JP5824258B2 - Reinforcing bar damper fixing structure and seismic construction method - Google Patents

Reinforcing bar damper fixing structure and seismic construction method Download PDF

Info

Publication number
JP5824258B2
JP5824258B2 JP2011145810A JP2011145810A JP5824258B2 JP 5824258 B2 JP5824258 B2 JP 5824258B2 JP 2011145810 A JP2011145810 A JP 2011145810A JP 2011145810 A JP2011145810 A JP 2011145810A JP 5824258 B2 JP5824258 B2 JP 5824258B2
Authority
JP
Japan
Prior art keywords
reinforcing bar
damper fixing
viscous
force
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011145810A
Other languages
Japanese (ja)
Other versions
JP2013011143A (en
Inventor
雄大 鈴木
雄大 鈴木
小林 薫
薫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2011145810A priority Critical patent/JP5824258B2/en
Publication of JP2013011143A publication Critical patent/JP2013011143A/en
Application granted granted Critical
Publication of JP5824258B2 publication Critical patent/JP5824258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明はエネルギー吸収機能が得られるようにした鉄筋ダンパー定着構造及び耐震工法に関する。   The present invention relates to a reinforcing bar damper fixing structure and an earthquake-resistant construction method that can obtain an energy absorbing function.

図9は従来の接着系アンカー構造を説明する図で、図9(a)は鉄筋曲げ定着構造、図9(b)はあと施工アンカー定着構造を説明する図である。
鉄筋曲げ定着構造の場合、鉄筋コンクリート構造物等の母材1中に先端部分を上方へ折り曲げた鉄筋2を埋め込み、軸力が作用したとき、鉄筋と母材との付着、先端曲げ部分の引き抜き抵抗により定着力が確保される。
あと施工アンカー定着構造の場合、鉄筋コンクリート構造物等の母材1の削孔部3に鉄筋4を施工してモルタルや樹脂等の固化材料(充填材)5を充填して定着し、鉄筋と充填剤、母材との付着により定着力が確保される。
このような接着系アンカーをラーメン高架橋等の鉄筋コンクリート構造物に適用した従来例について図10により説明する。
図10(a)は、完成直後のラーメン高架橋10を示しており、ここでは列車11が走行する高架橋の例であり、柱12を支持する柱基部13には、例えば図10(b)に示すような鉄筋の曲げ定着構造が使用されている。この定着構造の場合、符合Aで示す円で囲んだ先端部分を上方へ折り曲げた鉄筋17を柱基部13内に埋め込んだもので、矢印15で示すような軸力が作用したとき、鉄筋17と柱基部コンクリート構造物との付着、先端部Aの曲げ部分の引き抜き抵抗により定着力が確保される。
9A and 9B are diagrams illustrating a conventional adhesive anchor structure. FIG. 9A illustrates a reinforcing bar bending fixing structure, and FIG. 9B illustrates a post-installed anchor fixing structure.
In the case of a reinforcing bar bend fixing structure, a reinforcing bar 2 with its tip bent upward is embedded in the base material 1 such as a reinforced concrete structure, and when an axial force is applied, the reinforcing bar and the base material are attached, and the bending resistance of the tip bending part is pulled out. As a result, fixing power is secured.
In the case of a post-installed anchor fixing structure, a reinforcing bar 4 is applied to the drilled portion 3 of the base material 1 such as a reinforced concrete structure, and solidified material (filler) 5 such as mortar or resin is fixed and fixed. Fixing power is secured by adhesion to the agent and the base material.
A conventional example in which such an adhesive anchor is applied to a reinforced concrete structure such as a ramen viaduct will be described with reference to FIG.
FIG. 10A shows the ramen viaduct 10 immediately after completion, and here is an example of the viaduct on which the train 11 travels. The column base 13 supporting the column 12 is shown in FIG. 10B, for example. Such a rebar bending fixing structure is used. In the case of this fixing structure, a reinforcing bar 17 in which a tip portion surrounded by a circle indicated by reference symbol A is folded upward is embedded in the column base 13, and when an axial force as indicated by an arrow 15 is applied, Fixing force is secured by adhesion to the column base concrete structure and pulling resistance of the bent portion of the tip end portion A.

従来の接着系アンカー定着構造は、鉄筋がコンクリート構造物等の母材から抜け出さない、鉄筋と母材との滑りを許容しない構造となっている。しかし、鉄筋コンクリートラーメン高架橋などの不静定構造物においては、図11(a)に示すように、コンクリートの温度変化や乾燥収縮によるひずみによって柱や床版部材の長さが変化して柱などの部材に曲げが作用するが、鉄筋の抜け出し量がほとんどないため、柱12を支持する柱基部13に矢印で示すような持続的な引っ張り軸力15が作用し続ける。そのため、図11(b)に示すように、鉄筋17と母材との付着力によって柱基部13に破線19で示すようなコーン破壊力が作用し、ひび割れ発生の原因となる。また、このような定着部のひび割れだけでなく、例えば、図11(c)(一部拡大図)に示すように、柱12の下端部の一方の面には引っ張り力が作用してひび割れ14が発生し、柱12の上端部の反対面にも引っ張り力が用してひび割れ16が発生する。このように、鉄筋に付加的な応力が作用する部材には構造物を設計する際に、通常の列車荷重や地震荷重に加えて、付加応力の発生をあらかじめ見込んで鉄筋の耐震設計を行う必要があり、不経済になってしまう。また、単純桁を連結して連続桁化する場合やラーメン構造化し構造物の不静定次数を高めて耐震性を向上させる場合に、柱に曲げによるひび割れが生じることになる。   The conventional adhesive anchor fixing structure has a structure in which the reinforcing bar does not slip out of the base material such as a concrete structure and does not allow slipping between the reinforcing bar and the base material. However, in an indefinite structure such as a reinforced concrete ramen viaduct, as shown in FIG. 11 (a), the length of a column or floor slab member changes due to a temperature change of concrete or strain due to drying shrinkage. Although bending acts on the member, since there is almost no amount of the reinforcing bar pulling out, a continuous tensile axial force 15 as indicated by an arrow continues to act on the column base 13 supporting the column 12. Therefore, as shown in FIG. 11 (b), a cone breaking force as shown by a broken line 19 acts on the column base portion 13 due to the adhesive force between the reinforcing bar 17 and the base material, which causes cracking. Further, not only such a crack in the fixing portion, but also, for example, as shown in FIG. 11C (partially enlarged view), a tensile force acts on one surface of the lower end portion of the column 12 to cause a crack 14. And a crack 16 is generated by applying a tensile force to the surface opposite to the upper end of the column 12. In this way, when designing structures for members where additional stress acts on the reinforcing bars, it is necessary to perform seismic design of the reinforcing bars in anticipation of the occurrence of additional stress in addition to normal train loads and seismic loads. It becomes uneconomical. In addition, when a simple girder is connected to form a continuous girder, or when the structure is made into a ramen and the static instability order of the structure is increased to improve the earthquake resistance, the column is cracked due to bending.

本発明は上記課題を解決しようとするもので、定着部の変形性能を高めて鉄筋定着部のエネルギー吸収機能が得られるようにした鉄筋ダンパー定着構造及び耐震工法を提供することを目的とする。
本発明の鉄筋ダンパー定着構造は、構造物母材内に施工されたさや管内に充填された粘性体を通して鉄筋を挿入施工された状態でダンパー定着部を構成し、粘性体の粘性抵抗により鉄筋の定着力を得るとともに、ダンパー定着部を通して母材内に延びる鉄筋の側面と母材との間は摩擦力が働かないように付着を切った縁切り部としたことを特徴とする。
また、本発明の鉄筋ダンパー定着構造は、前記鉄筋が、ダンパー定着部のさや管を貫通して施工されていることを特徴とする。
また、本発明の耐震工法は、鉄筋ダンパー定着構造を鉄筋コンクリート構造物の柱または梁に配置したことを特徴とする。
An object of the present invention is to provide a reinforcing bar damper fixing structure and an earthquake-resistant construction method that can improve the deformation performance of the fixing part and obtain the energy absorbing function of the reinforcing bar fixing part.
In the reinforcing bar damper fixing structure of the present invention , the damper fixing part is configured in a state where the reinforcing bar is inserted and installed through the viscous body filled in the structure base material, and the viscous resistance of the viscous body causes the reinforcement of the reinforcing bar. In addition to obtaining a fixing force, an edge cut portion is formed so that the frictional force does not act between the side surface of the reinforcing bar extending into the base material through the damper fixing portion and the base material.
Moreover, the reinforcing bar damper fixing structure of the present invention is characterized in that the reinforcing bar is constructed so as to penetrate the sheath pipe of the damper fixing part.
Moreover, the seismic construction method of the present invention is characterized in that a reinforcing bar damper fixing structure is arranged on a column or beam of a reinforced concrete structure.

本発明の鉄筋ダンパー定着構造は、鉄筋に温度変化や乾燥収縮等の緩やかな荷重が作用した場合には、粘性体が徐々に変形することで部材に作用する不要な応力を緩和することができ、一方、地震荷重のような急激な荷重が作用した場合には粘性体の粘性抵抗により鉄筋の動きが抑制され、大きな定着力を得ることができる。また、鉄筋コンクリート構造物の耐震補強に適用した場合、構造物部材を損傷することなく地震エネルギを吸収することができる。   The reinforcing bar damper fixing structure of the present invention can relieve unnecessary stress acting on the member by gradually deforming the viscous body when a moderate load such as temperature change or drying shrinkage acts on the reinforcing bar. On the other hand, when a sudden load such as an earthquake load is applied, the movement of the reinforcing bar is suppressed by the viscous resistance of the viscous body, and a large fixing force can be obtained. Moreover, when applied to seismic reinforcement of reinforced concrete structures, it is possible to absorb seismic energy without damaging the structural members.

粘性体を用いた鉄筋ダンパ定着部の構造の例を説明する図である。It is a figure explaining the example of the structure of the reinforcing bar damper fixing | fixed part using a viscous body. 粘性体ダンパ定着部を備えた柱鉄筋の全体構造を説明する図である。It is a figure explaining the whole structure of the column reinforcement provided with the viscous body damper fixation part. 粘性体を収納するさや管の例を説明する図である。It is a figure explaining the example of the sheath pipe | tube which accommodates a viscous body. 緩やか引き抜き力が作用したときの粘性体の変形を説明する図である。It is a figure explaining a deformation | transformation of a viscous body when a gentle extraction force acts. 急激な引き抜き力が作用したときの粘性抵抗を説明する図である。It is a figure explaining viscous resistance when sudden drawing-out force acts. 鉄筋が粘性体ダンパー部を貫通している例を説明する図である。It is a figure explaining the example in which the reinforcing bar has penetrated the viscous damper part. ラーメン高架橋に粘性体ダンパ定着部を適用した例を説明する図である。It is a figure explaining the example which applied the viscous-body damper fixing | fixed part to the ramen viaduct. 粘性体ダンパ定着機構の設置箇所を説明する図である。It is a figure explaining the installation location of a viscous material damper fixing mechanism. 従来の接着系アンカーを説明する図である。It is a figure explaining the conventional adhesion type anchor. 従来の接着系アンカーを高架橋に適用した例を説明する図である。It is a figure explaining the example which applied the conventional adhesive anchor to the viaduct. 図10におけるひび割れ発生を説明する図である。It is a figure explaining the crack generation in FIG.

以下、本発明の実施の形態について説明する。
図1は粘性体を用いた鉄筋ダンパー定着部の構造の例を説明する図、図2は粘性体を用いた鉄筋ダンパー定着部を備えた柱鉄筋構造を説明する図である。
図1において、さや管30にオイルなどの粘性体40を収納したダンパー定着部50を鉄筋コンクリート柱等のコンクリート構造物の母材1中に一体施工し、鉄筋20をダンパー定着部50に通して施工する。このような構造において、鉄筋20に温度変化や乾燥収縮等の緩やかな荷重が作用した場合には、粘性体が徐々に変形することで部材に作用する不要な応力を緩和し、コンクリート構造物等のひび割れの発生を防止することができる。一方、地震荷重のような急激な荷重が作用した場合には粘性体の粘性抵抗により鉄筋の動きが抑制され、大きな定着力が得られる。
鉄筋20は粘性体の粘性抵抗が作用し易いように異径鉄筋を用いることが望ましいが丸棒であってもよい。丸棒であっても粘性抵抗は作用するとともに、鉄筋20に対しては長さ方向だけでなく、これに直交する方向の成分の力も同時に作用して粘性体に対して剪断力が働くので、十分抵抗力が作用して定着力が得られる。なお、使用する粘性体は硬めの粘度の大きいオイル等を使用し、その物性としては、アスファルト系の粘性体を使用する場合は、比重1.0以上、粘度10000±2000pのものが望ましい。
また、ダンパー定着部の変形性能を高めるためには、鉄筋20が母材1に対して可動であることが必要であり、そのためには、図2に示すように、ダンパー定着部50を通して延びる鉄筋20の側面と母材1との間は摩擦力が働かないように付着を切った縁切り部60とすることが望ましい。縁切り部60は母材1との間に空隙があるように模式的に示しているが、空隙がなくても、例えばシース管やビニールホースで鉄筋を被覆したり、鉄筋にビニールテープを巻き付けるなどの方法を用いて付着を切るようにしてもよい。なお、図では鉄筋20を一本のように図示しているが、本発明のダンパー定着構造は、主鉄筋を複数本束ね、或いは全部束ねてダンパー定着部に施工することも可能である。
Embodiments of the present invention will be described below.
FIG. 1 is a diagram for explaining an example of the structure of a reinforcing bar damper fixing unit using a viscous body, and FIG. 2 is a diagram for explaining a column reinforcing bar structure including a reinforcing bar damper fixing unit using a viscous body.
In FIG. 1, a damper fixing portion 50 in which a viscous body 40 such as oil is stored in a sheath tube 30 is integrally constructed in a base material 1 of a concrete structure such as a reinforced concrete column, and the reinforcing bar 20 is passed through the damper fixing portion 50. To do. In such a structure, when a moderate load such as a temperature change or drying shrinkage acts on the reinforcing bar 20, the viscous body gradually deforms to relieve unnecessary stress acting on the member, and thus a concrete structure or the like. It is possible to prevent the occurrence of cracks. On the other hand, when a sudden load such as an earthquake load is applied, the movement of the reinforcing bar is suppressed by the viscous resistance of the viscous body, and a large fixing force is obtained.
The reinforcing bar 20 is preferably a different-diameter reinforcing bar so that the viscous resistance of the viscous body acts easily, but may be a round bar. Even if it is a round bar, viscous resistance acts, and not only the longitudinal direction but also the force of the component in the direction perpendicular to this acts on the reinforcing bar 20 at the same time, and the shearing force acts on the viscous body. Sufficient resistance acts to obtain fixing power. The viscous material to be used is a hard oil having a high viscosity, and its physical properties are preferably those having a specific gravity of 1.0 or more and a viscosity of 10,000 ± 2000 p when using an asphalt-based viscous material.
Further, in order to enhance the deformation performance of the damper fixing portion, it is necessary that the reinforcing bar 20 is movable with respect to the base material 1, and for this purpose, as shown in FIG. 2, the reinforcing bar extending through the damper fixing portion 50 is used. It is preferable that the edge cut portion 60 is cut between the side face 20 and the base material 1 so that frictional force does not work. The edge cut portion 60 is schematically shown so that there is a gap between the base material 1, but even if there is no gap, the reinforcing bar is covered with, for example, a sheath tube or a vinyl hose, or a vinyl tape is wound around the reinforcing bar. The method may be used to cut the adhesion. In the drawing, the reinforcing bars 20 are illustrated as one. However, the damper fixing structure of the present invention can be applied to the damper fixing portion by bundling a plurality of main reinforcing bars or by bundling all the main reinforcing bars.

図3は粘性体を収納するさや管構造の例を説明する図である。
オイル等の粘性体を収納するさや管30は、母材1と一体であることが必要であり、そのために、引っ張り力等が作用したときの抜け出し防止用に側面にリブ31を設けるとともに、下端部にアンカー筋33を設けるようにしている。なお、さや管としては、リブ31やアンカー筋33を省略して、側面が波形の管等を用いるようにしてもよい。
FIG. 3 is a diagram for explaining an example of a sheath tube structure for storing a viscous body.
The sheath tube 30 for storing a viscous body such as oil needs to be integral with the base material 1, and for this purpose, a rib 31 is provided on the side surface to prevent the pull-out when a tensile force or the like is applied, and the lower end Anchor bars 33 are provided in the part. As the sheath, the rib 31 and the anchor bar 33 may be omitted and a corrugated tube or the like may be used.

次に、図4、図5により鉄筋に引っ張り力が作用したときの鉄筋に作用する粘性抵抗について説明する。
図4は緩やかな引き抜き力が作用したときの粘性体の変形を説明する図である。
さや管30にオイル等の粘性体40を収納したダンパー定着部50に鉄筋20の端部の定着部分が浸かっている状態で(図4(a))、鉄筋20に緩やかな引き抜き力Aが作用して鉄筋20が徐々に引き上げられようとすると、粘性体40が徐々に鉄筋に追随して変形部43のように変形するため(図4(b))、鉄筋20の抜け出しに抵抗し、さや管内への押し込み力として作用する。
図5は急激な引き抜き力が作用したときの粘性抵抗を説明する図である。
さや管30にオイル等の粘性体40を収納したダンパー定着部50に鉄筋20の端部の定着部分が浸かっている状態で(図5(a))、鉄筋20に急激な引き抜き力Bが作用すると(図5(b))、急激に上昇しようとする鉄筋20の側面、下端面にはそれぞれ矢印23、25で示す粘性抵抗が作用するため鉄筋の抜け出しを抑制することができる(図5(c)拡大図)。
このように、温度変化等の緩やかな荷重が作用した場合には、粘性体が徐々に変形することで部材に作用する不要な応力を緩和することができる。一方、列車荷重や地震荷重のような急激な荷重が作用した場合には粘性体の粘性抵抗により、鉄筋定着部と母材コンクリートとの間で従来の定着部と同程度の定着力を発揮することができる。
Next, viscous resistance acting on the reinforcing bar when a tensile force acts on the reinforcing bar will be described with reference to FIGS. 4 and 5.
FIG. 4 is a diagram for explaining the deformation of the viscous body when a gentle pulling force is applied.
In a state in which the fixing portion at the end of the reinforcing bar 20 is immersed in the damper fixing portion 50 in which the viscous body 40 such as oil is accommodated in the sheath tube 30 (FIG. 4A), a gentle pulling force A acts on the reinforcing bar 20. When the reinforcing bar 20 is gradually pulled up, the viscous body 40 gradually follows the reinforcing bar and deforms like the deformed portion 43 (FIG. 4 (b)). Acts as a pushing force into the tube.
FIG. 5 is a diagram for explaining the viscous resistance when a sudden pulling force is applied.
In a state where the fixing portion at the end of the reinforcing bar 20 is immersed in the damper fixing portion 50 in which the viscous body 40 such as oil is accommodated in the sheath tube 30 (FIG. 5A), a sudden pulling force B acts on the reinforcing bar 20. Then (FIG. 5B), the viscous resistance indicated by the arrows 23 and 25 acts on the side surface and the lower end surface of the reinforcing bar 20 that is about to rise rapidly, so that the reinforcing bar can be prevented from coming out (FIG. 5 ( c) Enlarged view).
Thus, when a moderate load such as a temperature change is applied, unnecessary stress acting on the member can be relaxed by gradually deforming the viscous body. On the other hand, when a sudden load such as train load or earthquake load is applied, the viscous resistance of the viscous material exerts the same fixing force between the reinforcing bar fixing part and the base concrete as the conventional fixing part. be able to.

図6は鉄筋ダンパー定着部の他の例を説明する図である。
上記した例では、鉄筋端部を粘性体を充填したダンパー定着部に浸けるようにしたが、図示するようにさや管30にオイル等の粘性体40を収納したダンパー定着部を鉄筋20が貫通するようにしてもよい。この例では鉄筋がダンパー定着部を貫通するさや管30の上下端部に粘性体の漏れ止め70を設けるようにしている。漏れ止め70は鉄筋20に密着して鉄筋の移動に追随できるフレキシブルな素材のものを用いることが望ましい。このような貫通タイプの定着構造とすることで、柱や梁の中間部に鉄筋ダンパー定着部を施工することが可能となる。このような構造であっても、鉄筋端部をダンパー定着部に浸ける場合と全く同じように粘性抵抗が作用して定着力が得られる。
FIG. 6 is a diagram illustrating another example of the reinforcing bar damper fixing unit.
In the above example, the end of the reinforcing bar is immersed in the damper fixing part filled with the viscous material, but the reinforcing bar 20 penetrates the damper fixing part in which the viscous material 40 such as oil is stored in the sheath tube 30 as shown in the figure. You may do it. In this example, a viscous material leakage stopper 70 is provided at the upper and lower ends of the sheath 30 through which the reinforcing bar penetrates the damper fixing portion. The leak stopper 70 is desirably made of a flexible material that is in close contact with the reinforcing bar 20 and can follow the movement of the reinforcing bar. By adopting such a penetration type fixing structure, it is possible to construct a reinforcing bar damper fixing portion at an intermediate portion of a column or beam. Even with such a structure, the viscous resistance acts and the fixing force is obtained in exactly the same way as when the end of the reinforcing bar is immersed in the damper fixing portion.

図7は本発明の鉄筋ダンパー定着構造をラーメン高架橋に適用した耐震工法の例を説明する図で、図7(a)は、列車11が走行する完成直後のラーメン高架橋10を示しており、柱12を支持する柱基部13には、図7(b)に示す本発明の鉄筋ダンパー定着構造が使用されている。この場合、母材と鉄筋との間は付着力が作用しないように縁切り部60とし、鉄筋先端部をダンパー定着部50のさや管30内に収納されている粘性体40に浸かるように柱基部13の母材中に施工する。このような構造とすることで、鉄筋20に加わる軸力をダンパー定着部の粘性抵抗により減衰させることができる。
このように、本発明の鉄筋ダンパー定着構造は、鉄筋表面と母材との付着を切った領域を持つため、鉄筋に軸力が発生したときに鉄筋が母材を損傷することなく、軸力をそのままダンパー定着部に伝達することができ、温度変化やコンクリートの乾燥収縮など鉄筋に持続的に軸力が作用したとき、作用した力に応じて粘性抵抗によりエネルギーを吸収してその力を緩和するため、図7(c)に示すように、ラーメン高架橋10において柱や床版部材の長さが変化して曲げが作用しても鉄筋の軸力が開放されるため定着部や柱にひび割れが発生するのを防止することができ、付加応力の発生をあらかじめ見込んだ鉄筋の耐震設計を行う必要をなくすことができる。また、鉄筋に持続的に軸力が作用しても定着部の損傷はなく、列車荷重や地震荷重など急な荷重に対しては従来と同等の耐震性能を発揮させることができ、従来に比してラーメン高架橋の長さを大幅に長くすることが可能である。なお、本発明の鉄筋ダンパー定着構造は高架橋に限らず、一般のコンクリート構造物に対しても適用可能であることは言うまでもない。
FIG. 7 is a diagram for explaining an example of a seismic construction method in which the reinforcing bar damper fixing structure of the present invention is applied to a ramen viaduct. FIG. 7 (a) shows the ramen viaduct 10 immediately after the train 11 travels. The column base 13 that supports 12 uses the reinforcing bar damper fixing structure of the present invention shown in FIG. In this case, the edge base 60 is formed so that the adhesive force does not act between the base material and the reinforcing bar, and the reinforcing bar tip is immersed in the viscous body 40 accommodated in the sheath tube 30 of the damper fixing part 50. Work in 13 base materials. With such a structure, the axial force applied to the reinforcing bar 20 can be attenuated by the viscous resistance of the damper fixing portion.
As described above, the reinforcing bar damper fixing structure of the present invention has a region where the adhesion between the reinforcing bar surface and the base material is cut, so that when the axial force is generated in the reinforcing bar, the reinforcing bar does not damage the base material and the axial force Can be transmitted to the damper fixing part as it is, and when axial force acts on the reinforcing bar continuously, such as temperature change or drying shrinkage of concrete, energy is absorbed by viscous resistance according to the applied force and the force is relaxed Therefore, as shown in FIG. 7 (c), since the axial force of the reinforcing bar is released even if bending is applied due to the change in the length of the pillar or floor slab member in the ramen viaduct 10, the fixing portion and the pillar are cracked. Can be prevented, and the need for seismic design of reinforcing bars in anticipation of additional stress can be eliminated. In addition, even if axial force acts on the reinforcing bar continuously, there is no damage to the anchoring part, and it can exhibit the same seismic performance as before against sudden loads such as train loads and earthquake loads. Thus, the length of the ramen viaduct can be significantly increased. In addition, it cannot be overemphasized that the reinforcing bar damper fixation structure of this invention is applicable not only to a viaduct but to a general concrete structure.

図8は本発明の鉄筋ダンパー定着構造の設置箇所を説明する図である。
高架橋の場合、柱が高いと柱頭部と柱基部にかかる力は小さくなるためラーメン構造にすることができる。しかし、高さが低い高架橋の場合、ラーメン構造にすると柱に作用する力が大きくなるため、柱の水平力が小さくなるように柱頭部に沓座を設けて桁を連続桁とする場合がある。上記(図7)したように、柱基部に本発明の鉄筋ダンパー定着構造を適用することで柱に作用する力を緩和することができ、高さが低い高架橋でもラーメン構造化することが可能になる。この場合沓座を不要にすることができるため、材料費のコストダウン、沓座メンテナンス費のコストダウンを図ることが可能になる。
本発明の鉄筋ダンパー定着構造は、図示するように、高架橋80の柱基部81に限らず、柱頭部82に設置することが可能であるとともに、図6に示した鉄筋がダンパー定着部を貫通する構造のものを使用すれば、柱中間部83、梁84などにも設置することが可能で、現場の状況に応じて適宜設置することができる。また、このような適用は、高架橋に限らず、一般のコンクリート構造物の柱や梁に対して施工することも可能である。
FIG. 8 is a view for explaining the installation location of the reinforcing bar damper fixing structure of the present invention.
In the case of a viaduct, if the column is high, the force applied to the column head and column base becomes small, so that a ramen structure can be obtained. However, in the case of a viaduct with a low height, the force acting on the column becomes large when a ramen structure is used, so there is a case where a stool is provided on the column head so that the horizontal force of the column becomes small and the beam is made a continuous beam. . As described above (FIG. 7), by applying the reinforcing bar damper fixing structure of the present invention to the column base, the force acting on the column can be relaxed, and a ramen structure can be formed even at a high bridge with a low height. Become. In this case, since the scorpion can be made unnecessary, it is possible to reduce the material cost and the scorpio maintenance cost.
The reinforcing bar damper fixing structure of the present invention is not limited to the column base 81 of the viaduct 80 as shown in the figure, and can be installed on the column head 82, and the reinforcing bar shown in FIG. 6 penetrates the damper fixing portion. If a thing of structure is used, it can be installed also in the pillar intermediate part 83, the beam 84, etc., and it can install suitably according to the condition of the field. Such application is not limited to viaducts, and can also be applied to columns and beams of general concrete structures.

1…コンクリート構造物の母材、20…鉄筋、30…さや管、40…粘性体、50…ダンパー定着部、60…縁切り部、70…漏れ止め。   DESCRIPTION OF SYMBOLS 1 ... Base material of concrete structure, 20 ... Reinforcing bar, 30 ... Saddle pipe, 40 ... Viscous material, 50 ... Damper fixing part, 60 ... Edge cutting part, 70 ... Leak prevention.

Claims (3)

構造物母材内に施工されたさや管内に充填された粘性体を通して鉄筋を挿入施工された状態でダンパー定着部を構成し、粘性体の粘性抵抗により鉄筋の定着力を得るとともに、ダンパー定着部を通して母材内に延びる鉄筋の側面と母材との間は摩擦力が働かないように付着を切った縁切り部としたことを特徴とする鉄筋ダンパー定着構造。 Structure reinforcement constitutes a damper fixing portion in the inserted construction state through viscous filled in sheath tube which is construction in the matrix, along with obtaining a fixing force of the reinforcing bar by the viscous resistance of the viscous body, a damper fixing portion Reinforcing bar damper fixing structure characterized in that it is an edge cut portion that is cut off so that frictional force does not work between the side surface of the reinforcing bar extending into the base material through the base material. 前記鉄筋は、ダンパー定着部のさや管を貫通して施工されている請求項1記載の鉄筋ダンパー定着構造。   The reinforcing bar damper fixing structure according to claim 1, wherein the reinforcing bar is constructed through a sheath pipe of a damper fixing part. 請求項1または2記載の鉄筋ダンパー定着構造を鉄筋コンクリート構造物の柱または梁に配置したことを特徴とする耐震工法。   A seismic construction method characterized in that the reinforcing bar fixing structure according to claim 1 or 2 is arranged on a column or beam of a reinforced concrete structure.
JP2011145810A 2011-06-30 2011-06-30 Reinforcing bar damper fixing structure and seismic construction method Expired - Fee Related JP5824258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145810A JP5824258B2 (en) 2011-06-30 2011-06-30 Reinforcing bar damper fixing structure and seismic construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145810A JP5824258B2 (en) 2011-06-30 2011-06-30 Reinforcing bar damper fixing structure and seismic construction method

Publications (2)

Publication Number Publication Date
JP2013011143A JP2013011143A (en) 2013-01-17
JP5824258B2 true JP5824258B2 (en) 2015-11-25

Family

ID=47685233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145810A Expired - Fee Related JP5824258B2 (en) 2011-06-30 2011-06-30 Reinforcing bar damper fixing structure and seismic construction method

Country Status (1)

Country Link
JP (1) JP5824258B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968846B2 (en) * 2013-10-03 2016-08-10 株式会社奥村組 Concrete wall railing mounting structure
CN107313504B (en) * 2017-06-19 2019-05-14 中交二航局第四工程有限公司安徽分公司 Precast beam top plate built-in pipe locating rack and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712013Y2 (en) * 1978-05-04 1982-03-10
US4417427A (en) * 1981-04-06 1983-11-29 Oskar Bschorr Method and apparatus for damping vibrations in large structures, such as buildings
JP4419218B2 (en) * 1999-07-16 2010-02-24 株式会社久米設計 Energy absorption structure of beam-column joint
JP4710039B2 (en) * 2000-03-03 2011-06-29 株式会社久米設計 Energy absorption structure at the junction between a column or beam and a wall
US8215068B2 (en) * 2008-10-27 2012-07-10 Steven James Bongiorno Method and apparatus for increasing the energy dissipation of structural elements

Also Published As

Publication number Publication date
JP2013011143A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
KR100927737B1 (en) Seismic strengthening composite system and seismic strengthening structure of building structure
KR101877971B1 (en) Installation structure of earthquake resistant file with the moving function in all directions for building and the construction method thereof
Choi et al. Seismic retrofit of circular RC columns through using tensioned GFRP wires winding
JP2007321486A (en) Armed pipe aseismatic structure and armed pipe aseismatic reinforcing method
KR101719179B1 (en) Column reinforced with spiral
JP5398419B2 (en) Structural damper
JP2011006947A (en) Reinforcing structure of masonry construction wall, masonry construction wall, masonry structure, and method of reinforcing masonry construction wall
JP5279356B2 (en) Plastic hinge structure of concrete member and concrete member
JP5824258B2 (en) Reinforcing bar damper fixing structure and seismic construction method
Choi et al. Bond behavior of steel deformed bars embedded in concrete confined by FRP wire jackets
JP5308012B2 (en) Reinforcement structure for wall column members
JP5816514B2 (en) Outframe reinforcement method and its reinforcement structure
Qazi et al. Impact of CFRP partial bonding on the behaviour of short reinforced concrete wall under monotonic lateral loading
JP5210337B2 (en) Buildings using vertical seismic control PC structural members with seismic prestress
JP5661514B2 (en) Seismic construction method using seismic isolation mechanism
JP5711573B2 (en) Reinforcing bar anchoring structure
JP5082085B1 (en) Seismic isolation device rotation amount control mechanism
JPH07238540A (en) Ground anchor with removable tensile steel material
JP6148389B1 (en) Seismic control building by vertical prestressed
JP2012207389A (en) Seismic strengthening construction method for existing building
JP4628288B2 (en) Structure of the pedestal
JP6931600B2 (en) Ground tank
KR100621435B1 (en) Soil nailing structure of using prestress and method of reinforcing the foundation with it
JP2011140970A (en) Base isolation construction and structure
JP6452349B2 (en) Bending reinforcement structure of existing tower structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees