JP2005213539A - Ferritic stainless steel for solid polymeric fuel cell separator - Google Patents
Ferritic stainless steel for solid polymeric fuel cell separator Download PDFInfo
- Publication number
- JP2005213539A JP2005213539A JP2004019334A JP2004019334A JP2005213539A JP 2005213539 A JP2005213539 A JP 2005213539A JP 2004019334 A JP2004019334 A JP 2004019334A JP 2004019334 A JP2004019334 A JP 2004019334A JP 2005213539 A JP2005213539 A JP 2005213539A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- stainless steel
- fuel cell
- less
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、車載用動力源,家庭用コージェネレーションシステム等として有望な固体高分子型燃料電池に組み込まれるセパレータ用のステンレス鋼に関する。 The present invention relates to a stainless steel for a separator incorporated in a polymer electrolyte fuel cell that is promising as an in-vehicle power source, a home cogeneration system, and the like.
燃料電池には、リン酸型,溶融炭酸塩型,固体高分子型,固体電解質型等があるが、CO2,NOx,SOx等の排出がほとんどなく、非常に高い発電効率を示す固体高分子型燃料電池が有望視されている。固体高分子型燃料電池は、100℃以下の低温で動作可能であり短時間で起動できる長所のため、自動車用,定置用,モバイル機器等の電源として採用され始めている。
燃料電池は、実用に供せられる電力を取り出すため、最小単位の単セルを数十〜数百スタックすることにより組み立てている。各単セルは、プロトン交換基をもつ固体高分子の樹脂でできたイオン交換膜がプロトン伝導性電解質として機能することを利用し、イオン交換膜の一側に燃料ガスを、他側に空気,酸素等の酸化性ガスを流す構造になっている。
Fuel cells include phosphoric acid type, molten carbonate type, solid polymer type, solid electrolyte type, etc., but there is little emission of CO 2 , NOx, SOx, etc., and solid polymer showing very high power generation efficiency Type fuel cells are promising. Solid polymer fuel cells are capable of operating at a low temperature of 100 ° C. or less and can be started up in a short time, and therefore are beginning to be adopted as power sources for automobiles, stationary devices, mobile devices and the like.
The fuel cell is assembled by stacking several tens to several hundreds of unit cells of the minimum unit in order to extract electric power for practical use. Each unit cell utilizes the fact that an ion exchange membrane made of a solid polymer resin having a proton exchange group functions as a proton-conductive electrolyte, fuel gas on one side of the ion exchange membrane, air on the other side, It has a structure for flowing an oxidizing gas such as oxygen.
具体的には、イオン交換膜1の両側に酸化極2,燃料極3を接合し、酸化極2,燃料極3それぞれにガスケット4を介してセパレータ5を対向させている(図1a)。酸化極2側のセパレータ5に酸化性ガスの供給口6,排出口7が形成され、燃料極3側のセパレータ5に燃料ガスの供給口8,排出口9が形成されている。また、複数の溝5gをセパレータ5に形成し、燃料ガスg,酸化性ガスoの導通,均一分配を図っている(図1b)。
燃料ガスgには、イオン交換膜1のイオン伝導性を高めるため、90℃前後に加温された温水を通過させる方法等で加湿された水素が使用されている。場合によっては、酸化性ガスoを加湿することもある。加湿された燃料ガスg,酸化性ガスoをセル内に送り込むと、高湿度の雰囲気にセパレータ5が曝される。イオン交換膜1の樹脂成分が分解して生成したSO4 2-,F-等がセパレータ5の表面に付着することもある。その結果、セパレータ5は、腐食や溶出が生じやすい腐食性雰囲気に置かれる。腐食,溶出が発生すると、セパレータ5から溶け出した金属イオンがイオン交換膜1の分解を促進させ、或いは電極2,3中の触媒が汚染されるため、燃料電池の出力や耐久性が低下する。
Specifically, an
In order to increase the ion conductivity of the ion exchange membrane 1, hydrogen humidified by a method of passing warm water heated to around 90 ° C. is used for the fuel gas g. In some cases, the oxidizing gas o may be humidified. When the humidified fuel gas g and oxidizing gas o are sent into the cell, the separator 5 is exposed to a high humidity atmosphere. SO 4 2− , F − and the like generated by decomposition of the resin component of the ion exchange membrane 1 may adhere to the surface of the separator 5. As a result, the separator 5 is placed in a corrosive atmosphere in which corrosion and elution are likely to occur. When corrosion and elution occur, the metal ions dissolved from the separator 5 promote the decomposition of the ion exchange membrane 1 or the catalyst in the
燃料電池の性能からセパレータ材に化学的な安定性が要求されるため、切削加工,成形加工で所定形状に成形したカーボンブロックや圧縮成形したカーボン樹脂等が従来から使用されている。しかし、加工費用が高く、燃料電池の軽量化に必要な薄型化が困難である。そこで、所定形状に成形加工可能なステンレス鋼を燃料電池のセパレータ材に使用することが検討されている(特許文献1,2)。
燃料電池のセパレータ材として提案されているステンレス鋼は、Cr,Moを主要な耐食性向上元素として用い、Cr:10.5〜35質量%,Mo:0.2〜6.0質量%の範囲で添加量を選定している。Ti,Nb等を添加する場合もある。しかし、Cr,Mo,Ti,Nb等を添加したSUS436,SUS444等の高耐食鋼は、酸環境の耐食性は良好であるものの腐食の進行に伴い金属元素が溶出するため、セパレータ環境での耐食性は必ずしも十分とはいえない。実際、SUS436,SUS444等の高耐食鋼をセパレータとして組み込んだ燃料電池では、金属イオンの溶出が多く出力が早期に低下する傾向がみられる。なかでも、ステンレス鋼に最も多く含まれているFeは、Feイオンとしてイオン交換膜を分解する悪影響を及ぼす。
フェライト系ステンレス鋼のうち、耐食性に最も優れた鋼種としてSUS447J1が挙げられる。30Cr−2Moを基本成分とするSUS447J1は、耐食性に優れ、他の鋼種に比較して金属イオンの溶出も格段に少ない。しかし、SUS447J1は、他のフェライト系ステンレス鋼よりも安定したクロム系不動態皮膜(酸化物,水酸化物の混合皮膜)で鋼板表面が覆われているため高い接触抵抗を示す。また、不動態皮膜が膜厚不均一で欠陥が存在すると、接触抵抗は低いものの耐溶出性に劣り、溶出イオン中のFeがイオン交換膜の分解を促進させ、使用時間が長くなるに応じて電池性能が劣化する。
Stainless steel proposed as a separator for fuel cells uses Cr and Mo as main corrosion resistance improving elements, and Cr: 10.5 to 35% by mass, Mo: 0.2 to 6.0% by mass The addition amount is selected. Ti, Nb, etc. may be added. However, high corrosion resistant steels such as SUS436 and SUS444 to which Cr, Mo, Ti, Nb, etc. are added have good corrosion resistance in acid environments, but metal elements are eluted with the progress of corrosion, so the corrosion resistance in separator environments is Not necessarily enough. In fact, in fuel cells incorporating high corrosion resistant steel such as SUS436 and SUS444 as separators, metal ions are leached and output tends to decrease early. Among these, Fe, which is contained most in stainless steel, has an adverse effect of decomposing the ion exchange membrane as Fe ions.
Among ferritic stainless steels, SUS447J1 is listed as the steel type with the most excellent corrosion resistance. SUS447J1 containing 30Cr-2Mo as a basic component is excellent in corrosion resistance and has much less metal ion elution than other steel types. However, SUS447J1 shows higher contact resistance because the steel plate surface is covered with a chromium-based passive film (mixed film of oxide and hydroxide) that is more stable than other ferritic stainless steels. Also, if the passive film is non-uniform in thickness and has defects, the contact resistance is low but the elution resistance is inferior, and Fe in the eluted ions promotes the decomposition of the ion exchange membrane, and the use time becomes longer. Battery performance is degraded.
そこで、SUS447J1クラスの耐溶出性が確保され、しかも接触抵抗が低いフェライト系ステンレス鋼を無垢で燃料電池セパレータに適用できると、低コスト化,軽量化が図られ燃料電池の実用化が大きく進展すると考えられる。また、総運転時間が数万時間にも達する家庭用定置型の燃料電池では耐溶出性が最重視され、自動車用の可動型燃料電池では車載スペースを確保するため接触抵抗が最重視されるように、燃料電池それぞれの用途に最も適したステンレス鋼無垢材が望まれる。
本発明は、セパレータ環境における腐食や金属イオンの溶出に及ぼす合金成分の影響を調査・検討した結果見出された知見をベースとし、特定組成のフェライト系ステンレス鋼をセパレータ材に選択することにより、出力低下の要因となるイオン交換膜の分解,劣化を抑え、耐久性が向上した燃料電池を提供することを目的とする。
Therefore, if ferritic stainless steel with SUS447J1 class elution resistance and low contact resistance can be applied to fuel cell separators in a solid state, cost reduction and weight reduction will be achieved, and the practical application of fuel cells will greatly advance. Conceivable. In addition, elution resistance is the most important for stationary fuel cells for home use with a total operating time of tens of thousands of hours, and contact resistance is considered to be the most important for movable fuel cells for automobiles in order to secure space on the vehicle. In addition, a solid stainless steel material most suitable for each fuel cell application is desired.
The present invention is based on knowledge found as a result of investigating and examining the influence of alloy components on corrosion and metal ion elution in the separator environment, and by selecting a ferritic stainless steel having a specific composition as a separator material, An object of the present invention is to provide a fuel cell having improved durability by suppressing the decomposition and deterioration of an ion exchange membrane that causes a decrease in output.
本発明の固体高分子型燃料電池セパレータ用フェライト系ステンレス鋼は、C:0.020質量%以下,Si:0.50質量%以下,Mn:0.50質量%以下,P:0.040質量%以下,S:0.005質量%以下,Ni:0.50質量%以下,Cr:28〜32質量%,Mo:1.5〜2.5質量%,Cu:0.80質量%以下,Nb:0.03〜0.25質量%,Ti:0.03〜0.25質量%,Al:0.20質量%を超え1.00質量%以下,N:0.020質量%以下,必要に応じV:0.2〜1.0質量%,残部が実質的にFeの組成をもち、C+N:0.025質量%以下,Ni+Cu:0.80質量%以下に規制されていることを特徴とする。 The ferritic stainless steel for the polymer electrolyte fuel cell separator of the present invention has C: 0.020 mass% or less, Si: 0.50 mass% or less, Mn: 0.50 mass% or less, P: 0.040 mass. %: S: 0.005 mass% or less, Ni: 0.50 mass% or less, Cr: 28-32 mass%, Mo: 1.5-2.5 mass%, Cu: 0.80 mass% or less, Nb: 0.03 to 0.25% by mass, Ti: 0.03 to 0.25% by mass, Al: more than 0.20% by mass and 1.00% by mass or less, N: 0.020% by mass or less, necessary V: 0.2 to 1.0% by mass, the balance is substantially Fe, and is restricted to C + N: 0.025% by mass or less and Ni + Cu: 0.80% by mass or less. And
本発明の固体高分子型燃料電池セパレータ用フェライト系ステンレス鋼では、Cr,Mo含有量の適正管理によって耐溶出性を向上させ、更にはP含有量の厳密管理によってステンレス鋼本来の耐食性を維持しながら表面接触抵抗を低下させている。そのため、黒鉛製セパレータに比較して加工性,生産性が格段に優れた燃料電池セパレータとなり、複数の単セルをスタックした状態でも表面接触抵抗に起因する内部損失が少なく、発電効率の高い燃料電池が得られる。特に、従来のフェライト系ステンレス鋼ではみられない低水準に耐溶出性があるため、総運転時間が数万時間にも達する家庭用定置型の燃料電池セパレータとしても好適である。 In the ferritic stainless steel for the polymer electrolyte fuel cell separator of the present invention, elution resistance is improved by proper management of Cr and Mo contents, and further, the original corrosion resistance of stainless steel is maintained by strict management of P content. However, the surface contact resistance is reduced. Therefore, it becomes a fuel cell separator with much better processability and productivity than graphite separators, and there is little internal loss due to surface contact resistance even when multiple single cells are stacked, and fuel cell with high power generation efficiency Is obtained. In particular, since it has elution resistance at a low level not found in conventional ferritic stainless steel, it is also suitable as a stationary fuel cell separator for home use with a total operation time of tens of thousands of hours.
ステンレス鋼板表面の不動態皮膜は、耐食性の発現に有効であるものの、比電気抵抗の高い酸化物,水酸化物の混合物からなるため表面接触抵抗を高くする原因である。しかも、強固な不動態皮膜は耐食性に有利であるが表面接触抵抗を一層増加させるので、耐食性の向上と表面接触抵抗の低減とは相反するものといえる。そこで、本発明者等は、先ず金属イオンの溶出を抑制する最適成分系を検討し、更に第三元素の添加によって耐溶出性を大きく損なうことなく表面接触抵抗を低減する方法を調査・検討した。 Although the passive film on the surface of the stainless steel plate is effective for the development of corrosion resistance, it is a cause of increasing the surface contact resistance because it is composed of a mixture of oxide and hydroxide with high specific electrical resistance. Moreover, although a strong passive film is advantageous for corrosion resistance, it further increases the surface contact resistance, so it can be said that the improvement in corrosion resistance and the reduction in surface contact resistance are contradictory. Therefore, the present inventors first examined an optimal component system that suppresses the elution of metal ions, and further investigated and studied a method for reducing surface contact resistance without significantly degrading the elution resistance by adding a third element. .
調査・検討の過程で、3質量%以上のCuを含有する18Crオーステナイト系ステンレス鋼の溶出イオン量が多いことを見出した。なかでも、Cu,Niの溶出が多く、電解質膜に悪影響を及ぼすFeイオンも検出された。溶出イオン量の増加原因は必ずしも明白ではないが、多量のCu,Niを含むステンレス鋼では鋼板表面の不動態皮膜にもCu,Niが含まれており、燃料電池の運転中に不動態皮膜からCu,Niが溶け出し、Cu,Niの溶出によって不動態皮膜に生じた欠陥を介して素地からFeが溶出したものと推察される。 In the process of investigation and examination, it was found that the amount of ions eluted from 18Cr austenitic stainless steel containing 3% by mass or more of Cu was large. Among them, Cu and Ni were much eluted, and Fe ions having an adverse effect on the electrolyte membrane were also detected. The cause of the increase in the amount of eluted ions is not always clear, but in stainless steel containing a large amount of Cu and Ni, the passive film on the steel plate surface also contains Cu and Ni, and the passive film is not removed during fuel cell operation. It is presumed that Cu and Ni are dissolved and Fe is eluted from the substrate through defects generated in the passive film due to elution of Cu and Ni.
他方、多量のCu,Niを含まないフェライト系ステンレス鋼で溶出量を低く抑える成分系を検討した結果、Cr:28質量%以上,Mo:1.5質量%以上,Ni+Cu:0.80質量%以下でセパレータ材の要求特性が満足されることを見出した。すなわち、製造性に悪影響を及ぼさない範囲でCr,Moを可能な限り多く含有させて不動態皮膜のCr濃度を増加させると、Ni,Cuがある程度含まれていても、優れた耐溶出性を維持できると考えられる。 On the other hand, as a result of studying a component system that suppresses the elution amount low with a ferritic stainless steel not containing a large amount of Cu and Ni, Cr: 28% by mass or more, Mo: 1.5% by mass or more, Ni + Cu: 0.80% by mass It was found that the required characteristics of the separator material are satisfied below. That is, when Cr and Mo are contained as much as possible within a range that does not adversely affect manufacturability and the Cr concentration of the passive film is increased, excellent elution resistance can be obtained even if Ni and Cu are contained to some extent. It can be maintained.
更に、Cr,Moを添加した成分系で第三元素の影響を詳細に検討した結果、通常のフェライト系ステンレス鋼に含まれるレベル以上(具体的には、0.20質量%を超える量、好ましくは0.25質量%以上)のAlを添加するとき、表面接触抵抗が若干低下し、イオン交換膜の劣化が抑制されることが判った。この理由は必ずしも明らかでないが、次のように推察される。
セパレータに使用されていないAl添加ステンレス鋼の表面にAlが濃縮しており、使用後にはステンレス鋼表面,電解質膜の双方にAlが検出される。このことから、本成分系のAl添加ステンレス鋼では電気伝導度が非常に低い酸化物:アルミナ(Al2O3)の他にAlN等の化合物が不動態皮膜に含まれることにより接触抵抗が低下するものと考えられる。
Furthermore, as a result of detailed examination of the effect of the third element in the component system to which Cr and Mo are added, the level is higher than the level contained in ordinary ferritic stainless steel (specifically, an amount exceeding 0.20% by mass, preferably It has been found that when Al is added in an amount of 0.25 mass% or more, the surface contact resistance is slightly lowered and the deterioration of the ion exchange membrane is suppressed. The reason for this is not necessarily clear, but is presumed as follows.
Al is concentrated on the surface of Al-added stainless steel not used in the separator, and Al is detected on both the stainless steel surface and the electrolyte membrane after use. For this reason, in this component system Al-added stainless steel, the contact resistance is lowered due to inclusion of a compound such as AlN in addition to oxide (alumina (Al 2 O 3 )) having a very low electrical conductivity. It is thought to do.
また、Alは、セパレータの高湿度,酸性環境で比較的溶出しやすい元素であるが、溶出Alがイオン交換膜の分解,劣化に及ぼす影響は小さく、むしろAl無添加の場合に比較してイオン交換膜の分解,劣化が抑制される傾向にある。したがって、イオン交換膜を構成する分子が抜けた部分にAlが置換し、同じく溶出したFeとの置換が防止されることがイオン交換能劣化防止の一因と考えられる。 In addition, Al is an element that is relatively easy to elute in the high humidity and acidic environment of the separator, but the effect of the eluted Al on the decomposition and deterioration of the ion exchange membrane is small. There is a tendency to suppress degradation and deterioration of the exchange membrane. Therefore, Al is substituted in the portion where the molecules constituting the ion exchange membrane are missing, and the substitution with the eluted Fe is also considered to be one factor for preventing the deterioration of the ion exchange capacity.
以下、本発明燃料電池セパレータに使用されるフェライト系ステンレス鋼の合金成分,含有量等を説明する。
〔C,N:0.020質量%以下〕
C,Nはフェライト系ステンレス鋼の加工性,低温靭性を低下させる成分であり、多量のCr,Moを含む本成分系においては加工性,低温靭性を確保するため可能な限りC,Nを低減することが好ましい。そのため、C,N含有量の上限を共に0.020質量%と規定し、C,Nの合計含有量を0.025質量%以下に規制した。更に高いレベルの加工性,低温靭性を確保する上では、C,Nの合計含有量を0.020質量%以下に規制することが好ましい。
〔Si,Mn:0.50質量%以下〕
Siはフェライト系ステンレス鋼を硬質化し、Mnは耐食性を低下させるので、Si,Mn共に低いほど好ましく含有量の上限を0.50質量%に規制した。
Hereinafter, the alloy components, contents, and the like of the ferritic stainless steel used in the fuel cell separator of the present invention will be described.
[C, N: 0.020 mass% or less]
C and N are components that lower the workability and low-temperature toughness of ferritic stainless steel. In this component system containing a large amount of Cr and Mo, C and N are reduced as much as possible to ensure workability and low-temperature toughness. It is preferable to do. For this reason, the upper limit of the C and N content is specified as 0.020 mass%, and the total content of C and N is regulated to 0.025 mass% or less. In order to secure a higher level of workability and low temperature toughness, the total content of C and N is preferably regulated to 0.020% by mass or less.
[Si, Mn: 0.50 mass% or less]
Since Si hardens ferritic stainless steel and Mn reduces corrosion resistance, the lower the content of both Si and Mn, the more preferably the upper limit of the content is regulated to 0.50% by mass.
〔P:0.040質量%以下〕
本成分系では、通常のフェライト系ステンレス鋼に許容される範囲のPを含むことができる。P含有量の増加に伴い、ステンレス鋼が硬質化し加工性が劣化するので、P含有量の上限を0.040質量%に設定する。
[P: 0.040% by mass or less]
In this component system, it is possible to include P in a range acceptable for ordinary ferritic stainless steel. As the P content increases, the stainless steel hardens and the workability deteriorates, so the upper limit of the P content is set to 0.040% by mass.
〔S:0.005質量%以下〕
ステンレス鋼の耐食性に悪影響を及ぼすため可能な限り低減することが好ましく、本成分系ではS含有量の上限を0.005質量%に規定した。
〔Ni:0.50質量%以下,Cu:0.80質量%以下〕
多量のNi,Cu添加は耐溶出性の劣化をもたらすので、含有量の上限をそれぞれNi:0.50質量%,Cu:0.80質量%に設定すると共にNi,Cuの合計含有量を0.80質量%以下に規制した。しかし、酸性雰囲気下の耐全面腐食性を改善すると共に少量添加でフェライト系ステンレス鋼の低温靭性を大幅に向上させるので、金属イオンの溶出がない範囲で且つ耐全面腐食性,低温靭性を改善するため、好ましくはNi:0.15〜0.35質量%,Cu:0.20〜0.50質量%以下,Ni+Cu:0.50質量%以下の範囲でNi,Cu含有量を選定する。
[S: 0.005 mass% or less]
Since it adversely affects the corrosion resistance of stainless steel, it is preferable to reduce it as much as possible. In this component system, the upper limit of the S content is defined as 0.005% by mass.
[Ni: 0.50 mass% or less, Cu: 0.80 mass% or less]
Addition of a large amount of Ni and Cu causes degradation of elution resistance. Therefore, the upper limit of the content is set to Ni: 0.50% by mass and Cu: 0.80% by mass, respectively, and the total content of Ni and Cu is set to 0. It was regulated to .80% by mass or less. However, it improves the overall corrosion resistance under acidic atmosphere and greatly improves the low temperature toughness of ferritic stainless steel by adding a small amount, thus improving the overall corrosion resistance and low temperature toughness in the range where metal ions are not eluted. Therefore, the Ni and Cu contents are preferably selected in the range of Ni: 0.15 to 0.35 mass%, Cu: 0.20 to 0.50 mass% or less, and Ni + Cu: 0.50 mass% or less.
〔Cr:28〜32質量%〕
セパレータ環境における耐食性確保のため、28質量%以上のCr含有量が必要である。Cr含有量の増加に伴い耐食性が向上するが、過剰添加は加工性,低温靭性を劣化させるので、Cr含有量の上限を32質量%に規制した。
〔Mo:1.5〜2.5質量%〕
セパレータ環境における耐食性確保のため1.5質量%以上のMoが必要であるが、過剰添加はステンレス鋼を硬質化するのでMo含有量の上限を2.5質量%に規制した。
[Cr: 28-32% by mass]
In order to ensure corrosion resistance in the separator environment, a Cr content of 28% by mass or more is necessary. Corrosion resistance improves with an increase in Cr content, but excessive addition deteriorates workability and low temperature toughness, so the upper limit of Cr content was regulated to 32 mass%.
[Mo: 1.5 to 2.5% by mass]
In order to ensure corrosion resistance in the separator environment, 1.5% by mass or more of Mo is necessary, but excessive addition hardens stainless steel, so the upper limit of the Mo content was regulated to 2.5% by mass.
〔Nb,Ti:0.03〜0.25質量%〕
溶接部の耐食性,加工性の改善に有効な成分であり、本成分系ではNbでCを、TiでNを固定している。C,Nを固定する作用は、共に0.03質量%以上のNb,Ti添加でみられるが、0.25質量%を超える過剰添加は加工性,低温靭性に悪影響を及ぼす。
〔Al:0.20質量%を超え1.00質量%以下〕
表面接触抵抗の低下、イオン交換膜の劣化抑制に有効な成分であり、0.20質量%を超える量でAlの添加効果がみられる。Alは、Nを固定し、溶接部の耐食性向上にも有効な成分である。しかし、過剰添加はフェライト系ステンレス鋼の靭性,製造性に悪影響を及ぼすので、Al含有量の上限を1.00質量%に設定する。靭性低下,製造性悪化をきたさない範囲で表面接触抵抗を下げ、イオン交換膜の劣化を抑制する上では、Al含有量を0.20〜1.00質量%(更には、0.25〜0.80質量%)の範囲で選定することが好ましい。
[Nb, Ti: 0.03 to 0.25% by mass]
It is an effective component for improving the corrosion resistance and workability of the weld zone. In this component system, C is fixed by Nb and N is fixed by Ti. The action of fixing C and N is observed when Nb and Ti are added in an amount of 0.03 mass% or more, but excessive addition exceeding 0.25 mass% adversely affects workability and low temperature toughness.
[Al: more than 0.20% by mass and 1.00% by mass or less]
It is an effective component for reducing the surface contact resistance and suppressing the deterioration of the ion exchange membrane, and the effect of adding Al is seen in an amount exceeding 0.20% by mass. Al is a component that fixes N and is effective in improving the corrosion resistance of the welded portion. However, excessive addition adversely affects the toughness and manufacturability of ferritic stainless steel, so the upper limit of Al content is set to 1.00% by mass. In order to reduce the surface contact resistance and suppress the deterioration of the ion exchange membrane within a range not causing toughness deterioration and manufacturability deterioration, the Al content is set to 0.20 to 1.00% by mass (further, 0.25 to 0). (80 mass%) is preferable.
〔V:0.2〜1.0質量%〕
必要に応じて添加される成分であり、酸性雰囲気下でのステンレス鋼の耐食性を向上させる作用を呈する。燃料電池のSO4 2-,F-を含むセル内雰囲気下では、0.2質量%以上のV添加によって耐食性の向上がみられる。しかし、過剰添加は低温靭性,製造性に悪影響を及ぼすので、Vを添加する場合には上限を1.0質量%に規制する。
〔他の成分〕
本発明で使用するフェライト系ステンレス鋼には、製造コスト,耐食性,接触抵抗を大きく阻害しない範囲で他の成分を添加することも可能である。たとえば、溶接部の耐食性は、Ta,Zr,Hf等の炭窒化物生成元素を0.1〜0.25質量%の範囲で、或いはMg,Ca,Y等の硫化物生成元素を0.1質量%以下の範囲で添加すると改善される。耐食性改善に有効な0.50質量%以下のW,Co,Snや低温靭性改善に有効な0.1質量%以下のBも有効な合金成分である。
[V: 0.2 to 1.0% by mass]
It is a component added as necessary, and exhibits the effect of improving the corrosion resistance of stainless steel in an acidic atmosphere. Under the atmosphere in the cell containing SO 4 2− and F − of the fuel cell, the corrosion resistance is improved by adding 0.2 mass% or more of V. However, excessive addition adversely affects low temperature toughness and manufacturability, so when V is added, the upper limit is regulated to 1.0% by mass.
[Other ingredients]
It is possible to add other components to the ferritic stainless steel used in the present invention as long as the production cost, corrosion resistance, and contact resistance are not significantly impaired. For example, the corrosion resistance of the welded portion is in the range of 0.1 to 0.25% by mass of carbonitride-generating elements such as Ta, Zr, and Hf, or 0.1% of sulfide-generating elements such as Mg, Ca, and Y. It improves when added in the range of less than or equal to mass%. W, Co, Sn of 0.50 mass% or less effective for improving corrosion resistance and 0.1 mass% or less of B effective for improving low temperature toughness are also effective alloy components.
表1の成分をもつフェライト系ステンレス鋼を真空溶解炉で溶製し、鋳造,熱間圧延を経て焼鈍・酸洗,冷間圧延を繰り返し、板厚:0.1mmの冷延焼鈍板を製造した。 Ferritic stainless steel with the components shown in Table 1 is melted in a vacuum melting furnace, and after casting and hot rolling, annealing, pickling, and cold rolling are repeated to produce a cold-rolled annealed sheet with a thickness of 0.1 mm. did.
各冷延焼鈍板から切り出した100mm角の試験片の表面にカーボンペーパを接触させ、15kgf/cm2の面圧を加えたときの抵抗値を四端子法で測定した。測定した抵抗値をR(mΩ),試験片断面積をS(cm2)とし、式ρ'=R×S(mΩ・cm2)に従って接触抵抗ρ'(mΩ・cm2)を算出した。
次いで、冷延焼鈍板をプレス加工し、高さ:0.4mmのガス流路をもつセパレータを作製した。該セパレータを単セルに組み込み、電池反応で得られる凝縮水を循環させ燃料極側に再供給する構造で、セパレータ以外の配管や純水容器にはフッ素樹脂を用いた燃料電池を組み立てた。露点90℃の水素を燃料ガスに、空気を酸化性ガスに用いて燃料電池を発電させた。
Carbon paper was brought into contact with the surface of a 100 mm square test piece cut out from each cold-rolled annealed plate, and the resistance value when a surface pressure of 15 kgf / cm 2 was applied was measured by the four probe method. The measured resistance value was R (mΩ), the cross-sectional area of the test piece was S (cm 2 ), and the contact resistance ρ ′ (mΩ · cm 2 ) was calculated according to the formula ρ ′ = R × S (mΩ · cm 2 ).
Next, the cold-rolled annealed plate was pressed to produce a separator having a gas flow path with a height of 0.4 mm. The separator was assembled in a single cell, and the condensed water obtained by the battery reaction was circulated and re-supplied to the fuel electrode side. A fuel cell using a fluororesin was assembled in the piping and pure water container other than the separator. The fuel cell was generated using hydrogen with a dew point of 90 ° C. as the fuel gas and air as the oxidizing gas.
燃料ガスの加湿には、純水を入れた容量:10リットルの加湿器に水素ガスを送り込み、蒸発等による減少分の純水を500時間ごとに補充した。2500時間で純水を全て取り替え、純水に含まれている金属イオンをICP-MASS法で分析した。金属イオンの溶出量は、Fe,Cr,Ni,Mo,Cuの五元素の総和で評価した。
0.5A/cm2の定電流運転では、初期の電池出力が何れも0.58〜0.60Vであった。5000時間の連続運転中、2500時間ごとに出力電圧を測定し、出力電圧低下度(%)=(各測定時点における電圧/初期電圧)×100として出力電圧低下度を算出した。また、燃料電池から排出された水分(加湿用水分,電池反応で生じた水分の合計)のpH値を測定すると共に、試験終了後に燃料電池から取り出したセパレータの腐食状態を観察した。
For humidification of the fuel gas, hydrogen gas was fed into a humidifier with a capacity of 10 liters containing pure water, and pure water reduced by evaporation or the like was replenished every 500 hours. All pure water was replaced in 2500 hours, and metal ions contained in the pure water were analyzed by ICP-MASS method. The elution amount of metal ions was evaluated by the sum of the five elements of Fe, Cr, Ni, Mo, and Cu.
In the constant current operation of 0.5 A / cm 2 , the initial battery output was 0.58 to 0.60 V in all cases. During the continuous operation for 5000 hours, the output voltage was measured every 2500 hours, and the output voltage reduction degree was calculated as output voltage reduction degree (%) = (voltage at each measurement point / initial voltage) × 100. In addition, the pH value of the moisture discharged from the fuel cell (humidification moisture and the sum of moisture generated by the cell reaction) was measured, and the corrosion state of the separator taken out from the fuel cell after the test was observed.
表2の試験結果にみられるように、本発明で規定した成分条件を満足するステンレス鋼製セパレータは、電池排水のpH値が低く維持され、電池出力がほとんど低下していないことから、セパレータからの金属成分の溶出が少なく、セル内環境がマイルドになってイオン交換膜の分解,劣化が抑制されていることが窺われる。実際、2500時間,5000時間運転後のセパレータは、腐食が非常に軽微であり、出力電圧もほとんど低下していなかった。
他方、比較例のセパレータでは、接触抵抗が高く(鋼種F5),或いは耐溶出性が不十分で赤錆の発生(鋼種F1,F3,F5)がみられ、燃料電池セパレータに必要な耐久性が不足していた。
この対比から明らかなように、本発明で規定した成分条件を満足するフェライト系ステンレス鋼を燃料電池セパレータ材に使用すると、イオン交換膜の分解,劣化を抑えて出力電圧を高位に維持し、燃料電池の耐久性が向上することが判る。
As can be seen from the test results in Table 2, the stainless steel separator satisfying the component conditions defined in the present invention is maintained at a low pH value for battery drainage, and the battery output is hardly reduced. It can be said that the elution of the metal components is small, the environment in the cell is mild, and the decomposition and deterioration of the ion exchange membrane are suppressed. In fact, the separator after operation for 2500 hours and 5000 hours was very slightly corroded, and the output voltage was hardly lowered.
On the other hand, the separator of the comparative example has high contact resistance (steel type F5) or insufficient elution resistance, and red rust is generated (steel types F1, F3, F5), and the durability required for the fuel cell separator is insufficient. Was.
As is clear from this comparison, when ferritic stainless steel satisfying the component conditions specified in the present invention is used for the fuel cell separator material, the decomposition and deterioration of the ion exchange membrane are suppressed, and the output voltage is maintained at a high level. It can be seen that the durability of the battery is improved.
以上に説明したように、特定された成分設計のフェライト系ステンレス鋼をセパレータ素材に使用するとき、酸性で高湿度のセル内雰囲気に曝されても長期間にわたって低接触抵抗を維持し、イオン交換膜を汚染する金属イオンの溶出も抑えられた燃料電池セパレータが得られる。そのため、出力電圧の低下が少なく、耐久性に優れた燃料電池が提供される。しかも、黒鉛製に比較して加工が容易なステンレス鋼製セパレータであるため、燃料電池の薄型化,軽量化も図られる。 As described above, when ferritic stainless steel of the specified component design is used for the separator material, low contact resistance is maintained over a long period of time even when exposed to an acidic and high-humidity cell atmosphere, and ion exchange is performed. A fuel cell separator in which elution of metal ions that contaminate the membrane is suppressed can be obtained. Therefore, there is provided a fuel cell with little decrease in output voltage and excellent durability. Moreover, since the stainless steel separator is easier to process than graphite, the fuel cell can be made thinner and lighter.
1:イオン交換膜 2:酸化極 3:燃料極 4:ガスケット 5:セパレータ 5g:溝 6:酸化性ガス供給口 7:酸化性ガス排出口 8:燃料ガス供給口 9:燃料ガス排出口
g:燃料ガス o:酸化性ガス
1: Ion exchange membrane 2: Oxidizing electrode 3: Fuel electrode 4: Gasket 5:
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004019334A JP2005213539A (en) | 2004-01-28 | 2004-01-28 | Ferritic stainless steel for solid polymeric fuel cell separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004019334A JP2005213539A (en) | 2004-01-28 | 2004-01-28 | Ferritic stainless steel for solid polymeric fuel cell separator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005213539A true JP2005213539A (en) | 2005-08-11 |
Family
ID=34903578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004019334A Pending JP2005213539A (en) | 2004-01-28 | 2004-01-28 | Ferritic stainless steel for solid polymeric fuel cell separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005213539A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013014796A (en) * | 2011-07-01 | 2013-01-24 | Jfe Steel Corp | Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer fuel electrolyte cell separator |
US9290845B2 (en) | 2008-12-29 | 2016-03-22 | Posco | Stainless steel for polymer fuel cell separator and method for preparing same |
-
2004
- 2004-01-28 JP JP2004019334A patent/JP2005213539A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9290845B2 (en) | 2008-12-29 | 2016-03-22 | Posco | Stainless steel for polymer fuel cell separator and method for preparing same |
US11047029B2 (en) | 2008-12-29 | 2021-06-29 | Posco | Stainless steel for polymer fuel cell separator and method for preparing same |
JP2013014796A (en) * | 2011-07-01 | 2013-01-24 | Jfe Steel Corp | Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer fuel electrolyte cell separator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2005073423A1 (en) | Ferritic stainless steel for polymer electrolyte fuel cell separator, polymer electrolyte fuel cell separator and polymer electrolyte fuel cell | |
EP3703165A1 (en) | Method for producing stainless steel plate for fuel cell separator | |
JP4331718B2 (en) | Separator for fuel cell and fuel cell | |
JP2007131947A (en) | Titanium alloy material for solid polymer type fuel cell separator having low contact resistance, its production method and solid polymer type fuel cell separator using the titanium alloy material | |
JPWO2009060900A1 (en) | Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell | |
JP2004232074A (en) | Ferritic stainless steel for fuel battery separator, and production method therefor | |
JP2006206947A (en) | Water-contacting member made from stainless steel for solid polymer type fuel cell system | |
JP4133323B2 (en) | Press separator for fuel cell | |
JP2008504437A (en) | Stainless steel alloy and bipolar plate | |
JP4276325B2 (en) | Stainless steel for polymer electrolyte fuel cells | |
JP2005293982A (en) | Ferritic stainless steel for solid polymer fuel cell separator | |
KR20080109148A (en) | Stainless steel having excellent corrosion resistance and electric conductivity and bipolar plate made of the same | |
JP2004002960A (en) | Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor | |
JP2007191763A (en) | Austenitic stainless steel for separator of polymer-electrolyte fuel cell, and separator of fuel cell | |
KR101356954B1 (en) | Stainless steel for polymer electrolyte membrane fuel cell separator and the method of manufacturing the same | |
JP4322137B2 (en) | Ferritic stainless steel for polymer electrolyte fuel cell separator | |
JP4967831B2 (en) | Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same | |
JP4322135B2 (en) | Ferritic stainless steel for polymer electrolyte fuel cell separator | |
JP4322136B2 (en) | Ferritic stainless steel for polymer electrolyte fuel cell separator | |
JP2005213539A (en) | Ferritic stainless steel for solid polymeric fuel cell separator | |
US8148034B2 (en) | Metallic separator for fuel cell | |
WO2021019849A1 (en) | Austenitic stainless steel sheet for fuel cell separator substrate | |
EP4080622A1 (en) | Stainless steel for proton exchange membrane fuel cell separator and production method thereof | |
JP3238812B2 (en) | Metal materials for solid oxide fuel cells | |
JP4604302B2 (en) | Polymer electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070307 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090602 |