JP5823635B2 - 電気生理学マップを構築するためのシステム及びその処理装置の作動方法 - Google Patents

電気生理学マップを構築するためのシステム及びその処理装置の作動方法 Download PDF

Info

Publication number
JP5823635B2
JP5823635B2 JP2014550278A JP2014550278A JP5823635B2 JP 5823635 B2 JP5823635 B2 JP 5823635B2 JP 2014550278 A JP2014550278 A JP 2014550278A JP 2014550278 A JP2014550278 A JP 2014550278A JP 5823635 B2 JP5823635 B2 JP 5823635B2
Authority
JP
Japan
Prior art keywords
surface model
point
alpha
location data
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014550278A
Other languages
English (en)
Other versions
JP2015505262A (ja
Inventor
エリック ジェー. ボス
エリック ジェー. ボス
Original Assignee
セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド filed Critical セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド
Publication of JP2015505262A publication Critical patent/JP2015505262A/ja
Application granted granted Critical
Publication of JP5823635B2 publication Critical patent/JP5823635B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/56Particle system, point based geometry or rendering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

(関連出願の相互参照)
本出願は、2011年12月29日に出願された米国特許出願第13/339,465号に対する優先権を主張するものであり、参照によってその全体が本明細書に記載されているように組み込まれる。
本発明は、一般的には電気生理学マップを構築するための方法及びシステムに関する。さらに詳細には、本発明は例えば、心臓又は心臓の特定部分など、解剖学的構造の多次元幾何学モデル上に電気生理学情報をマッピングするための、コンピュータで実施される方法及びシステムに関する。
長年、解剖学的構造の多次元表面モデルを生成又は構築するために、及び/又は解剖学的構造に対応する電気生理学(EP)情報を解剖学的構造の多次元表面モデル上にマッピングするために、コンピュータで実施される方法及びシステムが使用されてきた。さらに詳細には、心臓の構造(すなわち、心構造)の表面モデルを構築するために、及び/又は心構造に関連するEP情報を心構造の表面モデル上にマッピングするために、様々な方法又は技術が用いられおり、それによって心構造のEPマップが形成されてきた。
例えば、一つの従来のEPマッピング技術によれば、また一般的には、心構造の表面上の複数の場所データ点に関する位置情報を含む、心構造の多次元モデルを取得することができる。複数の測定点に関する位置情報と各測定点において作成されたEP測定値とを含むEPマップもまた取得することができる。モデルとマップとが取得されると、モデルの場所データ点が選択され、選択された場所データ点に最も近い、EPマップの2つの測定点が決定される。次いで、ドロネー三角形分割技術を使用して、選択された場所データ点に最も近い測定点として決定された2つの測定点間にドロネーエッジを画定する。上記のプロセスはモデル内の場所データ点のそれぞれに対して繰り返され、複数のドロネーエッジが画定される。
各場所データ点に対するプロセスが完了すると、ドロネーエッジを接続して複数の三角形が形成される。次いで、モデルから場所データ点のうちの1点が選択され、選択された場所データ点を囲む、ドロネーエッジから形成された三角形が特定される。そして、特定された三角形の頂点(すなわち、測定点)のそれぞれにおいて測定されたEP測定値を使用した補間に基づいて、マッピングされるEPパラメータの値又はレベルが場所データ点に割り当てられる。そして各場所データ点にEPパラメータの値が割り当てられるまで、場所データ点のそれぞれに対してこのプロセスが繰り返される。
場所データ点にEPパラメータの値又はレベルが割り当てられると、場所データ点に割り当てられたEPパラメータの値の相対的な大きさに基づいて、色又は他の何らかの視覚インジケータが場所データ点に割り当てられる。そして、場所データ点に割り当てられた色又は他の視覚インジケータを使用して、モデルが提示される。
しかし、上記のような技術は不便な点がないわけではない。例えば、上記の技術においては、モデルの各場所データ点が評価され、ドロネーエッジがそれぞれに対して画定され、次いで複数の三角形が複数のエッジから形成され、次いで3つの測定点のEP測定値の補間に基づいて、EP値が場所データ点に割り当てられるが、これら全てが、視覚インジケータが割り当てられる前のことであるので、マッピングプロセスは非常に時間がかかる。さらにマッピングプロセスは過度に複雑であり、その結果として、望ましくない量のコンピュータ資源を利用することがあり得る。
したがって、上記に特定された欠陥のうちの一つ以上を最小限に抑える、及び/又はそれらを排除する、解剖学的構造に対応する電気生理学マップを構築又は生成するための方法及びシステムが必要とされる。
本発明は、例えば、心構造などの解剖学的構造に対応する電気生理学(EP)マップを生成又は構築するための方法及びシステムに向けられる。
本発明の一側面と本教示とに従って、解剖学的構造に対応するEPマップを構築するためのシステムの処理装置の作動方法は、解剖学的構造の少なくとも一部の第1の表面モデルを取得するステップを含む。例示的な実施形態において、第1の表面モデルは、解剖学的構造の表面上のそれぞれの場所に対応する複数の場所データ点から構成される点群のアルファシェルを含む。例示的な実施形態において、第1の表面モデルを取得するステップは、第1の表面モデルを構築するステップを含む。こうした実施形態において、構築するステップは、点群を形成する複数の場所データ点を獲得することと、点群のアルファシェルを計算することとを含む。例示的な実施形態において、構築するステップは、アルファシェルを処理して、単体の表面モデルを生成することをさらに含む。
この方法は、解剖学的構造の少なくとも一部の第2の表面モデルを取得するステップをさらに含む。例示的な実施形態において、第2の表面モデルは、EPパラメータの測定が行われた解剖学的構造の表面上のそれぞれの場所に対応する複数の測定点から構成される点群のアルファシェルを含む。例示的な実施形態において、第2の表面モデルを取得するステップは、第2の表面モデルを構築することを含む。こうした実施形態において、構築するステップは、点群を形成する複数の測定点を獲得することと、点群のアルファシェルを計算することとを含む。例示的な実施形態において、構築するステップは、アルファシェルを処理して、単体の表面モデルを生成することをさらに含む。さらに、例示的な実施形態において、第1の表面モデルを取得するステップと第2の表面モデルを取得するステップとは同時に行われる。
方法はまた、第1の表面モデルの場所データ点のうちの少なくとも一つに関して、その場所データ点に距離が最も近い第2の表面モデル上の点を特定するために、第1の表面モデルと第2の表面モデルとを処理するステップをさらに含む。特定された点は、それに関連付けられたEPパラメータの値を有する。
例示的な実施形態において、方法は、第2の表面モデル上の特定された点にEPパラメータの値を関連付けるステップをさらに含む。この関連付けるステップは、複数のEPパラメータの測定値からEPパラメータの値を補間することを含んでもよく、又は、特定された点に測定点のうちの一つにおいて行われたEPパラメータの測定に対応する値を関連付けることを含んでもよい。
方法はさらにまた、第2の表面モデル上の特定された点に関連付けられたEPパラメータの値に基づいて、及び、EPパラメータに対応する視覚化スキームに従って、場所データ点に視覚インジケータを割り当てるステップをさらに含む。例示的な実施形態において、視覚化スキームは色分けスキームであり、場所データ点に視覚インジケータを割り当てるステップは、場所データ点に色の形態の視覚インジケータを割り当てることを含む。
例示的な実施形態において、方法は場所データ点と第2の表面モデル上の特定された点との間の距離を算出するステップをさらに含む。こうした実施形態において、場所データ点に視覚インジケータを割り当てるステップは、算出された距離が所定の閾値の距離の範囲内である場合に、視覚インジケータを割り当てることを含む。
例示的な実施形態において、方法はさらにまた、システムの表示デバイスを制御して、第1の表面モデルを、第1の表面モデル上に配置された視覚インジケータを用いて表示することを含む。
本発明の別の側面と本教示とに従って、EPマップを構築するためのシステムは、解剖学的構造の少なくとも一部の第1の表面モデルを取得するように構成された処理装置を備える。例示的な実施形態において、第1の表面モデルは、解剖学的構造の表面上のそれぞれの場所に対応する複数の場所データ点で構成される点群のアルファシェルを含む。例示的な実施形態において、処理装置は、点群を形成する複数の場所データ点を獲得し、点群のアルファシェルを計算することによって、第1の表面モデルを取得するように構成される。
この処理装置は、解剖学的構造の少なくとも一部の第2の表面モデルを取得するようにさらに構成される。例示的な実施形態において、第2の表面モデルは、EPパラメータの測定が行われた解剖学的構造の表面上のそれぞれの場所に対応する複数の測定点で構成される点群のアルファシェルを含む。例示的な実施形態において、処理装置は、点群を形成する複数の測定点を獲得し、点群のアルファシェルを計算することによって、第2の表面モデルを取得するように構成される。
処理装置はまた、第1の表面モデルの場所データ点のうちの少なくとも一つに関して、その場所データ点に距離が最も近い第2の表面モデル上の点を特定するようにさらに構成される。特定された点は、それに関連付けられたEPパラメータの値を有する。
例示的な実施形態において、処理装置は、第2の表面モデル上の特定された点にEPパラメータの値を関連付けるように構成される。処理装置は、複数のEPパラメータの測定値からEPパラメータの値を補間することによって、又は、特定された点に一つの測定点で行われたEPパラメータの測定に対応する値を関連付けることによって、第2の表面モデル上の特定された点にEPパラメータの値を関連付けるように構成することができる。
処理装置はさらにまた、第2の表面モデル上の特定された点に関連付けられたEPパラメータの値に基づいて、及び、EPパラメータに対応する視覚化スキームに従って、場所データ点に視覚インジケータを割り当てるように構成される。
例示的な実施形態において、システムは、表示デバイスをさらに備える。この実施形態では、処理装置は、表示デバイスを制御して、第1の表面モデルを、その第1の表面モデル上に配置された視覚インジケータを用いて表示するように構成される。
本発明に関する上記や他の局面、特徴、詳細、有用性、及び利点は、以下の記載や特許請求の範囲の閲読、及び添付の図面の概観により明らかになる。
本発明の教示に基づくシステムであって、表面モデルを生成するための、及び/又は、表面モデル上に電気生理学情報をマッピングするための例示的なシステムの概略図である。
図1に示すシステムの例示的なモデル構築システムの簡略化した概略的模式図である。
解剖学的構造の表面上のそれぞれの場所に対応する場所データ点の集合から構成された点群の模式図である。
図2に示すモデル構築システムで使用するのに適した、駆動されたパッチ電極の例示的なダイポール対の模式図である。 図2に示すモデル構築システムで使用するのに適した、駆動されたパッチ電極の例示的なダイポール対の模式図である。 図2に示すモデル構築システムで使用するのに適した、駆動されたパッチ電極の例示的なダイポール対の模式図である。 図2に示すモデル構築システムで使用するのに適した、駆動されたパッチ電極の例示的なダイポール対の模式図である。
本教示に基づく、多次元幾何学表面モデルを生成又は構築する例示的な方法を示すフローチャートである。
図3に示す点群の、計算されたアルファシェルの模式図である。
図6に示すアルファシェルから生成された単体の表面モデルの模式図である。
本教示に基づいて、単体の表面モデルを生成する例示的な方法を示すフローチャートである。
図3に示す点群の凸包の模式図である。
図6に示すようなアルファシェイプの表面の一部分の模式図である。
図6に示すアルファシェイプの隣接する小面の様々な配置の概略図である。 図6に示すアルファシェイプの隣接する小面の様々な配置の概略図である。 図6に示すアルファシェイプの隣接する小面の様々な配置の概略図である。 図6に示すアルファシェイプの隣接する小面の様々な配置の概略図である。
本教示に基づいて、解剖学的構造の多次元幾何学表面モデル上に電気生理学情報をマッピングする例示的な方法を示すフローチャートである。
図12Aに示す方法の評価及び視覚インジケータ割り当てステップの例示的な実施形態を示すフローチャートである。
解剖学的構造の表面上の、電気生理学パラメータの測定を行ったそれぞれの位置に対応する測定点の集合から構成される点群の模式図である。
図13に示す点群の、計算されたアルファシェルの模式図である。
図3に示す点群に対応し、電気生理学情報がマッピングされていることを示す幾何学表面モデルの模式図である。
様々な視点において同一の構成要素を識別するために同じ参照番号が使用された図面を参照すると、図1は、解剖学的構造の多次元(例えば、三次元)幾何学表面モデル上に、解剖学的構造に対応する電気生理学情報をマッピングするためのシステム10の一例示的な実施形態を示す(「電気生理学」及び「電気生理学的」という用語のそれぞれを以下では「EP」と呼ぶ)。以下の記載は、主に、心構造のためのEPマップの構築におけるシステム10の使用に焦点を合わせるが、本開示は、そのように限定されるわけではないことに留意されたい。むしろ、システム10と、システム10が使用する方法及び技術とは、心構造以外の解剖学的構造を含む様々な解剖学的構造に対するEPマップの構築及び/又は幾何学表面モデルの構築にも応用することができる。
続けて図1を参照すると、例示的な実施形態において、システム10は、数ある構成要素の中でも、医療デバイス12とモデル構築システム14とを備える。例示的な実施形態において、医療デバイス12は、カテーテル(カテーテル12)を備える。モデル構築システム14は、その一部として処理装置16を備える。処理装置16は、電子制御ユニットの形態を採ってもよく、その電子制御ユニットは、例えば、心構造の幾何学表面モデルを取得する(図5及び図12Aのステップ100)ように構成され、及び、例えばカテーテル12によって収集されたデータを使用して、心構造に対応するEPマップを構築する(図12Aのステップ200)ように構成されたものであってよい。以下でさらに詳細に記載するように、例示的な実施形態において、モデル構築システム14は、例えばカテーテル12によって収集されたデータを使用し、幾何学表面モデルを構築又は生成することによって、幾何学表面モデルを取得するように構成される。別の例示的な実施形態では、モデル構築システム14は、幾何学表面モデルを構築又は生成するのではなく、むしろ、モデル構築システム14に関連付けられたメモリ若しくはモデル構築システム14がアクセス可能なメモリから、又は、システム10の一部である別の構成要素若しくはモデル構築システム14に電気的に接続されてモデル構築システム14と通信するように構成された別の構成要素からモデルを取得することができる。
図1に示されるように、カテーテル12は、患者の身体18、より詳細には患者の心臓20の中に挿入されるように構成される。カテーテル12は、ケーブルコネクタ又はインターフェース22と、ハンドル24と、近位端28及び遠位端30(本明細書において使用されるように、「近位」は、臨床医に近いカテーテル12の部分に向かう方向を指し、「遠位」は、臨床医から離れた、患者の身体の(概ね)内側の方向を指す)を有するシャフト26と、カテーテル12のシャフト26の中や表面に取り付けられた一つ以上のセンサ32(例えば、321、322、323)とを含むことができる。例示的な実施形態において、センサ32はシャフト26の遠位端30又はその近くに配置される。カテーテル12は、他の従来の構成要素を含んでもよく、特に限定されない例であるが、温度センサと、追加のセンサ又は電極と、焼灼要素(例えば、RF焼灼エネルギーを送達するための焼灼先端電極、高密度焦点式超音波焼灼要素など)と、対応する導体又はリード線とをさらに含んでもよい。
コネクタ22は、例えば、モデル構築システム14及び/又はシステム10の他の構成要素(例えば、(モデル構築システム14とは別個で異なる場合には)視覚化システム、ナビゲーションシステム、及び/又はマッピングシステム、焼灼ジェネレータ、潅注源など)に延びるケーブル34、36などのケーブルに対して、機械的接続、流体的接続、及び電気的接続を提供する。コネクタ22は、当該分野における従来のものであり、カテーテル12の近位端、特にカテーテル12のハンドル24に配置される。
シャフト26の近位端28に配置されたハンドル24は、臨床医がカテーテル12を保持する位置を提供し、また患者の身体18内でシャフト26を操作又は誘導するための手段をさらに提供してもよい。例えば、ハンドル24は、シャフト26を操作するために、シャフト26の遠位端30までカテーテル12を通って延びる操作ワイヤの長さを変えるための手段を含んでもよい。ハンドル24もまた当該分野における従来のものであり、ハンドル24の構造は変わってもよいことを理解されたい。別の例示的な実施形態において、カテーテル12はロボット操作で駆動又は制御されてもよい。したがって、そのような実施形態では特に、臨床医がハンドルを操作してカテーテル12及びカテーテル12のシャフト26を操作又は誘導するのではなく、カテーテル12を操作するロボットが使用される。
シャフト26は、身体18の中で動くように構成された細長く、管状で、柔軟性のある部材である。シャフト26は、例えば、センサ32、関連付けられる導体、及び場合により信号処理や調整のために使用される追加の電子機器などのセンサ及び/又はセンサに取り付けられる電極などを支持するが、それらには限定されない。シャフト26はまた流体(潅注流体、低温焼灼流体、及び体液を含む)、医薬品、及び/又は手術道具もしくは手術器具の輸送、送達、及び/又は除去を可能にしてもよい。シャフト26は、ポリウレタンなどの従来の材料から作られてもよく、導電体、流体、又は手術道具を収容及び/又は輸送するように構成された一つ以上の管腔を画定する。シャフト26は従来のイントロデューサを通じて身体18内の血管又は他の構造の中に導入されてもよい。そしてシャフト26は、当該分野で周知の手段を使用して、心臓20などの所望の位置まで身体18を通って操作又は誘導されてもよい。
カテーテル12のシャフト26の中や表面に設置されたセンサ32は、モデル構築システム14、特にモデル構築システム14の処理装置16に電気的に接続される。センサ32は、様々な診断や治療の目的のために提供されてもよく、様々な診断や治療の目的とは、例えば、EPの研究、ペーシング、心臓マッピング、及び焼灼を含むが、それらに限定されない。例示的な実施形態において、センサ32のうちの一つ以上が場所又は位置の検知機能を果たすように提供される。さらに詳細には、以下でさらに詳細に記載されるように、センサ32のうちの一つ以上が、特定の時点における、カテーテル12、特にカテーテル12のシャフト26の遠位端30の場所(位置及び向き)に関する情報を提供する位置センサであるように構成される。したがって、こうした実施形態においては、カテーテル12が、心構造の表面に沿って、及び/又は心構造の内部で動かされるので、センサ32を、心構造の表面又は心構造内の場所に対応する場所データ点を収集するために使用することができる。これらの場所データ点は、心構造の幾何学表面モデルの構築において、例えばモデル構築システム14によって使用されることができる。これについては、以下でさらに詳細に記載する。
また以下でさらに詳細に記載されるように、上記の位置検知機能を果たすことに加えて、又は代替案において、センサ32のうちの一つ以上が、当該分野における周知の技術を使用して、心構造に対応する一つ以上のEPパラメータを測定するように構成されてもよい。さらに詳細には、こうした測定を行うように構成されたセンサ32が心構造の表面に沿って動かされると、センサ32は、対象となるEPパラメータの測定を行い、モデル構築システム14にパラメータの測定された値を通信するように構成される。次いで、EPパラメータの測定された値は、心構造の幾何学表面モデル上での心構造のEPマップの構築において、例えば、モデル構築システム14によって使用され得る。
例示的な実施形態において、位置検知機能とEPパラメータ測定機能とは異なるセンサによって行われてもよいが、明確性及び例示の目的のために、以下の記載では、カテーテル12のセンサ32のそれぞれが位置検知機能と測定機能とを行うように構成された実施形態に限定される。しかし、異なるセンサが異なる機能を行うために使用される実施形態は本開示の精神及び範囲の中にあることが理解される。
以下でさらに詳細に記載されるように、例示的な実施形態において、モデル構築システム14、特に、モデル構築システム14の処理装置16は、心臓表面(又は心臓表面の少なくとも一部)の幾何学表面モデルを取得して、幾何学表面モデル上にその心構造に対応するEP情報をマッピングするように構成される。例示的な実施形態において、処理装置16は、上記や下記の機能の全てを行うように構成されるが、本開示はそのように限定されるべきではないことが理解される。むしろ、他の例示的な実施形態において、処理装置16は、機能の全てではなく一部を行うように構成される。こうした実施形態において、システム10もしくはそのモデル構築システム14の一部である別の構成要素、又はシステム10、特にシステム10の処理装置16と通信するように構成された別の構成要素は、機能の一部を行うように構成される。こうした実施形態は本開示の精神及び範囲の中にある。
さらに、例示的な実施形態において、処理装置16は、幾何学表面モデルとEPマップとのうちの一方又は両方の構築において、少なくとも部分的には、カテーテル12が収集したデータ(場所データ及び/又はEPデータ/情報)を使用するように構成される。他の例示的な実施形態において、場所データとEP情報とは異なるカテーテル又は他の医療デバイスによって収集されてもよいことが理解される。しかし、例示と明確性の目的のために、以下の記載は、幾何学表面モデルとEPマップとを構築するために使用される場所データとEP情報との両方が、カテーテル12によって収集される実施形態に限定される。
したがって、心構造の幾何学表面モデルを取得することと、EPマップを構築することとにおいて、モデル構築システム14が行うそれぞれのプロセス又は技術が、以下に記載される。
簡潔に上述されたように、モデル構築システム14は、多数の方法のうちの一つで心構造(又は心構造の少なくとも一部分)の幾何学表面モデルを取得するように構成される。一例示的な実施形態において、幾何学表面モデルは、モデル構築システム14、特にその処理装置16と関連付けられた、もしくはモデル構築システム14、特にその処理装置16がアクセス可能なメモリもしくは記憶装置から、あるいはシステム10の一部である別の構成要素又はモデル構築システム14に電気的に接続されてモデル構築システム14と通信するように構成された別の構成要素から取得される。別の例示的な実施形態において、モデル構築システム14は、例えば、カテーテル12などの医療デバイスによって収集されたデータから構築又は生成することによって幾何学的表面モデルを取得してもよい。
モデル構築システム14が幾何学表面モデルを構築するように構成された実施形態において、モデル構築システム14は心構造に対応するセンサ32によって収集された場所データ点を獲得するように構成される。モデル構築システム14は、次いで心構造の幾何学表面モデルの構築において、それらの場所データ点を使用するように構成される。例示的な実施形態において、モデル構築システム14は、場所データ点を収集するためにセンサ32と共に機能することによって場所データ点を獲得する。しかし、別の例示的な実施形態において、モデル構築システム14は、場所データ点の収集に積極的に参加することなく、センサ32又はシステム10における別の構成要素、例えば、モデル構築システム14の一部であるメモリもしくは他の記憶装置、又はモデル構築システム14がアクセス可能なメモリもしくは他の記憶装置などから場所データ点を単に獲得してもよい。いずれの実施形態においても、モデル構築システム14は、収集された場所データ点の一部又は全部に基づいて幾何学表面モデルを構築するように構成される。例示と明確性との目的のために、以下の記載は、モデル構築システム14が、場所データ点の収集において、センサ32と共に機能することによって、幾何学表面モデルを構築することと、場所データ点を獲得することとの両方を行うように構成される実施形態に限定される。しかし、モデル構築システム14が、単に、センサ32又はシステム10の別の構成要素から場所データ点を獲得して、それから、場所データ点に基づいて幾何学表面モデルを構築する実施形態は、本開示の精神と範囲の中にあることが理解される。
したがって、例示的な実施形態において、モデル構築システム14は、構造の幾何学表面モデルを構築することに加えて、幾何学表面モデルの構築において使用される場所データ点を収集するためにセンサ32と共に機能するように構成される。こうした実施形態において、モデル構築システム14は、例えば、エンサイト(EnSite)NavX(商標)システムなどの電場ベースのシステムを備えてもよく、EnSite NavX(商標)システムは、セント・ジュード・メディカル社(St. Jude Medical, Inc.)から市販されており、「Method and Apparatus for Catheter Navigation and Location and Mapping in the Heart」と題される米国特許第7,263,397号を参照して概略的に示される。米国特許第7,263,397号の全開示は参照により本明細書に組み込まれる。しかし、他の例示的な実施形態において、モデル構築システム14は、例えば以下の他の種類のシステムを備えてもよいがそれらに限定されない。例えば他の種類のシステムは、バイオセンス・ウェブスター社(Biosense Webster)から入手可能であり、「Intrabody Measurement」と題される米国特許第6,498,944号、「Medical Diagnosis, Treatment and Imaging Systems」と題される米国特許第6,788,967号、及び「System and Method for Determining the Location and Orientation of an Invasive Medical Instrument」と題される米国特許第6,690,963号のうちの一つ以上を参照して概略的に示されるようなCarto(商標)システムなどの磁場ベースのシステムなどである。これらの文献の全開示は参照により本明細書に組み込まれる。あるいは他の種類のシステムは、メディガイド社(MediGuide Ltd.)から入手可能であり、「Medical Positioning System」と題される米国特許第6,233,476号、「System for Determining the Position and Orientation of a Catheter」と題される米国特許第7,197,354号、及び「Medical Imaging and Navigation System」と題される米国特許第7,386,339号のうちの一つ以上を参照して概略的に示されるようなgMPSシステムで、これら文献の全内容が参照により本明細書に組み込まれる。あるいは他の種類のシステムは、やはりBiosense Websterから入手可能なCarto 3(商標)システムなどの電場ベースのシステムと磁場ベースのシステムとの組み合わせである。
簡潔に上述されたように、例示的な実施形態において、カテーテル12のセンサ32は位置センサを備える。センサ32はカテーテルの場所(位置及び/又は向き)情報を示す信号を作り出す。モデル構築システム14が電場ベースのシステムである実施形態において、センサ32は一つ以上の電極を備えてもよい。こうした実施形態において、電極のそれぞれが、例えば、先端電極、環状電極、ボタン電極、コイル電極、ブラシ電極、可撓性ポリマー電極、及びスポット電極などの多数の種類の電極のうちの一つを備えてもよい。あるいは、モデル構築システム14が磁場ベースのシステムである実施形態において、センサ32は、低強度磁場の一つ以上の特性を検出するように構成された一つ以上の磁気センサを備えてもよい。例えば、一例示的な実施形態において、センサ32はカテーテル12のシャフト26の表面又は中に配置された磁気コイルを備えてもよい。
明確性と例示との目的のために、以下では、モデル構築システム14は、例えば、上で特定されたEnSite NavX(商標)システムなどの電場ベースのシステムを備えるものとして記載される。以下の記載は主に、センサ32が一つ以上の電極を備える実施形態に限定されるが、他の例示的な実施形態においては、センサ32は一つ以上の磁場センサ(例えば、コイル)を備えてもよいことが理解される。したがって、以下に記載されるセンサ又は電極以外の位置センサを含むモデル構築システムも依然本開示の精神と範囲の中にある。
図2を参照すると、処理装置16に加えて、モデル構築システム14は、考えられる他の構成要素の中でも、複数のパッチ電極38と、多重化スイッチ40と、信号生成器42と、表示デバイス44とを含んでもよい。別の例示的な実施形態において、これらの構成要素のうちの一部又は全部が、モデル構築システム14とは別個で異なっているが、モデル構築システム14に電気的に接続されて、モデル構築システム14と通信するように構成される。
処理装置16は、プログラマブルマイクロプロセッサもしくはプログラマブルマイクロコントローラを備えてもよく、又は特定用途向け集積回路(ASIC)を備えてもよい。処理装置16は、中央演算装置(CPU)と入力/出力(I/O)インターフェースとを含んでもよく、入力/出力(I/O)インターフェースを通じて、処理装置16は、例えば、パッチ電極38やセンサ32によって生成された信号を含む複数の入力信号を受信し、例えば、表示デバイス44やスイッチ40を制御するために使用される出力信号、及び/又は表示デバイス44やスイッチ40にデータを提供するために使用される出力信号を含む複数の出力信号を生成してもよい。処理装置16は、適切なプログラミング命令又はプログラミングコード(すなわち、ソフトウェア)を用いて、さらに詳細な上述及び後述の機能などの様々な機能を行うように構成されてもよい。したがって、処理装置16は、本明細書において記載される機能を行うための、コンピュータ記憶媒体で符号化された一つ以上のコンピュータプログラムでプログラミングされる。
「腹パッチ」と呼ばれるパッチ電極38Bを除いて、パッチ電極38は、例えば、カテーテル12の位置と向きとを決定する際に使用される電気信号を生成するために提供される。一実施形態において、パッチ電極38は、身体18の表面上に、直交して配置され、身体18内に軸固有電場を作るために使用される。例えば、一例示的な実施形態において、パッチ電極38X1、38X2は、第1(x)の軸に沿って配置されてもよい。パッチ電極38Y1、38Y2は、第2(y)の軸に沿って配置されてもよく、パッチ電極38Z1、38Z2は、第3(z)の軸に沿って配置されてもよい。他の実施形態において、例えば電極38X1と38Y1との間の双極子など、作られた双極子は軸上にない場合がある。パッチ電極38のそれぞれが、多重化スイッチ40に結合されてもよい。例示的な実施形態において、処理装置16は、適切なソフトウェアを通じてスイッチ40に制御信号を提供して、信号生成器42に電極38の対を順次結合するように構成される。電極38の各対の励起が、身体18内で、そして心臓20などの対象となる部分内で電場を発生させる。腹パッチ38Bに対する基準となる、励起されていない電極38における電圧レベルがフィルタリングされ変換されて、基準値として使用するために処理装置16に提供される。
例示的な実施形態において、カテーテル12のセンサ32は処理装置16に電気的に接続され、上記のように、位置検知機能を果たすように構成される。さらに詳細には、センサ32は、パッチ電極38を励起させることによって身体18(例えば、心臓の中)において作られる電場内に配置される。明確性と例示の目的のためだけに、以下の記載は、単一のセンサ32が電場内に配置される実施形態に限定される。しかし、本開示の精神と範囲の中にある他の例示的な実施形態において、複数のセンサ32が電場内に配置され得、次いで各センサの位置と向きが以下に記載される技術を使用して決定され得ることが理解される。
電場内に配置された時に、センサ32は、パッチ電極38間の場所と組織に対するセンサ32の位置とに依存する電圧を受ける。センサ32とパッチ電極38との間で行われた電圧測定の比較を使用して、組織に対するセンサ32の場所を特定できる。したがって、カテーテル12を、対象となる特定の部分又は表面の周囲で、又はそれに沿って掃引すると、処理装置16は、センサ32上の電圧レベルの変化を反映するセンサ32から信号(場所情報)を受信し、また電圧を加えられていないパッチ電極38から信号(場所情報)を受信する。処理装置16は次いで、様々な公知のアルゴリズムを使用して、センサ32の場所(位置及び向き)を特定し、処理装置16と関連付けられるか、又は処理装置16がアクセス可能な、メモリ47などのメモリ又は記憶装置に、心構造の表面上又は心構造内のセンサ32の場所に対応する場所データ点46(本明細書において「データ点46」とも呼ばれ、図3に例示される)としてセンサ32の場所を記録する。例示的な実施形態において、場所データ点として場所を記録する前に、処理装置16が受信した信号が提示する生の場所データは、公知の技術又は今後開発される技術を使用して、呼吸、心臓の活動、及び他のアーチファクトを明らかにするために処理装置16で補正されてもよい。いずれにしても、経時的に取得した場所データ点46(461、462・・・46n)の集合は、メモリ又は記憶装置に格納される(図3に最も良く示される)点群48を形成することになる。
上の記載は、これまでのところ、概して、パッチ電極38の直交する配置に関するものであるが、本開示はそのように限定されることを意図していない。むしろ、他の例示的な実施形態においては、直交しない配置を用いて、センサ32の場所座標を特定してもよい。例えば、一般的には、図4A〜図4Dは、座標系49に設定された複数の例示的な直交しない双極子D0、D1、D2、及びD3を示す。図4A〜図4Dにおいて、X軸のパッチ電極は、XA及びXBと指定され、Y軸のパッチ電極は、YA及びYBと指定され、Z軸のパッチ電極は、ZA及びZBと指定される。あらゆる所望の軸に関して、駆動(ソースシンク)構成の所定の組に起因する、センサ32などの心臓内センサにわたって測定された電位を代数的に組み合わせて、直交する軸に沿って均一な電流を単に流すことによって取得されるものと同じ有効電位を生み出すようにしてもよい。パッチ電極38X1、38X2、38Y1、38Y2、38Z1、及び38Z2(図2を参照)のうちの任意の2つが、例えば、腹パッチ38Bなどの基底基準に対して、双極子のソース及びドレーンとして選択されてもよく、他方励起されていないパッチ電極は基底基準に対する電圧を測定する。心臓20に配置されたセンサ32はまた、電流パルスに対する場にさらされ、例えば、腹パッチ38Bなどの基底に対して測定される。
それぞれのパッチ電極及びセンサ32からのデータセットを全て使用して、心臓20内のセンサ32の場所を特定する。電圧測定が行われた後、異なる対のパッチ電極が電流源によって励起され、残りのパッチ電極と内部のセンサとの電圧測定プロセスが生じる。センサ32の場所がされると、上記のように、その場所は上記と同じ方法でデータ点46として記録されてもよい。例示的な実施形態において、場所データ点として場所を記録する前に、処理装置16が受信した信号が提示する生の場所データは、公知の技術又は今後開発される技術を使用して、呼吸、心臓の活動、及び他のアーチファクトを明らかにするために処理装置16で補正されてもよい。したがって、センサ32の場所を特定するために、したがって、センサ32の場所に対応するデータ点を収集するために、様々な技術が使用されてもよいことが理解され、それらの技術のそれぞれが、本開示の精神と範囲の中にある。
したがって、図5を参照すると、例示的な実施形態において、処理装置16は、上記の方法で同様に獲得された場所データ点46の点群48を最初に獲得することによって心構造の幾何学表面モデルを構築するように構成される(ステップ102)。例示的な実施形態において、処理装置16は点群48を形成するように構成される。別の例示的な実施形態において、処理装置16は、メモリから、又は処理装置16に電気的に接続されて処理装置16と通信するように構成された何らかの他の構成要素から点群48を取得するように構成される。いずれの例においても処理装置16は、点群48の場所データ点46を処理して、心構造の幾何学表面モデルを生成又は構築するように構成される(ステップ104)。この目的のために場所データ点46を処理するために、当該分野において公知の様々な技術を使用してもよい。一例示的な技術は、幾何学表面モデルを構築するためにアルファシェイプ法を使用することに関わる。こうした技術の例が、「Method and System for Generating Surface Models of Geometric Structures」と題される2007年12月28日出願の米国特許出願公開第2009/0167755号に記載され、その全開示が参照により本明細書に組み込まれる。以下の記載は、アルファシェイプ技術が幾何学表面モデルを構築するために使用される実施形態に限定されるが、本開示はそのように限定されるわけではないことが理解される。むしろ、アルファシェイプ技術以外の、当該分野において公知の技術、又は本明細書において特に記載されたアルファシェイプ技術以外のアルファシェイプ技術が使用されてもよく、したがって、それらの技術も本開示の精神及び範囲の中にある。
このように、図5を参照すると、例示的な実施形態において、点群48の場所データ点46は、心構造に対応するアルファシェル50、即ち幾何学表面モデル51を計算するためにアルファシェイプ法にかけられる。図6は、図3に示された点群48のアルファシェル50を示す。アルファシェル50を計算又は生成するために、処理装置16は、点群48における場所データ点46を三角形につないで一つ以上の小面52を形成する。それらの小面52は、まとめると、心構造に対応するアルファシェル50、即ち幾何学表面モデルを作成又は形成する。したがって、図6に例示されるように、このプロセスによって作成されたアルファシェル50は、多数の小面の表面を有する幾何学表面モデル51となり、その各場所データ点46は幾何学表面モデル51の頂点を構成し、各小面52は三角形を構成するため、3つの縁54を有する。アルファシェル50が計算されると、アルファシェル50は、例えば、ディスプレイ44などのディスプレイに表示されてもよく、及び/又は、処理装置16と関連付けられるか、又は処理装置16に電気的に接続されて処理装置16と通信するように構成された、例えばメモリ47などのメモリ又は記憶装置に保存されてもよい。
当業者なら理解されるように、アルファシェルがより多くの小面を有するほど、基礎構造の詳細がより再現される。小面の数、即ち、詳細のレベルは、アルゴリズムで使用されるアルファ(「α」)の特定の値(約数ミリメートルの距離の尺度)に依存する。例えば、α=0である場合、アルファシェルは単に、点群48を含む場所データ点46の元の組である。一方、α=∞である場合には、アルファシェルは単に、点群48の凸包となる。このように、αの値が比較的に小さい場合には、アルファシェルはより高い詳細度(すなわち、より多くの小面)を有し、心構造の凹状部分のモデル化を可能にし得る。
したがって、ゼロと無限大との間のαの値(すなわち、0<α<∞)が、選択又はその他の方法で決定され、対応する詳細度合いを有するアルファシェル、即ち、幾何学表面モデルを生成するために、処理装置16によって使用される。典型的には、αの値は、約五(5)ミリメートルから約十(10)ミリメートルであるが、本開示は、そのように限定されるわけではない。むしろ、別の実施形態において、本明細書において具体的に特定された値よりも大きい又は小さいαの値を使用してもよく、したがってその値も本開示の精神と範囲の中にある。例示的な実施形態において、αの値は、システム10、特に処理装置16のセットアップ(すなわち、システム10の製造の間、又はシステム10の初期化の間でかつ使用前)の一部として設定されてもよい。さらに、値は、調整可能でなくてもよく、あるいは値は、例えば、タッチスクリーン、キーボード、キーパッド、スライダコントロール、マウス、一つ以上のユーザ選択可能なもしくはユーザ入力可能なフィールドを有するグラフィカルユーザインターフェース、又はユーザがαの値を設定又は調節できるように処理装置16に電気的に接続された何らかの他のユーザ制御可能な入力デバイスなどのユーザインターフェース53(図1に最も良く示される)を使用して、システム10のユーザによって調節可能であってもよい。
別の例示的な実施形態において、アルファシェルを上記のように計算せず、異なる領域では詳細レベルが異なるように、アルファシェルを計算又は構築してもよい。こうした実施形態では、点群48の場所データ点46に、重みがそれぞれ割り当てられる。重みは、臨床医/医師が、心構造のその特定の部分又は領域においてどの程度の詳細を保存したいかを決定する係数である。より高い詳細が望まれる場合は、重みは小さくなり、逆に、より低い詳細が望まれる場合は、重みは大きくなる。したがって、こうした実施形態において、場所データ点46の全てが獲得又は収集されると、各場所データ点46には重みが処理装置16によって割り当てられる。この重みは、例えば、特定の場所データ点46の周囲における場所データ点の局地的な密度に反比例してもよいし、点群48において最も近くに隣接する場所データ点46への距離に正比例してもよいし、又は点群48において特定の数の最も近くに隣接する場所データ点46への平均距離に正比例してもよい。このように、アルファシェル50の全体的な詳細レベルは、心構造の各領域における場所データ点46の密度に依存する。したがって、場所データ点46に割り当てられる重みに依存して、アルファシェル50、したがって幾何学表面モデル51の特定の部分又は領域は、異なる詳細レベルを有してもよい。この概念は、一般的に、重み付きアルファシェイプと呼ばれ、したがって、こうした実施形態において、アルファシェル50は重み付きアルファシェイプとして計算される。
「通常の」又は「重み付きの」アルファシェイプベースの幾何学表面モデルが構築されたかに関わらず、一般的には、各小面52の各縁54は、一つだけの他の隣接又は近接する小面52によって共有される(すなわち、アルファシェル50の各縁54は2つ以下の近接する小面52によって共有される)ことが望ましい。しかし、アルファシェイプ法が提供し得る詳細レベルによって、完成/生成されたアルファシェル50における特定の小面52の一つ以上の縁54が2つ以上の他の近接する小面52によって共有される可能性がある。この結果、多様体ではないと考えられるアルファシェルが生じ、このことは、アルファシェル50の真の外表面がどれであるかを判定すること、またアルファシェル50のどの表面が実際に外表面の内側にあるかを判定ことが、不可能ではないとしても困難となる(すなわち、アルファシェルにおける表面が実際にどの方向を向いているかを判定することが困難である)。これが生じた場合、平滑で単体の表面を有する心構造の幾何学表面モデルを提供するために、生成されたアルファシェル50を「整理する(clean up)」ために後処理手順を行うことが望ましいであろう。
この用途に関して、「単体の表面」という用語は、「接続され方向づけ可能で局所的には二次元の多様体表面」(すなわち、アルファシェル50における各縁54が2つ以下の近接する小面52によって共有される)を意味することを意図する。言い換えると、一つより多くの他の隣接/近接する小面52によって共有される少なくとも一つの縁54を有する各小面52に関して、近接する小面52のうちのどれが、平滑で単体の表面を有する最終的な幾何学表面モデル51の一部分として維持されるか、またどの不明瞭な近接する小面52が捨てられるか(例えば、図6を参照されたい。図6においては、いくつかの「不明瞭な近接する」小面が、点描によって特定され、後処理手順において捨てられている)を判定しなければならない。この手順により、最終的な幾何学表面モデルにおいて、各小面52の各縁54が、一つだけの他の隣接する小面52によって共有されることが確実になる。したがって、例示的な実施形態において、処理装置16は、生成又は計算されたアルファシェルに後処理手順を行って、計算されたアルファシェルに基づく平滑で単体の表面を有する幾何学表面モデルを生成するように、上で構成される(ステップ106)。このように、図5に概略的に示されるように、また図8においてさらに詳細に示されるように、処理装置16は、単体の表面アルゴリズム、すなわち「スキン」アルゴリズムでアルファシェル50を処理して、平滑で単体の表面を有する幾何学表面モデル51’を生成するように構成されてもよい(図7に最も良く示される)。
図5と図8とを参照して、こうした後処理手順の例示的な実施形態を、ここで記載する。例示的な実施形態において、処理装置16は、アルファシェル50、即ち幾何学表面モデル51から、生成プロセスを開始すべき少なくとも一つの場所データ点46(すなわち、頂点)、小面52、又は縁54を特定するように構成される(ステップ108)。例示的な実施形態において、この「開始点」は、点群48の凸包によって共有されるアルファシェル50の点46、小面52、及び/又は縁54である。
したがって、一例示的な実施形態において、開始点の特定は、点群48の凸包の計算と、点群48に対応するアルファシェル50とその凸包との比較とによって達成される。こうした実施形態において、処理装置16は、様々な公知の技術又は凸包アルゴリズムの一つを使用して、点群48の凸包を計算するように構成される。図9に示され参照符号56として識別される、凸包アルゴリズムによって生成された結果である表面モデルは、点群48の最も外側の場所データ点46の間の接続を表すので、心構造の最も外側の表面を含む表面モデルが生成される。
この特定の実施形態において、凸包56が計算又は生成されると、処理装置16は、アルファシェル50と凸包56とを比較するように構成される。例示的な実施形態において、処理装置16は、アルファシェル50のどの小面52が凸包56によって共有されるかを判定するために、アルファシェル50と凸包56とを比較する。こうした実施形態において、凸包56の一部でもあるか、又は凸包56によって共有されるアルファシェル50の各小面52が特定され、以下にさらに詳細に記載される理由により、処理装置16に関連付けられるか、又は処理装置16に電気的に接続されて処理装置16と通信するように構成された、例えばメモリ47などのメモリ又は記憶装置に格納された待ち行列の中に配置される。これらの「共有される」小面52は、単体の幾何学表面モデル51’を生成するための開始点を提供するように特定される。なぜならば、当然ながら、凸包上のものは全て、必ず凸包が対応する構造の外側表面上にあるので、これらの小面52は心構造の外側表面にあることが分かっているからである。このように、こうした小面52を特定することによって、処理装置16は、特定された小面52が、正しく方向づけられ、最も外側の表面上にあることを理解する。待ち行列に配置されることに加えて、特定された小面52はまた、処理装置16によって生成又は計算されている、図7に示す最終的な単体の幾何学表面モデル51’に加えられる。
しかし、共有される点、縁、又は小面を特定するために、処理装置16が別個に凸包56を計算することは必要でないことがあり得ることに留意されたい。別の例示的な実施形態において、アルファシェル50における一つ以上の小面52が凸包56によって共有されるか否かをアルファシェル50自体から判定できる。さらに詳細には、アルファシェイプ法を実行するときに、処理装置16が行う基本的な三角測量において、各小面52は2つの対向する頂点を有し、このアルファシェイプ法は実質的に、三次元空間の全てを四面体に分割している。同じく凸包56上にある(すなわち、凸包56によって共有される)アルファシェイプ小面52は、2つの対向する頂点のうちの一つとして「無限大における点」を有しうる。この理論的な点は、凸包56の全ての外側四面体の一部であるので、単体の表面アルゴリズムを実行する処理装置16は、アルファシェル50の特定の小面52の対向する頂点のうちの一つが「無限大における点」であるか否かをすることによって、アルファシェル50の特定の小面52が凸包56によって共有されるか否かを判定できる。したがって、本開示は、凸包56によって共有される、アルファシェル50の点、縁、又は小面を特定する単一の方法又は技術に限定されることを意図しない。むしろ、本明細書に具体的に記載された技術以外の技術も本開示の精神及び範囲の中にある。
共有される小面が、どのように判定されるかに関わらず、アルファシェル50の一つ以上の小面52が、凸包56によって共有され、待ち行列に配置されると特定されると、処理装置16は、最終的な単体の幾何学表面モデル51’を生成するために、待ち行列におけるこれらの小面52(及びその後に待ち行列に加えられる小面)のそれぞれを、一度に一つだけ評価又は処理するように構成される(ステップ110)。さらに詳細には、処理装置16は、待ち行列における第1の小面52を取り出して解析し、最初の小面52の各縁54に関して、いくつの隣接又は近接する小面52がその特定の縁54を共有するかを決定する。評価された小面52の縁54が、他のどの小面52によっても共有されない場合には、一般的には、その縁は、単体の幾何学表面モデル51’における境界縁として残される。評価された小面52の縁54が、一つだけ他の近接する小面52によって共有される場合には、その近接する小面52は、単体の幾何学表面モデル51’に加えられ、そして今後の処理/評価のために待ち行列にも加えられる。しかし、評価された小面52の縁54が2つ以上の他の近接する小面52によって共有される(例えば、縁54が合計で3つ以上の小面52によって共有される)場合には、処理装置16は、単体の幾何学表面モデル51’に含むべき近接する小面52と、捨てるべき小面52とを選択しなければならない。
例示の目的のために、図10は、図6に示されたアルファシェル50とは必ずしも対応しない例示的なアルファシェルの表面の一部分を示す。図10において、アルファシェルは、「共有される」小面として特定される小面521を有し、縁541〜縁543を含む。縁541に関して、ほかのどの小面52も、この縁を共有していないので、縁541は、単体の幾何学表面モデル51’の境界縁として残される。縁542に関して、この縁は、一つだけ他の近接する小面52(小面522)によって共有されるので、この小面522は、単体の幾何学表面モデル51’に加えられ、そして今後の解析又は評価のために待ち行列にも配置される。縁543に関して、この縁は、小面521に加えて、2つの他の近接する小面52(小面523及び小面524)によって共有されるので、処理装置16は、単体の幾何学表面モデルに加えるために、小面523及び小面524のうちの一方を選択し、残りの小面を捨てなければならない。
そうするために、例示的な実施形態において、処理装置16は、評価された小面52と所与の縁54を共有する各近接する小面52を考慮して、最も外側の小面、言い換えると、凸包56に最も近い小面を選択する。どの小面52が最も外側であるかを判定するために、処理装置16は、評価/解析される小面52(すなわち、例えば、小面521)と、特定の縁54を共有する他の近接する小面52(例えば、小面523及び小面524)との間の角度を考慮に入れて、評価された小面52と最も小さい角度(すなわち、最も小さい二面角)をなす近接する小面52を選択する。
この特定の技術は図11A〜図11Dを参照してより良く理解され得る。図11Aに関して、近接する小面521及び小面522は平坦な表面を形成する。したがって、これら2つの小面52間の二面角は180度である。あるいは、図11Bに関して、近接する小面522は、小面521に対して「内側」に配置されるので、その二面角は180度よりも大きい。逆に、図11Cに関して、近接する小面522は、小面521の「外側」に配置されるので、その二面角は180度よりも小さい。図11A〜図11Cのいずれにおいても、小面522は、小面521と特定の縁を共有する唯一の他の小面であるので、小面522は、各例において、単体の幾何学表面モデル51’に加えられる。しかし、図11Dは、2つの小面、すなわち、小面523及び小面524が、小面521と単一の縁を共有する例を示す。したがって、こうした例において、小面523及び小面524のうちの一方だけが、単体の幾何学表面モデル51’に加えられるように選択され得る。上記の基準に基づくと、小面521と小面523との間の二面角は、小面521と小面524との間の二面角よりも小さいので、小面523が、単体の幾何学表面モデル51’に加えられるように選択され、小面524は捨てられる。したがって、小面523は、小面521に合うように方向づけられ(すなわち小面523の頂点は、選択された小面を逆にしたときに、共通する縁の頂点を逆順で横切らない場合は、その頂点を逆にする)、生成される単体の幾何学表面モデル51’に加えられ、そして後の解析のために待ち行列にも加えられる。
例示的な実施形態において、処理装置16が、鋭角の折り目を作ってアルファシェル50の空洞の中に入り込むことなく、単体の幾何学表面モデル51’に境界を残すように、許容可能な二面角に対する最大閾値を設定することが望ましいであろう。例えば、一実施形態において、最大閾値角度は240度に設定されてもよい。したがって、こうした実施形態において、評価された小面52と任意の近接する小面52との間の角度が240度の閾値を越える(又は、別の実施形態においては、閾値以上である)場合には、その近接する小面52は加えられず、あるいは、他の小面52は縁54を共有するが、それらの小面52と評価された小面52との間のそれぞれの角度が、閾値よりも大きい(又は、別の実施形態においては、閾値に等しいか、又はそれ以上)である場合には、それらの近接する小面52は捨てられ、これら2つ以上の小面52によって共有される特定の縁54は、単体の幾何学表面モデル51’における境界縁として残される。
評価される小面52の各縁54が、上記のように解析されると、処理装置16は、解析される必要のある何らかの他の小面52が待ち行列に存在するか否かを判定するように構成される。存在する場合には、処理装置16は、待ち行列内の次の小面52を取り出して、上記と同じ解析を行う。待ち行列内の最後の小面52が解析されると、処理装置16は、アルゴリズムを終了させるように構成され、全ての許容可能な隣接/近接する小面52が伝播され単体の幾何学表面モデル51’に加えられたことを示す。
単体の表面を有する幾何学表面モデル51’の生成に関する上の記載は主に、凸包56によって共有される、アルファシェル50の小面52に基づくが、本開示は、そのように限定されることを意図しないことに留意されたい。むしろ、特定の例においては、凸包56によって共有される、アルファシェル50の小面52が全くないことがあり得る。こうした例において、処理装置16は、例えば、「Method and System for Generating Surface Models of Geometric Structures」と題される2007年12月28日出願の米国特許出願公開第2009/0167755号に記載されたように、凸包56によって共有される、アルファシェル50の点46(頂点)又は縁54を評価するように構成され、米国特許出願公開第2009/0167755号の全開示は上記の参照により組み込まれる。
上記のプロセスが完了した後に、生成された単体の幾何学表面モデル51’が、望ましくない空隙又は穴を含む場合には、これらの空隙又は穴は、より平滑で、より完全なモデルを生成するために、当該分野で公知の様々なアルゴリズム又は技術を使用して、必要に応じて充填されてもよい。例えば、処理装置16によって実行可能なこうしたアルゴリズムの一例示的な実施形態は、「Method and System for Repairing Triangulated Surface Meshes」と題される米国特許第7,825,925号に記載されたアルゴリズムであり、その全開示は参照により本明細書に組み込まれる。要するに、単体の幾何学表面モデル51’における空隙又は穴は、最初に処理装置16によって特定される。穴は、穴の複数の縁(すなわち、例えば、穴と境界をなす、小面52の境界縁54)によって画定される。次に、処理装置16は、穴の複数の縁を画定する、穴の複数の頂点を特定する。三番目に、処理装置は、上記の小面52と異ならない、一つ以上の三角形の小面を使用して穴を充填する。
この穴を「充填すること」は、一連のステップを含んでもよい。例えば、最初のステップにおいて、処理装置16は、穴の縁によって接続されていない、一対の、穴の頂点を選択する。一実施形態において、このステップは、最も近い、穴の頂点の対を選択することを含む。あるいは、このステップは、複数の穴の縁の最も小さい内角を突きとめることと、複数の穴の縁の最も小さい内角で交差する、複数の穴の縁のうちの一対を画定する一対の穴の頂点を選択することとを含む。一対の穴の頂点が選択されると、次のステップにおいて、処理装置16は、選択された対の穴の頂点を接続する作り上げられた縁を画定する。次に、処理装置16は、一つ以上の三角形が、画定された作り上げられた縁を使用して形成されるか否かを判定する。一つ以上の三角形が形成された場合には、処理装置16は、新たに形成された三角形を新たな小面として画定し、それを単体の幾何学表面モデル51’に加える。しかし、一つ以上の三角形が形成されなかった場合には、一つ以上の三角形が形成されるまで、処理装置16は、作り上げられた縁の画定を続ける。その後、特定された穴や、単体の幾何学表面モデル51’の他の穴が充填されて、空隙のない単体の幾何学表面モデルが作られるまで、このプロセスは繰り返される。
上記の「穴を充填する」技術はまた、アルファシェル50が、単体の幾何学表面モデルを生成するために上記の後処理手順を経ない例において適用されてもよいことが理解される。したがって、上記の「穴を充填する」プロセスもまた、幾何学表面モデル51が、望ましくない穴又は空隙を含む例に適用可能であり、単体の幾何学表面モデル51’に対して上記と同じ方法で行われてもよい。
さらに、幾何学表面モデル51(又は幾何学表面モデル51’)が2つ以上の構成要素を有する場合、臨床医/医師は、複数の構成要素に関して何をするべきかに関する選択又は選択肢を与えられてもよい。これらの選択又は選択肢は、モデルの一部として全ての構成要素を維持すること、最も大きい表面積を有する構成要素のみを維持すること、又はスティッチングアルゴリズムを使用して構成要素の接続を試みることを含んでもよいが、それらには限定されない。
例示的な実施形態において、上記のプロセス又は方法は、心臓の心周期における複数の異なる時点に対して別々の幾何学表面モデルを生成することによって、心構造のある程度動的な幾何学表面モデルを生成するために使用されてもよい。したがって、上記のプロセスの様々なステップを使用して、心構造に対応する場所データ点46が、心周期における異なる時点の間に収集されることにより、心周期における各時点に対する点群48を作り出す。上記の方法を使用して、幾何学表面モデル51が各点群48に対して生成されてもよく、さらにそれぞれの幾何学表面モデルを、様々な目的のために、共に又は別個に使用できる。
任意の事例において、完全又は最終的な幾何学表面モデル51(以下では、幾何学表面モデル51と、上記の単体の幾何学表面モデル51’との両方を含むように意図される)が生成されると、処理装置16は、例えば、ディスプレイ44に幾何学表面モデル51を表示するように構成されてもよい(ステップ112)。さらに、又は代わりに、処理装置16は、後で使用するために、及び/又は以下に記載の目的のために、処理装置16に関連付けられるか、又は処理装置16に電気的に接続されて処理装置16と通信するように構成される、例えばメモリ47などのメモリ又は記憶装置に幾何学表面モデル51’を保存するように構成されてもよい(ステップ112)。
上述されたように、心構造の幾何学表面モデルを取得する(例えば、構築、又は生成、あるいは獲得する)ように構成されることに加えて、処理装置16は、心構造に対応するEPマップを構築するようにさらに構成される。したがって、心構造の少なくとも一部分に対応する幾何学表面モデル51の構築の完了の際、又は構築と同時に、処理装置16は、幾何学表面モデル51上にEP情報をマッピングして、心構造のEPマップを構築するようにさらに構成される。幾何学表面モデル51上にマッピングされたEP情報は、心構造に関する一つ以上のEPパラメータに関連してもよく、例えば、「System and Method for Mapping Electrophysiology Information onto Complex Geometry」と題される米国特許第7,774,051号にさらに詳細に記載されるEPパラメータなどであるが、それらには限定されない。米国特許第7,774,051号の全開示は参照により本明細書に組み込まれる。しかし、要約すると、EPパラメータは、例えば、電圧測定、ピークピーク電圧測定、電位図、コンプレックス細分化電位図(CFE)、ならびに他の時間領域及び周波数領域のEP情報を含んでもよい。例示と明確性の目的のために、以下の記載は、対象となる単一のEPパラメータが測定され、幾何学表面モデル51上にマッピングされる実施形態に限定される。しかし、他の例示的な実施形態においては複数のEPパラメータが測定されて、そして特定の実施形態においては、単独で又は互いに組み合わせて表面モデル上にマッピングされてもよいことが、当業者によって理解される。したがって、一つより多いEPパラメータが測定されるか、又は測定されて表面モデル上にマッピングされる実施形態は、本開示の精神及び範囲の中にある。
図12Aを参照すると、EPマップを構築するために、処理装置16は、表面モデル51上にマッピングされるEP情報を最初に獲得するように構成される(ステップ202)。さらに詳細には、センサ32(又は多重センサが使用される実施形態においては複数のセンサ32)が心構造の表面に沿って動かされると、センサ32は対象となるEPパラメータについて一つ以上の測定を行うように構成される。例示的な実施形態において、EPパラメータの測定はユーザコマンドに応答して行われる。さらに詳細には、例示的な実施形態において、システム10は、ユーザ入力デバイス53(図1に最も良く示される)をさらに備え、ユーザ入力デバイス53は、タッチスクリーン、キーボード、キーパッド、ボタン、マウス、一つ以上のユーザ選択可能な又はユーザ入力可能なフィールドを有するグラフィカルユーザインターフェース、又は処理装置16に電気的に接続された何らかの他のユーザ制御可能な入力デバイスを備えてもよく、ユーザ入力デバイス53を通じて、ユーザはEPパラメータの測定を行うためにコマンドを出してもよい。あるいは、処理装置16は、例えば、作動などの事象が生じたことを検出する際に、こうした測定を自動的に行うように構成されてもよく、あるいは処理装置16は、測定されたEPパラメータに関する情報が信頼できることを判定又は検出する。いずれにしても、処理装置16に電気的に接続されたセンサ32のおかげで、測定が行われるか、又は測定値が取られると、センサ32によって生成された、EPパラメータの測定された値を示す電気信号が処理装置16に通信される。
どのように測定が引き起こされたかに関わらず、測定が行われるたびに、処理装置16は、測定を行ったセンサ32の場所(位置及び向き)を特定するように構成される。場所は、心構造の表面上の、測定が行われた、即ち、測定値が取得された場所に対応する測定点146として記録され、測定値は、処理装置16と関連付けられるか、又は処理装置16によってアクセス可能な、例えばメモリ47などのメモリ又は記憶装置に取り込まれる。各測定点146もまた、その特定の測定点146に対応する測定されたEPパラメータの値と関連付けられて記録される。例示的な実施形態において、処理装置16は、センサ32の場所及び対応する場所データ点46の特定に関して上述の方法と同じ方法で、センサ32の場所、したがって対応する測定点146を特定するように構成される。このように、上記の説明は、ここで同様に適用されるので繰り返されず、参照によりここに組み込まれる。経時的に取得した測定点146の集合は、各測定点146に対応するEPパラメータの値が表すEP情報と共に、EPマップを構築するために処理装置16によって使用されてもよいメモリ又は記憶装置(例えば、メモリ47)に格納される点群48(図13に最も良く示される)を形成することになる。
さらに詳細には、一つ以上のEPパラメータの値を取得すると、処理装置16は、測定点146を使用して、心構造(又は心構造の少なくとも一部分)の別の表面モデルを構築するように構成される。この表面モデルは、上記の表面モデル51とは別の、追加されるものである。混乱を避けるために、表面モデル51は、以下では「第1の」表面モデル(即ち、第1の表面モデル51)と記載するが、測定点146から構築された表面モデルは、以下では「第2の」表面モデル(即ち、第2の表面モデル151)と記載する。第2の表面モデルは、場所データ点46ではなく測定点146を使用する以外では、第1の表面モデル51の生成又は構築に関して上記の方法と同じ方法で構築されてもよい。したがって、その唯一の例外を除き、第1の表面モデル51の生成又は構築に関する上記の説明は、ここで同様に適用されるので、その全部を繰り返されず、参照によりここに組み込まれる。
しかし要約すると、また引き続き図12Aを参照すると、処理装置16は、次に上記のように獲得される測定点146の点群148を最初に獲得するように構成される(ステップ204)。例示的な実施形態において、処理装置16は、点群148を形成するように構成される。別の例示的な実施形態では、処理装置16は、電気的に接続され、処理装置16と通信するように構成された、メモリ又は何らかの他の構成要素から、点群148を取得するように構成される。いずれの例においても、処理装置16は、心構造の第2の表面モデル151を生成又は構築するように点群148の測定点146を処理するように構成される(ステップ206)。当該分野において公知の様々な技術を、この目的のために用いて、測定点146を処理してもよい。一例示的な技術は、第2の表面モデルを構築するためにアルファシェイプ法を使用することに関する。こうした技術の例が、「Method and System for Generating Surface Models of Geometric Structures」と題される2007年12月28日出願の米国特許出願公開第2009/0167755号に記載され、その全開示が上記の参照により組み込まれる。以下の記載は、アルファシェイプ技術を用いて第2の表面モデルを構築する実施形態に限定されるが、本開示はそのように限定されるわけではないことが理解される。むしろ、アルファシェイプ技術以外の、当該分野において公知の技術、又は本明細書において具体的に記載されたアルファシェイプ技術以外のアルファシェイプ技術が使用されてもよく、したがってそれらは本開示の精神及び範囲の中にある。
このように、引き続き図12Aを参照すると、例示的な実施形態において、点群148の測定点146は、心構造(又は心構造の少なくとも一部分)に対応するアルファシェル150、したがって表面モデル151を計算するためにアルファシェイプ法にかけられる。図14は、図13に描かれた点群148のアルファシェル150の一部を示す。アルファシェル150を計算又は生成するために、処理装置16は、点群148における測定点146を三角形につないで一つ以上の小面152を形成する。それらの小面152は、まとめると、心構造に対応するアルファシェル150、即ち表面モデルを作成又は形成する。したがって、図14に例示されるように、このプロセスによって作成されたアルファシェル150は、多数の小面の表面を有する表面モデル151(すなわち、第2の表面モデル151)となり、その各測定点146は表面モデル151の頂点を構成し、各小面152は三角形を構成するため、3つの縁154を有する。アルファシェル150が計算されると、アルファシェル150は、処理装置16と関連付けられるか、処理装置16に電気的に接続されて処理装置16と通信するように構成された、例えばメモリ47などのメモリ又は記憶装置に保存され、以下に記載のように使用されてもよい。
当業者なら理解されるように、アルファシェルがより多くの小面を有するほど、基礎構造の詳細がより再現される。小面の数、即ち、詳細のレベルは、アルゴリズムで使用されるアルファ(「α」)の特定の値(約数ミリメートルの距離の尺度)に依存する。例えば、α=0である場合、アルファシェルは単に、点群148を含む測定点146の元の組である。一方、α=∞である場合には、アルファシェルは単に、点群148の凸包となる。このように、αの値が比較的に小さい場合には、アルファシェルはより高い詳細度(すなわち、より多くの小面)を有し、心構造の凹状部分のモデル化を可能にし得る。
したがって、ゼロと無限大との間のαの値(すなわち、0<α<∞)が、選択又はその他の方法で特定され、対応する詳細度合いを有するアルファシェル150、即ち、第2の表面モデル151を生成するために、処理装置16によって使用される。典型的には、αの値は、約五(5)ミリメートルから約十(10)ミリメートルであるが、本開示は、そのように限定されるわけではない。むしろ、別の実施形態において、本明細書において具体的に特定された値よりも大きい又は小さいαの値を使用してもよく、したがってその値も本開示の精神と範囲の中にある。例示的な実施形態において、αの値は、システム10、特に処理装置16のセットアップ(すなわち、システム10の製造の間、又はシステム10の初期化の間でかつ使用前)の一部として設定されてもよい。さらに、値は、調整可能でなくてもよく、あるいは値は、例えば、ユーザインターフェース53(図1に最も良く示される)を使用して、システム10のユーザが調節可能であってもよい。例示的な実施形態において、同じαの値を使用して、第1の表面モデル51と第2の表面モデル151とを構築する。しかし、他の例示的な実施形態において、異なるαの値が使用される。例えば、一例示的な実施形態において、第2の表面モデル151を構築するために使用されるαの値は、第1の表面モデル51を構築するために使用されるαの値よりも大きい。
例示的な実施形態において、後処理技術が、単体の表面モデル151’を生成するために、アルファシェル150上で行われてもよい(ステップ208)。こうした実施形態において、単体の表面モデル151’は、上記と同じ方法で、そして単体の表面モデル51’の生成に関して図5及び図8に示したように生成されてもよい。したがって、単体の表面モデル51’の生成に関して上述の説明は、ここに同様に適用されるので、繰り返されず、むしろ上述の説明を参照によりここに組み込まれる。
別の例示的な実施形態において、上記のように第2の表面モデル151を構築又は生成する処理装置16ではなく、処理装置16は、処理装置16と関連付けられるか、又は処理装置16によってアクセス可能なメモリ又は別の構成要素から第2の表面モデル151を獲得するように構成される。したがって、処理装置16は、様々な方法で第2の表面モデル151を取得してもよく、これらの方法のそれぞれが、本開示の精神及び範囲の中にある。
処理装置16が、第2の表面モデル151(以下では、上記の表面モデル151と表面モデル151’との両方を含むことを意図する)を取得(例えば、構築、生成又は獲得)すると、処理装置16は、以下に記載のように、第1の表面モデル51の場所データ点46(すなわち、頂点)のうちの一つ以上を評価するように構成される。その評価に基づいて、処理装置は、測定されたEPパラメータの値のうちの一つ以上に基づいて、そして測定されたEPパラメータに対応する視覚化スキームに従って、それらの場所データ点46のうちの一つ以上に視覚インジケータを割り当てるようにさらに構成される(ステップ210)。例示的な実施形態において、第1の表面モデル51の全ての場所データ点46が以下に記載のように評価される。あるいは、(構造全体ではなく)心構造の一つ以上の領域が対象となる領域である別の例示的な実施形態において、(評価される第1の表面モデル51の場所データ点46の全てとは対照的に)対象となる領域に対応する第1の表面モデル51の範囲に配置された場所データ点46だけが、以下に記載のように評価される。いずれの例においても、例示的な実施形態においては、考慮又は評価される各場所データ点46は、処理装置16と関連付けられるか、もしくは処理装置16によってアクセス可能な、例えばメモリ47などのメモリ又は他の記憶装置に格納された待ち行列に配置される。次いで処理装置16は、以下に記載の方法で、待ち行列内の各場所データ点46を順番に評価する。
したがって例示的な実施形態において、処理装置16は、評価される各場所データ点46に関して、その場所データ点46に対して距離が最も近い第2の表面モデル151上の点を特定するように構成される(ステップ212)。さらに詳細には、処理装置16は、第1の表面モデル51と第2の表面モデル151とを処理して、第1の表面モデル51の評価された場所データ点46に最も近い第2の表面モデル151上の点を決定し、特定するように構成される。第2の表面モデル151上の特定された点は、小面152の縁154上の点、小面152内に配置された点、又は測定点146(即ち、第2の表面モデル151の頂点)であってもよい。例示的な実施形態において、処理装置16は、場所データ点46と、縁154、小面152、及び測定点146、即ち第2の表面モデル151の頂点との間の距離を計算し、次いで場所データ点46に最も近い点を決定することによって最も近い点を特定するように構成される。
第2の表面モデル151上の点が特定されると、処理装置16は、特定された点にEPパラメータの値を関連付けるように構成される(ステップ214)。例示的な実施形態において、EPパラメータの値は、例えば、米国特許第7,774,051号に記載されるような公知の補間技術又は補間スキームを使用して、特定された点と関連付けられてもよく、米国特許第7,774,051号の全開示は上記の参照により本明細書に組み込まれる。例えば、一例示的な補間スキームにおいて、特定された点が、小面152のうちの一つの内側にあると判定された場合は、特定された点と関連付けられるEPパラメータの値が、小面152を画定する頂点を構成する測定点146のそれぞれにおいて測定されたEPパラメータに基づいて、重心補間技術を使用して補間される。しかし、特定された点が、第2の表面モデル151の縁154の上に又はそれに非常に近接して位置する場合は、特定された点と関連付けられるEPパラメータの値は、対象の縁154を画定する2つの測定点146において測定されたそれぞれのEPパラメータの値から双線形で補間される。最終的に、特定された点が、測定点146に充分に近い(すなわち、第2の表面モデル151の他の縁154又は小面152のいずれよりも測定点146に近い)ことが判定された場合は、その測定点146において測定されたEPパラメータの値が、特定された点と関連付けられる。
別の例示的な実施形態において、図12Bに例示されるように、場所データ点46とEPパラメータの値を関連付ける前に、及び/又は、以下に説明する場所データ点46に視覚インジケータを割り当てる前に、処理装置16は、場所データ点46と、それに対応する第2の表面モデル151上の特定された点との間の距離を評価するように構成される。さらに詳細には、処理装置16は、所定の閾値距離を用いてプログラミングされてもよく、そして場所データ点46と特定された点との間の距離を閾値距離と比較するように構成されてもよい(ステップ214)。例示的な実施形態において、距離が、閾値距離を超える(又は、別の実施形態においては、閾値距離以上である)場合には、特定された点にEPパラメータの値は関連付けられず、後述の視覚インジケータ割り当てプロセスにおいて、場所データ点には、視覚インジケータが割り当てられないか、又は初期設定の視覚インジケータが割り当てられる。次いで、評価又は考慮される次の場所データ点46(すなわち、待ち行列における次の場所データ点)に対して、プロセスが繰り返される。評価又は考慮される場所データ点46がこれ以上存在しない場合には、視覚インジケータ割り当てプロセスは終了する。あるいは、距離が閾値の距離よりも短い(又は別の実施形態においては、閾値の距離以下である)場合には、以下に記載のように、プロセスは続く。
例示的な実施形態において、閾値距離は、第1の幾何学表面モデル51を構築するために使用するαの値の倍数である。例えば、一実施形態において、閾値の距離は、αの値に等しいが、別の例示的な実施形態においては、閾値の距離は2αである。いずれにしても、閾値の距離は、システム10、特に処理装置16のセットアップ(すなわち、システム10の製造の間、又はシステム10の初期化の間でかつ使用前)の一部として設定されてもよい。さらに、値は調整可能でなくてもよく、あるいは値は、例えば、ユーザインターフェース53(図1に最も良く示される)を使用して、システム10のユーザが調節可能であってもよい。
EPパラメータの値が、第2の表面モデル151上の特定された点と関連付けられると、処理装置16は、特定された点と関連付けられたEPパラメータの値に基づいて、そして特定のEPパラメータに対応する所定の視覚化スキームに従って、場所データ点46に視覚インジケータを割り当てるように構成される(ステップ216)。さらに詳細には、例示的な実施形態において、処理装置16は、マッピングされる特定のEPパラメータと多数の視覚化スキームのうちの一つを最初に関連付けるように構成される。例示的な視覚化スキームは、例えば、色分けスキーム、ボリュマイジングスキーム(volumizing schemes)、テクスチャライジングスキーム(texturizing schemes)、及び透光性スキームを含むが、これらには限定されない。
視覚化スキームのそれぞれが、関連付けられるEPパラメータの異なる値を表すために使用される複数の視覚インジケータを含む。例えば、色分け視覚化スキームがEPパラメータと関連付けられる場合には、一つの色が、EPパラメータの最初の値又は値の範囲に割り当てられ、第2の色が、第2の値又は値の範囲に割り当てられるなどでもよい。同様に、同じ色の異なる色調、又は異なるグレースケールが、EPパラメータの異なる値又は値の範囲に割り当てられてもよい。したがって、各視覚化スキームは、複数の視覚インジケータを備え、各インジケータは、視覚化スキームが関連付けられるEPパラメータの特定の値又は値の範囲に対応する。したがって、処理装置16は、各視覚インジケータが、関連付けられるEPパラメータに対する値のうちの特定の値又は値の範囲と関連付けられるようにプログラムされる。さらに例示的な実施形態では、同じ視覚化スキームが、その時々で異なるEPパラメータに使用されてよいので、視覚化スキームが関連付けられ得る各EPパラメータについて、視覚化スキームの視覚インジケータが、当該EPパラメータに対応する値又は値の範囲に順番に関連付けるように、処理装置16は構成されプログラミングされる。したがって、処理装置16は、各視覚化スキームが、複数のEPパラメータに対して使用されることを可能にするように構成されてもよい。処理装置16は、それぞれのEPパラメータ/視覚化スキームの関連が事前にプログラミングされてもよいし、又は、処理装置16は、例えば、ユーザ入力デバイス53から受信したユーザ入力に応答して関連を作成してもよい。
視覚化スキームがEPパラメータと関連付けられると、処理装置16は、第2の表面モデル151上の特定された点と関連付けられるEPパラメータの値を評価し、関連付けられたEPパラメータの値に対応する視覚化スキームの視覚インジケータを場所データ点46に割り当てるように構成される。さらに詳細には、処理装置16は、例えば、視覚化スキームの視覚インジケータのどれが、EPパラメータの値に対応するかを判定するために、ルックアップテーブルのEPパラメータの値を調べるように構成される。次いで処理装置16は、場所データ点46に視覚インジケータを割り当てるように構成される。したがって、視覚化スキームが色分けスキームである実施形態において、赤色が場所データ点46に割り当てられてもよい。次いで、評価又は考慮される、第1の表面モデル51の次の場所データ点46(すなわち、待ち行列における次の場所データ点)に対して、このプロセスが繰り返される。待ち行列に他に場所データ点46が存在しない場合には、プロセスは終了する。
図12Aに例示されるように、視覚インジケータが、第1の表面モデル51の一つ以上の場所データ点46に割り当てられると(又は視覚インジケータが場所データ点46に割り当てられるたびに)、処理装置16は、当該分野において周知のように、表面モデル51上にEPマップをレンダリングする公知のコンピュータグラフィック技術を利用し、次いでシステム10の表示デバイス44を制御して、表面モデル51上にマッピングされたEPパラメータに対応するEP情報を用いて表面モデル51を表示するように構成される(ステップ218)。図15は、表面モデル51上にレンダリングされた例示的又は代表的なEPマップを有する表面モデル51の例を例示する。図15は、例示的な表面モデル151と、EPマップを生成するために使用される対応する測定点146との描写をさらに含むことに留意されたい。図15に描かれた、表面モデル151と測定点146とは、図13及び図14に描かれたものには必ずしも対応せず、むしろ表面モデル51上へのEPマップのレンダリングの例を単に例示するために提供されることが理解される。
例示的な実施形態において、上記のプロセスは、心構造全体(又は心構造の特定の所望の部分)の幾何学表面モデル(第1の表面モデル)が完成される前(すなわち、表面モデル51が心構造全体又は心構造の所望の部分を表す前)に、EPマップを構築するために行われてもよいことが理解される。むしろ、第2の表面モデル151が、第1の表面モデル51に対応する心構造の領域に対して構築される限り、心構造のその領域に対応するEP情報は、第1の表面モデル51上にマッピングされることができ、それにより心構造の第1の表面モデル51及びそれに対応するEPマップをリアルタイムで同時に構築することが可能となる。このように、各場所データ点46及び/又は測定点146が、それぞれの第1の表面モデル51及び第2の表面モデル151に加えられると、上記のプロセスは繰り返されて、心構造全体に対する第1の表面モデル51及び/又はEPマップを再計算する必要なく、心構造の第1の表面モデル51及び/又は心構造の第1の表面モデル51に対応するEPマップを継続的に構築することができる。同様に、各場所データ点46及び/又は測定点146が、それぞれの第1の表面モデル51及び第2の表面モデル151に加えられると、上記のプロセスは繰り返されて、やはり心構造全体に対する第1の表面モデル51及び/又はEPマップを再計算する必要なく、新しい場所データ点46又は測定点146が獲得された心構造の領域に対応するEPマップ及び/又は第1の表面モデル51の範囲又は部分を更新できる。
上記のシステム10の構造に加えて、本開示の別の局面は、例えば、心構造などの解剖学的構造に対応するEPマップを構築するためのコンピュータで実施される方法であることが理解される。例示的な実施形態において、上記のように、システム10のモデル構築システム14、特にモデル構築システム14の処理装置16が、その方法を行うように構成される。しかし、簡単に上述されたように、他の実施形態において、処理装置16は、その方法の全てではなく、一部を行うように構成される。例えば、例示的な実施形態において、処理装置16は、第1の表面モデル51及び第2の表面モデル151のうちの一方又は両方を構築又は生成するように構成されず、むしろ、別の構成要素から表面モデルを取得するように構成される。こうした実施形態においては、システム10の一部又はシステム10のモデル構築システム14の一部である別の構成要素、あるいはシステム10、特にシステム10の処理装置16と通信するように構成された別の構成要素が、方法の一部を行うように構成される。
図12Aを参照すると、例示的な実施形態において、方法は、最も一般的な形態で、心構造(又は心構造の少なくとも一部分)の幾何学表面モデル(第1の幾何学表面モデル)を取得するステップ100と、幾何学表面モデル上に心構造に対応するEP情報をマッピングするステップ200とを含む。例示的な実施形態において、幾何学表面モデルは、心構造の表面上のそれぞれの場所に対応する複数の場所データ点から構成される点群のアルファシェルを含む。
例示的な実施形態において、図5及び図12Aを参照すると、取得するステップ100は、メモリもしくは記憶装置又は何らかの他の構成要素から幾何学表面モデルを獲得することを含む。別の例示的な実施形態において、取得するステップ100は、幾何学表面モデルを構築することを含む。さらに詳細には、こうした実施形態において、取得するステップ100は、一群の場所データ点及び/又はそのうちの個々の場所データ点を獲得するサブステップ102と、一群の場所データ点のアルファシェルを計算する別のサブステップ104とを含む。例示的な実施形態において、取得するステップ100は、単体の表面モデルを生成するためにサブステップ104において計算されたアルファシェルを処理するサブステップ106をさらに含む。
引き続き図12Aを参照すると、マッピングするステップ200は、複数のサブステップを含んでもよい。例示的な実施形態において、マッピングするステップ200は、心構造(又は心構造の少なくとも一部分)の表面モデル(第2の表面モデル)を取得するサブステップ201を含む。ステップ100に関して上述された幾何学表面モデルと同様に、例示的な実施形態において、第2の表面モデルは、EPパラメータの測定が行われた、心構造の表面上のそれぞれの場所に対応する複数の測定点から構成される点群のアルファシェルを含む。取得するサブステップ201は、メモリもしくは記憶装置又は何らかの他の構成要素から表面モデルを獲得することを含んでもよく、又は表面モデルを構築することを含んでもよい。
さらに詳細には、表面モデルが構築される実施形態において、取得するステップ201は、心構造の表面からEP情報を獲得するステップ202と、EP情報が獲得された、心構造の表面上の場所を特定することによって、一群の測定点及び/又はそのうちの個々の測定点を獲得するステップ204と、一群の測定点のアルファシェルを計算するステップ206とを含む。例示的な実施形態において、サブステップ201は、単体の表面モデルを生成するために、ステップ206において計算されたアルファシェルを処理するステップ208をさらに含む。
マッピングするステップ200は、第1の表面モデルの場所データ点のうちの一つ以上を評価し、評価された場所データ点のうちの一つ以上に視覚インジケータを割り当てるサブステップ210をさらに含んでもよい。例示的な実施形態において、サブステップ210は、場所データ点に最も近い、第2の表面モデル上の点を特定するために場所データ点を評価するステップ212を含む。さらに詳細には、評価するステップ212は、評価される場所データ点に最も近い、第2の表面モデル上の点を特定するために、第1の表面モデルと第2の表面モデルとを処理することを含んでもよい。上記のように、特定された点は、第2の表面モデルの小面又は縁上の点を含んでもよく、又は第2の表面モデルの測定点(頂点)を含んでもよい。
第2の表面モデル上の点が、評価される場所データ点に対して特定されると、サブステップ210は、特定された点と測定されたEPパラメータの値を関連付けるステップ214をさらに含んでもよい。関連付けるステップ214は、(i)複数のEPパラメータの測定に基づいてEPの値を補間すること、又は(ii)特定された点と、測定点のうちの一つにおいて測定されたEPパラメータの値を相関させることによって、特定された点と関連付けられるEPパラメータの値を決定することを含んでもよい。
いずれにしても、EPパラメータの値が、第2の表面モデル上の特定された点と関連付けられると、サブステップ210は、特定された点と関連付けられるEPパラメータの値に基づいて、そしてEPパラメータに対応する視覚化スキームに従って、評価される場所データ点に視覚インジケータを割り当てるステップ216を含む。一例示的な実施形態において、EPパラメータに対応する視覚化スキームは、色分け視覚化スキームであり、割り当てるステップ216は、評価された場所データ点に色の形態で視覚インジケータを割り当てることを含む。
例示的な実施形態において、上記の評価するステップ212は、評価された場所データ点と第2の表面モデル上の特定された点との間の距離を計算するサブステップをさらに含んでもよい。評価するステップ212は、所定の閾値の距離と計算された距離を比較することをさらに含んでもよい。こうした実施形態において、割り当てるステップ216は、計算された距離が閾値の距離よりも短い(又は、別の例示的な実施形態においては、閾値の距離以下である)場合にのみ、評価された場所データ点に視覚インジケータを割り当てることを含んでもよい。あるいは、計算された距離が、閾値の距離を超える(又は、別の例示的な実施形態において、閾値の距離以下である)ときには、初期設定の視覚インジケータが、評価された場所データ点に割り当てられてもよい。
例示的な実施形態において、一つ以上の視覚インジケータが、一つ以上の対応する場所データ点に割り当てられると、マッピングするステップ200は、第1の表面モデルを、その上に配置された、割り当てられた視覚インジケータを用いて表示するステップ218を含む。
システム10に関して、先に詳述された追加の機能、ならびにモデル構築システム14、及び特にモデル構築システム14の処理装置16もまた、発明の方法の一部であってもよいことが理解される。したがって、こうした機能が方法に関して明示的に記載されていない範囲において、機能に関する上記の説明はここに参照により組み込まれる。
上述のような、モデル構築システム14、及び特に処理装置16は、関連付けられるメモリに格納された事前にプログラミングされた命令を実行できる、当該分野において公知の従来の処理装置を含んでもよく、事前プログラミングされた命令は全て本明細書に記載された機能に従って行うものであることが理解されるべきである。本発明の実施形態の方法のステップを含むがそれらには限定されない、本明細書に記載された方法は、好適な実施形態においてプログラミングされ、結果として生じるソフトウェアは、関連付けられるメモリに格納され、またそのように記載される場合においては、こうした方法を行うための手段を構成してもよいことが企図される。上記の可能にする記載を鑑みると、ソフトウェアでの本発明の実装は、当業者によるプログラミング技術の日常的な利用を必要とするにすぎない。こうしたシステムはさらに、ソフトウェアを格納でき、かつ動的に作り出されたデータ及び/又は信号の格納及び処理を可能にできるような、ROM、RAM、不揮発性及び揮発性(修正可能)のメモリの組み合わせの全てを有する種類のものであってもよい。
特定の実施形態のみを、ある程度詳細に上述したが、当業者は、本開示の範囲を逸脱することなく、開示された実施形態に対して様々な変更を行える。結合に関する言及(例えば、添付された、結合された、接続された、など)は広く解釈され、要素の接続間の中間の部材や、要素間の相対的な動きを含んでもよい。したがって、結合に関する言及は、その2つの要素が直接的に接続/結合され、互いに固定した関係にあることを必ずしも暗示しない。さらに、電気的に接続される、通信するという用語は、有線接続及び有線通信と無線接続及び無線通信との両方を含むように広く解釈されることを意図する。上記の説明に含まれる、又は添付の図面に示された全ての事項は、単なる例示として解釈され、限定として解釈されないことが意図される。詳細又は構造の変更が、添付の特許請求の範囲に定義される本発明を逸脱することなく行われてもよい。

Claims (17)

  1. 解剖学的構造に対応する電気生理学(EP)マップを構築するためのシステムの処理装置の作動方法であって、
    前記解剖学的構造の少なくとも一部の第1の表面モデルであって、前記解剖学的構造の表面上のそれぞれの場所に対応する複数の場所データ点で構成される第1の点群に適用されたアルファシェイプ法によって生成されたアルファシェルを含む第1の表面モデルを取得するステップと、
    前記解剖学的構造の少なくとも一部の第2の表面モデルであって、EPパラメータの測定が行われた前記解剖学的構造の表面上のそれぞれの場所に対応する複数の測定点で構成される第2の点群に適用されたアルファシェイプ法によって生成されたアルファシェルを含む第2の表面モデルを取得するステップと、
    前記場所データ点のうちの少なくとも一つに関して、前記場所データ点への距離が最も近い前記第2の表面モデル上の点を特定するために、前記第1の表面モデルと前記第2の表面モデルとを処理するステップであって、当該特定された点が、それに関連付けられた前記EPパラメータの値を有するステップと、
    前記第2の表面モデル上の前記特定された点に関連付けられた前記EPパラメータの値に基づいて、及び、前記EPパラメータに対応する視覚化スキームに従って、前記場所データ点に視覚インジケータを割り当てるステップと、
    を含む作動方法。
  2. 前記第2の表面モデル上の前記特定された点に前記EPパラメータの値を関連付けるステップをさらに含み、当該関連付けるステップは、
    複数のEPパラメータの測定に基づいて、前記EPパラメータの値を補間するステップと、
    前記第2の表面モデル上の前記特定された点に、前記測定点のうちの一つで行われたEPパラメータの測定に対応する値を関連付けるステップと、
    の一方を含む請求項1に記載の作動方法。
  3. 前記視覚化スキームは、色分けスキームであり、前記割り当てるステップは、前記場所データ点に色の形態で視覚インジケータを割り当てることを含む請求項1又は2に記載の作動方法。
  4. 前記第1の表面モデルを取得するステップは、前記第1の表面モデルを構築するステップを含み、当該構築するステップは、
    前記第1の点群を構成する前記複数の場所データ点を獲得することと、
    前記第1の点群にアルファシェイプ法を適用して前記アルファシェルを計算することと、を含む請求項1から3のいずれか一項に記載の作動方法。
  5. 前記構築するステップは、前記アルファシェルを処理して、単体の表面モデルを生成することを含む請求項4に記載の作動方法。
  6. 前記第2の表面モデルを取得するステップは、前記第2の表面モデルを構築するステップを含み、当該構築するステップは、
    前記第2の点群を形成する前記複数の測定点を獲得することと、
    前記第2の点群にアルファシェイプ法を適用して前記アルファシェルを計算することと、を含む請求項1から5のいずれか一項に記載の作動方法。
  7. 前記構築するステップは、前記アルファシェルを処理して、単体の表面モデルを生成することを含む請求項6に記載の作動方法。
  8. 前記場所データ点と前記第2の表面モデル上の前記特定された点との間の距離を計算するステップをさらに含み、
    前記割り当てるステップは、前記計算された距離が所定の閾値距離の範囲内であるときに、前記場所データ点に前記視覚インジケータを割り当てることを含む、請求項1から7のいずれか一項に記載の作動方法。
  9. 前記システムの表示デバイスを制御して、前記第1の表面モデルを、当該第1の表面モデル上に配置された前記視覚インジケータを用いて表示するステップをさらに含む、請求項1から8のいずれか一項に記載の作動方法。
  10. 前記解剖学的構造の少なくとも一部の第1の表面モデルを取得するステップは、前記アルファシェルを計算するために第1の点群にアルファシェイプ法を適用することによって、前記解剖学的構造の少なくとも一部の第1の表面モデルを生成するステップを含み、
    前記解剖学的構造の少なくとも一部の第2の表面モデルを取得するステップは、前記アルファシェルを計算するために第2の点群にアルファシェイプ法を適用することによって、前記解剖学的構造の少なくとも一部の第2の表面モデルを生成するステップを含む、請求項1から9のいずれか一項に記載の作動方法。
  11. 前記第1の表面モデルを生成するステップは、第1のアルファの値を使用して、前記第1の点群にアルファシェイプ法を適用することを含み、
    前記第2の表面モデルを生成するステップは、前記第1のアルファの値とは異なる第2のアルファの値を使用して、前記第2の点群にアルファシェイプ法を適用することを含む、請求項10に記載の作動方法。
  12. 前記第1の表面モデルを生成するステップと前記第2の表面モデルを生成する前記ステップとは同時に行われる、請求項10又は11からに記載の作動方法。
  13. 電気生理学(EP)マップを構築するためのシステムであって、
    処理装置を備え、該処理装置は、
    前記解剖学的構造の少なくとも一部の第1の表面モデルであって、前記解剖学的構造の表面上のそれぞれの場所に対応する複数の場所データ点で構成される第1の点群に適用されたアルファシェイプ法によって生成されたアルファシェルを含む第1の表面モデルを取得する処理と、
    前記解剖学的構造の少なくとも一部の第2の表面モデルであって、EPパラメータの測定が行われた前記解剖学的構造の表面上のそれぞれの場所に対応する複数の測定点で構成される第2の点群に適用されたアルファシェイプ法によって生成されたアルファシェルを含む第2の表面モデルを取得する処理と、
    前記場所データ点のうちの少なくとも一つに関して、前記場所データ点への距離が最も近い前記第2の表面モデル上の点を特定する処理であって、前記特定された点が、それ関連付けられた前記EPパラメータの値を有する処理と、
    前記第2の表面モデル上の前記特定された点に関連付けられた前記EPパラメータの値に基づいて、及び、前記EPパラメータに対応する視覚化スキームに従って、前記場所データ点に視覚インジケータを割り当てる処理と、
    を実行するように構成されたシステム。
  14. 前記処理装置は、
    複数のEPパラメータの測定に基づいて、前記EPパラメータの値を補間する処理と、
    前記第2の表面モデル上の前記特定された点に、前記測定点のうちの一つにおいて行われたEPパラメータの測定に対応する値を関連付ける処理と、
    の一方によって、前記第2の表面モデル上の前記特定された点に前記EPパラメータの値を関連付ける処理をさらに実行するように構成された、請求項13に記載のシステム。
  15. 前記処理装置は、
    前記第1の点群を構成する前記複数の場所データ点を獲得することと、
    前記第1の点群にアルファシェイプ法を適用して前記アルファシェルを計算することと、によって前記第1の表面モデルを取得するように構成された、請求項13又は14に記載のシステム。
  16. 前記処理装置は、
    前記第2の点群を構成する前記複数の測定点を獲得することと、
    前記第2の点群にアルファシェイプ法を適用して前記アルファシェルを計算することと、によって前記第2の表面モデルを取得するように構成された、請求項13から15のいずれか一項に記載のシステム。
  17. 表示デバイスをさらに備え、前記処理装置は前記表示デバイスを制御して、前記第1の表面モデルを、該第1の表面上に配置された前記視覚インジケータを用いて表示するように構成された、請求項13から16のいずれか一項に記載のシステム。
JP2014550278A 2011-12-29 2012-01-26 電気生理学マップを構築するためのシステム及びその処理装置の作動方法 Expired - Fee Related JP5823635B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/339,465 2011-12-29
US13/339,465 US8909502B2 (en) 2011-12-29 2011-12-29 Method and system for constructing an electrophysiology map
PCT/US2012/022682 WO2013101257A1 (en) 2011-12-29 2012-01-26 Method and system for constructing an electrophysiology map

Publications (2)

Publication Number Publication Date
JP2015505262A JP2015505262A (ja) 2015-02-19
JP5823635B2 true JP5823635B2 (ja) 2015-11-25

Family

ID=48695589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014550278A Expired - Fee Related JP5823635B2 (ja) 2011-12-29 2012-01-26 電気生理学マップを構築するためのシステム及びその処理装置の作動方法

Country Status (5)

Country Link
US (2) US8909502B2 (ja)
EP (1) EP2797502B1 (ja)
JP (1) JP5823635B2 (ja)
CN (1) CN103997953B (ja)
WO (1) WO2013101257A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2870924T3 (es) 2006-08-03 2021-10-28 Christoph Scharf Procedimiento y dispositivo para determinar y presentar las densidades de carga superficial y dipolar en las paredes cardíacas
EP2252203A2 (en) 2008-01-17 2010-11-24 Christoph Scharf A device and method for the geometric determination of electrical dipole densities on the cardiac wall
AU2012225250B2 (en) 2011-03-10 2016-12-08 Acutus Medical, Inc. Device and method for the geometric determination of electrical dipole densities on the cardiac wall
US9179890B2 (en) * 2011-07-14 2015-11-10 Siemens Aktiengesellschaft Model-based positioning for intracardiac echocardiography volume stitching
US10828011B2 (en) 2013-09-13 2020-11-10 Acutus Medical, Inc. Devices and methods for determination of electrical dipole densities on a cardiac surface
US10076258B2 (en) 2013-11-01 2018-09-18 Boston Scientific Scimed, Inc. Cardiac mapping using latency interpolation
US9265434B2 (en) * 2013-12-18 2016-02-23 Biosense Webster (Israel) Ltd. Dynamic feature rich anatomical reconstruction from a point cloud
WO2015134276A1 (en) 2014-03-07 2015-09-11 Boston Scientific Scimed, Inc. Medical devices for mapping cardiac tissue
WO2015138167A1 (en) 2014-03-11 2015-09-17 Boston Scientific Scimed, Inc. Medical devices for mapping cardiac tissue
US9865086B2 (en) * 2014-03-21 2018-01-09 St. Jude Medical, Cardiololgy Division, Inc. Methods and systems for generating a multi-dimensional surface model of a geometric structure
US11278231B2 (en) 2014-03-25 2022-03-22 Acutus Medical, Inc. Cardiac analysis user interface system and method
EP3180775B1 (en) * 2014-11-18 2019-02-13 St. Jude Medical, Cardiology Division, Inc. Method and system for generating a patch surface model of a geometric structure
CN115299988A (zh) 2015-05-12 2022-11-08 阿库图森医疗有限公司 超声测序系统和方法
JP7030521B2 (ja) 2015-05-13 2022-03-07 アクタス メディカル インク 心臓情報の取得および解析に役立つ位置特定システム
US9646410B2 (en) * 2015-06-30 2017-05-09 Microsoft Technology Licensing, Llc Mixed three dimensional scene reconstruction from plural surface models
CN105559770B (zh) * 2015-12-20 2018-05-25 华南理工大学 内探式生物组织磁分布图测量装置
US10176630B2 (en) * 2016-12-06 2019-01-08 Biosense Webster (Israel) Ltd. Updating an electroanatomical map
US10321878B2 (en) 2016-12-22 2019-06-18 Biosense Webster (Israel) Ltd. Pulmonary vein display in two dimensions
US10575746B2 (en) * 2017-12-14 2020-03-03 Biosense Webster (Israel) Ltd. Epicardial mapping
US10665338B2 (en) * 2018-02-22 2020-05-26 Biosense Webster (Israel) Ltd. Automatic identification of multiple activation pathways
US11482338B2 (en) * 2018-03-06 2022-10-25 Biosense Webster (Israel) Ltd. Simulation of heart pacing for modeling arrhythmia
US10553023B2 (en) 2018-04-03 2020-02-04 Sap Se System and method for determining alpha values for alpha shapes
US11990225B2 (en) 2018-07-04 2024-05-21 Navix International Limited Systems and methods for reconstruction of medical images
WO2020214439A1 (en) * 2019-04-18 2020-10-22 St. Jude Medical, Cardiology Division, Inc. System and method for cardiac mapping
CN110287570B (zh) * 2019-06-18 2022-11-11 中国船舶工业集团公司第七0八研究所 一种船舶艏侧推器激励载荷转换方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5966140A (en) * 1997-06-20 1999-10-12 Microsoft Corporation Method for creating progressive simplicial complexes
DE69835422T2 (de) 1998-01-22 2006-12-21 Biosense Webster, Inc., Diamond Bar Messung im körperinneren
US6377865B1 (en) 1998-02-11 2002-04-23 Raindrop Geomagic, Inc. Methods of generating three-dimensional digital models of objects by wrapping point cloud data points
US7263397B2 (en) * 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US7386339B2 (en) 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US7197354B2 (en) 2004-06-21 2007-03-27 Mediguide Ltd. System for determining the position and orientation of a catheter
US7715604B2 (en) * 2005-01-18 2010-05-11 Siemens Medical Solutions Usa, Inc. System and method for automatically registering three dimensional cardiac images with electro-anatomical cardiac mapping data
US8038625B2 (en) 2005-09-15 2011-10-18 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for three-dimensional mapping of electrophysiology information
US7988639B2 (en) 2006-05-17 2011-08-02 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for complex geometry modeling of anatomy using multiple surface models
CN101443792A (zh) * 2006-05-17 2009-05-27 圣朱德医疗有限公司房颤分公司 用于将电生理学信息映射到复杂几何形状上的系统和方法
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US7825925B2 (en) 2007-03-09 2010-11-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for repairing triangulated surface meshes
JP5275340B2 (ja) * 2007-05-08 2013-08-28 シー・アール・バード・インコーポレーテッド 多電極位置データを用いた迅速な3dマッピング
US8605096B2 (en) * 2007-11-02 2013-12-10 Koninklijke Philips N.V. Enhanced coronary viewing
US8253725B2 (en) 2007-12-28 2012-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for generating surface models of geometric structures
US8000941B2 (en) 2007-12-30 2011-08-16 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for surface reconstruction from an unstructured point set

Also Published As

Publication number Publication date
US20150130796A1 (en) 2015-05-14
EP2797502A4 (en) 2015-11-04
CN103997953A (zh) 2014-08-20
WO2013101257A1 (en) 2013-07-04
CN103997953B (zh) 2015-11-25
EP2797502A1 (en) 2014-11-05
JP2015505262A (ja) 2015-02-19
EP2797502B1 (en) 2017-03-15
US8909502B2 (en) 2014-12-09
US20130173222A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5823635B2 (ja) 電気生理学マップを構築するためのシステム及びその処理装置の作動方法
JP6423964B2 (ja) 幾何学的構造のパッチ表面モデルを生成するための方法およびシステム
JP6619866B2 (ja) 2d平面投影及び部分的展開表面マッピングプロセスを利用して不整脈を視覚化し分析するための方法
US9282915B2 (en) Method and system for generating and/or repairing a surface model of a geometric structure
JP6223585B2 (ja) 幾何学的構造の多次元表面モデルを生成するための方法およびシステム
JP6691963B2 (ja) 電気生理学的損傷を表示するための方法およびシステム
JP6655176B2 (ja) 電気生理学的マップを生成するための方法およびシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R150 Certificate of patent or registration of utility model

Ref document number: 5823635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees