JP5821708B2 - Defect inspection apparatus and defect inspection method - Google Patents
Defect inspection apparatus and defect inspection method Download PDFInfo
- Publication number
- JP5821708B2 JP5821708B2 JP2012049259A JP2012049259A JP5821708B2 JP 5821708 B2 JP5821708 B2 JP 5821708B2 JP 2012049259 A JP2012049259 A JP 2012049259A JP 2012049259 A JP2012049259 A JP 2012049259A JP 5821708 B2 JP5821708 B2 JP 5821708B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- defect
- divided
- area
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Description
本発明は、人の視覚メカニズムをモデル化した欠陥検査方法及び欠陥検査装置に関する。 The present invention relates to a defect inspection method and a defect inspection apparatus that model a human visual mechanism.
特許文献1には、熟練作業者の検査メカニズムをモデル化した欠陥検出方法が記載されている。特許文献1では、作業者の視線経路に沿って撮像視点を移動させて検査対象物の動画像を取得し、当該動画像に対して画像処理を行うことにより特徴量を算出して、欠陥に該当する可能性を有する欠陥候補部位を特定している。この欠陥候補部位について詳細な検査が実行され、実際の欠陥か否かが判断される。 Patent Document 1 describes a defect detection method that models an inspection mechanism of a skilled worker. In Patent Document 1, a moving image of an inspection target is acquired by moving an imaging viewpoint along an operator's line of sight, and a feature amount is calculated by performing image processing on the moving image, so that a defect is detected. The defect candidate part which has possibility of applicable is specified. A detailed inspection is performed on the defect candidate part to determine whether or not the defect is an actual defect.
特許文献2では、広視野を暗視野照明を使って低解像度で検査し、合否判定が難しい微小サイズの異物に対しては狭視野を明視野照明を使って高解像度に再検査を実行する技術が開示されている。 In Patent Document 2, a technique for inspecting a wide field of view at low resolution using dark field illumination and re-inspecting a small size foreign object that is difficult to pass or fail at a high resolution using bright field illumination for a narrow field of view. Is disclosed.
しかしながら、特許文献2では、微小サイズの異物がどこに存在するかわからないため、検査対象物全体に対して検査を行わないと見落としが発生する恐れがある。検査対象物全体を高解像度で検査を行うと、処理時間が膨大にかかり、製造工程のタクトタイムに間に合わなくなる。タクトタイムに合わせて処理を簡素化すると、欠陥の認識率が下がるという問題が発生する。 However, in Patent Document 2, since it is not known where a minute foreign matter exists, there is a possibility that an oversight may occur if the entire inspection object is not inspected. If the entire inspection object is inspected with high resolution, the processing time is enormous and the tact time of the manufacturing process is not in time. If the processing is simplified in accordance with the tact time, there is a problem that the defect recognition rate is lowered.
本発明は、このような事情を背景としてなされたものであり、高速に、高感度に欠陥を検出することが可能な欠陥検査装置及び欠陥検査方法を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and an object thereof is to provide a defect inspection apparatus and a defect inspection method capable of detecting a defect at high speed and with high sensitivity.
本発明の第1の態様に係る欠陥検査装置は、検査対象物の画像を撮影する撮像部と、前記画像を複数の領域に分割し、各領域に含まれる画素の輝度値を平均して分割画像を作成する画像生成部と、前記複数の領域のうちの1つの領域の輝度値と当該領域の周囲に存在する領域の輝度値と比較して、欠陥候補領域を抽出する欠陥候補抽出部とを備える。 The defect inspection apparatus according to the first aspect of the present invention includes an imaging unit that captures an image of an inspection target, and the image is divided into a plurality of regions, and the luminance values of the pixels included in each region are averaged and divided. An image generation unit that creates an image; and a defect candidate extraction unit that extracts a defect candidate region by comparing a luminance value of one of the plurality of regions with a luminance value of a region existing around the region; Is provided.
本発明の第2の態様に係る欠陥検査装置は、上記の装置において、前記欠陥候補領域に対して画像処理を行うことで欠陥を検出する欠陥検出部をさらに備える。 The defect inspection apparatus according to a second aspect of the present invention further includes a defect detection unit that detects a defect by performing image processing on the defect candidate area in the above-described apparatus.
本発明の第3の態様に係る欠陥検査装置は、上記の装置において、前記画像生成部は、前記画像を格子状に分割することを特徴とする。 The defect inspection apparatus according to a third aspect of the present invention is characterized in that, in the above-described apparatus, the image generation unit divides the image into a lattice shape.
本発明の第4の態様に係る欠陥検査装置は、上記の装置において、前記画像生成部は、前記画像を複数の領域に分割した第1処理画像と、前記第1の処理画像と位相及び方向が異なる複数の領域に分割した第2処理画像とを生成し、前記第1処理画像及び前記第2処理画像を用いて、前記分割画像を生成することを特徴とする。 In the defect inspection apparatus according to a fourth aspect of the present invention, in the above apparatus, the image generation unit includes a first processed image obtained by dividing the image into a plurality of regions, the first processed image, a phase, and a direction. And a second processed image divided into a plurality of different regions, and the divided image is generated using the first processed image and the second processed image.
本発明の第5の態様に係る欠陥検査方法は、検査対象物の画像を撮影し、前記画像を複数の領域に分割し、各領域に含まれる画素の輝度値を平均して分割画像を作成し、前記複数の領域のうちの1つの領域の輝度値と当該領域の周囲に存在する領域の輝度値と比較して、欠陥候補領域を抽出し、前記欠陥候補領域に対して画像処理を行うことで欠陥を検出する。 In the defect inspection method according to the fifth aspect of the present invention, an image of an inspection object is taken, the image is divided into a plurality of regions, and a luminance value of pixels included in each region is averaged to create a divided image. Then, a defect candidate region is extracted by comparing the luminance value of one of the plurality of regions with the luminance value of a region existing around the region, and image processing is performed on the defect candidate region. To detect defects.
本発明の第6の態様に係る欠陥検査方法は、上記の方法において、前記画像を格子状に分割することを特徴とする。 A defect inspection method according to a sixth aspect of the present invention is characterized in that, in the above method, the image is divided into a lattice shape.
本発明の第7の態様に係る欠陥検査方法は、前記画像を複数の領域に分割した第1処理画像と、前記第1の処理画像と位相及び方向が異なる複数の領域に分割した第2処理画像とを生成し、前記第1処理画像及び前記第2処理画像を用いて、前記分割画像を生成することを特徴とする。 A defect inspection method according to a seventh aspect of the present invention includes a first processed image obtained by dividing the image into a plurality of regions, and a second process obtained by dividing the image into a plurality of regions having phases and directions different from those of the first processed image. An image is generated, and the divided image is generated using the first processed image and the second processed image.
本発明によれば、処理時間を短くするとともに、高感度に欠陥を検出することが可能な欠陥検査装置及び欠陥検査方法を提供することを目的とする According to the present invention, it is an object to provide a defect inspection apparatus and a defect inspection method capable of reducing a processing time and detecting a defect with high sensitivity.
目視で欠陥を検出する際、人間は欠陥候補領域の発見とその場所の精査という二つのステップで行っていると考える説がある。すなわち、人間の視覚メカニズムから目視検査をモデル化すると、
(1)周辺視を用いた正常と差異がある部分の大局的な認識による、欠陥候補領域の抽出
(2)欠陥候補領域を精査することによる判断
の2ステップと考えられる。
There is a theory that when detecting defects visually, humans are performing in two steps: discovery of defect candidate areas and inspection of the location. That is, when visual inspection is modeled from the human visual mechanism,
(1) Extraction of defect candidate areas based on global recognition of parts that are different from normal using peripheral vision. (2) It is considered to be two steps of judgment by examining defect candidate areas.
本発明は、この2ステップのうち1つ目のステップの欠陥候補領域の抽出をモデル化したものである。本発明では、カメラで撮影した検査対象物の画像を複数の領域に分割して、各領域の輝度値を平均化することにより、低解像度化した分割画像を生成する。この分割画像を用いて、人間が無意識に正常状態との違いを認識するメカニズムをモデル化した新しい手法である。2つ目のステップの欠陥候補領域の精査による欠陥の有無の判断は、通常の画像処理やデータベースとの照合など、従来の手法で行うことができる。 The present invention models the extraction of defect candidate areas in the first step of these two steps. In the present invention, the image of the inspection object photographed by the camera is divided into a plurality of areas, and the luminance value of each area is averaged to generate a divided image with a reduced resolution. This is a new method that models the mechanism by which humans unconsciously recognize the difference from the normal state using these divided images. The determination of the presence or absence of a defect by examining the defect candidate area in the second step can be performed by a conventional method such as normal image processing or database collation.
以下、本発明の実施の形態について図面を参照しながら説明する。以下の説明は、本発明の実施の形態を説明するものであり、本発明が以下の実施形態に限定されるものではない。説明の明確化のため、以下の記載は、適宜、省略及び簡略化がなされている。又、当業者であれば、以下の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description explains the embodiment of the present invention, and the present invention is not limited to the following embodiment. For clarity of explanation, the following description is omitted and simplified as appropriate. Moreover, those skilled in the art can easily change, add, and convert each element of the following embodiments within the scope of the present invention.
実施の形態1.
本発明の実施の形態1に係る欠陥検査装置について、図1、2を参照して説明する。図1は、実施の形態1に係る欠陥検査装置の構成を示す図である。図1に示すように、欠陥検査装置10は、撮像部11、PC12、照明部13を備えている。図2は、PC12の構成を示す模式図である。図2に示すように、PC12は、画像生成部14、欠陥候補抽出部15、欠陥検出部16を備えている。
Embodiment 1 FIG.
A defect inspection apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing the configuration of the defect inspection apparatus according to the first embodiment. As shown in FIG. 1, the defect inspection apparatus 10 includes an imaging unit 11, a PC 12, and an illumination unit 13. FIG. 2 is a schematic diagram showing the configuration of the PC 12. As shown in FIG. 2, the PC 12 includes an image generation unit 14, a defect candidate extraction unit 15, and a defect detection unit 16.
撮像部11は、検査対象物を撮影して、画像を生成する。撮像部11としては、CCD等のカメラ等を用いることができる。撮像部11で撮影する際には、必要に応じて照明部13にて検査対象物を照明することが可能である。 The imaging unit 11 captures an inspection object and generates an image. As the imaging unit 11, a camera such as a CCD can be used. When photographing with the imaging unit 11, it is possible to illuminate the inspection object with the illumination unit 13 as necessary.
撮像部11で撮影された画像は、PC12に取り込まれる。人間が欠陥候補領域を発見する視覚メカニズムは周辺視を用いて正常状態からの差異を認識する。周辺視は、人間の網膜の周辺部を使って視野の周辺部を漠然と見ることで動きや位置を捉えるのに適しているものである。 An image taken by the imaging unit 11 is taken into the PC 12. The visual mechanism by which humans discover defect candidate areas uses peripheral vision to recognize differences from the normal state. Peripheral vision is suitable for capturing movement and position by using the peripheral part of the human retina to look vaguely in the peripheral part of the visual field.
すなわち、周辺視を用いるということは高精細な画像を使って認識しているのではない。このため、本発明では、画像生成部14に取り込んだ画像を複数の領域に分割して、低解像度の分割画像を生成する。この分割画像化により、人間の欠陥発見のメカニズムを欠陥検出装置に適用できる。 In other words, the use of peripheral vision is not recognized using high-definition images. For this reason, in the present invention, the image captured by the image generation unit 14 is divided into a plurality of regions to generate a low-resolution divided image. This division imaging makes it possible to apply a human defect detection mechanism to a defect detection apparatus.
画像生成部14は、撮像部11で撮像された画像から分割画像を生成する。まず、入力される画像を複数の領域に分割する。そして、各領域に含まれる画素の輝度値を平均化して、当該領域の輝度値とする。そして、各領域を合成して分割画像が生成される。 The image generation unit 14 generates a divided image from the image captured by the imaging unit 11. First, an input image is divided into a plurality of regions. And the luminance value of the pixel contained in each area | region is averaged, and it is set as the luminance value of the said area | region. Then, the divided images are generated by combining the regions.
欠陥候補抽出部15は、分割画像を用いて欠陥候補領域を抽出する。欠陥候補領域とは、欠陥が含まれている可能性のある領域をいう。具体的な処理としては、複数の領域の内の1つの領域の輝度値を当該領域の周辺に存在する領域の輝度値とを比較する。周辺の輝度値と比較して、所定の値以上小さい又は大きい領域を、その領域の近傍に欠陥が存在している欠陥候補領域とする。欠陥検出部16は、欠陥候補領域と判断された領域を画像処理等の従来の手法を用いて精査し、欠陥が存在するか否かを判断する。 The defect candidate extraction unit 15 extracts defect candidate areas using the divided images. A defect candidate area refers to an area that may contain a defect. As a specific process, the brightness value of one area of a plurality of areas is compared with the brightness value of an area existing around the area. A region that is smaller or larger than a predetermined value compared with the peripheral luminance value is set as a defect candidate region in which a defect exists in the vicinity of the region. The defect detection unit 16 examines the area determined as the defect candidate area using a conventional method such as image processing, and determines whether or not a defect exists.
ここで、図3、4A〜4Dを参照して、実施の形態1に係る欠陥検査方法について説明する。図3は、実施の形態1に係る欠陥検査方法を説明するフロー図である。図3に示すように、まず、撮像部11で検査対象物を撮影し、画像がPC12に取り込まれる(S11)。図4Aに、撮像部11により得られる画像の一例を示す。図4Aに示す例では、画像中に複数の円が見られ、画像の中央右よりの位置に円の上部に黒色の線が欠陥として存在している。 Here, the defect inspection method according to Embodiment 1 will be described with reference to FIGS. 3 and 4A to 4D. FIG. 3 is a flowchart for explaining the defect inspection method according to the first embodiment. As shown in FIG. 3, first, an imaging object 11 is imaged by the imaging unit 11, and the image is captured by the PC 12 (S11). FIG. 4A shows an example of an image obtained by the imaging unit 11. In the example shown in FIG. 4A, a plurality of circles are seen in the image, and a black line is present as a defect at the top of the circle at a position from the center right of the image.
次に、PC12に取り込まれた画像は複数の領域に分割される(S12)。図4Bに、図4Aの画像を分割する格子の例(破線)を示す。ここでは、画像を格子状に分割する例について説明するが、分割される領域の形状は格子に限定されるものではない。なお、分割する領域の大きさは、検出したい欠陥の大きさ及び撮像部11で取得される視野のサイズ等から任意に決定することができる。 Next, the image captured by the PC 12 is divided into a plurality of areas (S12). FIG. 4B shows an example (broken line) of a grid for dividing the image of FIG. 4A. Here, an example in which an image is divided into a lattice shape will be described, but the shape of the divided region is not limited to the lattice. The size of the area to be divided can be arbitrarily determined from the size of the defect to be detected, the size of the visual field acquired by the imaging unit 11, and the like.
その後、分割された各領域に含まれる画素の輝度値を平均化し、夫々の領域を合成して分割画像が生成される(S13)。図4Cに、図4Bに示す格子に分割して生成した分割画像の一例を示す。図4Cに示すように、分割された各領域内はそれぞれ輝度が平均化されている。 Thereafter, the luminance values of the pixels included in each of the divided areas are averaged, and the divided areas are generated by combining the areas (S13). FIG. 4C shows an example of a divided image generated by dividing the grid shown in FIG. 4B. As shown in FIG. 4C, the luminance is averaged in each of the divided areas.
そして、各領域内の輝度値と、当該領域の周囲の領域の輝度値とを比較する(S14)。領域内の輝度値が所定値以上周囲の輝度値よりも大きい又は小さい領域が、欠陥候補領域として抽出される(S15)。図4Dに、図4Cの格子分割画像に基づいて検出された欠陥候補領域を示す図である。図4Dに示す例では、図4Aに示される複数の円のうち、円の上部に黒色の線がある円が欠陥候補領域として検出される。最後に、欠陥候補領域内を従来のように画像処理等を用いて詳細に検査することにより、欠陥が検出される(S16)。 Then, the brightness value in each area is compared with the brightness values of the surrounding areas (S14). A region whose luminance value in the region is greater than or equal to a predetermined value and larger or smaller than the surrounding luminance value is extracted as a defect candidate region (S15). FIG. 4D is a diagram showing defect candidate areas detected based on the lattice division image of FIG. 4C. In the example shown in FIG. 4D, a circle having a black line on the upper part of the circle shown in FIG. 4A is detected as a defect candidate region. Finally, a defect is detected by inspecting the inside of the defect candidate area in detail using image processing or the like as in the prior art (S16).
図5A〜5Dを参照して、図4A〜4Dとは異なるパターンを検査対象物とした例について説明する。図5Aでは、撮像部11により得られる画像の他の例が示される。図5Aでは、チェッカーパターンが示される。図5Bにおいて破線で示されるように、図5Aの画像が格子状に分割される。そして、上記と同様に、分割された各領域の輝度値が平均化され、夫々の領域を合成することにより、図5Cに示す分割画像が生成される。各領域の輝度値を周囲の領域の輝度値と比較することにより、図5Dに示すように欠陥候補領域が抽出される。 With reference to FIG. 5A-5D, the example which used the pattern different from FIG. 4A-4D as a test object is demonstrated. FIG. 5A shows another example of an image obtained by the imaging unit 11. In FIG. 5A, a checker pattern is shown. As shown by a broken line in FIG. 5B, the image of FIG. 5A is divided into a grid pattern. Then, similarly to the above, the luminance values of the divided areas are averaged, and the divided images shown in FIG. 5C are generated by combining the areas. By comparing the brightness value of each area with the brightness value of the surrounding area, a defect candidate area is extracted as shown in FIG. 5D.
以上説明したように、検査対象物を撮影した画像を分割し、各領域を平均化して低解像度化した分割画像を用いることにより、人間が欠陥候補領域を発見する視覚メカニズムに類似したモデルにより欠陥候補領域を高感度に抽出することができる。そして、欠陥候補領域のみを精査することにより欠陥を検出することができるため、高速に検査を行うことが可能である。 As described above, the image obtained by photographing the inspection object is divided, and each region is averaged to use a divided image with a reduced resolution. Candidate regions can be extracted with high sensitivity. Since defects can be detected by examining only the defect candidate areas, it is possible to inspect at high speed.
実施の形態2.
本発明の実施の形態2に係る検査方法について、図6を参照して説明する。図6は、実施の形態2に係る検査方法を説明するフロー図である。実施の形態2において、実施の形態1と異なる点は、検査対象物の画像を複数の領域に分割する格子の位相及び方向を変化させて生成した複数の処理画像を積算することにより、分割画像を生成する点である。
Embodiment 2. FIG.
An inspection method according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 6 is a flowchart for explaining the inspection method according to the second embodiment. The second embodiment is different from the first embodiment in that divided images are obtained by integrating a plurality of processed images generated by changing the phase and direction of a lattice that divides an image of an inspection object into a plurality of regions. Is a point that generates
ここで、格子の位相とは、例えば、検査対象物の画像を複数の領域に分割する格子の中心点を中心として格子を回転させる角度をいう。格子の方向とは、行列状の格子の列又は行の伸びる方向をいう。 Here, the phase of the grating means, for example, an angle at which the grating is rotated around the center point of the grating that divides the image of the inspection object into a plurality of regions. The direction of the lattice refers to the direction in which the columns or rows of the matrix lattice extend.
図6に示すように、まず、撮像部11で検査対象物を撮影し、画像がPC12に取り込まれる(S21)。次に、PC12に取り込まれた画像は、上記の格子により複数の領域に分割される(S22)。その後、分割された各領域に含まれる画素の輝度値を平均化し、夫々の領域を合成して第1処理画像が生成される(S23)。 As shown in FIG. 6, first, the imaging object 11 is photographed by the imaging unit 11 and the image is captured by the PC 12 (S21). Next, the image captured by the PC 12 is divided into a plurality of regions by the lattice (S22). Thereafter, the luminance values of the pixels included in each of the divided areas are averaged, and the respective processed areas are synthesized to generate a first processed image (S23).
そして、上記の格子の位相及び方向を変化させる(S24)。格子の位相及び方向を変化させる度合については、欠陥のサイズ等から任意に決定することが可能である。その後、変化させた位相及び方向にて、S21で取得された画像を複数の領域に分割し(S25)、分割された各領域に含まれる画素の輝度値を平均化し、夫々の領域を合成して第2処理画像を生成する(S26)。 Then, the phase and direction of the grating are changed (S24). The degree to which the phase and direction of the grating are changed can be arbitrarily determined from the defect size and the like. Thereafter, the image acquired in S21 is divided into a plurality of regions with the changed phase and direction (S25), the luminance values of the pixels included in each divided region are averaged, and the respective regions are synthesized. A second processed image is generated (S26).
そして、第1処理画像と第2処理画像とを積算して、分割画像が生成される(S27)。この分割画像中の輝度値を比較し(S28)、周囲の領域の輝度値と一定以上小さい又は大きい領域を欠陥候補領域として抽出する(S29)。最後に、欠陥候補領域内を従来のように画像処理等を用いて詳細に検査することにより、欠陥が検出される(S30)。 Then, the first processed image and the second processed image are integrated to generate a divided image (S27). The luminance values in the divided images are compared (S28), and an area smaller than or larger than the luminance value of the surrounding area is extracted as a defect candidate area (S29). Finally, a defect is detected by inspecting the inside of the defect candidate area in detail using image processing or the like as in the prior art (S30).
図6に示す例では、第1処理画像と第2処理画像の2つの処理画像を積算して分割画像を生成したが、これに限定されるものではない。2つより多い処理画像を生成し、これらの処理画像を積算することにより分割画像を生成してもよい。 In the example illustrated in FIG. 6, the divided images are generated by integrating the two processed images of the first processed image and the second processed image. However, the present invention is not limited to this. A divided image may be generated by generating more than two processed images and integrating the processed images.
図7Aは、図1に示す欠陥検査装置10の撮像部11により得られる画像の一例を示す。図7Bは、図7Aに示す画像から、位相及び方向を変化させた複数の処理画像を積算して得られた分割画像を示す。図7Bに示す例において、分割画像の中央右よりの領域が他の領域と比較して輝度値が高くなっており、この領域が欠陥候補領域として検出される。 FIG. 7A shows an example of an image obtained by the imaging unit 11 of the defect inspection apparatus 10 shown in FIG. FIG. 7B shows a divided image obtained by integrating a plurality of processed images whose phases and directions are changed from the image shown in FIG. 7A. In the example shown in FIG. 7B, the brightness value of the area from the center right of the divided image is higher than that of the other areas, and this area is detected as a defect candidate area.
図8Aは、図1に示す欠陥検査装置10の撮像部11により得られる画像の他の例を示す。図8Bは、図8Aに示す画像から、位相及び方向を変化させた複数の処理画像を積算して得られた分割画像を示す。図8Bに示す例において、分割画像の左下の領域が他の領域と比較して輝度値が高くなっており、この領域が欠陥候補領域として検出される。このように、図7B、8Bのいずれの例においても、高感度に欠陥を検出することが可能である。 FIG. 8A shows another example of an image obtained by the imaging unit 11 of the defect inspection apparatus 10 shown in FIG. FIG. 8B shows a divided image obtained by integrating a plurality of processed images whose phases and directions are changed from the image shown in FIG. 8A. In the example shown in FIG. 8B, the lower left area of the divided image has a higher luminance value than other areas, and this area is detected as a defect candidate area. As described above, in any of the examples of FIGS. 7B and 8B, it is possible to detect a defect with high sensitivity.
尚、本発明は上記実施の形態に限られるものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、格子により輝度値を平均化する範囲を決定した後、その各格子内の画像を回転等させることにより、位相、方向を変化させてから輝度値を平均化してもよい。この場合、実施の形態1と同様に、位相、方向を変化された格子の輝度と、その周辺の格子の輝度とを比較して、欠陥候補領域を抽出することができる。 Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention. For example, after determining a range in which luminance values are averaged using a lattice, the luminance values may be averaged after changing the phase and direction by rotating the image in each lattice. In this case, as in the first embodiment, the defect candidate region can be extracted by comparing the luminance of the lattice whose phase and direction are changed with the luminance of the surrounding lattice.
10 欠陥検査装置
11 撮像部
12 PC
13 照明部
14 画像生成部
15 欠陥候補抽出部
16 欠陥検出部
DESCRIPTION OF SYMBOLS 10 Defect inspection apparatus 11 Imaging part 12 PC
DESCRIPTION OF SYMBOLS 13 Illumination part 14 Image generation part 15 Defect candidate extraction part 16 Defect detection part
Claims (5)
前記画像を複数の領域に分割し、各領域に含まれる画素の輝度値を平均した第1処理画像と、前記画像を前記第1処理画像と位相及び方向が異なる複数の領域に分割し、各領域に含まれる画素の輝度値を平均した第2処理画像とを生成し、前記第1処理画像及び前記第2処理画像を用いて分割画像を生成する画像生成部と、
前記分割画像の前記複数の領域のうちの1つの領域の輝度値と当該領域の周囲に存在する領域の輝度値と比較して、欠陥候補領域を抽出する欠陥候補抽出部と、
を備える欠陥検出装置。 An imaging unit for taking an image of the inspection object;
A first processed image obtained by dividing the image into a plurality of regions and averaging luminance values of pixels included in each region; and the image is divided into a plurality of regions having phases and directions different from those of the first processed image; An image generation unit that generates a second processed image obtained by averaging luminance values of pixels included in the region, and generates a divided image using the first processed image and the second processed image;
A defect candidate extraction unit that extracts a defect candidate area by comparing a luminance value of one area of the plurality of areas of the divided image with a luminance value of an area existing around the area;
A defect detection apparatus comprising:
前記画像を複数の領域に分割し、各領域に含まれる画素の輝度値を平均した第1処理画像と、前記画像を前記第1処理画像と位相及び方向が異なる複数の領域に分割し、各領域に含まれる画素の輝度値を平均した第2処理画像とを生成し、
前記第1処理画像及び前記第2処理画像を用いて分割画像を生成し、
前記分割画像の前記複数の領域のうちの1つの領域の輝度値と当該領域の周囲に存在する領域の輝度値と比較して、欠陥候補領域を抽出し、
前記欠陥候補領域に対して画像処理を行うことで欠陥を検出する、
欠陥検出方法。 Take an image of the inspection object,
A first processed image obtained by dividing the image into a plurality of regions and averaging luminance values of pixels included in each region; and the image is divided into a plurality of regions having phases and directions different from those of the first processed image; Generating a second processed image that averages the luminance values of the pixels included in the region;
Generating a divided image using the first processed image and the second processed image;
Comparing the brightness value of one area of the plurality of areas of the divided image with the brightness value of an area existing around the area, a defect candidate area is extracted,
Detecting defects by performing image processing on the defect candidate area;
Defect detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012049259A JP5821708B2 (en) | 2012-03-06 | 2012-03-06 | Defect inspection apparatus and defect inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012049259A JP5821708B2 (en) | 2012-03-06 | 2012-03-06 | Defect inspection apparatus and defect inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013185862A JP2013185862A (en) | 2013-09-19 |
JP5821708B2 true JP5821708B2 (en) | 2015-11-24 |
Family
ID=49387425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012049259A Active JP5821708B2 (en) | 2012-03-06 | 2012-03-06 | Defect inspection apparatus and defect inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5821708B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107310267A (en) * | 2016-04-27 | 2017-11-03 | 佳能株式会社 | Image processing apparatus, image processing method and storage medium |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101733018B1 (en) * | 2015-02-25 | 2017-05-24 | 동우 화인켐 주식회사 | Apparatus and method for detecting defect of optical film |
JP6478841B2 (en) | 2015-07-01 | 2019-03-06 | キヤノン株式会社 | Image processing apparatus and image processing method |
JP6433384B2 (en) | 2015-07-01 | 2018-12-05 | キヤノン株式会社 | Image processing apparatus and image processing method |
JP6422405B2 (en) | 2015-07-01 | 2018-11-14 | キヤノン株式会社 | Image processing apparatus and image processing method |
JP6478840B2 (en) | 2015-07-01 | 2019-03-06 | キヤノン株式会社 | Image processing apparatus and image processing method |
JP6465765B2 (en) | 2015-07-01 | 2019-02-06 | キヤノン株式会社 | Image processing apparatus and image processing method |
JP6537376B2 (en) | 2015-07-01 | 2019-07-03 | キヤノン株式会社 | Image processing apparatus and image processing method |
JP6512965B2 (en) * | 2015-07-01 | 2019-05-15 | キヤノン株式会社 | Image processing apparatus and image processing method |
CN105759605A (en) * | 2015-12-15 | 2016-07-13 | 江南大学 | Nonlinear system defect detection and positioning algorithm based on adaptive parameter model particle filter (PF) |
JP6787396B2 (en) | 2016-04-08 | 2020-11-18 | コニカミノルタ株式会社 | Optical measuring device, image generation method and image generation program |
JP6666046B2 (en) | 2016-04-25 | 2020-03-13 | キヤノン株式会社 | Image processing apparatus and image processing method |
EP3239929B1 (en) * | 2016-04-27 | 2019-06-12 | Canon Kabushiki Kaisha | Image processing apparatus, image processing method and program |
JP6546125B2 (en) * | 2016-06-28 | 2019-07-17 | 学校法人梅村学園 | Defect inspection device |
JP6999321B2 (en) * | 2017-07-31 | 2022-01-18 | 東京エレクトロン株式会社 | Inspection equipment, inspection method and storage medium |
JP6675433B2 (en) * | 2018-04-25 | 2020-04-01 | 信越化学工業株式会社 | Defect classification method, photomask blank sorting method, and mask blank manufacturing method |
JP7126382B2 (en) * | 2018-05-31 | 2022-08-26 | シャープ株式会社 | Display device |
JPWO2021028754A1 (en) * | 2019-08-09 | 2021-02-18 | ||
WO2021130906A1 (en) * | 2019-12-25 | 2021-07-01 | 日本電気株式会社 | Image retrieval system, image retrieval method, and storage medium |
JP7468867B2 (en) * | 2020-11-18 | 2024-04-16 | 株式会社リコー | Image inspection device, image forming device, and image inspection method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60135707A (en) * | 1983-12-23 | 1985-07-19 | Matsushita Electric Works Ltd | Detecting method of ruggedness defect |
JP4206192B2 (en) * | 2000-11-09 | 2009-01-07 | 株式会社日立製作所 | Pattern inspection method and apparatus |
JP2000258353A (en) * | 1999-03-11 | 2000-09-22 | Kobe Steel Ltd | Defect inspection method and device |
JP4065893B1 (en) * | 2006-12-04 | 2008-03-26 | 東京エレクトロン株式会社 | Defect detection device, defect detection method, information processing device, information processing method, and program thereof |
JP2010223932A (en) * | 2009-02-27 | 2010-10-07 | Toyota Motor Corp | Method of detecting defect |
-
2012
- 2012-03-06 JP JP2012049259A patent/JP5821708B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107310267A (en) * | 2016-04-27 | 2017-11-03 | 佳能株式会社 | Image processing apparatus, image processing method and storage medium |
CN107310267B (en) * | 2016-04-27 | 2019-10-08 | 佳能株式会社 | Image processing apparatus, image processing method and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP2013185862A (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821708B2 (en) | Defect inspection apparatus and defect inspection method | |
GB2529943B (en) | Tracking processing device and tracking processing system provided with same, and tracking processing method | |
US20170163886A1 (en) | Method for operating a camera assembly, camera assembly and driver assistance system | |
JP2008286725A (en) | Person detector and detection method | |
JP2015070359A (en) | Person counting device | |
JP2014517265A (en) | Analysis of digital images of the outer surface of tires and processing of false measurement points | |
JP2009259036A (en) | Image processing device, image processing method, image processing program, recording medium, and image processing system | |
JP5088165B2 (en) | Defect detection method and defect detection apparatus | |
JP4906609B2 (en) | Imaging apparatus and method | |
CN107980094B (en) | Visual detection system and method | |
JP2008170256A (en) | Flaw detection method, flaw detection program and inspection device | |
JP6812118B2 (en) | Defect detector, defect detection method and program | |
JP2006170921A (en) | Visual inspection method and its apparatus | |
JP2011227748A (en) | Image processing apparatus, image processing method, image processing program, and defect detection apparatus | |
JP2005345290A (en) | Streak-like flaw detecting method and streak-like flaw detector | |
JP2006258713A (en) | Method and apparatus for detecting stain defect | |
JP2005165387A (en) | Method and device for detecting stripe defective of picture and display device | |
TWI519802B (en) | A method of taking circuit information, a method of taking non-circuit area information and a method of detecting a circuit defect utilizing the aforementioned method | |
JP2008014842A (en) | Method and apparatus for detecting stain defects | |
JP6315419B2 (en) | Semiconductor inspection method, semiconductor inspection apparatus, and semiconductor manufacturing method | |
JP2009254691A (en) | Pupil detecting method and apparatus | |
JP5257063B2 (en) | Defect detection method and defect detection apparatus | |
JP2007285868A (en) | Luminance gradient detection method, flaw detection method, luminance gradient detector and flaw detector | |
JP6811540B2 (en) | Defect detector, defect detection method and program | |
JP5239275B2 (en) | Defect detection method and defect detection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150921 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5821708 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |