown as a symbol in FIG. 1 will be described in detail based on FIG.

図2に示すように、定圧閉止弁9は、固定部18と弁体20を連結するばね19と配管21から構成される。弁体20はばね19により配管21に付勢され、ばね19の付勢力により常時閉じられている。配管21に所定圧力以上の圧力の水素が流通するとばね19の付勢力に抗して弁体20が移動し、配管21に水素が流通する。配管21は図1では、溶液容器側排出路15であり、溶液容器4内の水素が流通する。配管は例えば、樹脂チューブといった形が変更自在な素材から成り、配管内の水素の流通量が変化することによりばねの釣合いで配管の直径が変化し、配管21が開閉する。ばね力と外圧の合力と、配管をたわませる力と反応溶液の圧力との釣合いで、弁体の上下が決まる。溶液容器4の内圧が所定圧以上であると、反応溶液の圧力で開状態となり配管21は流通可能であるが、所定圧を下回るとばねの付勢力で配管が閉鎖されて水素は流通できなくなる。ばねの付勢力を大気圧相当の圧力に設定することにより、所定圧が大気圧に釣合うようにばねで調整される。また、ばねで所望の力に制御することができる。   As shown in FIG. 2, the constant pressure shut-off valve 9 includes a spring 19 and a pipe 21 that connect the fixed portion 18 and the valve body 20. The valve body 20 is urged to the pipe 21 by the spring 19 and is always closed by the urging force of the spring 19. When hydrogen having a pressure equal to or higher than a predetermined pressure flows through the pipe 21, the valve body 20 moves against the biasing force of the spring 19, and hydrogen flows through the pipe 21. In FIG. 1, the pipe 21 is the solution container side discharge path 15, and hydrogen in the solution container 4 flows therethrough. The pipe is made of a material whose shape can be changed, such as a resin tube, and the diameter of the pipe changes due to the balance of the spring by changing the amount of hydrogen flowing in the pipe, and the pipe 21 opens and closes. The upper and lower sides of the valve body are determined by the balance between the combined force of the spring force and the external pressure, the force that deflects the piping, and the pressure of the reaction solution. If the internal pressure of the solution container 4 is equal to or higher than the predetermined pressure, the reaction solution pressure is opened and the pipe 21 can be circulated. However, if the pressure is lower than the predetermined pressure, the pipe is closed by the biasing force of the spring and hydrogen cannot circulate. . By setting the biasing force of the spring to a pressure corresponding to the atmospheric pressure, the predetermined pressure is adjusted by the spring so as to balance the atmospheric pressure. Moreover, it can control to desired force with a spring.

以上のように、定圧閉止弁9により溶液容器4の内圧が所定圧(大気圧相当のばねの付勢力)以上であると開状態となり、水素が排出され、溶液容器4の内圧が所定圧(大気圧相当のばねの付勢力)を下回ると閉状態のとなり、水素は溶液容器4内に貯留される。   As described above, when the internal pressure of the solution container 4 is equal to or higher than the predetermined pressure (the urging force of the spring corresponding to the atmospheric pressure) by the constant pressure shut-off valve 9, hydrogen is discharged and the internal pressure of the solution container 4 is set to the predetermined pressure ( When the pressure is less than the biasing force of the spring corresponding to the atmospheric pressure, the closed state is reached, and hydrogen is stored in the solution container 4.

図1に図記号として示した圧力制御弁11の構造について、図3及び図4に基づいて詳細に説明する。   The structure of the pressure control valve 11 shown as a symbol in FIG. 1 will be described in detail with reference to FIGS.

先ず、図1に示した圧力制御弁11では、その左右方向に圧力室側排出路16が接続されているが、図1は気体や液体の移送回路としての機器の配置関係を示すための図であるため、圧力室側排出路16が上下方向であるか左右方向であるかは限定されない。すなわち、圧力制御弁11に対して左側の圧力室側排出路16と右側の圧力室側排出路16とが同方向である場合も有りうる。図3及び図4に示す圧力制御弁11は、左側の圧力室側排出路16と右側の圧力室側排出路16とが同方向である場合の例であり、図3は圧力制御弁11の開状態を示す断面図、図4は閉状態を示す断面図である。   First, in the pressure control valve 11 shown in FIG. 1, the pressure chamber side discharge passage 16 is connected in the left-right direction. FIG. 1 is a diagram for showing the arrangement relationship of devices as a gas or liquid transfer circuit. Therefore, it is not limited whether the pressure chamber side discharge path 16 is in the vertical direction or the horizontal direction. That is, the pressure chamber side discharge path 16 on the left side and the pressure chamber side discharge path 16 on the right side may be in the same direction with respect to the pressure control valve 11. The pressure control valve 11 shown in FIGS. 3 and 4 is an example in which the left pressure chamber side discharge path 16 and the right pressure chamber side discharge path 16 are in the same direction. FIG. 4 is a cross-sectional view showing the open state, and FIG. 4 is a cross-sectional view showing the closed state.

図3及び図4に示すように、圧力制御弁11は、外周部に基体22を有する。この基体22は、気体や液体の移送回路に用いられる他の機器や配管との接続を担うとともに、圧力制御弁11全体の大きさを決定する外枠となっている。尚、この基体22は、移送回路に用いられる他の機器に一体に形成しても良い。   As shown in FIGS. 3 and 4, the pressure control valve 11 has a base 22 on the outer peripheral portion. The base 22 serves as an outer frame for determining the overall size of the pressure control valve 11 as well as being connected to other equipment and piping used in a gas or liquid transfer circuit. The base 22 may be integrally formed with other equipment used in the transfer circuit.

そして、基体22には、基体の厚さ方向(図中上下方向)に貫通する貫通部23が設けられている。この貫通部23の一方の開口部23aを塞ぐように第1圧力変形部24が設けられ、他方の開口部23bを塞ぐように第2圧力変形部25が設けられている。第1圧力変形部24及び第2圧力変形部25は、可撓性のシートからなり厚さ方向(図中上下方向)に変形可能となっている。貫通部23における第1圧力変形部24及び第2圧力変形部25の間の空間には仕切部材26が設けられ、仕切部材26は基体22の厚さ方向の中間に配されて第1圧力変形部24及び第2圧力変形部25の間の空間が区画されている。   The base 22 is provided with a penetrating portion 23 penetrating in the thickness direction (vertical direction in the drawing) of the base. A first pressure deforming portion 24 is provided so as to close one opening 23a of the penetrating portion 23, and a second pressure deforming portion 25 is provided so as to close the other opening 23b. The 1st pressure deformation part 24 and the 2nd pressure deformation part 25 consist of a flexible sheet | seat, and can deform | transform in the thickness direction (up-down direction in a figure). A partition member 26 is provided in a space between the first pressure deforming portion 24 and the second pressure deforming portion 25 in the penetrating portion 23, and the partition member 26 is disposed in the middle in the thickness direction of the base body 22 and is subjected to the first pressure deformation. A space between the portion 24 and the second pressure deformation portion 25 is partitioned.

仕切部材26により区画されて第1圧力変形部24側に第1流路27が形成されると共に、第2圧力変形部25側に第2流路28が形成されている。第1流路27及び第2流路28はそれぞれ基体22の平面方向に延設されている。   A first flow path 27 is formed on the first pressure deforming portion 24 side by being partitioned by the partition member 26, and a second flow path 28 is formed on the second pressure deforming portion 25 side. The first flow path 27 and the second flow path 28 are each extended in the planar direction of the base body 22.

第1流路27が、例えば、圧力室側排出路16の圧力室7側に接続され、第2流路28が、例えば、圧力室側排出路16のレギュレータ12及び排出部17側に接続されている。仕切部材26には貫通孔29が設けられ、貫通孔29により形成された連通路30を介して第1流路27及び第2流路28が連通されている。   The first flow path 27 is connected to, for example, the pressure chamber 7 side of the pressure chamber side discharge path 16, and the second flow path 28 is connected to, for example, the regulator 12 and the discharge unit 17 side of the pressure chamber side discharge path 16. ing. A through hole 29 is provided in the partition member 26, and the first flow path 27 and the second flow path 28 are communicated with each other through a communication path 30 formed by the through hole 29.

貫通部23の第1圧力変形部24及び第2圧力変形部25の間の空間には弁部材31が図中上下方向に移動自在に備えられ、弁部材31には貫通孔29を貫通する弁棒32と第2流路28側に配される弁体33が一体に設けられている。弁部材31が図中上側に移動した際には、連通路30が第2流路28側から弁体33に塞がれた状態になる(図4参照)。弁棒32の端部には第1圧力変形部24が接続され、弁体33の外側の面には第2圧力変形部25が接続されている。つまり、弁部材31は第1圧力変形部24及び第2圧力変形部25に支持されて連通路30を開閉可能としている。   A valve member 31 is provided in the space between the first pressure deforming portion 24 and the second pressure deforming portion 25 of the penetrating portion 23 so as to be movable in the vertical direction in the figure, and the valve member 31 is a valve penetrating the through hole 29. The rod 32 and the valve body 33 disposed on the second flow path 28 side are integrally provided. When the valve member 31 moves to the upper side in the drawing, the communication passage 30 is closed by the valve body 33 from the second flow path 28 side (see FIG. 4). A first pressure deformation portion 24 is connected to the end of the valve rod 32, and a second pressure deformation portion 25 is connected to the outer surface of the valve body 33. That is, the valve member 31 is supported by the first pressure deformation portion 24 and the second pressure deformation portion 25 so that the communication passage 30 can be opened and closed.

