JP5821336B2 - Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell separator - Google Patents

Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell separator Download PDF

Info

Publication number
JP5821336B2
JP5821336B2 JP2011147014A JP2011147014A JP5821336B2 JP 5821336 B2 JP5821336 B2 JP 5821336B2 JP 2011147014 A JP2011147014 A JP 2011147014A JP 2011147014 A JP2011147014 A JP 2011147014A JP 5821336 B2 JP5821336 B2 JP 5821336B2
Authority
JP
Japan
Prior art keywords
stainless steel
less
oxide film
fuel cell
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011147014A
Other languages
Japanese (ja)
Other versions
JP2013014796A (en
Inventor
知洋 石井
知洋 石井
井手 信介
信介 井手
石川 伸
伸 石川
加藤 康
康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011147014A priority Critical patent/JP5821336B2/en
Publication of JP2013014796A publication Critical patent/JP2013014796A/en
Application granted granted Critical
Publication of JP5821336B2 publication Critical patent/JP5821336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、工業的に安定して優れた電気伝導性が得られる固体高分子型燃料電池セパレータ用ステンレス鋼およびその製造方法並びに固体高分子型燃料電池セパレータに関する。   The present invention relates to a stainless steel for a polymer electrolyte fuel cell separator that is industrially stable and has excellent electrical conductivity, a method for producing the same, and a polymer electrolyte fuel cell separator.

近年、地球環境保全の観点から、発電効率に優れ、COを排出しない燃料電池の開発が進められている。燃料電池には使用される電解質の種類により、りん酸型燃料電池、固体電解質型燃料電池などいくつかの種類がある。その中でも、固体高分子型燃料電池は100℃以下の低温で動作可能であり、短時間で起動でき、小型化に適しているため、家庭用の定置型発電機、燃料電池車の搭載用電源などに利用されている。 In recent years, development of fuel cells that are excellent in power generation efficiency and do not emit CO 2 has been promoted from the viewpoint of global environmental conservation. There are several types of fuel cells, such as phosphoric acid type fuel cells and solid electrolyte type fuel cells, depending on the type of electrolyte used. Among them, the polymer electrolyte fuel cell can be operated at a low temperature of 100 ° C. or less, can be started in a short time, and is suitable for downsizing. Therefore, a stationary power generator for home use and a power source for mounting a fuel cell vehicle It is used for such as.

固体高分子型燃料電池では、固体高分子膜をセパレータで挟んだセルを多数直列に重ねることで必要な電力を得ている。積層した時の厚みが小さくなるようにセパレータには厚さが数十〜数百μmの薄い材料が使用される。このセパレータには、良好な電気伝導性と高電位での耐食性が必要であるため、黒鉛が使用されているが、黒鉛は衝撃に弱く、水素などを流す流路の加工に手間がかかるという問題がある。そのため、衝撃に強く、加工も容易なステンレス鋼のセパレータへの適用が検討されている。   In a polymer electrolyte fuel cell, necessary electric power is obtained by stacking a number of cells each having a polymer electrolyte membrane sandwiched between separators. A thin material having a thickness of several tens to several hundreds μm is used for the separator so that the thickness when laminated is reduced. Because this separator requires good electrical conductivity and corrosion resistance at high potential, graphite is used, but graphite is vulnerable to impact, and it takes time to process the flow path for flowing hydrogen etc. There is. Therefore, application to a stainless steel separator that is resistant to impact and easy to process has been studied.

しかし、ステンレス鋼には表面に不動態皮膜が形成されているため、表面接触抵抗が高く、そのままでは燃料電池のセパレータとして使用することは難しい。そこで、ステンレス鋼の不動態皮膜を酸液へ浸漬する表面改質処理で改質し、表面接触抵抗を低減することが検討されている。   However, since a passive film is formed on the surface of stainless steel, the surface contact resistance is high, and as such, it is difficult to use it as a fuel cell separator. Therefore, it has been studied to reduce the surface contact resistance by modifying the surface of the stainless steel passive film by dipping it in an acid solution.

特許文献1には、鋼の組成が質量%でC≦0.03%、N≦0.03%、20%≦Cr≦45%、0.1%≦Mo≦5.0%であり、不動態皮膜に含有されるCrとFeの原子数比Cr/Feが1以上であることを特徴とする固体高分子型燃料電池セパレータ用ステンレス鋼が開示されている。この発明では、塩酸と硝酸を含む酸液、あるいは弗酸と硝酸を含む酸液を用いて表面改質処理することで、上記特徴をもつ不動態皮膜を形成している。しかし、同一の酸液で継続的に表面改質処理を行った場合、ステンレス鋼の溶解によって酸液中にFeなどの金属イオンが混入するため不動態皮膜の改質に必要な浸漬時間が増大し、工業的に連続処理を行うことが困難になるという問題があった。   In Patent Document 1, the composition of steel is C ≦ 0.03%, N ≦ 0.03%, 20% ≦ Cr ≦ 45%, and 0.1% ≦ Mo ≦ 5.0% in mass%. A stainless steel for a polymer electrolyte fuel cell separator is disclosed, wherein the Cr / Fe atomic ratio Cr / Fe contained in the dynamic film is 1 or more. In the present invention, the passivation film having the above characteristics is formed by surface modification using an acid solution containing hydrochloric acid and nitric acid or an acid solution containing hydrofluoric acid and nitric acid. However, when surface modification treatment is continuously performed with the same acid solution, the immersion time required for the modification of the passive film increases because metal ions such as Fe are mixed into the acid solution due to the dissolution of stainless steel. However, there is a problem that it is difficult to carry out industrial continuous processing.

燃料電池セパレータに使用されるステンレス鋼は箔状であるが、一般的なステンレス箔では露点が−60〜−50℃の光輝焼鈍を行うことで表面性状を調整して製品としている。特許文献1においても、露点−60℃のアンモニア分解ガス中で焼鈍(850〜1050℃)を施したBA仕上げの冷延ステンレス鋼板が用いられている。   The stainless steel used for the fuel cell separator is in the form of a foil, but a general stainless steel foil is manufactured by adjusting the surface properties by performing bright annealing with a dew point of −60 to −50 ° C. Also in Patent Document 1, a BA-finished cold-rolled stainless steel sheet that has been annealed (850 to 1050 ° C.) in an ammonia decomposition gas having a dew point of −60 ° C. is used.

また、特許文献2には露点−45℃以下に調整した還元性雰囲気ガス中で常温から800℃の温度範囲における滞留時間を5〜60秒とし、次いで800〜1150℃の温度範囲において露点−40℃以下に調整した還元性雰囲気ガス中での滞留時間を30〜180秒とする光輝焼鈍が開示されている。
また、特許文献3には雰囲気中の水素ガスを70容量%以上とし、残部が実質的に窒素ガスからなり、雰囲気ガスの露点を−40℃以下とした光輝焼鈍が開示されている。
Patent Document 2 discloses that the residence time in the temperature range from room temperature to 800 ° C. in a reducing atmosphere gas adjusted to a dew point of −45 ° C. or lower is 5 to 60 seconds, and then the dew point −40 in the temperature range of 800 to 1150 ° C. A bright annealing is disclosed in which the residence time in a reducing atmosphere gas adjusted to below C is 30 to 180 seconds.
Patent Document 3 discloses bright annealing in which the hydrogen gas in the atmosphere is 70% by volume or more, the balance is substantially made of nitrogen gas, and the dew point of the atmosphere gas is -40 ° C. or less.

しかし、特許文献2および3に開示のいずれの光輝焼鈍の方法においても、上述した酸液中にFeなどの金属イオンが混入した場合に、工業的に連続処理を行うことが困難となり、必要な浸漬時間が増大するという問題は解決できない。   However, in any of the bright annealing methods disclosed in Patent Documents 2 and 3, when metal ions such as Fe are mixed in the acid solution described above, it is difficult to industrially perform continuous treatment, which is necessary. The problem of increased immersion time cannot be solved.

このように、従来から開示されている光輝焼鈍を行った後に表面改質処理を行う場合、処理量が増えるにつれて酸液中の主にFeイオン濃度が増加するために必要な電気伝導性を得ることが困難となる、という問題がある。   As described above, when the surface modification treatment is performed after performing the bright annealing disclosed in the past, the electrical conductivity necessary for increasing mainly the Fe ion concentration in the acid solution is obtained as the treatment amount increases. There is a problem that it becomes difficult.

特開2004−149920号公報JP 2004-149920 A 特開2005−213589号公報Japanese Patent Laid-Open No. 2005-213589 特開2008−1945号公報JP 2008-1945 A

本発明は、電気伝導性に優れた固体高分子型燃料電池セパレータ用として工業的に安定して優れた電気伝導性が得られるステンレス鋼、およびその製造方法、並びに固体高分子型燃料電池セパレータを提供することを目的とする。   The present invention relates to a stainless steel that can provide industrially stable and excellent electrical conductivity for a polymer electrolyte fuel cell separator having excellent electrical conductivity, a method for producing the same, and a polymer electrolyte fuel cell separator. The purpose is to provide.

本発明者らは前述の課題を解決し、電気伝導性に優れたステンレス鋼を得るために、冷延板(冷間圧延された鋼板)および冷延焼鈍板の熱処理条件および表面改質処理について検討を行い、特定の熱処理と表面改質処理を組み合わせることで、優れた電気伝導性を有するステンレス鋼の安定生産が可能であることを見出した。
すなわち、本発明は下記の構成を要旨とするものである。
[1]質量%で、C:0.001〜0.10%、Si:0.001〜1.0%、Mn:0.001〜1.2%、Al:0.001〜0.5%、Cr:15.0〜35.0%、N:0.001〜0.10%を含有し、残部がFeおよび不可避的不純物からなり、表面の酸化皮膜の厚さが20〜600nmであることを特徴とするステンレス鋼。
[2]さらに、質量%で、Ti:1.0%以下、Nb:1.0%以下、Zr:1.0%以下、Cu:1.0%以下、V:1.0%以下、Ni:12.0%以下、Mo:5.0%以下のうち1種以上を含有することを特徴とする[1]に記載のステンレス鋼。
[3]前記酸化皮膜に含まれるSi、Al、Mn、Feの原子数比が(Si+Al+Mn)/Fe≦1.0を満たすことを特徴とする[1]又は[2]に記載のステンレス鋼。
[4]前記[1]又は[2]に記載の化学組成を有し、表面接触抵抗が20mΩ・cm以下であることを特徴とするステンレス鋼。
[5]前記[4]に記載のステンレス鋼からなる固体高分子型燃料電池用セパレータ。
[6]前記[1]〜[3]のいずれか1つに記載のステンレス鋼を製造するに際し、冷間圧延後または冷間圧延材焼鈍後に、水素濃度が30容積%以上であり残部が不活性ガス及び不可避的不純物からなり、露点が−40〜0℃である雰囲気下で、温度が800〜1200℃の熱処理を行なうことを特徴とするステンレス鋼の製造方法。
[7]前記[4]に記載のステンレス鋼を製造するに際し、冷間圧延後または冷間圧延材焼鈍後に、水素濃度が30容積%以上であり残部が不活性ガス及び不可避的不純物からなり、露点が−40〜0℃である雰囲気下で、温度が800〜1200℃の熱処理を行ない、該熱処理後に、酸液を用いる表面改質処理を行うことを特徴とするステンレス鋼の製造方法。
[8]前記酸液が無機酸であることを特徴とする[7]に記載のステンレス鋼の製造方法。
[9]前記無機酸が弗酸または弗硝酸であることを特徴とする[8]に記載のステンレス鋼の製造方法。
In order to solve the above-mentioned problems and to obtain stainless steel having excellent electrical conductivity, the present inventors have conducted heat treatment conditions and surface modification treatment of cold-rolled sheets (cold-rolled steel sheets) and cold-rolled annealed sheets. By examining and combining specific heat treatment and surface modification treatment, it was found that stable production of stainless steel having excellent electrical conductivity was possible.
That is, this invention makes the following structure a summary.
[1] By mass%, C: 0.001 to 0.10%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.2%, Al: 0.001 to 0.5% , Cr: 15.0 to 35.0%, N: 0.001 to 0.10%, the balance is made of Fe and inevitable impurities, and the thickness of the oxide film on the surface is 20 to 600 nm Features stainless steel.
[2] Further, by mass%, Ti: 1.0% or less, Nb: 1.0% or less, Zr: 1.0% or less, Cu: 1.0% or less, V: 1.0% or less, Ni The stainless steel as set forth in [1], containing at least one of 12.0% or less and Mo: 5.0% or less.
[3] The stainless steel according to [1] or [2], wherein an atomic ratio of Si, Al, Mn, and Fe contained in the oxide film satisfies (Si + Al + Mn) /Fe≦1.0.
[4] A stainless steel having the chemical composition according to [1] or [2], and having a surface contact resistance of 20 mΩ · cm 2 or less.
[5] A polymer electrolyte fuel cell separator comprising the stainless steel according to [4].
[6] When producing the stainless steel according to any one of [1] to [3] , after cold rolling or after annealing the cold rolled material, the hydrogen concentration is 30% by volume or more and the remainder is not present. A method for producing stainless steel, comprising performing a heat treatment at a temperature of 800 to 1200 ° C in an atmosphere comprising an active gas and inevitable impurities and having a dew point of -40 to 0 ° C.
[7] When producing the stainless steel according to the above [4], after cold rolling or after annealing the cold rolled material, the hydrogen concentration is 30% by volume or more, and the balance consists of inert gas and inevitable impurities, under an atmosphere dew point is -40~0 ° C., the temperature is subjected to heat treatment at 800 to 1200 ° C., after the heat treatment, a method of manufacturing features and to Luz stainless steel to make a surface modification treatment using an acid solution .
[8] The method for producing stainless steel according to [7], wherein the acid solution is an inorganic acid.
[9] The method for producing stainless steel according to [8], wherein the inorganic acid is hydrofluoric acid or hydrofluoric acid.

本発明によれば、ステンレス鋼の溶解によって酸液中にFeなどの金属イオンが混入しても、工業的に安定して優れた電気伝導性が得られるステンレス鋼、及びその製造方法並びに固体高分子型燃料電池セパレータが得られる。   According to the present invention, even when metal ions such as Fe are mixed in the acid solution by dissolving stainless steel, the stainless steel that provides industrially stable and excellent electrical conductivity, its production method, and solid high A molecular fuel cell separator is obtained.

また、本発明のステンレス鋼の製造方法によれば、これによって、安定した連続処理によるステンレス鋼製セパレータの生産が可能となり、工業的な大量生産を行うことができ、さらに、処理設備が大きく維持コストが掛かる電解処理が不要となり、電解処理で生成される6価クロムなどの処理が不要となるため、環境への負荷も軽減される。   In addition, according to the method for producing stainless steel of the present invention, it is possible to produce a stainless steel separator by stable continuous treatment, industrial mass production can be performed, and the treatment equipment is largely maintained. The costly electrolytic treatment is not necessary, and the treatment of hexavalent chromium produced by the electrolytic treatment is unnecessary, so that the burden on the environment is reduced.

酸化皮膜ごとの表面接触抵抗におよぼす表面改質処理での浸漬時間の影響Effect of immersion time in surface modification treatment on surface contact resistance of each oxide film 表面接触抵抗を低減するために必要な表面改質処理での浸漬時間におよぼす酸化皮膜の厚さの影響Effect of oxide film thickness on immersion time in surface modification necessary to reduce surface contact resistance 測定位置による表面接触抵抗の変化Change in surface contact resistance depending on measurement position

以下に本発明を詳細に説明する。   The present invention is described in detail below.

ステンレス鋼の成分
各成分元素の限定理由を、以下に説明する。ここで、成分の含有量を表す「%」表示は、特に断らない限り「質量%」を意味する。
Components of stainless steel The reasons for limitation of each component element will be described below. Here, “%” notation indicating the content of the component means “% by mass” unless otherwise specified.

C:0.001〜0.10%
Cはステンレス鋼に不可避的に含まれる元素であり、固溶強化により鋼の強度を上昇させる効果がある。その効果は0.001%未満では得られない。一方で、過剰の含有はCr炭化物の析出を促進してCr炭化物周囲の地鉄のCr含有量を局所的に減少させ、ステンレス鋼の耐食性を低下させる。その効果は0.10%を超えると顕著になる。よってCは0.001〜0.10%とした。より好ましくは0.002〜0.04%である。
C: 0.001 to 0.10%
C is an element inevitably contained in stainless steel, and has the effect of increasing the strength of the steel by solid solution strengthening. The effect cannot be obtained at less than 0.001%. On the other hand, excessive inclusion promotes precipitation of Cr carbide, locally decreases the Cr content of the surrounding iron around the Cr carbide, and lowers the corrosion resistance of stainless steel. The effect becomes remarkable when it exceeds 0.10%. Therefore, C is set to 0.001 to 0.10%. More preferably, it is 0.002 to 0.04%.

Si:0.001〜1.0%
Siは脱酸に有用な元素であり、その効果は0.001%以上で得られる。しかし、過剰の含有は酸化皮膜への濃化を促進し、表面改質処理による表面接触抵抗低減を阻害する。その傾向は1.0%以上で顕著となる。よってSiは0.001〜1.0%とした。より好ましくは、0.005〜0.2%である。
Si: 0.001 to 1.0%
Si is an element useful for deoxidation, and the effect is obtained at 0.001% or more. However, excessive inclusion promotes concentration into an oxide film and inhibits surface contact resistance reduction by surface modification treatment. This tendency becomes remarkable at 1.0% or more. Therefore, Si was 0.001 to 1.0%. More preferably, it is 0.005 to 0.2%.

Mn:0.001〜1.2%
Mnは鋼中に不可避的に混入する元素であり、鋼の強度を高める効果がある。その効果は0.001%以上で得られる。しかし、MnSを析出し腐食の起点となるため、過剰の含有は耐食性を低下させる。また、酸化皮膜に濃化することで表面改質処理による表面接触抵抗低減を阻害する。その傾向は1.2%以上で顕著となる。よって、Mnは0.001〜1.2%とした。より好ましくは、0.005〜0.2%である。
Mn: 0.001 to 1.2%
Mn is an element inevitably mixed in the steel and has an effect of increasing the strength of the steel. The effect is obtained at 0.001% or more. However, since MnS is precipitated and becomes a starting point of corrosion, excessive content lowers the corrosion resistance. Further, concentration in the oxide film inhibits surface contact resistance reduction by surface modification treatment. The tendency becomes remarkable at 1.2% or more. Therefore, Mn is set to 0.001 to 1.2%. More preferably, it is 0.005 to 0.2%.

Al:0.001〜0.5%
Alは脱酸に有用な元素であり、その効果は0.001%以上で得られる。しかし、過剰な含有は、酸化被膜を形成した場合に表面改質処理による表面接触抵抗低減を阻害する。その傾向は0.5%以上で顕著となる。よって、Alは0.001〜0.5%とした。より好ましくは、0.005〜0.2%である。
Al: 0.001 to 0.5%
Al is an element useful for deoxidation, and the effect is obtained at 0.001% or more. However, excessive inclusion inhibits surface contact resistance reduction by surface modification treatment when an oxide film is formed. This tendency becomes remarkable at 0.5% or more. Therefore, Al was made 0.001 to 0.5%. More preferably, it is 0.005 to 0.2%.

Cr:15.0〜35.0%
Crはステンレス鋼の耐食性にとって重要な元素であり、含有量が多いほど耐食性を向上させる元素である。燃料電池セパレータの使用環境で十分な耐食性を確保するためには、その含有量は15.0%以上が望ましい。一方でCrの含有が35.0%を超えると不動態皮膜が強固となり、表面接触抵抗が増大しやすくなるため、燃料電池セパレータへの使用は不適当となる。よって、Crの含有量を15.0〜35.0%とした。より好ましくは、18.0〜31.0%である。
Cr: 15.0-35.0%
Cr is an element important for the corrosion resistance of stainless steel, and is an element that improves the corrosion resistance as the content increases. In order to ensure sufficient corrosion resistance in the usage environment of the fuel cell separator, the content is desirably 15.0% or more. On the other hand, if the Cr content exceeds 35.0%, the passive film becomes strong and the surface contact resistance tends to increase, so that it is inappropriate for use in a fuel cell separator. Therefore, the content of Cr is set to 15.0 to 35.0%. More preferably, it is 18.0 to 31.0%.

N:0.001〜0.10%
NはCと同様にステンレス鋼に不可避的に含まれる元素であり、固溶強化により鋼の強度を上昇させる効果がある。さらに、鋼中に固溶することで耐食性を向上する効果もある。それらの効果は0.001%未満では得られない。一方で、Cr窒化物を析出した場合には、ステンレス鋼の耐食性を低下させる。その効果は0.10%を超えると顕著になる。よってCは0.001〜0.10%とした。より好ましくは0.002〜0.04%である。
N: 0.001 to 0.10%
N, like C, is an element inevitably contained in stainless steel, and has the effect of increasing the strength of the steel by solid solution strengthening. Furthermore, it has the effect of improving corrosion resistance by dissolving in steel. Those effects cannot be obtained at less than 0.001%. On the other hand, when Cr nitride is deposited, the corrosion resistance of the stainless steel is lowered. The effect becomes remarkable when it exceeds 0.10%. Therefore, C is set to 0.001 to 0.10%. More preferably, it is 0.002 to 0.04%.

残部は、Feおよび不可避的不純物であるが、以下の理由により、Ti:1.0%以下、Nb: 1.0%以下、Zr:1.0%以下、Cu:1.0%以下、V:1.0%以下、Ni:12.0%以下、Mo:5.0%以下のうち1種以上を含有することが好ましい。   The balance is Fe and inevitable impurities, but for the following reasons, Ti: 1.0% or less, Nb: 1.0% or less, Zr: 1.0% or less, Cu: 1.0% or less, V : 1.0% or less, Ni: 12.0% or less, Mo: It is preferable to contain 1 or more types among 5.0% or less.

Ti:1.0%以下
TiはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。一方で、1.0%を超えると加工性が低下するとともに、Ti炭窒化物が粗大化し、表面欠陥を引き起こす。よってTiは1.0%以下とした。
Ti: 1.0% or less Ti is an element that preferentially bonds with C and N and suppresses the deterioration of corrosion resistance due to the precipitation of Cr carbonitride. On the other hand, when it exceeds 1.0%, the workability is lowered, and Ti carbonitride is coarsened to cause surface defects. Therefore, Ti is set to 1.0% or less.

Nb:1.0%以下
NbはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。一方で、1.0%を超えると熱間強度が増加して熱間圧延の負荷が増大するため、製造が困難となる。よってNbは1.0%以下とした。
Nb: 1.0% or less Nb is an element that preferentially binds to C and N and suppresses a decrease in corrosion resistance due to the precipitation of Cr carbonitride. On the other hand, if it exceeds 1.0%, the hot strength increases and the hot rolling load increases, which makes manufacturing difficult. Therefore, Nb was made 1.0% or less.

Zr:1.0%以下
ZrはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。一方で、1.0%を超えると加工性が低下する。よってZrは1.0%以下とした。
Zr: 1.0% or less Zr is an element that binds preferentially to C and N and suppresses a decrease in corrosion resistance due to the precipitation of Cr carbonitride. On the other hand, if it exceeds 1.0%, the workability decreases. Therefore, Zr is set to 1.0% or less.

Cu:1.0%以下
Cuはステンレス鋼の耐食性を向上させる元素である。しかし、過剰の含有は、金属イオンの溶出を増加させ、ステンレス鋼の耐食性を低下させる。その傾向は1.0%を超えると顕著となる。よって、Cuは1.0%以下とした。
Cu: 1.0% or less Cu is an element that improves the corrosion resistance of stainless steel. However, excessive content increases the elution of metal ions and reduces the corrosion resistance of stainless steel. The tendency becomes remarkable when it exceeds 1.0%. Therefore, Cu was made 1.0% or less.

V:1.0%以下
Vはステンレス鋼の耐食性を向上させる元素である。しかし、1.0%を超える含有は加工性を低下させ、セパレータの成型加工を困難にする。よってVは1.0%以下とした。
V: 1.0% or less V is an element that improves the corrosion resistance of stainless steel. However, if the content exceeds 1.0%, the workability is lowered and the molding process of the separator becomes difficult. Therefore, V is set to 1.0% or less.

Ni:12.0%以下
Niは活性溶解を抑制し、ステンレス鋼の耐食性を向上させる元素である。しかし、12.0%を超えると過不動態溶解を促進し、過不動態域での耐食性を低下させる。よって、Niは12.0%以下とした。
Ni: 12.0% or less Ni is an element that suppresses active dissolution and improves the corrosion resistance of stainless steel. However, if it exceeds 12.0%, the overpassive dissolution is promoted, and the corrosion resistance in the overpassive range is lowered. Therefore, Ni was made 12.0% or less.

Mo: 5.0%以下
Moは引っ掻き傷などにより損なわれた不動態皮膜の再不動態化を促進する元素であり、ステンレス鋼の耐食性を向上させる。しかし、5.0%を超える添加は強度が増加し圧延負荷が大きくなるため製造が困難となる。よって、Moは5.0%以下とした。
Mo: 5.0% or less Mo is an element that promotes repassivation of the passive film damaged by scratches and the like, and improves the corrosion resistance of stainless steel. However, addition exceeding 5.0% increases the strength and increases the rolling load, making it difficult to produce. Therefore, Mo is set to 5.0% or less.

また、その他にも、耐食性の改善を目的としてWを1.0%以下で、さらに熱間加工性の向上を目的として、Ca、Mg、REM(Rare Earth Metals)、Bをそれぞれ0.1%以下で含有させることもできる。   In addition, W is 1.0% or less for the purpose of improving corrosion resistance, and Ca, Mg, REM (Rare Earth Metals) and B are each 0.1% for the purpose of improving hot workability. It can also be contained below.

また、不可避的不純物のうちSnは0.001%未満、Oは0.02%以下とすることが好ましい。   Of the inevitable impurities, Sn is preferably less than 0.001% and O is preferably 0.02% or less.

酸化皮膜に含まれるSi、Al、Mn、Feの原子数比
Si、Al、Mnは光輝焼鈍などの熱処理によって酸化皮膜中に濃化する元素であるが、これら元素の酸化物はFeの酸化物よりも安定で酸液に侵されにくい。そのため、これら元素の酸化物が酸化皮膜中に多量に存在すると酸化皮膜の溶解を困難にする。一方でFeの酸化物は比較的酸液に溶解しやすい。また、Feの酸化物はその生成速度が速く構造が粗雑なものになりやすいため、イオンや酸液が透過しやすく、ステンレス鋼を酸液から保護する効果が小さい。
The atomic ratio of Si, Al, Mn, and Fe contained in the oxide film Si, Al, and Mn are elements that are concentrated in the oxide film by heat treatment such as bright annealing. The oxides of these elements are oxides of Fe More stable and less susceptible to acid. Therefore, if oxides of these elements are present in a large amount in the oxide film, it becomes difficult to dissolve the oxide film. On the other hand, Fe oxide is relatively easy to dissolve in an acid solution. In addition, since an oxide of Fe has a high generation rate and is likely to have a rough structure, ions and an acid solution are easily transmitted, and the effect of protecting stainless steel from the acid solution is small.

ステンレス鋼の表面に種々の方法で形成したいくつかの酸化皮膜について、光電子分光(XPS)により分析を行った結果、酸化皮膜に含まれるSi、Al、Mn、Feの原子数比が(Si+Al+Mn)/Fe≦1.0であると、酸液に溶解しやすい傾向があった。よって、酸化皮膜に含まれるSi、Al、Mn、Feの原子数比が(Si+Al+Mn)/Fe≦1.0とした。ここで、Si、Al、Mn、Feの原子数比は、光電子分光(XPS)により分析を行うことにより求められる。   As a result of analysis by photoelectron spectroscopy (XPS) on several oxide films formed on the surface of stainless steel by various methods, the atomic ratio of Si, Al, Mn, Fe contained in the oxide film is (Si + Al + Mn). When it was /Fe≦1.0, there was a tendency to be easily dissolved in the acid solution. Therefore, the atomic ratio of Si, Al, Mn, and Fe contained in the oxide film was set to (Si + Al + Mn) /Fe≦1.0. Here, the atomic ratio of Si, Al, Mn, and Fe is obtained by performing analysis by photoelectron spectroscopy (XPS).

酸化皮膜の厚さ
前述のとおり、一般的なステンレス鋼には、その表面に数nm程度の酸化皮膜あるいは不動態皮膜が形成されている。そのため酸液による表面改質処理により表面接触抵抗を低減することが好ましい。
Oxide Film Thickness As described above, general stainless steel has an oxide film or a passive film on the surface of several nanometers. Therefore, it is preferable to reduce the surface contact resistance by surface modification treatment with an acid solution.

発明者らは、工業的に安定して優れた電気伝導性が得られるステンレス鋼を得るための酸化皮膜の厚さと、金属イオンが混入した酸液での表面接触抵抗低減に必要な浸漬時間の関係を調査した。   The inventors have determined that the thickness of the oxide film for obtaining stainless steel that is industrially stable and provides excellent electrical conductivity, and the immersion time required for reducing the surface contact resistance with an acid solution mixed with metal ions. The relationship was investigated.

表1の鋼種記号Aに示す組成のステンレス鋼を真空溶製し、1250℃に加熱したのち、熱間圧延、熱延板焼鈍(1000℃)、熱延板の酸洗を行った。さらに、冷間圧延、冷延板焼鈍(950℃)、冷延板の酸洗を行い、露点−60〜10℃のアンモニア分解ガス(水素75容量%−窒素25容量%)中において800〜1200℃で均熱時間30〜180sとして熱処理を行って、板厚0.3mmのステンレス箔とした。   Stainless steel having the composition shown in steel type symbol A in Table 1 was vacuum-melted and heated to 1250 ° C., and then hot-rolled, hot-rolled sheet annealed (1000 ° C.), and pickled the hot-rolled sheet. Furthermore, cold rolling, cold-rolled sheet annealing (950 ° C.), pickling of the cold-rolled sheet is performed, and 800 to 1200 in an ammonia decomposition gas (75% by volume of hydrogen—25% by volume of nitrogen) at a dew point of −60 to 10 ° C. A heat treatment was performed at a temperature of 30 to 180 s at a soaking time to obtain a stainless steel foil having a thickness of 0.3 mm.

作製したステンレス箔の酸化皮膜の厚さをオージェ電子分光(AES)により測定した。Oの濃度が最大値の半分となるスパッタ時間にSiOで測定したスパッタ速度を乗じて酸化皮膜の厚さとした。なお、SiOのスパッタ速度は3nm/minである。作製したステンレス箔の酸化皮膜厚さは5〜720nmであった。 The thickness of the oxide film of the produced stainless steel foil was measured by Auger electron spectroscopy (AES). The thickness of the oxide film was obtained by multiplying the sputtering time at which the O concentration was half of the maximum value by the sputtering rate measured with SiO 2 . Note that the sputtering rate of SiO 2 is 3 nm / min. The produced stainless steel foil had an oxide film thickness of 5 to 720 nm.

これらステンレス箔を5%HNO−20%HFの硝弗酸に1g/LのFeを溶解した酸液で30〜1200s浸漬する表面改質処理を行った後、押し付け圧力1MPaで10mm四方のカーボンペーパを押しつけて表面接触抵抗を測定した。燃料電池セパレータとして使用するためには、表面接触抵抗20mΩ・cm以下が合格である。 These stainless steel foils were surface-modified by immersing them in an acid solution containing 1 g / L Fe dissolved in 5% HNO 3 -20% HF hydrofluoric acid for 30 to 1200 s, and then 10 mm square carbon at a pressing pressure of 1 MPa. The surface contact resistance was measured by pressing the paper. For use as a fuel cell separator, a surface contact resistance of 20 mΩ · cm 2 or less is acceptable.

図1に、表面改質処理前の酸化皮膜厚さ5nm、110nm、380nmのサンプルについて、表面接触抵抗におよぼす浸漬時間の影響を示す。浸漬時間の増加にともなって表面接触抵抗が減少するが、その傾きと合格ラインに到達するために必要な浸漬時間は酸化皮膜の厚さによって異なる結果が得られた。   FIG. 1 shows the influence of the immersion time on the surface contact resistance of samples having an oxide film thickness of 5 nm, 110 nm, and 380 nm before the surface modification treatment. As the immersion time increased, the surface contact resistance decreased, but the slope and the immersion time required to reach the pass line differed depending on the thickness of the oxide film.

図2に、表面接触抵抗を低減するために必要な浸漬時間におよぼす酸化皮膜の厚さの影響を示す。表面接触抵抗が20mΩ・cm以下となるために必要な最小の浸漬時間を、種々の酸化皮膜厚さのステンレス箔について示した。表面改質処理に必要な浸漬時間は、酸化皮膜の厚さが120nm付近を最小とする下に凸の相関が得られた。工業的に連続処理が可能な浸漬時間は300s程度であり、酸化皮膜厚さが20〜600nmの範囲で必要な浸漬時間が300sを下回った。よって、この範囲の酸化皮膜厚さを有するステンレス鋼であれば、工業的な連続処理が可能と考えられる。 FIG. 2 shows the influence of the thickness of the oxide film on the immersion time necessary to reduce the surface contact resistance. The minimum immersion time required for the surface contact resistance to be 20 mΩ · cm 2 or less is shown for stainless steel foils with various oxide film thicknesses. The immersion time required for the surface modification treatment had a convex correlation with the thickness of the oxide film being minimized at around 120 nm. The immersion time that allows industrially continuous treatment was about 300 s, and the required immersion time was less than 300 s when the oxide film thickness was in the range of 20 to 600 nm. Therefore, it is considered that industrial continuous processing is possible if the stainless steel has an oxide film thickness in this range.

薄膜X線回折により、酸化皮膜の構造を解析したところ、酸化皮膜厚さが120nm以下では厚さの減少にともなって、それぞれの結晶構造を示すピークの半値幅が増加する傾向が見られた。酸化皮膜が厚さの減少にともなって、結晶性のものからアモルファス状のものに変質していっているものと推測される。120nm以上では半値幅については有意な差異は認められなかった。   When the structure of the oxide film was analyzed by thin film X-ray diffraction, when the oxide film thickness was 120 nm or less, there was a tendency that the full width at half maximum of the peak indicating each crystal structure increased as the thickness decreased. It is presumed that the oxide film has changed from a crystalline one to an amorphous one as the thickness decreases. At 120 nm or more, no significant difference was observed in the half width.

酸化皮膜が薄い場合に必要な浸漬時間が増加するのは、酸化皮膜を形成する酸化物が欠陥やクラックの少ない緻密な酸化皮膜を形成することに加え、不動態皮膜と同様なアモルファス状となることで、水素イオンや金属イオンの透過を阻害するため、酸液による溶解や変質が困難となるためと考えられる。この状態から酸化皮膜の厚さが増加すると、形成される酸化皮膜が粗雑な構造をとるようになり、ボイドやクラックなどが増加し、そういった欠陥を通して、水素イオンや金属イオン、あるいは酸液そのものが浸透しやすくなる。   The required immersion time increases when the oxide film is thin. In addition to forming a dense oxide film with few defects and cracks, the oxide forming the oxide film becomes amorphous like the passive film. This is considered to be because it is difficult to dissolve or alter with an acid solution because it inhibits permeation of hydrogen ions and metal ions. When the thickness of the oxide film increases from this state, the formed oxide film has a rough structure, and voids and cracks increase. Through such defects, hydrogen ions, metal ions, or the acid solution itself is generated. Easy to penetrate.

そのために、酸化皮膜の厚さが増加することでステンレス鋼の溶解が促進される。さらに酸化皮膜の厚さが増加すると、酸化皮膜の質には大きな変化は起こらないものの、単純に厚さが増加したという理由でイオンや酸液が酸化皮膜を透過するのに時間がかかるようになり、その結果、酸化皮膜の溶解や変質にかかる時間が増加する。上記のような理由で、酸化皮膜の厚さと浸漬時間に下に凸の相関が表れるものと推定される。   Therefore, dissolution of stainless steel is promoted by increasing the thickness of the oxide film. Furthermore, as the thickness of the oxide film increases, the quality of the oxide film does not change significantly, but it takes time for ions and acid solutions to penetrate the oxide film simply because the thickness has increased. As a result, the time required for dissolution and alteration of the oxide film increases. For the above reasons, it is estimated that a convex correlation appears in the thickness of the oxide film and the immersion time.

工業的に連続処理が可能な浸漬時間は300s程度が上限である。表面接触抵抗低減に必要な浸漬時間が300s以下となるのは酸化皮膜の厚さが20〜600nmの範囲であった。よって、酸化皮膜の厚さは20〜600nmとした。より好ましくは、浸漬時間が200s以下となる、50〜500nmである。さらに好ましくは、100nm超〜400nmである。   The upper limit of the immersion time that allows industrially continuous treatment is about 300 seconds. The immersion time required for reducing the surface contact resistance was 300 s or less when the thickness of the oxide film was in the range of 20 to 600 nm. Therefore, the thickness of the oxide film was set to 20 to 600 nm. More preferably, the immersion time is 50 to 500 nm at which the immersion time is 200 s or less. More preferably, it is more than 100 nm to 400 nm.

表面接触抵抗
表面接触抵抗の測定は、ステンレス鋼表面に、押し付け圧力1MPaで10mm四方のカーボンペーパを押しつけて表面接触抵抗を測定する。燃料電池セパレータとして使用するためには、燃料電池の発電効率確保のため、表面接触抵抗は20mΩ・cm以下であることが好ましい。より好ましくは、10mΩ・cm以下である。
Surface contact resistance The surface contact resistance is measured by pressing 10 mm square carbon paper against a stainless steel surface at a pressing pressure of 1 MPa. In order to use as a fuel cell separator, the surface contact resistance is preferably 20 mΩ · cm 2 or less in order to ensure the power generation efficiency of the fuel cell. More preferably, it is 10 mΩ · cm 2 or less.

ステンレス鋼の製造方法
上記化学組成のステンレス鋼を1100〜1300℃に加熱後、仕上圧延温度を700〜1000℃、巻取温度を400〜700℃として板厚2.0〜5.0mmに熱間圧延を施す。こうして作製した熱間圧延鋼帯を800〜1200℃の温度で熱延板焼鈍し熱延板の酸洗を行い、次に、冷間圧延、冷間圧延板(冷延板)の焼鈍を複数回繰り返し、板厚0.03〜0.3mmの箔とする。冷延板焼鈍の温度は800〜1100℃とし、冷延板焼鈍後には冷延板の酸洗を行ってもよい。冷延板焼鈍を行なう場合は、水素を含む雰囲気ガス組成で、露点を−40℃以下の条件で行なうのが好ましい。その後、以下に説明する熱処理、および表面改質処理を行う。
Manufacturing method of stainless steel After heating stainless steel having the above chemical composition to 1100 to 1300 ° C, the finish rolling temperature is 700 to 1000 ° C, the coiling temperature is 400 to 700 ° C, and the plate thickness is hot to 2.0 to 5.0 mm. Roll. The hot-rolled steel strip thus produced is annealed by hot-rolled sheet at a temperature of 800 to 1200 ° C. and pickled hot-rolled sheet, and then cold-rolled and cold-rolled sheet (cold-rolled sheet) are subjected to multiple annealing. Repeatedly, the foil thickness is 0.03 to 0.3 mm. The temperature of the cold-rolled sheet annealing may be 800 to 1100 ° C., and the cold-rolled sheet may be pickled after the cold-rolled sheet annealing. When performing cold-rolled sheet annealing, it is preferable to perform the dew point of -40 ° C. or less with an atmosphere gas composition containing hydrogen. Thereafter, heat treatment and surface modification treatment described below are performed.

熱処理の雰囲気の組成
水素を熱処理雰囲気に含むことで、還元作用を得ることができ、熱処理によってステンレス鋼表面に厚い酸化皮膜が形成されることを抑制する効果がある。発明者らは、熱処理により形成される酸化皮膜の厚さを適切に制御することで、酸液が浸透しやすい酸化皮膜となることを見出した。30容量%未満の水素濃度では露点や熱処理温度のわずかなブレによって安定した還元作用を得ることが難しく、酸化皮膜の性状を制御することが困難となる。よって、熱処理雰囲気の水素濃度は30容量%以上とした。より好ましくは水素濃度が50容量%以上である。残部は窒素と不可避的不純物であるが、窒素の代わりにステンレス鋼の酸化に寄与しないその他の不活性ガスを用いることもできる。ここでいう不活性ガスとは、窒素、およびヘリウム、ネオン、アルゴンなどの希ガスのことである。
Composition of heat treatment atmosphere By containing hydrogen in the heat treatment atmosphere, it is possible to obtain a reducing action and to suppress the formation of a thick oxide film on the stainless steel surface by the heat treatment. The inventors have found that by appropriately controlling the thickness of the oxide film formed by the heat treatment, the oxide film can easily penetrate into the acid solution. When the hydrogen concentration is less than 30% by volume, it is difficult to obtain a stable reducing action due to slight fluctuations in the dew point and the heat treatment temperature, and it becomes difficult to control the properties of the oxide film. Therefore, the hydrogen concentration in the heat treatment atmosphere is set to 30% by volume or more. More preferably, the hydrogen concentration is 50% by volume or more. The balance is nitrogen and inevitable impurities, but other inert gases that do not contribute to the oxidation of stainless steel can be used instead of nitrogen. The inert gas here refers to nitrogen and rare gases such as helium, neon, and argon.

熱処理の雰囲気の露点
露点は低いほど炉内ガスに含まれる水分が少ないことを意味しており、より還元性の雰囲気となっていることを示す。一般的な熱処理である光輝焼鈍では露点は−60〜−50℃であり、厚さ数nmの非常に薄い酸化皮膜が形成される。酸化性の雰囲気のほうが酸化皮膜は形成されやすいため、酸化皮膜の厚さは厚くなる。露点が−40℃未満では酸化皮膜の成長が遅くなり、酸化皮膜の厚さを制御することが困難となる。露点が0℃以上では酸化皮膜の厚さが厚くなるうえ、部分的な異常酸化を起こして表面の均質性が損なわれる。よって露点は−40〜0℃とした。より好ましくは−30〜0℃、さらに好ましくは−20〜0℃である。
Dew point of heat treatment atmosphere The lower the dew point, the less moisture contained in the furnace gas, indicating a more reducing atmosphere. In bright annealing, which is a general heat treatment, the dew point is −60 to −50 ° C., and a very thin oxide film having a thickness of several nm is formed. Since an oxide film is more easily formed in an oxidizing atmosphere, the thickness of the oxide film becomes thicker. When the dew point is less than −40 ° C., the growth of the oxide film is slow, and it becomes difficult to control the thickness of the oxide film. If the dew point is 0 ° C. or higher, the thickness of the oxide film becomes thick, and partial abnormal oxidation occurs to impair the surface uniformity. Therefore, the dew point was set to -40 to 0 ° C. More preferably, it is -30-30 degreeC, More preferably, it is -20-0 degreeC.

また、Al、Si、Mn、Feは、この順番に酸化されやすく、ある程度以上還元性が強い雰囲気では、Feの酸化物は還元されるため、酸化皮膜中のFe原子数濃度は減少し、相対的にAl、Si、Mnの原子数濃度が増加する。各元素の原子数濃度と原子数とは比例するので、原子数比(Al+Si+Mn)/Feを1.0以下とするためには、適度な酸化性を有する雰囲気であることが好ましい。よって、雰囲気は、水素濃度が30容量%以上、露点が−40〜0℃とした。   In addition, Al, Si, Mn, and Fe are easily oxidized in this order, and in an atmosphere where the reducibility is strong to some extent, the oxide of Fe is reduced, so the concentration of Fe atoms in the oxide film decreases, and relative In particular, the atomic number concentration of Al, Si, and Mn increases. Since the atomic number concentration and the atomic number of each element are proportional, in order to make the atomic ratio (Al + Si + Mn) / Fe 1.0 or less, it is preferable that the atmosphere has an appropriate oxidizing property. Therefore, the atmosphere was set such that the hydrogen concentration was 30% by volume or more and the dew point was −40 to 0 ° C.

熱処理温度
熱処理温度は高いほどステンレス鋼と炉内雰囲気ガスとの間で、酸化反応が促進される。800℃未満では酸化皮膜の十分な成長が望めず、1200℃超では異常酸化が発生する。よって、熱処理の温度は800〜1200℃が好ましい。より好ましい熱処理の温度は、960〜1100℃である。
Heat treatment temperature The higher the heat treatment temperature, the more the oxidation reaction is promoted between the stainless steel and the furnace atmosphere gas. If it is less than 800 ° C., sufficient growth of the oxide film cannot be expected, and if it exceeds 1200 ° C., abnormal oxidation occurs. Therefore, the heat treatment temperature is preferably 800 to 1200 ° C. A more preferable heat treatment temperature is 960 to 1100 ° C.

また、この熱処理の温度に保持する時間は、連続焼鈍炉における製造性の観点から、10〜200sが好ましい。   In addition, the time for maintaining the temperature of the heat treatment is preferably 10 to 200 s from the viewpoint of manufacturability in a continuous annealing furnace.

表面改質処理の酸液等
表面接触抵抗を酸液中の金属イオン濃度にかかわりなく安定して低減するためには適切な熱処理により鋼板表面の酸化皮膜を制御したステンレス鋼を適切な酸液へ浸漬することが必要である。本願発明の熱処理条件により形成された酸化皮膜は、主にFeとCrの酸化物からなり、不動態皮膜と比較してより粗雑な構造をしているため酸液が浸透して地鉄に到達しやすい。酸化皮膜を形成している酸化物は地鉄と比較して酸液に溶解しにくいため、酸化皮膜の除去は地鉄の溶解によって酸化皮膜が剥離する形で行われる。
In order to stably reduce the surface contact resistance regardless of the metal ion concentration in the acid solution, stainless steel that has controlled the oxide film on the surface of the steel sheet by an appropriate heat treatment becomes an appropriate acid solution. It is necessary to immerse. The oxide film formed under the heat treatment conditions of the present invention is mainly composed of oxides of Fe and Cr, and has a coarser structure than the passive film, so that the acid solution penetrates and reaches the base iron. It's easy to do. Since the oxide forming the oxide film is less soluble in the acid solution than the base iron, the oxide film is removed in such a manner that the oxide film peels off due to the dissolution of the base iron.

そのため、表面改質処理に用いる酸液は、金属との反応性に優れる無機酸を含むものが好ましい。無機酸としては塩酸、硫酸、硝酸、弗酸およびそれらの混合物があるが、特に弗酸または弗硝酸が表面接触抵抗をより安定して低減することができるので好ましい。無機酸として弗酸(HF)または弗硝酸(HF+HNO)を用いる場合は、弗酸の濃度は2〜25%、硝酸の濃度は0〜20%が好ましい。ここで、酸液の濃度を表す「%」表示は、特に断らない限り「質量%」を意味する。 Therefore, the acid solution used for the surface modification treatment preferably contains an inorganic acid that is excellent in reactivity with the metal. Inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, and mixtures thereof. Hydrofluoric acid or hydrofluoric acid is particularly preferable because surface contact resistance can be more stably reduced. When hydrofluoric acid (HF) or hydrofluoric acid (HF + HNO 3 ) is used as the inorganic acid, the concentration of hydrofluoric acid is preferably 2 to 25% and the concentration of nitric acid is preferably 0 to 20%. Here, “%” indicating the concentration of the acid solution means “mass%” unless otherwise specified.

酸液の温度は反応性と安全性の観点から40〜85℃が好ましい。より好ましくは、40〜70℃である。連続した処理を効率よく実施するには、酸液への浸漬時間は10〜300sが好ましい。より好ましくは、酸液への浸漬時間は20〜200sである。   The temperature of the acid solution is preferably 40 to 85 ° C. from the viewpoints of reactivity and safety. More preferably, it is 40-70 degreeC. In order to carry out the continuous treatment efficiently, the immersion time in the acid solution is preferably 10 to 300 seconds. More preferably, the immersion time in the acid solution is 20 to 200 s.

表1の鋼種記号A〜Iに示す組成の9種類のステンレス鋼を真空溶製し、1250℃に加熱したのち、熱間圧延、熱延板焼鈍(1000℃)、熱延板の酸洗を行った。さらに、冷間圧延、冷延板焼鈍(950℃)、冷延板の酸洗を行い、露点−60〜10℃のアンモニア分解ガス(水素75容量%−窒素25容量%)中において1020℃で均熱時間100sとして熱処理を行って、板厚0.3mmのステンレス箔とした。熱処理の条件を表2に示す。   Nine kinds of stainless steels having the compositions shown in Table 1 with steel type symbols A to I were vacuum-melted and heated to 1250 ° C., followed by hot rolling, hot-rolled sheet annealing (1000 ° C.), and pickling hot-rolled sheets. went. Furthermore, cold rolling, cold-rolled sheet annealing (950 ° C.), pickling of the cold-rolled sheet is performed, and at 1020 ° C. in ammonia decomposition gas (75% by volume of hydrogen—25% by volume of nitrogen) at a dew point of −60 to 10 ° C. Heat treatment was performed for a soaking time of 100 s to obtain a stainless steel foil having a plate thickness of 0.3 mm. Table 2 shows the heat treatment conditions.

表2の試験記号1〜16のサンプルについて、60℃の5%HNO−20%HFの硝弗酸に1g/LのFeを溶解した酸液で300s浸漬する表面改質処理をして表面接触抵抗を測定した。ステンレス鋼表面に、押し付け圧力1MPaで一片が10mmの正方形のカーボンペーパを押しつけて表面接触抵抗を測定した。結果を表2に示す。AESによって測定した酸化皮膜の厚さが20〜600nmの範囲である試験記号2、3、6、7、9〜13、16で表面改質処理により表面接触抵抗が20mΩ・cm以下となった。 The surface of test samples 1 to 16 in Table 2 was subjected to surface modification treatment by immersing for 300 s in an acid solution in which 1 g / L Fe was dissolved in 5% HNO 3 -20% HF nitric acid at 60 ° C. Contact resistance was measured. The surface contact resistance was measured by pressing a square carbon paper having a piece of 10 mm with a pressing pressure of 1 MPa on the stainless steel surface. The results are shown in Table 2. The surface contact resistance became 20 mΩ · cm 2 or less by the surface modification treatment in test symbols 2, 3, 6, 7, 9-13, and 16 in which the thickness of the oxide film measured by AES was in the range of 20 to 600 nm. .

表面改質処理前の酸化皮膜に含まれるSi、Al、Mn、Feの原子数濃度を光電子分光(XPS)により得られた各元素のスペクトルを酸化物のピークとそれ以外のピークに分離し、酸化物のピーク面積を相対感度係数で除して求めた。表面改質処理により表面接触抵抗が20mΩ・cm以下となった試験記号2、3、6、7、9〜13で酸化皮膜に含まれる原子数比(Si+Al+Mn)/Feが1.0以下であった。 The spectrum of each element obtained by photoelectron spectroscopy (XPS) for the atomic number concentration of Si, Al, Mn, Fe contained in the oxide film before the surface modification treatment is separated into an oxide peak and other peaks, It was determined by dividing the peak area of the oxide by the relative sensitivity coefficient. The surface contact resistance is 20 mΩ · cm 2 or less due to the surface modification treatment, and the atomic number ratio (Si + Al + Mn) / Fe contained in the oxide film is 1.0 or less in test symbols 2, 3, 6, 7, and 9-13. there were.

質量%でC:0.003%、Si:0.08%、Mn:0.11%、Al:0.04%、Cr:29.0%、N:0.009%、Nb:0.18%、Mo:1.99%を含有するステンレス鋼を溶製し、厚さ200mmのステンレススラブとした。得られたステンレススラブを1200℃に加熱後、仕上温度を900℃、巻取温度を650℃として板厚2.0mmまで熱間圧延し、1100℃の温度で熱延板焼鈍し、熱延板の酸洗を行い、次に、冷間圧延と、1050℃の冷延板焼鈍を複数回繰り返し、幅1080mm、長さ1100m、厚さ0.1mmのステンレス鋼帯とした。なお、最終の冷間圧延後に冷延板焼鈍は行わなかった。得られたステンレス鋼帯をさらに幅200mmに分割して5つの鋼帯とし、それぞれ表3に示す熱処理条件において熱処理した。その後、60℃の5%HNO−10%HF酸液中に浸漬時間が180sとなるように鋼帯を通板して表面改質処理を行い、鋼帯先端から50m間隔で表面接触抵抗を測定した。表面接触抵抗の測定圧力は1MPaとした。図3に、測定位置による表面接触抵抗の変化を示す。本発明例である17〜19では、コイル先端から終端まで一様に低い表面接触抵抗が得られた。一方で、比較例である20、21ではコイルの途中から、セパレータとして使用できない値まで表面接触抵抗が増加した。これは酸液槽へのコイルの通板により酸液中に金属イオンが溶出し、酸液の反応性が低下したため、比較例である20、21では酸化皮膜の除去が不十分になったために表面接触抵抗が増加したものと考えられる。 C: 0.003% by mass, Si: 0.08%, Mn: 0.11%, Al: 0.04%, Cr: 29.0%, N: 0.009%, Nb: 0.18 %, Mo: Stainless steel containing 1.99% was melted to obtain a stainless steel slab having a thickness of 200 mm. The obtained stainless slab is heated to 1200 ° C., hot rolled to a plate thickness of 2.0 mm at a finishing temperature of 900 ° C. and a coiling temperature of 650 ° C., and hot-rolled sheet annealed at a temperature of 1100 ° C. Next, cold rolling and cold-rolled sheet annealing at 1050 ° C. were repeated a plurality of times to obtain a stainless steel strip having a width of 1080 mm, a length of 1100 m, and a thickness of 0.1 mm. In addition, the cold-rolled sheet annealing was not performed after the last cold rolling. The obtained stainless steel strip was further divided into a width of 200 mm to form five steel strips, and each was heat-treated under the heat treatment conditions shown in Table 3. Then, a steel strip is passed through the steel strip in a 5% HNO 3 -10% HF acid solution at 60 ° C. so that the immersion time is 180 s, and the surface contact resistance is reduced at intervals of 50 m from the tip of the steel strip. It was measured. The measurement pressure of the surface contact resistance was 1 MPa. FIG. 3 shows changes in surface contact resistance depending on the measurement position. In Examples 17 to 19 of the present invention, a low surface contact resistance was obtained uniformly from the coil front end to the terminal end. On the other hand, in Comparative Examples 20 and 21, the surface contact resistance increased from the middle of the coil to a value that could not be used as a separator. This is because metal ions were eluted in the acid solution due to the passage of the coil to the acid solution tank, and the reactivity of the acid solution was lowered. Therefore, in Comparative Examples 20 and 21, the removal of the oxide film was insufficient. It is thought that the surface contact resistance increased.

Figure 0005821336
Figure 0005821336

Figure 0005821336
Figure 0005821336

Figure 0005821336
Figure 0005821336

本発明のステンレス鋼は、固体高分子型燃料電池セパレータ用ステンレス鋼として好適であり、さらに、各種電気機器の通電部材用ステンレス鋼としても好適である。   The stainless steel of the present invention is suitable as a stainless steel for polymer electrolyte fuel cell separators, and is also suitable as a stainless steel for current-carrying members of various electric devices.

Claims (7)

質量%で、C:0.001〜0.10%、Si:0.001〜1.0%、Mn:0.001〜1.2%、Al:0.001〜0.5%、Cr:15.0〜35.0%、N:0.001〜0.10%を含有し、残部がFeおよび不可避的不純物からなり、表面の酸化皮膜の厚さが20〜500nmであり、表面接触抵抗が20mΩ・cm以下であることを特徴とするステンレス鋼。 In mass%, C: 0.001 to 0.10%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.2%, Al: 0.001 to 0.5%, Cr: 15.0-35.0% N: containing 0.001 to 0.10%, the balance being Fe and unavoidable impurities, Ri thickness. 20 to 500 nm der oxide film on the surface, the surface A stainless steel having a contact resistance of 20 mΩ · cm 2 or less. さらに、質量%で、Ti:1.0%以下、Nb:1.0%以下、Zr:1.0%以下、Cu:1.0%以下、V:1.0%以下、Ni:12.0%以下、Mo:5.0%以下のうち1種以上を含有することを特徴とする請求項1に記載のステンレス鋼。   Further, in terms of mass%, Ti: 1.0% or less, Nb: 1.0% or less, Zr: 1.0% or less, Cu: 1.0% or less, V: 1.0% or less, Ni: 12. The stainless steel according to claim 1, containing one or more of 0% or less and Mo: 5.0% or less. 前記酸化皮膜に含まれるSi、Al、Mn、Feの原子数比が(Si+Al+Mn)/Fe≦1.0を満たすことを特徴とする請求項1又は2に記載のステンレス鋼。   3. The stainless steel according to claim 1, wherein the atomic ratio of Si, Al, Mn, and Fe contained in the oxide film satisfies (Si + Al + Mn) /Fe≦1.0. 請求項1〜3のいずれか1項に記載のステンレス鋼からなる固体高分子型燃料電池用セパレータ。 The separator for polymer electrolyte fuel cells which consists of stainless steel of any one of Claims 1-3 . 請求項1〜3のいずれか1項に記載のステンレス鋼を製造するに際し、冷間圧延後または冷間圧延材焼鈍後に、水素濃度が30容積%以上であり残部が不活性ガス及び不可避的不純物からなり、露点が−40〜0℃である雰囲気下で、温度が800〜1200℃の熱処理を行ない、該熱処理後に、酸液を用いる表面改質処理を行うことを特徴とするステンレス鋼の製造方法。 In producing the stainless steel according to any one of claims 1 to 3, after cold rolling or after cold rolling material annealing, the hydrogen concentration is 30% by volume or more, and the balance is inert gas and inevitable impurities. A stainless steel, characterized in that a heat treatment is performed at a temperature of 800 to 1200 ° C. in an atmosphere having a dew point of −40 to 0 ° C., and a surface modification treatment using an acid solution is performed after the heat treatment. Method. 前記酸液が無機酸であることを特徴とする請求項に記載のステンレス鋼の製造方法。 The method for producing stainless steel according to claim 5 , wherein the acid solution is an inorganic acid. 前記無機酸が弗酸または弗硝酸であることを特徴とする請求項に記載のステンレス鋼の製造方法。 The method for producing stainless steel according to claim 6 , wherein the inorganic acid is hydrofluoric acid or hydrofluoric nitric acid.
JP2011147014A 2011-07-01 2011-07-01 Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell separator Active JP5821336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147014A JP5821336B2 (en) 2011-07-01 2011-07-01 Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147014A JP5821336B2 (en) 2011-07-01 2011-07-01 Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell separator

Publications (2)

Publication Number Publication Date
JP2013014796A JP2013014796A (en) 2013-01-24
JP5821336B2 true JP5821336B2 (en) 2015-11-24

Family

ID=47687732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147014A Active JP5821336B2 (en) 2011-07-01 2011-07-01 Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell separator

Country Status (1)

Country Link
JP (1) JP5821336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102068479B1 (en) * 2018-09-28 2020-01-22 현대비앤지스틸 주식회사 Manufacturing method of ferritic stainless steel for proton exchange membrane fuel cell separator with excellent surface contact resistance

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205911A (en) * 2013-03-21 2014-10-30 大日本印刷株式会社 Stainless steel machining member and manufacturing method of stainless steel machining member
JP6427907B2 (en) * 2013-03-21 2018-11-28 大日本印刷株式会社 Manufacturing method of stainless steel processed parts
CN103276307B (en) * 2013-04-16 2017-08-08 宝钢不锈钢有限公司 A kind of highly corrosion resistant high ductility high chromium ferritic stainless steel steel plate and its manufacture method
CN106103773B (en) * 2014-03-20 2018-02-27 杰富意钢铁株式会社 Ferritic stainless steel with excellent formability and its manufacture method
CN106574333A (en) 2014-07-31 2017-04-19 杰富意钢铁株式会社 Ferritic stainless steel and method for producing same
KR101951581B1 (en) * 2014-12-24 2019-02-22 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and process for producing same
JP6016987B1 (en) * 2015-05-29 2016-10-26 日新製鋼株式会社 Stainless steel foil for battery exterior and manufacturing method thereof
KR20190040574A (en) * 2017-10-11 2019-04-19 주식회사 포스코 Austenitic stainless steel excellent in electric conductivity and method of manufacturing the same
KR102103014B1 (en) * 2018-06-12 2020-05-29 주식회사 포스코 Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same
CN109554633B (en) * 2018-12-25 2020-04-10 成都永益泵业股份有限公司 Corrosion-resistant material and preparation method of phosphoric acid slurry pump
KR20220125344A (en) * 2020-02-27 2022-09-14 닛테츠 스테인레스 가부시키가이샤 Stainless steel for metal foil, stainless steel foil and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980492B2 (en) * 1993-08-05 1999-11-22 新日本製鐵株式会社 Ferritic stainless steel strip with excellent surface properties and method for producing the same
JP2001240911A (en) * 2000-03-01 2001-09-04 Nisshin Steel Co Ltd Stainless steel-made member to be red-heated and its producing method
KR100730870B1 (en) * 2003-06-10 2007-06-20 수미도모 메탈 인더스트리즈, 리미티드 Steel for hydrogen gas environment, structural hardware member and method for producing same
JP2005213539A (en) * 2004-01-28 2005-08-11 Nisshin Steel Co Ltd Ferritic stainless steel for solid polymeric fuel cell separator
JP5703560B2 (en) * 2009-12-11 2015-04-22 Jfeスチール株式会社 Stainless steel plate for fuel cell separator with excellent conductivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102068479B1 (en) * 2018-09-28 2020-01-22 현대비앤지스틸 주식회사 Manufacturing method of ferritic stainless steel for proton exchange membrane fuel cell separator with excellent surface contact resistance

Also Published As

Publication number Publication date
JP2013014796A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5821336B2 (en) Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell separator
KR101558276B1 (en) Ferritic stainless steel excellent in corrosion resistance and conductivity and method for manufacturing the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell
JP6726735B2 (en) Stainless steel for fuel cell separator and method of manufacturing the same
WO2016152870A1 (en) Hot-rolled steel sheet and manufacturing method of same, and manufacturing method of cold-rolled steel sheet
TWI466305B (en) Steel foil for solar cell substrate, solar cell substrate and solar cell and their manufacturing methods
JP6315158B1 (en) Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell
EP2910658B1 (en) Hot-rolled steel sheet for production of non-oriented electrical steel sheet and method of manufacturing same
JP5377613B2 (en) Stainless steel plate for conductive members with excellent surface electrical conductivity
JP2008285731A (en) Stainless steel sheet having excellent surface electrical conductivity, and method for producing the same
JP2018204052A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
WO2020136993A1 (en) Non-oriented electrical steel sheet and method for producing same
EP3318649B1 (en) Material for cold-rolled stainless steel sheets and manufacturing method therefor
JP5167824B2 (en) Manufacturing method of non-oriented electrical steel sheet for etching and motor core
JP7278476B2 (en) Ferritic stainless steel material and manufacturing method thereof
JP7342241B2 (en) Ferritic stainless steel
CN114930582A (en) Stainless steel for fuel cell separator having excellent surface conductivity and method for manufacturing the same
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP7281929B2 (en) Stainless steel sheet and method for manufacturing stainless steel sheet
WO2023149248A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
WO2023149249A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2010003417A (en) Austenitic stainless steel used for fuel cell separator
KR20220071946A (en) Stainless steel for fuel cell separator with excellent through-plane surface electrical conductivity and hydrophilicity, and manufacturing method thereof
CN114930583A (en) Stainless steel for fuel cell separator having excellent surface conductivity and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250