圧力制御弁11は、第1圧力変形部24の外側に、例えば、大気圧等の所定の圧力を受け、第2圧力変形部25の外側に溶液容器4(図1参照)の水素圧力を受けるように配置されている。即ち、図1に点線で示したように、第2圧力変形部25の外側と溶液容器4が接続され、第2圧力変形部25の外側に溶液容器4(図1参照)の水素圧力を受けるようにされている。第2圧力変形部24の外側に溶液容器4(図1参照)の水素圧力を受けるようにしたので、圧力変動の少ない水素圧力を圧力制御弁11に作用させることができる。尚、第2圧力変形部25の外側に反応器2の水素圧力を受けるようにすることも可能である。   The pressure control valve 11 receives, for example, a predetermined pressure such as atmospheric pressure on the outside of the first pressure deforming portion 24, and receives the hydrogen pressure of the solution container 4 (see FIG. 1) on the outside of the second pressure deforming portion 25. Are arranged as follows. That is, as indicated by a dotted line in FIG. 1, the outside of the second pressure deforming portion 25 and the solution container 4 are connected, and the hydrogen pressure of the solution container 4 (see FIG. 1) is received outside the second pressure deforming portion 25. Has been. Since the hydrogen pressure of the solution container 4 (see FIG. 1) is received on the outside of the second pressure deforming portion 24, a hydrogen pressure with little pressure fluctuation can be applied to the pressure control valve 11. It is also possible to receive the hydrogen pressure of the reactor 2 outside the second pressure deformation part 25.

このため、溶液容器4の水素圧力が大気圧より高い状態では、図4に示すように、第1圧力変形部24及び第2圧力変形部25は弁部材31と共に図中上方に移動して連通路30が弁体33に塞がれた状態になり、第1流路27と第2流路28が遮断された状態になる。従って、溶液容器4(図1参照)の水素圧力が高い時には、第1流路27と第2流路28が遮断されて圧力室7の水素は圧力室7に貯留される。   For this reason, when the hydrogen pressure in the solution container 4 is higher than the atmospheric pressure, the first pressure deforming portion 24 and the second pressure deforming portion 25 move together with the valve member 31 upward as shown in FIG. The passage 30 is closed by the valve body 33, and the first flow path 27 and the second flow path 28 are blocked. Therefore, when the hydrogen pressure in the solution container 4 (see FIG. 1) is high, the first flow path 27 and the second flow path 28 are blocked, and the hydrogen in the pressure chamber 7 is stored in the pressure chamber 7.

水素の消費が進み溶液容器4の水素圧力が大気圧より低くなると、図3に示すように、第1圧力変形部24及び第2圧力変形部25は弁部材31と共に図中下方に移動して弁体33が貫通孔29から離れて連通路30が開かれた状態になり、第1流路27と第2流路28が連通した状態になる。従って、溶液容器4(図1参照)の水素圧力が低くなると、第1流路27と第2流路28が連通して圧力室7の水素が排出され、圧力室7内の減圧により促進剤水溶液5が反応器2へ供給される。   When the consumption of hydrogen progresses and the hydrogen pressure in the solution container 4 becomes lower than the atmospheric pressure, the first pressure deformation portion 24 and the second pressure deformation portion 25 move downward in the figure together with the valve member 31 as shown in FIG. The valve body 33 is separated from the through hole 29 and the communication path 30 is opened, and the first flow path 27 and the second flow path 28 are in communication. Therefore, when the hydrogen pressure in the solution container 4 (see FIG. 1) becomes low, the first flow path 27 and the second flow path 28 communicate with each other and hydrogen in the pressure chamber 7 is discharged. The aqueous solution 5 is supplied to the reactor 2.

このように、圧力制御弁11は溶液容器4(図1参照)の水素の消費に応じて開閉制御され、必要なときに、動力を用いることなく促進剤水溶液5(図1参照)を反応器2に供給して水素を発生させることができる。   In this way, the pressure control valve 11 is controlled to open and close in accordance with the consumption of hydrogen in the solution container 4 (see FIG. 1), and when necessary, the promoter aqueous solution 5 (see FIG. 1) is supplied to the reactor without using power. 2 can be supplied to generate hydrogen.

図1及び図5に基づいて上述した水素発生装置1の作用を説明する。尚、以下の説明でしめしたステップ番号は、図5に記載したステップ番号である。   The operation of the hydrogen generator 1 described above will be described with reference to FIGS. 1 and 5. The step numbers shown in the following description are the step numbers shown in FIG.

溶液容器4から送液管13を通して反応器2のワーク3に促進剤水溶液5が供給される(ステップS1)。溶液容器4の水素圧力が低く、圧力制御弁11は開状態、定圧閉止弁9が閉状態の時に、促進剤水溶液5が反応器2に供給され、促進剤水溶液5がワーク3に接触して反応を起こし、水素が生成される(ステップS2)。反応器2の内圧の上昇により、発生した水素、生成物、泡等の反応生成物は送液管13を通って溶液容器4に移動する(ステップS3)(図1の矢印b)。溶液容器4内の促進剤水溶液5と反応生成物が接触し金属含有物や泡は除去され水素が貯留される。貯留した水素は水素導管14を通り、圧力室7に送られる(ステップS4)(図1の矢印c)。水素発生に伴い、溶液容器4内の水素圧が大気圧以上になると定圧閉止弁9が開き、圧力制御弁11が閉じると(ステップS5)、溶液容器4内の水素が排出される(ステップS6)(図1の矢印d→f)。水素が排出され、溶液容器4内の水素圧が大気圧を下回ると定圧閉止弁9が閉じ(ステップS7)、圧力制御弁11が開くと、圧力室7の水素が排出される(ステップS8)(図1の矢印e→f)。圧力室7の水素が排出されたことで、圧力室7が減圧し、弾性膜6が上方に変形移動(ステップS9)するので、収容室8が減圧する。収容室8が減圧することによって、促進剤水溶液5が反応器2に移動する(ステップS10)(図1の矢印a)。   The promoter aqueous solution 5 is supplied from the solution container 4 to the workpiece 3 of the reactor 2 through the liquid feeding tube 13 (step S1). When the hydrogen pressure in the solution container 4 is low, the pressure control valve 11 is open, and the constant pressure shut-off valve 9 is closed, the promoter aqueous solution 5 is supplied to the reactor 2, and the promoter aqueous solution 5 contacts the workpiece 3. Reaction occurs to generate hydrogen (step S2). Due to the increase in the internal pressure of the reactor 2, the generated reaction products such as hydrogen, products and bubbles move to the solution container 4 through the liquid feeding tube 13 (step S 3) (arrow b in FIG. 1). The promoter aqueous solution 5 in the solution container 4 and the reaction product come into contact with each other, the metal-containing material and bubbles are removed, and hydrogen is stored. The stored hydrogen passes through the hydrogen conduit 14 and is sent to the pressure chamber 7 (step S4) (arrow c in FIG. 1). When the hydrogen pressure in the solution container 4 becomes equal to or higher than the atmospheric pressure accompanying the generation of hydrogen, the constant pressure shut-off valve 9 is opened and the pressure control valve 11 is closed (step S5), and the hydrogen in the solution container 4 is discharged (step S6). (Arrow d → f in FIG. 1). When hydrogen is discharged and the hydrogen pressure in the solution container 4 falls below atmospheric pressure, the constant pressure shut-off valve 9 is closed (step S7), and when the pressure control valve 11 is opened, hydrogen in the pressure chamber 7 is discharged (step S8). (Arrow e → f in FIG. 1). As the hydrogen in the pressure chamber 7 is discharged, the pressure chamber 7 is depressurized and the elastic film 6 is deformed and moved upward (step S9), so that the storage chamber 8 is depressurized. When the storage chamber 8 is depressurized, the promoter aqueous solution 5 moves to the reactor 2 (step S10) (arrow a in FIG. 1).

反応器2で生成された水素は生成物及び泡と共に促進剤水溶液5に接触して水素と生成物(泡)とを分離することができる。このため、分離のための手段(例えば、分離室等)を備えることなく、生成物(泡)を分離して反応効率の低下をなくし、水素を消費部に供給することができる。そして、反応器2の内圧の減少により促進剤水溶液5の移動及び水素、生成物、泡の移動を行うことができ、移動のための動力を必要とせず、消費電力なしで水素を発生させることができる。   The hydrogen produced in the reactor 2 can come into contact with the promoter aqueous solution 5 together with the product and foam to separate the hydrogen and the product (foam). For this reason, without providing a means for separation (for example, a separation chamber or the like), it is possible to separate the product (bubbles) to eliminate a decrease in reaction efficiency and supply hydrogen to the consumption unit. And, by reducing the internal pressure of the reactor 2, the promoter aqueous solution 5 can be moved and the hydrogen, products, and bubbles can be moved, so that no power is required for movement and hydrogen is generated without power consumption. Can do.

従って、泡等を分離するための手段を備えること、少ないスペースでワーク3と促進剤水溶液5を接触させて、得られた反応生成物から泡や金属含有物等の生成物を除去した状態の水素を消費部に供給することができる水素発生装置となる。そして、動力を用いずに反応器2の内圧の減少により促進剤水溶液5の移動及び水素を含む反応生成物の移動を安定して行うことができる。   Therefore, it is provided with a means for separating bubbles and the like, in a state where the work 3 and the promoter aqueous solution 5 are brought into contact with each other in a small space, and products such as bubbles and metal-containing materials are removed from the obtained reaction product. A hydrogen generator capable of supplying hydrogen to the consumption unit is provided. And the movement of the promoter aqueous solution 5 and the reaction product containing hydrogen can be stably performed by reducing the internal pressure of the reactor 2 without using power.

ここで、ワーク3と促進剤水溶液5の具体例を説明する。   Here, the specific example of the workpiece | work 3 and the promoter aqueous solution 5 is demonstrated.

ワーク3には水素化ホウ素ナトリウム(SBH)を用い、促進剤水溶液5にはリンゴ酸水溶液を用いている。SBHは固体であり、形態は粉体でも錠剤でも良い。リンゴ酸水溶液の濃度は5%以上60%以下、好ましくは、10%以上40%以下のものを用いる。通常は25%の濃度のリンゴ酸水溶液を用いる。水素発生反応はSBHとリンゴ酸水溶液の水とによる反応である。リンゴ酸は反応促進剤として作用する。   Sodium borohydride (SBH) is used for the work 3 and malic acid aqueous solution is used for the accelerator aqueous solution 5. SBH is solid, and the form may be powder or tablet. The concentration of the malic acid aqueous solution is 5% or more and 60% or less, preferably 10% or more and 40% or less. Usually, a malic acid aqueous solution having a concentration of 25% is used. The hydrogen generation reaction is a reaction with SBH and malic acid aqueous water. Malic acid acts as a reaction accelerator.

ワーク3及び促進剤水溶液5としての組み合わせの例を説明する。   The example of the combination as the workpiece | work 3 and the promoter aqueous solution 5 is demonstrated.

ワーク3として、水素化ホウ素塩、水素化アルミニウム塩、固体もしくは塩基性溶液が用いられた場合、促進剤水溶液5として、有機酸が5%〜60%(10%〜40%)、通常は25%の濃度で使用する。ワーク3の塩として、ナトリウム、カリウム、リチウムを使用し、促進剤水溶液5の有機酸として、クエン酸、リンゴ酸、コハク酸を使用する。   When a borohydride salt, an aluminum hydride salt, a solid or a basic solution is used as the work 3, an organic acid is 5% to 60% (10% to 40%), usually 25, as the promoter aqueous solution 5. % Concentration. Sodium, potassium and lithium are used as the salt of the work 3, and citric acid, malic acid and succinic acid are used as the organic acid of the accelerator aqueous solution 5.

また、ワーク3として、水素化ホウ素塩、水素化アルミニウム塩、固体もしくは塩基性溶液を用いた場合、促進剤水溶液5として、金属塩化物は1%〜20%の濃度で使用する。ワーク3の塩として、ナトリウム、カリウム、リチウムを使用すると、促進剤水溶液5の促進剤金属として、ニッケル、鉄、コバルトを通常12%の濃度で使用する。   Further, when a borohydride salt, an aluminum hydride salt, a solid or a basic solution is used as the work 3, the metal chloride is used at a concentration of 1% to 20% as the promoter aqueous solution 5. When sodium, potassium, or lithium is used as the salt of the work 3, nickel, iron, or cobalt is usually used at a concentration of 12% as the promoter metal of the promoter aqueous solution 5.

また、ワーク3として、金属塩化物が用いられた場合、促進剤水溶液5として、水素化ホウ素塩、水素化アルミニウム塩の塩基性溶液を1%〜20%、通常は12%の濃度で使用する。ワーク3の金属として、ニッケル、鉄、コバルトを使用し、促進剤水溶液5の塩として、ナトリウム、カリウム、リチウムを使用する。   When metal chloride is used as the work 3, a basic solution of borohydride salt or aluminum hydride salt is used as the promoter aqueous solution 5 at a concentration of 1% to 20%, usually 12%. . Nickel, iron, and cobalt are used as the metal of the work 3, and sodium, potassium, and lithium are used as the salt of the accelerator aqueous solution 5.

また、ワーク3として、酸化還元電位が水素より卑とされる金属を用いた場合、促進剤水溶液5として酸を使用する。ワーク3の金属として、マグネシウム、アルミニウム、鉄を使用し、促進剤水溶液5の酸として、塩酸、硫酸を使用する。   Further, when a metal whose oxidation-reduction potential is lower than that of hydrogen is used as the work 3, an acid is used as the promoter aqueous solution 5. Magnesium, aluminum, and iron are used as the metal of the work 3, and hydrochloric acid and sulfuric acid are used as the acid of the aqueous accelerator solution 5.

また、ワーク3として、両性金属が用いられた場合、促進剤水溶液5として塩基性水溶液を使用する。ワーク3の両性金属として、アルミニウム、亜鉛、錫、鉛を使用し、促進剤水溶液5の塩基性水溶液として水酸化ナトリウムを使用する。   When an amphoteric metal is used as the work 3, a basic aqueous solution is used as the accelerator aqueous solution 5. Aluminum, zinc, tin, and lead are used as the amphoteric metal of the work 3, and sodium hydroxide is used as the basic aqueous solution of the accelerator aqueous solution 5.

(第2実施形態例に係る水素発生装置)
図6乃至図9に基づいて第2実施形態例を説明する。尚、図1に示した部材と同一部材には同一符号を付して重複する説明は省略してある。
(Hydrogen generator according to the second embodiment)
A second embodiment will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same member as the member shown in FIG. 1, and the overlapping description is abbreviate | omitted.

図6には本発明の第2実施形態例に係る水素発生装置の概略構成、図7及び図8には三方弁の断面、図9には水素発生処理の流れを示してある。   FIG. 6 shows a schematic configuration of the hydrogen generator according to the second embodiment of the present invention, FIGS. 7 and 8 show a cross section of the three-way valve, and FIG. 9 shows a flow of the hydrogen generation process.

水素発生装置34は、ワーク3を貯蔵する反応器2と、促進剤水溶液5を貯蔵した溶液容器4と反応器2と溶液容器4をつなぐ送液管13と反応器2内に弾性膜6を介して水素を貯蔵する圧力室7と溶液容器4の水素を圧力室7に送る水素導管14と水素導管14上に設置された逆止弁10と溶液容器側排出路15(第1水素排出路)と圧力室側排出路16(第2水素排出路)と前記溶液容器側排出路15及び圧力室側排出路16の両排出路の接続部に設置された三方弁35とレギュレータ12と排出部17から構成される。   The hydrogen generator 34 includes a reactor 2 that stores the workpiece 3, a solution container 4 that stores the promoter aqueous solution 5, a liquid feeding pipe 13 that connects the reactor 2 and the solution container 4, and an elastic membrane 6 in the reactor 2. The pressure chamber 7 for storing hydrogen, the hydrogen conduit 14 for sending the hydrogen in the solution container 4 to the pressure chamber 7, the check valve 10 installed on the hydrogen conduit 14, and the solution container side discharge path 15 (first hydrogen discharge path). ), The pressure chamber side discharge path 16 (second hydrogen discharge path), the three-way valve 35, the regulator 12, and the discharge section installed at the connection section of both the solution container side discharge path 15 and the pressure chamber side discharge path 16 17.

第1実施形態例と同様にして、第2実施形態例では、ワーク3に水素化ホウ素ナトリウム(SBH)を用い、促進剤水溶液5にはリンゴ酸水溶液を用いた。   Similarly to the first embodiment, in the second embodiment, sodium borohydride (SBH) was used for the workpiece 3 and malic acid aqueous solution was used for the accelerator aqueous solution 5.

三方弁35は、図1(第1実施形態例)の水素発生装置1における定圧閉止弁9と圧力制御弁11の両制御弁を一つにまとめた働きをする弁である。   The three-way valve 35 is a valve that works by combining both the constant pressure closing valve 9 and the pressure control valve 11 in the hydrogen generator 1 of FIG. 1 (first embodiment).

図6に示すように、水素発生装置34は、圧力室7と溶液容器4に貯留した水素の排出を制御する三方弁35が設けられており、溶液容器4内に貯留した水素圧が大気圧を下回ると、三方弁35が、溶液容器側排出路15を遮断し、圧力室側排出路16を流通させ、圧力室7に貯留した水素が圧力室側排出路16を通り、溶液容器側排出路15との接続部を経て、レギュレータ12を介して排出部17へと排出される。この水素の移動により圧力室7内は減圧し、弾性膜6が上方に変形移動するので、収容室8が減圧する。収容室8が減圧することによって、溶液容器4内の促進剤水溶液5が反応器2に移動し、ワーク3と接触して水素を発生する。逆に、溶液容器4内に貯留した水素圧が所定圧以上になると、三方弁35は、圧力室側排出路16を遮断し、排出路を絶たれた水素が圧力室7内に貯留され、圧力室7内は加圧する。一方、溶液容器側排出路15は流通し、溶液容器4内の水素が排出される。圧力室7内が加圧を続け、弾性膜6が下方に変形移動し収容室8を加圧するので、溶液容器4から反応器2への促進剤水溶液5の移動が止まる。そして、溶液容器4の水素が排出され、溶液容器4内が減圧することで水素圧が所定圧を下回ると、三方弁35が再び、溶液容器側排出路15を遮断し、圧力室側排出路16を流通させる。   As shown in FIG. 6, the hydrogen generator 34 is provided with a three-way valve 35 that controls the discharge of hydrogen stored in the pressure chamber 7 and the solution container 4, and the hydrogen pressure stored in the solution container 4 is atmospheric pressure. The three-way valve 35 shuts off the solution container side discharge path 15 and circulates through the pressure chamber side discharge path 16, and hydrogen stored in the pressure chamber 7 passes through the pressure chamber side discharge path 16 and is discharged to the solution container side. It is discharged to the discharge portion 17 via the regulator 12 through the connection portion with the path 15. Due to this movement of hydrogen, the pressure chamber 7 is depressurized and the elastic film 6 is deformed and moved upward, so that the storage chamber 8 is depressurized. When the storage chamber 8 is depressurized, the promoter aqueous solution 5 in the solution container 4 moves to the reactor 2 and comes into contact with the workpiece 3 to generate hydrogen. On the contrary, when the hydrogen pressure stored in the solution container 4 becomes equal to or higher than the predetermined pressure, the three-way valve 35 shuts off the pressure chamber side discharge path 16, and hydrogen that has been disconnected from the discharge path is stored in the pressure chamber 7. The pressure chamber 7 is pressurized. On the other hand, the solution container side discharge passage 15 flows and the hydrogen in the solution container 4 is discharged. Since the inside of the pressure chamber 7 continues to be pressurized and the elastic membrane 6 is deformed and moved downward to pressurize the storage chamber 8, the movement of the promoter aqueous solution 5 from the solution container 4 to the reactor 2 is stopped. When the hydrogen in the solution container 4 is discharged and the pressure in the solution container 4 is reduced so that the hydrogen pressure falls below a predetermined pressure, the three-way valve 35 again shuts off the solution container side discharge path 15 and the pressure chamber side discharge path. 16 is distributed.

詳細は後述するが、前記所定圧は、例えば、大気圧と水素圧(溶液容器4の内圧)との関係で設定されている。つまり、三方弁35の設定圧力は溶液容器4の内圧を基準として開弁圧が設定されているので、溶液容器4から三方弁35へ破線矢印を付し、その様子を図6に示した。   Although details will be described later, the predetermined pressure is set, for example, in relation to atmospheric pressure and hydrogen pressure (internal pressure of the solution container 4). In other words, since the set pressure of the three-way valve 35 is set based on the internal pressure of the solution container 4, a broken line arrow is attached from the solution container 4 to the three-way valve 35, and the state is shown in FIG.

上述した水素発生装置34は、促進剤水溶液5が反応器2のワーク3に供給されることにより水素が発生され、反応器2で生成された水素(水素、水素を巻き込んだ泡等)は促進剤水溶液5に接触した後に水素導管14から圧力室7に貯留され、溶液容器4の内圧が高い時は、溶液容器側排出路15から水素消費部である排出部17に送られる。促進剤水溶液5の移動及び生成された水素の移動は、生成時の水素の圧力により三方弁35が溶液容器側排出路15及び圧力室側排出路16の開閉を制御する。このため、水素の生成及び水素の移動のための動力を必要とせず、促進剤水溶液5を供給するためのポンプ等が不要になる。   In the hydrogen generator 34 described above, hydrogen is generated by supplying the promoter aqueous solution 5 to the work 3 of the reactor 2, and hydrogen generated in the reactor 2 (hydrogen, bubbles entrained with hydrogen, etc.) is promoted. After coming into contact with the aqueous solution 5, the hydrogen is stored in the pressure chamber 7 from the hydrogen conduit 14, and when the internal pressure of the solution container 4 is high, it is sent from the solution container side discharge path 15 to the discharge unit 17 that is a hydrogen consumption unit. In the movement of the promoter aqueous solution 5 and the generated hydrogen, the three-way valve 35 controls the opening and closing of the solution container side discharge path 15 and the pressure chamber side discharge path 16 by the pressure of hydrogen at the time of generation. For this reason, the power for production | generation of hydrogen and movement of hydrogen is not required, and the pump etc. for supplying the promoter aqueous solution 5 become unnecessary.

図6に図記号として示した三方弁35の構造について、図7及び図8に基づいて詳細に説明する。   The structure of the three-way valve 35 shown as a symbol in FIG. 6 will be described in detail with reference to FIGS.

まず、図6に示した三方弁35では、圧力室側排出路16に垂直に溶液容器側排出路15が接続されているが、図6は気体や液体の移送回路としての機器の配置関係を示すための図であるため、圧力室側排出路16と溶液容器側排出路15の流路の接続方向は特に限定されない。図7及び図8に示す三方弁35は、図6に示す流路の配置と同じ場合であり、図7は、三方弁35の圧力室7(図6)の開状態及び溶液容器4(図6)の閉状態を示す断面図、図8は、圧力室7の閉状態及び溶液容器4の開状態を示す断面図である。   First, in the three-way valve 35 shown in FIG. 6, the solution container side discharge path 15 is connected perpendicularly to the pressure chamber side discharge path 16, but FIG. 6 shows the arrangement relationship of equipment as a gas or liquid transfer circuit. Since it is a figure for showing, the connection direction of the flow paths of the pressure chamber side discharge path 16 and the solution container side discharge path 15 is not particularly limited. The three-way valve 35 shown in FIGS. 7 and 8 has the same arrangement as the flow path shown in FIG. 6. FIG. 7 shows the open state of the pressure chamber 7 (FIG. 6) of the three-way valve 35 and the solution container 4 (FIG. FIG. 8 is a cross-sectional view showing the closed state of the pressure chamber 7 and the open state of the solution container 4.

三方弁35は、外周部に基体38を有する。この基体38は、気体や液体の移送回路に用いられる他の機器や配管との接続を担うとともに、三方弁35全体の大きさを決定する外枠となっている。尚、この基体38は、移送回路に用いられる他の機器に一体に形成しても良い。   The three-way valve 35 has a base body 38 on the outer peripheral portion. The base 38 serves as an outer frame for determining the overall size of the three-way valve 35 as well as being connected to other equipment and piping used in a gas or liquid transfer circuit. The base body 38 may be formed integrally with other equipment used in the transfer circuit.

そして、三方弁35は、基体38と弁部材42と可撓性の膜37から構成される。基体38に貫通部36が設けられ、貫通部36の上部は可撓性の膜37で塞がれている。貫通部36の下部は弁体44が上部に移動すると溶液容器側の貫通孔45は開状態になるので、貫通部36は開かれ、弁体44が下部に移動すると溶液容器側の貫通孔45は閉状態になるので、貫通部36の下部は塞がれる。基体38内部には圧力室側の水素導管39と溶液容器側の水素導管40が平面方向に貫通しており弁部材42が配されている。弁部材42は、弁棒43と弁体44から成り、弁棒43の上部は、厚さ方向に変形可能な可撓性の膜37を介して弁体44の底部は基体38に接するようになっている。基体38には溶液容器側の水素導管40と同じ太さの貫通部分をもち弁体44の上下移動を支えるストッパー41が設けられている。   The three-way valve 35 includes a base body 38, a valve member 42, and a flexible film 37. A through portion 36 is provided in the base body 38, and an upper portion of the through portion 36 is closed with a flexible film 37. Since the through hole 45 on the solution container side is opened when the valve body 44 moves upward at the lower part of the through part 36, the through part 36 is opened, and when the valve body 44 moves downward, the through hole 45 on the solution container side. Is closed, so that the lower portion of the penetrating portion 36 is closed. Inside the substrate 38, a hydrogen conduit 39 on the pressure chamber side and a hydrogen conduit 40 on the solution container side penetrate in the plane direction, and a valve member 42 is disposed. The valve member 42 includes a valve rod 43 and a valve body 44, and the upper portion of the valve rod 43 is in contact with the base body 38 via a flexible film 37 that can be deformed in the thickness direction. It has become. The base body 38 is provided with a stopper 41 that has a penetrating portion having the same thickness as the hydrogen conduit 40 on the solution container side and supports the vertical movement of the valve body 44.

圧力室側の水素導管39は、例えば、圧力室7からの水素が流入する流路である圧力室側排出路16に接続され、溶液容器側の水素導管40は、例えば、水素が排出する流路である排出部17(図6参照)に通じる排出路に接続され、溶液容器側の貫通孔45は溶液容器4から排出される水素が流通する溶液容器側排出路15に接続している。基体38内部には貫通孔45が設けられ、貫通孔45により形成された連通路46を介して圧力室側の水素導管39及び溶液容器側の水素導管40が連結されている。   The hydrogen conduit 39 on the pressure chamber side is connected to, for example, the pressure chamber side discharge passage 16 that is a flow path into which hydrogen from the pressure chamber 7 flows, and the hydrogen conduit 40 on the solution container side is, for example, a flow from which hydrogen is discharged. The solution container side through hole 45 is connected to a solution container side discharge path 15 through which hydrogen discharged from the solution container 4 flows. A through hole 45 is provided inside the base body 38, and a hydrogen conduit 39 on the pressure chamber side and a hydrogen conduit 40 on the solution container side are connected via a communication passage 46 formed by the through hole 45.

弁部材42は可撓性の膜37を介して上下に移動し、弁体44も弁部材42に応じて上下に移動する。弁体44が下方に移動した時は、弁体44の底部が溶液容器側の水素導管40の内壁底部とストッパー41の底部に接触し貫通部36が閉じられる。貫通部36が閉じると、溶液容器側の貫通孔45が閉状態になり、水素は圧力室側から排出路を通り排出される。弁体44が上方に移動した時は、弁体44の上部が溶液容器側の水素導管40の上側内壁部とストッパー41の上部にひっかかり貫通部36が開かれ、溶液容器側の貫通孔45が開状態になり、圧力室側排出路16が閉状態になり、水素は溶液容器側から排出路に向かって排出される。   The valve member 42 moves up and down via the flexible film 37, and the valve body 44 also moves up and down according to the valve member 42. When the valve body 44 moves downward, the bottom of the valve body 44 comes into contact with the bottom of the inner wall of the hydrogen conduit 40 on the solution container side and the bottom of the stopper 41, and the through portion 36 is closed. When the through portion 36 is closed, the solution container side through hole 45 is closed, and hydrogen is discharged from the pressure chamber side through the discharge path. When the valve body 44 moves upward, the upper part of the valve body 44 is caught by the upper inner wall part of the hydrogen conduit 40 on the solution container side and the upper part of the stopper 41, and the through part 36 is opened, and the through hole 45 on the solution container side is opened. The pressure chamber side discharge path 16 is closed and the hydrogen is discharged from the solution container side toward the discharge path.

弁体44下部からの溶液容器4内の水素圧及び、可撓性膜外側から外圧(例えば、大気圧)が釣合っている。尚、圧力室の水素圧は、可撓性の内側及び弁体上部を押すため、弁体の動きには殆ど影響しない。   The hydrogen pressure in the solution container 4 from the lower part of the valve body 44 and the external pressure (for example, atmospheric pressure) are balanced from the outside of the flexible membrane. The hydrogen pressure in the pressure chamber pushes the flexible inner side and the upper part of the valve body, and therefore hardly affects the movement of the valve body.

溶液容器4内の水素圧が所定圧力(大気圧)以上になった時、弁体44は、力の釣合いで上方に押し上げられ溶液容器側の貫通孔47が開き、逆に圧力室側の貫通孔45は閉じて、水素が溶液容器4内からレギュレータ12を介して排出部17に排出される(図8の状態)。一方、溶液容器4内の水素発が所定圧力(大気圧)より下回った時、弁体44は、力の釣合いで下方に押し下げられ溶液容器側の貫通孔47が閉じ、逆に圧力室側の貫通孔45は開いて、水素が圧力室側から流通し、レギュレータ12を介して排出部17に排出される(図7の状態)。   When the hydrogen pressure in the solution container 4 becomes equal to or higher than a predetermined pressure (atmospheric pressure), the valve body 44 is pushed upward due to the balance of force, and the through hole 47 on the solution container side opens, and conversely, the pressure chamber side penetrates. The hole 45 is closed, and hydrogen is discharged from the solution container 4 to the discharge portion 17 via the regulator 12 (state shown in FIG. 8). On the other hand, when the hydrogen evolution in the solution container 4 falls below a predetermined pressure (atmospheric pressure), the valve body 44 is pushed downward by force balance, and the through hole 47 on the solution container side is closed, and conversely, the pressure chamber side The through hole 45 is opened, and hydrogen flows from the pressure chamber side and is discharged to the discharge portion 17 via the regulator 12 (state of FIG. 7).

以上のように三方弁35は溶液容器4内の水素圧が所定圧力(大気圧)以上になったり、下回ったりする時に流通流路の開閉を制御することで、容器内の圧力を変化させ、溶液容器4内の促進剤水溶液5を反応器2内に格納されたワーク3に供給している。   As described above, the three-way valve 35 changes the pressure in the container by controlling the opening and closing of the flow passage when the hydrogen pressure in the solution container 4 becomes equal to or higher than a predetermined pressure (atmospheric pressure). A promoter aqueous solution 5 in the solution container 4 is supplied to the work 3 stored in the reactor 2.

図6及び図9に基づいて上述した水素発生装置34の作用を説明する。   The operation of the hydrogen generator 34 described above will be described with reference to FIGS.

溶液容器4から送液管13を通して反応器2に促進剤水溶液5が供給される(ステップS11)。溶液容器4の水素圧力が低く、三方弁35が溶液容器側排出路15を遮断し、圧力室側排出路16を流通させる時に、促進剤水溶液5が反応器2に供給され、ワーク3に接触して反応を起こし、水素が生成される(ステップS12)。反応器2の内圧の上昇により、発生した水素、生成物、泡等の反応生成物は送液管13を通って溶液容器4に移動する(ステップS13)(図6の矢印b)。溶液容器4内の促進剤水溶液5と反応生成物が接触し金属含有物や泡は除去され水素が貯留される。貯留した水素は水素導管14を通り、圧力室7に送られる(ステップS14)(図6の矢印c)。水素発生に伴い、溶液容器4内の水素圧が大気圧以上になると三方弁35(ステップS15)が溶液容器側排出路15を流通し、圧力室側排出路16を遮断させる時に、溶液容器4内の水素が排出される(ステップS16)(図6の矢印d→f)。水素が排出され、溶液容器4内の水素圧が大気圧を下回ると三方弁35(ステップS17)が溶液容器側排出路15を遮断し、圧力室側排出路16を流通させ、圧力室7の水素が排出される(ステップS18)(図6の矢印e→f)。圧力室7の水素が排出されたことで、圧力室7が減圧し、弾性膜6が上方に変形移動する(ステップS19)ので収容室8が減圧する。収容室8が減圧することによって、促進剤水溶液5が反応器2に移動する(ステップS20)(図6の矢印a)。   The promoter aqueous solution 5 is supplied from the solution container 4 to the reactor 2 through the liquid feeding tube 13 (step S11). When the hydrogen pressure in the solution container 4 is low and the three-way valve 35 shuts off the solution container side discharge path 15 and causes the pressure chamber side discharge path 16 to flow, the promoter aqueous solution 5 is supplied to the reactor 2 and contacts the workpiece 3. Then, a reaction occurs to generate hydrogen (step S12). Due to the increase in the internal pressure of the reactor 2, the generated reaction products such as hydrogen, products and bubbles move to the solution container 4 through the liquid feeding tube 13 (step S 13) (arrow b in FIG. 6). The promoter aqueous solution 5 in the solution container 4 and the reaction product come into contact with each other, the metal-containing material and bubbles are removed, and hydrogen is stored. The stored hydrogen passes through the hydrogen conduit 14 and is sent to the pressure chamber 7 (step S14) (arrow c in FIG. 6). When the hydrogen pressure in the solution container 4 becomes equal to or higher than the atmospheric pressure due to the generation of hydrogen, the three-way valve 35 (step S15) flows through the solution container side discharge path 15 and shuts off the pressure chamber side discharge path 16. The hydrogen inside is discharged (step S16) (arrow d → f in FIG. 6). When the hydrogen is discharged and the hydrogen pressure in the solution container 4 falls below the atmospheric pressure, the three-way valve 35 (step S17) shuts off the solution container side discharge path 15 and causes the pressure chamber side discharge path 16 to flow. Hydrogen is discharged (step S18) (arrow e → f in FIG. 6). As the hydrogen in the pressure chamber 7 is discharged, the pressure chamber 7 is depressurized, and the elastic membrane 6 is deformed and moved upward (step S19), so that the storage chamber 8 is depressurized. When the storage chamber 8 is depressurized, the promoter aqueous solution 5 moves to the reactor 2 (step S20) (arrow a in FIG. 6).

反応器2で生成された水素は生成物及び泡と共に促進剤水溶液5に接触して水素と生成物(泡)とを分離することができる。このため、分離のための手段(例えば、分離室等)を備えることなく、生成物(泡)を分離して反応効率の低下をなくし、水素を消費部に供給することができる。そして、反応器2の内圧の減少により促進剤水溶液5の移動及び水素、生成物、泡の移動を行うことができ、移動のための動力を必要とせず、消費電力なしで水素を発生させることができる。   The hydrogen produced in the reactor 2 can come into contact with the promoter aqueous solution 5 together with the product and foam to separate the hydrogen and the product (foam). For this reason, without providing a means for separation (for example, a separation chamber or the like), it is possible to separate the product (bubbles) to eliminate a decrease in reaction efficiency and supply hydrogen to the consumption unit. And, by reducing the internal pressure of the reactor 2, the promoter aqueous solution 5 can be moved and the hydrogen, products, and bubbles can be moved, so that no power is required for movement and hydrogen is generated without power consumption. Can do.

従って、泡等を分離するための手段を備えること、少ないスペースでワーク3と促進剤水溶液5を接触させて、得られた反応生成物から泡や金属含有物等の生成物を除去した状態の水素を消費部に供給することができる水素発生装置となる。そして、動力を用いずに反応器2の内圧の減少により促進剤水溶液5の移動及び水素を含む反応生成物の移動を安定して行うことができる。   Therefore, it is provided with a means for separating bubbles and the like, in a state where the work 3 and the promoter aqueous solution 5 are brought into contact with each other in a small space, and products such as bubbles and metal-containing materials are removed from the obtained reaction product. A hydrogen generator capable of supplying hydrogen to the consumption unit is provided. And the movement of the promoter aqueous solution 5 and the reaction product containing hydrogen can be stably performed by reducing the internal pressure of the reactor 2 without using power.

ここで、導管の配管の管口か途中の管内に少なくとも1箇所に多孔質フィルターを具備してもよい。多孔質フィルターは金属発泡体から成り、多孔質フィルターを設けることにより、金属水素化物の過剰な移動を阻止できる。併せて、溶液容器での金属水素化物の反応量を少なくすることができ、水素発生量の制御がしやすくなる等の効果がある。   Here, a porous filter may be provided in at least one place in the pipe port of the conduit or in the middle tube. The porous filter is made of a metal foam, and by providing the porous filter, excessive movement of the metal hydride can be prevented. In addition, the reaction amount of the metal hydride in the solution container can be reduced, and there is an effect that the amount of hydrogen generation can be easily controlled.

(第3実施形態例に係る水素発生装置)
図10に基づいて第3実施形態例を説明する。
(Hydrogen generator according to the third embodiment)
A third embodiment will be described based on FIG.

図10には本発明の第3実施形態例に係る水素発生装置の概略構成を示してある。尚、図1、図6に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   FIG. 10 shows a schematic configuration of a hydrogen generator according to the third embodiment of the present invention. The same members as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and redundant description is omitted.

水素発生装置48は、図6(第2実施形態例)の水素発生装置34の送液管13を2本の送液管49、50として、送液管49、50に各々逆止弁51、52を設けた構造となっている。また第1流体流路としての送液管49は溶液容器4内の促進剤水溶液5を反応器2内のワーク3に送り、送液管49に設けられた逆止弁51が、促進剤水溶液5の溶液容器4から反応器2方向のみの移動を許容し、逆流を防いでいる。送液管49の開口端は、ワーク3に接するように配され、促進剤水溶液がワーク3に直接添加されるようになっている。一方、送液管50は反応器2内で発生した反応生成物を溶液容器4に送り、送液管50に設けられた逆止弁52が、反応生成物の反応器2から溶液容器4方向のみの移動を許容し、逆流を防いでいる。送液管50の開口端は、溶液容器4内では促進剤水溶液5中に配され、反応生成物が促進剤水溶液5により泡や、金属含有物等の生成物を水素から除去する。また、送液管50の開口端は、溶液容器4内の促進剤水溶液5中に接触させなくてもよい。水素発生装置48では送液管49、50を2本設けることにより、各々の送液管49、50の管径を変えて、反応生成物及び促進剤水溶液5の流量の違いに対応できるようにすることができる。   The hydrogen generator 48 includes the liquid supply pipe 13 of the hydrogen generation apparatus 34 in FIG. 6 (second embodiment) as two liquid supply pipes 49 and 50, and check valves 51 and 50 respectively. 52 is provided. Further, the liquid feeding pipe 49 as the first fluid flow path sends the promoter aqueous solution 5 in the solution container 4 to the work 3 in the reactor 2, and the check valve 51 provided in the liquid feeding pipe 49 is a promoter aqueous solution. 5 is allowed to move only in the direction of the reactor 2 from the solution container 4 to prevent backflow. The opening end of the liquid feeding pipe 49 is arranged so as to be in contact with the work 3, and the accelerator aqueous solution is directly added to the work 3. On the other hand, the liquid feed pipe 50 feeds the reaction product generated in the reactor 2 to the solution container 4, and a check valve 52 provided in the liquid feed pipe 50 moves from the reaction product reactor 2 to the solution container 4. Only movement is allowed and backflow is prevented. The open end of the liquid feeding pipe 50 is arranged in the promoter aqueous solution 5 in the solution container 4, and the reaction product removes products such as bubbles and metal-containing materials from the hydrogen by the promoter aqueous solution 5. Further, the open end of the liquid feeding pipe 50 may not be brought into contact with the promoter aqueous solution 5 in the solution container 4. In the hydrogen generator 48, by providing two liquid feeding pipes 49 and 50, the pipe diameters of the liquid feeding pipes 49 and 50 can be changed so as to cope with the difference in the flow rates of the reaction product and the promoter aqueous solution 5. can do.

(第1実施形態例に係る燃料電池設備)
図11には本発明の第1実施形態に係る燃料電池設備の概略構成を示してある。図11に基づいて本発明の第1実施形態に係る燃料電池設備を説明する。
(Fuel cell facility according to the first embodiment)
FIG. 11 shows a schematic configuration of the fuel cell facility according to the first embodiment of the present invention. The fuel cell facility according to the first embodiment of the present invention will be described based on FIG.

上述した第1実施形態に係る燃料電池設備53は、水素発生装置1のレギュレータ12をなくし、燃料電池54のアノードチャンバー55と排出部17を接続することにより燃料電池設備53とすることができる。   The fuel cell facility 53 according to the first embodiment described above can be made the fuel cell facility 53 by eliminating the regulator 12 of the hydrogen generator 1 and connecting the anode chamber 55 of the fuel cell 54 and the discharge unit 17.

図11に示すように本発明の第1実施形態に係る燃料電池設備53は、図1に示した第1実施形態例における水素発生装置1を燃料電池54に接続した設備である。即ち、燃料電池54にはアノードチャンバー55が備えられ、アノードチャンバー55は燃料電池セル56のアノード室に接する空間を構成している。アノード室は、アノードで消費する水素を一時的に保持する空間である。   As shown in FIG. 11, the fuel cell facility 53 according to the first embodiment of the present invention is a facility in which the hydrogen generator 1 in the first embodiment shown in FIG. 1 is connected to the fuel cell 54. That is, the fuel cell 54 is provided with an anode chamber 55, and the anode chamber 55 constitutes a space in contact with the anode chamber of the fuel cell 56. The anode chamber is a space that temporarily holds hydrogen consumed by the anode.

アノードチャンバー55と反応器2は圧力室側排出路16(第2水素排出路)により接続され、反応器2と溶液容器4で発生した水素がアノードチャンバー55のアノード室に供給される。アノード室に供給された水素は、アノードでの燃料電池反応で消費される。アノードでの水素の消費量は、燃料電池54の出力に応じて決定される。   The anode chamber 55 and the reactor 2 are connected by a pressure chamber side discharge path 16 (second hydrogen discharge path), and hydrogen generated in the reactor 2 and the solution container 4 is supplied to the anode chamber of the anode chamber 55. The hydrogen supplied to the anode chamber is consumed by the fuel cell reaction at the anode. The amount of hydrogen consumed at the anode is determined according to the output of the fuel cell 54.

燃料電池設備53は、複雑な機構や動力を用いることなく促進剤水溶液5を安定して供給して水素を生成することができる水素発生装置1を備えた本発明の第1実施形態に係る燃料電池設備53とすることができる。   The fuel cell facility 53 is a fuel according to the first embodiment of the present invention that includes the hydrogen generator 1 that can stably supply the promoter aqueous solution 5 and generate hydrogen without using a complicated mechanism or power. Battery equipment 53 can be obtained.

図12には本発明の第2実施形態に係る燃料電池設備の概略構成を示してある。図12に基づいて本発明の第2実施形態に係る燃料電池設備を説明する。   FIG. 12 shows a schematic configuration of a fuel cell facility according to the second embodiment of the present invention. Based on FIG. 12, a fuel cell facility according to a second embodiment of the present invention will be described.

上述した第2実施形態に係る燃料電池設備57は、水素発生装置34のレギュレータ12をなくし、燃料電池54のアノードチャンバー55と排出部17を接続することにより燃料電池設備57とすることができる。   The fuel cell facility 57 according to the second embodiment described above can be made the fuel cell facility 57 by eliminating the regulator 12 of the hydrogen generator 34 and connecting the anode chamber 55 of the fuel cell 54 and the discharge unit 17.

(第2実施形態例に係る燃料電池設備)
図12に示すように本発明の第2実施形態に係る燃料電池設備57は、図6に示した第2実施形態例における水素発生装置34を燃料電池54に接続した設備である。即ち、燃料電池54にはアノードチャンバー55が備えられ、アノードチャンバー55は燃料電池セル56のアノード室に接する空間を構成している。アノード室は、アノードで消費する水素を一時的に保持する空間である。
(Fuel cell facility according to the second embodiment)
As shown in FIG. 12, the fuel cell equipment 57 according to the second embodiment of the present invention is equipment in which the hydrogen generator 34 in the second embodiment shown in FIG. That is, the fuel cell 54 is provided with an anode chamber 55, and the anode chamber 55 constitutes a space in contact with the anode chamber of the fuel cell 56. The anode chamber is a space that temporarily holds hydrogen consumed by the anode.

アノードチャンバー55と反応器2は圧力室側排出路16(第2水素排出路)により接続され、反応器2で発生した水素がアノードチャンバー55のアノード室に供給される。アノード室に供給された水素は、アノードでの燃料電池反応で消費される。アノードでの水素の消費量は、燃料電池54の出力に応じて決定される。   The anode chamber 55 and the reactor 2 are connected by the pressure chamber side discharge path 16 (second hydrogen discharge path), and hydrogen generated in the reactor 2 is supplied to the anode chamber of the anode chamber 55. The hydrogen supplied to the anode chamber is consumed by the fuel cell reaction at the anode. The amount of hydrogen consumed at the anode is determined according to the output of the fuel cell 54.

燃料電池設備57は、複雑な機構や動力を用いることなく促進剤水溶液5を安定して供給して水素を生成することができる水素発生装置34を備えた本発明の第2実施形態に係る燃料電池設備57とすることができる。   The fuel cell facility 57 is a fuel according to the second embodiment of the present invention, which includes a hydrogen generator 34 that can stably supply the promoter aqueous solution 5 and generate hydrogen without using a complicated mechanism or power. Battery equipment 57 can be obtained.

(第3実施形態例に係る燃料電池設備)
図13には本発明の第3実施形態に係る燃料電池設備の概略構成を示してある。図13に基づいて本発明の第3実施形態に係る燃料電池設備を説明する。
(Fuel cell facility according to the third embodiment)
FIG. 13 shows a schematic configuration of a fuel cell facility according to the third embodiment of the present invention. Based on FIG. 13, a fuel cell facility according to a third embodiment of the present invention will be described.

上述した第3実施形態に係る燃料電池設備58は、水素発生装置48のレギュレータ12をなくし、燃料電池54のアノードチャンバー55と排出部17を接続することにより燃料電池設備58とすることができる。   The fuel cell facility 58 according to the third embodiment described above can be configured as the fuel cell facility 58 by eliminating the regulator 12 of the hydrogen generator 48 and connecting the anode chamber 55 of the fuel cell 54 and the discharge unit 17.

図13に示すように本発明の第3実施形態に係る燃料電池設備58は、図10に示した第3実施形態例における水素発生装置48を燃料電池54に接続した設備である。即ち、燃料電池54にはアノードチャンバー55が備えられ、アノードチャンバー55は燃料電池セル56のアノード室に接する空間を構成している。アノード室は、アノードで消費する水素を一時的に保持する空間である。   As shown in FIG. 13, the fuel cell facility 58 according to the third embodiment of the present invention is a facility in which the hydrogen generator 48 in the third embodiment shown in FIG. 10 is connected to the fuel cell 54. That is, the fuel cell 54 is provided with an anode chamber 55, and the anode chamber 55 constitutes a space in contact with the anode chamber of the fuel cell 56. The anode chamber is a space that temporarily holds hydrogen consumed by the anode.

アノードチャンバー55と反応器2は圧力室側排出路16(第2水素排出路)により接続され、反応器2で発生した水素がアノードチャンバー55のアノード室に供給される。アノード室に供給された水素は、アノードでの燃料電池反応で消費される。アノードでの水素の消費量は、燃料電池54の出力に応じて決定される。   The anode chamber 55 and the reactor 2 are connected by the pressure chamber side discharge path 16 (second hydrogen discharge path), and hydrogen generated in the reactor 2 is supplied to the anode chamber of the anode chamber 55. The hydrogen supplied to the anode chamber is consumed by the fuel cell reaction at the anode. The amount of hydrogen consumed at the anode is determined according to the output of the fuel cell 54.

燃料電池設備58は、複雑な機構や動力を用いることなく促進剤水溶液5を安定して供給して水素を生成することができる水素発生装置48を備えた本発明の第3実施形態に係る燃料電池設備58とすることができる。   The fuel cell facility 58 is a fuel according to a third embodiment of the present invention that includes a hydrogen generator 48 that can stably supply the promoter aqueous solution 5 and generate hydrogen without using a complicated mechanism or power. Battery equipment 58 can be obtained.

本発明の水素発生装置及び水素発生装置を備えた燃料電池設備は、ポンプ等の動力を用いずに、消費電力無しで促進剤水溶液5を移動させて、水素を発生することができる。併せて、溶液容器4で反応生成物を促進剤水溶液5に接触させることにより水素発生反応の停止までの時間が短くなり、水素量を容易に制御することができる。   The hydrogen generator of the present invention and the fuel cell equipment equipped with the hydrogen generator can generate hydrogen by moving the promoter aqueous solution 5 without power consumption without using power such as a pump. In addition, by bringing the reaction product into contact with the promoter aqueous solution 5 in the solution container 4, the time until the hydrogen generation reaction is stopped is shortened, and the amount of hydrogen can be easily controlled.

本発明は、例えば、金属水素化物を分解して水素を発生させる水素発生装置及び水素発生装置で発生した水素を燃料とする燃料電池設備の産業分野の他、特に小さい流路で電力を消費することなく制御する各種分野で利用することができる。   The present invention, for example, consumes power in a particularly small flow path in addition to the industrial field of hydrogen generators that decompose metal hydrides to generate hydrogen and fuel cell equipment that uses hydrogen generated in the hydrogen generator as fuel. It can be used in various fields to be controlled without any problems.

本発明の第1実施形態に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on 1st Embodiment of this invention. 定圧閉止弁の断面図である。It is sectional drawing of a constant pressure closing valve. 圧力制御弁の断面図である。It is sectional drawing of a pressure control valve. 圧力制御弁の断面図である。It is sectional drawing of a pressure control valve. 本発明の第1実施形態に係る水素発生装置の流れ図である。It is a flowchart of the hydrogen generator which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on 2nd Embodiment of this invention. 三方弁の断面図である。It is sectional drawing of a three-way valve. 三方弁の断面図である。It is sectional drawing of a three-way valve. 本発明の第2実施形態に係る水素発生装置の流れ図である。It is a flowchart of the hydrogen generator which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on 3rd Embodiment of this invention. 本発明の第1実施形態に係る燃料電池設備の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell equipment which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る燃料電池設備の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell equipment which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料電池設備の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell equipment which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1、34、48 水素発生装置
2 反応器
3 ワーク
4 溶液容器
5 促進剤水溶液
6 弾性膜
7 圧力室
8 収容室
9 定圧閉止弁
10、51、52 逆止弁
11 圧力制御弁
12 レギュレータ
13、49、50 送液管
14 水素導管
15 溶液容器側排出路(第1水素排出路)
16 圧力室側排出路(第2水素排出路)
17 排出部
18 固定部
19 ばね
20、33、44 弁体
21 配管
22、38 基体
23、36 貫通部
24 第1圧力変形部
25 第2圧力変形部
26 仕切部材
27 第1流路
28 第2流路
29 貫通孔
30、46 連通路
31、42 弁部材
32、43 弁棒
35 三方弁
37 可撓性の膜
39 圧力室側の水素導管
40 溶液容器側の水素導管
41 ストッパー
45 圧力室側の貫通孔
47 溶液容器側の貫通孔
53、57、58 燃料電池設備
54 燃料電池
55 アノードチャンバー
56 燃料電池セル
DESCRIPTION OF SYMBOLS 1, 34, 48 Hydrogen generator 2 Reactor 3 Workpiece | work 4 Solution container 5 Accelerator aqueous solution 6 Elastic film 7 Pressure chamber 8 Storage chamber 9 Constant pressure shut-off valve 10, 51, 52 Check valve 11 Pressure control valve 12 Regulator 13, 49 , 50 Liquid feed pipe 14 Hydrogen conduit 15 Solution container side discharge path (first hydrogen discharge path)
16 Pressure chamber side discharge path (second hydrogen discharge path)
17 Discharge part 18 Fixing part 19 Spring 20, 33, 44 Valve body 21 Piping 22, 38 Base 23, 36 Through part 24 First pressure deformation part 25 Second pressure deformation part 26 Partition member 27 First flow path 28 Second flow Path 29 Through-hole 30, 46 Communication path 31, 42 Valve member 32, 43 Valve rod 35 Three-way valve 37 Flexible membrane 39 Hydrogen conduit on the pressure chamber side 40 Hydrogen conduit on the solution container side 41 Stopper 45 Through-hole on the pressure chamber side Hole 47 Solution container side through hole 53, 57, 58 Fuel cell equipment 54 Fuel cell 55 Anode chamber 56 Fuel cell

Claims (16)

固体反応物を収容し、内部で水素を発生させる反応器と、
前記反応器内にあって前記固体反応物を収容する収容室と、
前記反応器の前記収容室に前記収容室の体積を可変とする流体室と、
前記固体反応物との接触により水素を発生させる促進剤水溶液を収容する溶液貯蔵器と、
前記反応器と前記溶液貯蔵器とを連絡し、前記反応器からの水素を前記溶液貯蔵器に送出する、前記溶液貯蔵器側の端部が前記促進剤水溶液に接触する流体流路と、
前記溶液貯蔵器と前記流体室とを連絡し、前記溶液貯蔵器からの水素を前記反応器の前記流体室に送出する水素流路と、
前記溶液貯蔵器に設けられ、前記溶液貯蔵器に送出された水素を排出する第1水素排出路と、
前記流体室に設けられ、前記流体室に送出された水素を排出する第2水素排出路と、
水素の発生と排出による前記流体室を介しての前記収容室内の減圧により、前記流体流路の促進剤水溶液の流通と、前記水素流路及び前記第1水素排出路及び前記第2水素排出路の水素の流通を制御すると共に、水素を前記流体流路に流通させて反応生成物を促進剤水溶液に接触させる制御手段と、
を備えることを特徴とする水素発生装置。
A reactor containing a solid reactant and generating hydrogen therein;
A storage chamber in the reactor for storing the solid reactant;
A fluid chamber in which the volume of the storage chamber is variable in the storage chamber of the reactor;
A solution reservoir containing an aqueous promoter solution that generates hydrogen upon contact with the solid reactant;
A fluid flow path in communication between the reactor and the solution reservoir, and for delivering hydrogen from the reactor to the solution reservoir, an end on the solution reservoir side contacting the promoter aqueous solution;
A hydrogen flow path that communicates the solution reservoir and the fluid chamber and delivers hydrogen from the solution reservoir to the fluid chamber of the reactor;
A first hydrogen discharge path which is provided in the solution reservoir and discharges hydrogen sent to the solution reservoir;
A second hydrogen discharge path provided in the fluid chamber for discharging the hydrogen delivered to the fluid chamber;
Due to the decompression of the storage chamber through the fluid chamber due to the generation and discharge of hydrogen, the flow of the promoter aqueous solution in the fluid flow path, the hydrogen flow path, the first hydrogen discharge path, and the second hydrogen discharge path Control means for controlling the flow of hydrogen and causing the reaction product to contact the aqueous accelerator solution by flowing hydrogen through the fluid flow path,
A hydrogen generator characterized by comprising:
固体反応物を収容し、内部で水素を発生させる反応器と、
前記反応器内にあって前記固体反応物を収容する収容室と、
前記反応器の前記収容室に前記収容室の体積を可変とする流体室と、
前記固体反応物との接触により水素を発生させる促進剤水溶液を収容する溶液貯蔵器と、
前記反応器の前記収容室と前記溶液貯蔵器とを連絡し、前記溶液貯蔵器からの促進剤水溶液を前記収容室の前記固体反応物に供給する第1流体流路と、
前記反応器の前記収容室と前記溶液貯蔵器とを連絡し、前記反応器で発生した反応生成物を前記溶液貯蔵器の促進剤水溶液に接触させる第2流体流路と、
前記溶液貯蔵器と前記反応器の前記流体室とを連絡し、前記溶液貯蔵器からの水素を前記流体室に送る水素流路と、
水素の発生と排出による前記流体室を介しての前記収容室内の減圧により、前記第1流体流路の前記促進剤水溶液の流通と、前記水素流路及び前記第1水素排出路及び前記第2水素排出路の水素の流通を制御すると共に、水素を前記第2流体流路に流通させて前記反応生成物を前記促進剤水溶液に接触させる制御手段と、
を備えることを特徴とする水素発生装置。
A reactor containing a solid reactant and generating hydrogen therein;
A storage chamber in the reactor for storing the solid reactant;
A fluid chamber in which the volume of the storage chamber is variable in the storage chamber of the reactor;
A solution reservoir containing an aqueous promoter solution that generates hydrogen upon contact with the solid reactant;
A first fluid flow path that communicates between the storage chamber of the reactor and the solution reservoir and that supplies an aqueous promoter solution from the solution reservoir to the solid reactant of the storage chamber;
A second fluid flow path connecting the storage chamber of the reactor and the solution reservoir, and contacting a reaction product generated in the reactor with the promoter aqueous solution of the solution reservoir;
A hydrogen flow path that communicates the solution reservoir and the fluid chamber of the reactor, and sends hydrogen from the solution reservoir to the fluid chamber;
Due to decompression of the storage chamber through the fluid chamber due to generation and discharge of hydrogen, the flow of the promoter aqueous solution in the first fluid channel, the hydrogen channel, the first hydrogen discharge channel, and the second Control means for controlling the flow of hydrogen in the hydrogen discharge passage, and for causing hydrogen to flow through the second fluid flow path to bring the reaction product into contact with the aqueous accelerator solution;
A hydrogen generator characterized by comprising:
前記第2水素排出路の途中部に前記水素流路が接続され、接続部を挟んで前記流体室の反対側の前記第2水素排出路に前記第1水素排出路が接続され、
前記制御手段は、
前記水素流路に設けられ水素の前記溶液貯蔵器から前記流体室への流通のみを許容する逆止弁と、
前記第2水素排出路に設けられ所定圧力以上で閉じる圧力制御弁と、
前記第1水素排出路に設けられ前記圧力制御弁が閉じる時の前記所定圧力を下回ると閉じる弁体を有する定圧閉止弁を備えた
ことを特徴とする請求項1もしくは請求項2に記載の水素発生装置。
The hydrogen flow path is connected to an intermediate portion of the second hydrogen discharge path, the first hydrogen discharge path is connected to the second hydrogen discharge path on the opposite side of the fluid chamber across the connection portion,
The control means includes
A check valve that is provided in the hydrogen flow path and allows only the flow of hydrogen from the solution reservoir to the fluid chamber;
A pressure control valve provided in the second hydrogen discharge passage and closed at a predetermined pressure or higher;
3. The hydrogen according to claim 1, further comprising a constant pressure shut-off valve that is provided in the first hydrogen discharge passage and has a valve body that closes when the pressure control valve is below the predetermined pressure when the pressure control valve is closed. Generator.
前記第2水素排出路の途中部に前記水素流路が接続され、前記接続部を挟んで前記流体室の反対側の前記第2水素排出路に前記第1水素排出路が接続され、
前記制御手段は、
前記水素流路に設けられ水素の前記溶液貯蔵器から前記流体室への流通のみを許容する前記逆止弁と、
前記第1水素排出路と前記第2水素排出路の前記接続部に設けられ
所定圧以上の時に前記第1水素排出路が流通し、所定圧を下回った時に前記第2水素排出路が流通する三方弁を備えた
ことを特徴とする請求項1もしくは請求項2に記載の水素発生装置。
The hydrogen flow path is connected to a middle portion of the second hydrogen discharge path, and the first hydrogen discharge path is connected to the second hydrogen discharge path on the opposite side of the fluid chamber across the connection section,
The control means includes
The check valve provided in the hydrogen flow path and allowing only the flow of hydrogen from the solution reservoir to the fluid chamber;
The first hydrogen discharge path is provided at the connecting portion between the first hydrogen discharge path and the second hydrogen discharge path when the pressure exceeds a predetermined pressure, and the second hydrogen discharge path flows when the pressure falls below the predetermined pressure. The hydrogen generator according to claim 1, further comprising a three-way valve.
前記定圧閉止弁の所定圧を制御するのはばねである
ことを特徴とする請求項3に記載の水素発生装置。
The hydrogen generator according to claim 3, wherein a spring controls a predetermined pressure of the constant pressure shut-off valve.
前記圧力制御弁の設定圧力は、前記溶液貯蔵器の内圧を基準として開弁圧が設定されている
ことを特徴とする請求項3に記載の水素発生装置。
The hydrogen generation device according to claim 3, wherein the set pressure of the pressure control valve is set to a valve opening pressure with reference to an internal pressure of the solution reservoir.
前記三方弁の設定圧力は、前記溶液貯蔵器の内圧を基準として開弁圧が設定されている
ことを特徴とする請求項4に記載の水素発生装置。
The hydrogen generator according to claim 4, wherein the set pressure of the three-way valve is set to a valve opening pressure with reference to an internal pressure of the solution reservoir.
前記流体流路の前記溶液貯蔵器への開口端が前記促進剤水溶液の中に配されている
ことを特徴とする請求項1〜請求項7のいずれか一項に記載の水素発生装置。
The hydrogen generating device according to any one of claims 1 to 7, wherein an opening end of the fluid channel to the solution reservoir is disposed in the promoter aqueous solution.
前記反応器の前記流体室と前記収容室とを仕切り、併せて前記流体室と前記収容室の体積を可変にする手段は変形許容部材である
ことを特徴とする請求項1もしくは請求項2に記載の水素発生装置。
The means for partitioning the fluid chamber and the storage chamber of the reactor and making the volumes of the fluid chamber and the storage chamber variable is a deformation-permitting member. The hydrogen generator described.
前記反応器の前記流体室と前記収容室とを仕切り、併せて前記流体室と前記収容室の体積を可変にする手段である前記変形許容部材は可撓性の膜である
ことを特徴とする請求項9に記載の水素発生装置。
The deformation allowing member, which is a means for partitioning the fluid chamber and the storage chamber of the reactor and making the volumes of the fluid chamber and the storage chamber variable, is a flexible film. The hydrogen generator according to claim 9.
前記促進剤水溶液が移動する前記流体流路の配管口にフィルターを取り付けた
ことを特徴とする請求項1〜請求項10のいずれか一項に記載の水素発生装置。
The hydrogen generator according to any one of claims 1 to 10, wherein a filter is attached to a piping port of the fluid flow path through which the aqueous accelerator solution moves.
請求項1〜請求項11のいずれか一項に記載の水素発生装置の排出路が燃料電池の燃料極に接続され、発生した水素が負極室に供給されることを特徴とする燃料電池設備。   A fuel cell facility, wherein the discharge path of the hydrogen generator according to any one of claims 1 to 11 is connected to a fuel electrode of a fuel cell, and the generated hydrogen is supplied to a negative electrode chamber. 水素発生反応の促進剤の水溶液である促進剤水溶液を水素発生反応の固体反応物に接触させることで水素を発生させるに際し、水素の発生により加圧力を発生させて発生加圧力とし、発生した加圧力と水素排出により固体反応物を収容する反応器内の仕切られた部屋が減圧することで、促進剤水溶液を移動させる一方、水素と共に発生した生成物を促進剤水溶液に接触させて生成物を除去することを特徴とする水素発生方法。   When hydrogen is generated by bringing a promoter aqueous solution, which is an aqueous solution of a hydrogen generation reaction accelerator, into contact with the solid reactant of the hydrogen generation reaction, a pressure is generated by the generation of hydrogen to generate a generated pressure. The partitioned chamber in the reactor containing the solid reactant is depressurized by pressure and hydrogen discharge to move the aqueous solution of the accelerator while bringing the product generated together with hydrogen into contact with the aqueous solution of the promoter. A method for generating hydrogen, comprising removing. 水素発生反応の促進剤の水溶液である促進剤水溶液を水素発生反応の固体反応物に接触させることで水素を発生させるに際し、水素の発生により加圧力を発生させて発生加圧力とし、発生した加圧力と水素排出により固体反応物を収容する反応器内の仕切られた部屋が減圧することで、促進剤水溶液を移動させることを特徴とする水素発生方法。   When hydrogen is generated by bringing a promoter aqueous solution, which is an aqueous solution of a hydrogen generation reaction accelerator, into contact with the solid reactant of the hydrogen generation reaction, a pressure is generated by the generation of hydrogen to generate a generated pressure. A method for generating hydrogen, characterized in that an aqueous accelerator solution is moved by depressurizing a partitioned room in a reactor containing a solid reactant by pressure and hydrogen discharge. 水素発生反応の促進剤の水溶液である促進剤水溶液を水素発生反応の固体反応物に接触させることで水素を発生させるに際し、水素と共に発生した生成物を促進剤水溶液に接触させて生成物を除去することを特徴とする水素発生方法。   When hydrogen is generated by bringing an aqueous solution of an accelerator, which is an aqueous solution of the hydrogen generation reaction, into contact with a solid reactant of the hydrogen generation reaction, the product generated together with the hydrogen is brought into contact with the aqueous solution of the accelerator to remove the product. A method for generating hydrogen, comprising: 前記反応生成物が除去された水素を発生加圧力により排出する
ことを特徴とする請求項13もしくは請求項14に記載の水素発生方法。
The hydrogen generation method according to claim 13 or 14, wherein the hydrogen from which the reaction product has been removed is discharged by a generation pressure.
JP2006213913A 2006-08-04 2006-08-04 HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD Expired - Fee Related JP4822158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213913A JP4822158B2 (en) 2006-08-04 2006-08-04 HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213913A JP4822158B2 (en) 2006-08-04 2006-08-04 HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD

Publications (2)

Publication Number Publication Date
JP2008037699A JP2008037699A (en) 2008-02-21
JP4822158B2 true JP4822158B2 (en) 2011-11-24

Family

ID=39173152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213913A Expired - Fee Related JP4822158B2 (en) 2006-08-04 2006-08-04 HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD

Country Status (1)

Country Link
JP (1) JP4822158B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2673828B1 (en) * 2011-02-11 2020-05-13 Intelligent Energy Limited Fuel cell system
KR102618262B1 (en) * 2016-08-10 2023-12-26 한화오션 주식회사 Hydrogen supplying system of underwater moving body using metallic fuel of cartridge type
CN112479157B (en) * 2020-12-28 2023-07-14 上海镁源动力科技有限公司 Hydrogen production plant
CN114204072B (en) * 2021-12-08 2023-11-14 山东交通学院 Air supply system for fuel cell automobile and control method
ES1289389Y (en) * 2022-01-07 2022-07-11 Gonzalez Ibanez Jose Antonio Hydrogen generator
CN116177488B (en) * 2023-03-22 2024-03-29 华南理工大学 Hydrolysis hydrogen production device suitable for continuously preparing high-purity hydrogen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132776B2 (en) * 2001-10-24 2008-08-13 トヨタ自動車株式会社 Gas generator
JP4171202B2 (en) * 2001-10-24 2008-10-22 トヨタ自動車株式会社 Gas generator
US7097813B2 (en) * 2002-06-21 2006-08-29 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
JP4128425B2 (en) * 2002-11-01 2008-07-30 ウチヤ・サーモスタット株式会社 Hydrogen generator
US7105033B2 (en) * 2003-02-05 2006-09-12 Millennium Cell, Inc. Hydrogen gas generation system

Also Published As

Publication number Publication date
JP2008037699A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4840781B2 (en) Hydrogen generating method, hydrogen generating apparatus and fuel cell equipment
US8858910B2 (en) Device for and method of storage and generation of hydrogen for autonomous current sources based on fuel cells
JP4899474B2 (en) Fuel cell system
JP4822158B2 (en) HYDROGEN GENERATOR, FUEL CELL EQUIPMENT, AND HYDROGEN GENERATION METHOD
US20070217972A1 (en) Apparatus for production of hydrogen
RU2007134856A (en) HYDROGEN GENERATING FUEL CELLS
KR20050103489A (en) Hydrogen gas generation system
US8951312B2 (en) Compact, safe and portable hydrogen generation apparatus for hydrogen on-demand applications
US20080160360A1 (en) Fuel cell purge cycle apparatus and method
US20090104481A1 (en) Methods and devices for hydrogen generation
JP4918716B2 (en) Hydrogen generation facility and fuel cell system
JP4868352B2 (en) Hydrogen generation facility and fuel cell system
JP4706982B2 (en) Pressure regulating valve, fuel cell system using the same, and hydrogen generation facility
US9174843B2 (en) Valve having concentric fluid paths
US20100012499A1 (en) Fuel cell charger
JP5365942B2 (en) Hydrogen generation facility and fuel cell system
JP4929515B2 (en) Hydrogen generator and fuel cell equipment
US8530102B2 (en) Hydrogen generator
JP2013193937A (en) Hydrogen generator and fuel cell
JP4995435B2 (en) Fuel cell system
CN100431213C (en) Fuel cell system
JP5189344B2 (en) Fuel gas generator and fuel cell system
US20240218524A1 (en) Ammonia electrolysis system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

R150 Certificate of patent or registration of utility model

Ref document number: 4822158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees