JP5820531B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5820531B2
JP5820531B2 JP2014530400A JP2014530400A JP5820531B2 JP 5820531 B2 JP5820531 B2 JP 5820531B2 JP 2014530400 A JP2014530400 A JP 2014530400A JP 2014530400 A JP2014530400 A JP 2014530400A JP 5820531 B2 JP5820531 B2 JP 5820531B2
Authority
JP
Japan
Prior art keywords
electrode group
electrode
active material
battery
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014530400A
Other languages
Japanese (ja)
Other versions
JPWO2014027388A1 (en
Inventor
絵里香 渡邊
絵里香 渡邊
独志 西森
独志 西森
高橋 宏
高橋  宏
秀和 藤村
秀和 藤村
高橋 和雄
和雄 高橋
竜治 河野
竜治 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5820531B2 publication Critical patent/JP5820531B2/en
Publication of JPWO2014027388A1 publication Critical patent/JPWO2014027388A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池をはじめとする蓄電池の電極、およびこの電極を有する蓄電池に関する。   The present invention relates to an electrode of a storage battery including a lithium ion secondary battery, and a storage battery having this electrode.

近年、化石燃料の資源的節約や地球温暖化などを背景に、省エネルギーの推進が求められており、二次電池の中でも大容量で小型のリチウムイオン二次電池は省エネルギー社会の実現に重要な蓄電デバイスとして期待されている。そのため、携帯情報端末やコードレス電子機器電源としての民生用途、電動工具の電源や電力貯蔵用といった産業用途、電気自動車やハイブリッド電気自動車といった車載用途を中心に需要が拡大している。また、このような様々な用途に応じて、高容量化に代表される電池性能向上に向けた開発が加速している。   In recent years, there has been a demand for energy conservation against the background of fossil fuel resource conservation and global warming. Among secondary batteries, large-capacity, small-sized lithium ion secondary batteries are an important power storage for realizing an energy-saving society. Expected as a device. For this reason, demand is expanding mainly in consumer applications as power sources for portable information terminals and cordless electronic devices, industrial applications such as power sources for power tools and power storage, and in-vehicle applications such as electric vehicles and hybrid electric vehicles. In addition, development for improving battery performance represented by high capacity is accelerating according to such various uses.

リチウムイオン二次電池の高容量化を実現するために、電極に用いる活物質の種類を変える取り組みがなされている。これまで用いてきた負極活物質に代表される非晶質炭素では、充放電に伴うリチウムの挿入脱離過程において、活物質の膨張収縮量が問題とならない程度であった。しかし、負極活物質をより高容量なグラファイトに変えることで、非晶質炭素に比べ、充放電時における活物質の膨張収縮量が大きくなる。充放電サイクルを繰り返すことで、グラファイトは約1割から3割程度、体積が膨張する。   In order to increase the capacity of lithium ion secondary batteries, efforts are being made to change the type of active material used for the electrodes. In the amorphous carbon typified by the negative electrode active material that has been used so far, the amount of expansion and contraction of the active material is not a problem in the lithium insertion / extraction process associated with charge / discharge. However, by changing the negative electrode active material to graphite having a higher capacity, the amount of expansion and contraction of the active material during charging / discharging becomes larger than that of amorphous carbon. By repeating the charge and discharge cycle, the volume of graphite expands by about 10 to 30%.

また一方で、高容量化実現のために、電極活物質合剤の実装密度を向上させる取り組みがなされている。しかし、活物質合剤の実装密度を向上させることで、充放電過程における活物質の膨張により電極に掛かる内部応力が大きくなる。電極活物質膨張時の内部応力が大きくなると、活物質間に存在する細孔がつぶれ、細孔部分に充填してある電解液中を移動するリチウムイオンの動きが阻害されるため、電池容量の低下や電池性能劣化が生じる。さらに、電極に掛かる内部応力により電極が破断、あるいは挫屈し、内部短絡の原因となり、電池の安全性が低下する。   On the other hand, efforts are being made to improve the mounting density of the electrode active material mixture in order to achieve higher capacity. However, by increasing the mounting density of the active material mixture, the internal stress applied to the electrode increases due to the expansion of the active material in the charge / discharge process. When the internal stress during the expansion of the electrode active material increases, the pores existing between the active materials are crushed, and the movement of lithium ions moving in the electrolyte filled in the pores is hindered. Decrease and battery performance degradation occur. In addition, the internal stress applied to the electrode causes the electrode to break or buckle, causing an internal short circuit and reducing the safety of the battery.

このような課題に対し、本技術分野の背景技術として、特開2011−8929号公報(特許文献1)がある。この公報には、「正極板と多孔質絶縁体の間または負極板と多孔質絶縁体の間の少なくともいずれか一方に非水電解液で軟化して電極板の膨張収縮による応力を緩和する樹脂を配置して電極群を構成する」と記載されている。   For such a problem, there is JP 2011-8929 A (Patent Document 1) as a background art in this technical field. This publication states that “a resin that softens with at least one of a positive electrode plate and a porous insulator or between a negative electrode plate and a porous insulator with a non-aqueous electrolyte to relieve stress due to expansion and contraction of the electrode plate. To constitute an electrode group. "

また、特許文献2には、「正極集電体上に正極合剤層が形成された正極板、および負極集電体上に負極合剤層が形成された負極板をセパレータを介して捲回して電極群を構成し、正極板および負極板の少なくとも一方の極板が、電極群の長径方向の端部にある湾曲部において、集電体上に合剤層が形成されない未塗工部を有し、且つ、外装ケースがラミネート外装である」と記載されている。   Patent Document 2 discloses that a “positive electrode plate having a positive electrode mixture layer formed on a positive electrode current collector and a negative electrode plate having a negative electrode mixture layer formed on a negative electrode current collector are wound through a separator. An electrode group, and at least one of the positive electrode plate and the negative electrode plate is an uncoated portion where a mixture layer is not formed on the current collector in a curved portion at the end of the electrode group in the major axis direction. And the exterior case is a laminate exterior ”.

特開2011−8929号公報JP 2011-8929 A 特開2011−119145号公報JP2011-119145A

特許文献1に記載のリチウムイオン二次電池では、正極板、セパレータ(多孔質絶縁体)、負極板の少なくともいずれか一方に膨張収縮を緩和する樹脂を設置しているため、電極に掛かる内部応力を緩和することは可能となる。しかし、設置する樹脂により電極体積が増大するため、電池体積に占める電池容量が低下する。そのため、電池容量向上の目的達成が困難となる。また、部品点数が増加し、コストアップに繋がる。   In the lithium ion secondary battery described in Patent Document 1, since a resin that relaxes expansion and contraction is disposed on at least one of the positive electrode plate, the separator (porous insulator), and the negative electrode plate, internal stress applied to the electrode Can be mitigated. However, since the electrode volume is increased by the resin to be installed, the battery capacity in the battery volume is reduced. This makes it difficult to achieve the purpose of improving battery capacity. In addition, the number of parts increases, leading to an increase in cost.

一方、特許文献2に記載のリチウムイオン二次電池では、特に内部応力が大きくなる湾曲部において、集電体上に活物質を含む合剤層が形成されていない未塗工部が存在するため、活物質膨張に伴う電極に掛かる内部応力緩和に対して効果的である。しかし、円筒型電池のような湾曲部で占める電極群に対して、集電体上に合剤層が形成されない未塗工部を有することで、集電体全体の面積に占める電極面積が小さくなり、同様に容量低下を伴う。   On the other hand, in the lithium ion secondary battery described in Patent Document 2, there is an uncoated portion where a mixture layer containing an active material is not formed on the current collector, particularly in a curved portion where internal stress increases. It is effective for the relaxation of internal stress applied to the electrode accompanying the expansion of the active material. However, the electrode area occupying the entire area of the current collector is small by having an uncoated part where the mixture layer is not formed on the current collector with respect to the electrode group occupied by the curved part such as a cylindrical battery. In the same manner, the capacity is reduced.

本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、部品点数増加によるコストアップや、電池体積に占める容量低下を伴わず、電極活物質の膨張により電極に加えられる内部応力を緩和することで、高容量で劣化の小さな捲回型のリチウムイオン二次電池を提供することである。   The present invention has been made in view of the above points, and the object of the present invention is to add to the electrode by expansion of the electrode active material without increasing the cost due to the increase in the number of parts and reducing the capacity occupied in the battery volume. It is to provide a wound type lithium ion secondary battery having a high capacity and little deterioration by alleviating internal stress.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、電極板が捲回された電極群と、該電極群が収容される電池缶と、該電池缶に注液される電解液と、を有するリチウムイオン二次電池であって、前記電極群の外周面に取り付けられて前記電極群の捲回状態を維持し、前記電極群の径方向の膨張に応じて変形して該膨張を許容する保持手段を有することを特徴としている。   The present application includes a plurality of means for solving the above problems. To give an example, an electrode group in which an electrode plate is wound, a battery can in which the electrode group is accommodated, and a liquid injection into the battery can A lithium ion secondary battery having an electrolyte solution that is attached to the outer peripheral surface of the electrode group and maintains the wound state of the electrode group, and is deformed according to the radial expansion of the electrode group And holding means for allowing the expansion.

本発明によれば、部品点数の増加を伴わず電極に加えられる内部応力を緩和することが可能となり、電極板に設けられている電極層の潰れを回避できる。電極層の潰れを回避することで、電極層内に形成されている活物質間の細孔が潰れて塞がれるのを防ぐことができ、電解液中のリチウムイオンの動きが阻害されず、電池の性能劣化を抑制できる。また、電極面積減少や電池体積増大を伴わないため、電池の高容量化を実現できる。   According to the present invention, it is possible to relieve the internal stress applied to the electrode without increasing the number of parts, and the collapse of the electrode layer provided on the electrode plate can be avoided. By avoiding the collapse of the electrode layer, the pores between the active materials formed in the electrode layer can be prevented from being crushed and blocked, the movement of lithium ions in the electrolyte is not inhibited, Battery performance degradation can be suppressed. Further, since the electrode area is not reduced and the battery volume is not increased, the battery can be increased in capacity.

本発明の第一の実施形態における、伸縮して電極に掛かる内部応力を緩和する伸縮性捲回電極群固定具を有するリチウムイオン二次電池の構成を示す平面図。The top view which shows the structure of the lithium ion secondary battery which has a stretchable winding electrode group fixing tool which relieves the internal stress which stretches and applies to an electrode in 1st embodiment of this invention. 本発明の第一の実施形態における、伸縮して電極に掛かる内部応力を緩和する伸縮性捲回電極群固定具を有するリチウムイオン二次電池の構成を示す模式図。The schematic diagram which shows the structure of the lithium ion secondary battery which has a stretchable wound electrode group fixing tool which relieves the internal stress applied to an electrode by expanding and contracting in the first embodiment of the present invention. 本発明第二の実施形態における、徐々に電解液に溶解して消失する可溶性捲回電極群固定具を有するリチウムイオン二次電池の構成を示す平面図。The top view which shows the structure of the lithium ion secondary battery which has the soluble wound electrode group fixing tool which melt | dissolves in electrolyte solution gradually and lose | disappears in 2nd embodiment of this invention. 本発明第二の実施形態における、電極膨張後のリチウムイオン二次電池の構成を示す平面図。The top view which shows the structure of the lithium ion secondary battery after electrode expansion in 2nd embodiment of this invention. 本発明第三の実施形態における、電極の膨張に伴い徐々に収縮する膨張吸収材を有するリチウムイオン二次電池の構成を示す平面図。The top view which shows the structure of the lithium ion secondary battery which has an expansion | swelling absorber which shrinks gradually with expansion | swelling of an electrode in 3rd embodiment of this invention. 従来の捲回電極群固定具の使用方法を示す模式図。The schematic diagram which shows the usage method of the conventional winding electrode group fixing tool. 18650型の円筒型電池の構成を示す表。The table | surface which shows the structure of a 18650 type cylindrical battery.

以下、本発明の実施例について図を用いて説明する。なお、以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the following description shows the specific example of the content of this invention, and this invention is not limited to these description.

本発明の実施例1を図1の平面図および図2の模式図に示す。また、比較のため、従来方法についての模式図を図6に示す。   Example 1 of the present invention is shown in the plan view of FIG. 1 and the schematic diagram of FIG. For comparison, FIG. 6 shows a schematic diagram of the conventional method.

本実施例1のリチウムイオン二次電池C1は、円筒型のリチウムイオン二次電池であり、正極板、セパレータ107、負極板、セパレータ107からなる一積層単位を軸芯109に捲回して電極群100を形成し、これを電池缶101に収納した構造をとる。なお、軸芯109が捲回電極群作成後に取り外されて存在しない構成を有する場合もある。   The lithium ion secondary battery C1 of Example 1 is a cylindrical lithium ion secondary battery, in which one stacked unit composed of a positive electrode plate, a separator 107, a negative electrode plate, and a separator 107 is wound around an axial core 109 to form an electrode group. 100 is formed and the battery can 101 is housed in this structure. In some cases, the shaft core 109 may be removed after the wound electrode group is created and does not exist.

電極群100の最外周は、セパレータ107で覆われるように捲回されており、捲き終わり端部である捲回電極群端部110は、テープ102で固定されて、捲回が巻き解けないようになっている。   The outermost periphery of the electrode group 100 is wound so as to be covered with the separator 107, and the wound electrode group end portion 110, which is the end of the winding, is fixed with the tape 102 so that the winding cannot be unwound. It has become.

電極群100は、正極板、セパレータ107、負極板、セパレータ107を重ね合わせて捲回し、互いに密着させた状態で実装することで、電池電極としての充放電機能を果たす。テープ102は、電極群100形成時の密着性保持に必要な構成要素となるものであり、電極群100の外周面に取り付けられて電極群100の捲回状態を維持し、電極群100の径方向の膨張に応じて変形してその膨張を許容する保持手段としての機能を有する。   The electrode group 100 fulfills a charge / discharge function as a battery electrode by mounting the positive electrode plate, the separator 107, the negative electrode plate, and the separator 107 in a state of being wound and in close contact with each other. The tape 102 is a necessary component for maintaining the adhesion when the electrode group 100 is formed, and is attached to the outer peripheral surface of the electrode group 100 to maintain the wound state of the electrode group 100. It has a function as a holding means that deforms according to the expansion in the direction and allows the expansion.

テープ102は、捲回電極群端部110に一端が貼着され、捲回電極群端部110から突出して他端が電極群100の外周面に貼着されて、電極群100の径方向の膨張収縮に応じて電極群の捲回方向に沿って伸縮する伸縮性を有している。そして、電極群100の捲回軸方向に亘って延在するように取り付けられている。テープ102の具体的な材質として、ポリイミドに比べて伸び率の高いポリプロピレンテープやポリエステルテープ等が挙げられるが、これに限られるものではない。   One end of the tape 102 is attached to the wound electrode group end 110, the other end projects from the wound electrode group end 110, and the other end is attached to the outer peripheral surface of the electrode group 100. It has elasticity that expands and contracts along the winding direction of the electrode group according to expansion and contraction. And it is attached so that it may extend over the winding axis direction of the electrode group 100. FIG. Specific examples of the material of the tape 102 include a polypropylene tape and a polyester tape that have a higher elongation rate than polyimide, but are not limited thereto.

正極板(電極板)は、正極集電箔(集電体)104上に、正極活物質や導電助剤、バインダを含む正極活物質層(電極層)103が形成されて構成される。また、負極板(電極板)も同様に、負極集電箔(集電体)106上に負極活物質や導電助剤、バインダを含む負極活物質層(電極層)105が形成されて構成される。ここで、正極活物質層103、負極活物質層105は、活物質や導電助剤、バインダの他に、添加物等を含む構成としても良い。正極活物質層103及び負極活物質層105は、活物質の間に電解液が染み込み可能な細孔を有している。   The positive electrode plate (electrode plate) is configured by forming a positive electrode active material layer (electrode layer) 103 containing a positive electrode active material, a conductive additive, and a binder on a positive electrode current collector foil (current collector) 104. Similarly, the negative electrode plate (electrode plate) is configured by forming a negative electrode active material layer (electrode layer) 105 containing a negative electrode active material, a conductive additive, and a binder on a negative electrode current collector foil (current collector) 106. The Here, the positive electrode active material layer 103 and the negative electrode active material layer 105 may include an additive and the like in addition to the active material, the conductive additive, and the binder. The positive electrode active material layer 103 and the negative electrode active material layer 105 have pores through which the electrolytic solution can permeate between the active materials.

一般的に、正極集電箔104にはアルミニウム箔が使用され、負極集電箔106には銅箔が使用されるが、ニッケル箔、ステンレス箔などの導電性材料を用いても良く、またこれらに限られるものではない。   In general, an aluminum foil is used for the positive electrode current collector foil 104, and a copper foil is used for the negative electrode current collector foil 106. However, a conductive material such as a nickel foil or a stainless steel foil may be used. It is not limited to.

正極活物質層103の活物質材料として、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどに代表されるが、これに限るものではなく、適宜変えることができる。また、二種類以上の物質を用いても良い。負極活物質層105の活物質材料として、例えばグラファイトやチタン酸リチウムなどに代表されるが、これに限るものではなく、適宜変えることができる。   Examples of the active material of the positive electrode active material layer 103 include lithium cobaltate, lithium nickelate, and lithium manganate, but are not limited thereto and can be changed as appropriate. Two or more kinds of substances may be used. Examples of the active material of the negative electrode active material layer 105 include graphite and lithium titanate. However, the active material is not limited to this and can be changed as appropriate.

セパレータ107は、正極板と負極板との間に介在されて正極板と負極板が直接接触することを防ぎ、かつイオン導電性を保持する必要があるが、電解液を用いる電池では、細孔部を有する多孔性材料を用いることが多い。この多孔性材料として、例えばポリオレフィンやポリエチレン、ポリプロピレンに代表されるが、これに限るものではない。   The separator 107 is interposed between the positive electrode plate and the negative electrode plate to prevent direct contact between the positive electrode plate and the negative electrode plate and to maintain ionic conductivity. A porous material having a part is often used. Examples of the porous material include polyolefin, polyethylene, and polypropylene, but are not limited thereto.

電解液(図示せず)は、セパレータ107、正極活物質層103、負極活物質層105の各細孔に浸入して存在する。ここで、電解液は、イオン導電相として働き、リチウムイオン二次電池では、非水溶液系電解質が用いられる。電解液は、LiPF6、 LiBF4、 LiClO4のようなリチウム塩とエチレンカーボネートやジエチルカーボネートのような溶媒によって構成される。また、電解液は、液体やゲルに限らず、固体でも良い。An electrolytic solution (not shown) enters the pores of the separator 107, the positive electrode active material layer 103, and the negative electrode active material layer 105 and exists. Here, the electrolytic solution functions as an ionic conductive phase, and a non-aqueous electrolyte is used in the lithium ion secondary battery. The electrolytic solution is composed of a lithium salt such as LiPF 6 , LiBF 4 , and LiClO 4 and a solvent such as ethylene carbonate or diethyl carbonate. Further, the electrolytic solution is not limited to a liquid or gel but may be a solid.

図1に示す円筒型リチウムイオン二次電池C1では、充放電過程における電極群100の膨張収縮に応じてテープ102が伸縮できる材質であることを特徴とする。さらに、正極活物質層103、負極活物質層105の膨張が原因で電極群100が膨張するが、その膨張に追随してテープ102は徐々に伸びる素材によって構成されている。   The cylindrical lithium ion secondary battery C1 shown in FIG. 1 is characterized in that the tape 102 is made of a material that can expand and contract in accordance with the expansion and contraction of the electrode group 100 during the charge / discharge process. Furthermore, although the electrode group 100 expands due to the expansion of the positive electrode active material layer 103 and the negative electrode active material layer 105, the tape 102 is made of a material that gradually expands following the expansion.

通常、円筒型電池の電極群と電池缶との間には、長手方向の両端部や径方向外側に、ある程度の空間があるため、この空間を膨張収縮吸収部108とし、電極の膨張収縮を吸収することができる。即ち、電極群100の膨張に応じて伸縮性のテープ102が伸び、電極層内に形成されている活物質間の細孔を潰すことなく、膨張収縮吸収部108へ電極群100が膨張することができる。   Usually, since there is a certain amount of space between the longitudinal battery ends and the battery can between the cylindrical battery electrode group and the battery can, this space is used as the expansion / contraction absorption section 108 to expand and contract the electrode. Can be absorbed. That is, the stretchable tape 102 expands in response to the expansion of the electrode group 100, and the electrode group 100 expands into the expansion / contraction absorption part 108 without crushing the pores between the active materials formed in the electrode layer. Can do.

膨張収縮吸収部108は、その大きさを大きく取り過ぎると、電池体積に占める容量低下やコストアップにつながるので、電極群100の膨張を吸収できるだけの大きさであれば良い。特に、負極活物質層105の活物質としてグラファイトを用いている場合、充電時のリチウム挿入脱離過程による膨張収縮により、電極群100は、約1割から3割程度膨張する。   If the expansion / contraction absorption part 108 is excessively large, it leads to a reduction in capacity and cost increase in the battery volume, so that the expansion / contraction absorption part 108 only needs to be large enough to absorb the expansion of the electrode group 100. In particular, when graphite is used as the active material of the negative electrode active material layer 105, the electrode group 100 expands by about 10% to 30% due to expansion / contraction due to a lithium insertion / extraction process during charging.

ここで、円筒型リチウムイオン二次電池の代表例として、18650型電池、即ち、直径18mm、長さ65mmの円筒型電池を用いて説明する。18650型電池の構成を図7の表に示す。図7に示す表より、半径方向の負極活物質層105の厚さは0.56mm×2=1.12mmである。負極活物質が3割程度膨張する場合の電極群100の厚さ増分は0.336mmである。従って、半径方向の膨張収縮吸収部108は0.30mmから0.35mm程度の大きさで良く、軸芯の半径、セパレータの厚みや電池缶外壁を僅かに小さくすることで電池体積に占める容量低下を伴わずに適用可能である。   Here, as a typical example of the cylindrical lithium ion secondary battery, an 18650 type battery, that is, a cylindrical battery having a diameter of 18 mm and a length of 65 mm will be described. The configuration of the 18650 type battery is shown in the table of FIG. From the table shown in FIG. 7, the thickness of the negative electrode active material layer 105 in the radial direction is 0.56 mm × 2 = 1.12 mm. When the negative electrode active material expands by about 30%, the thickness increment of the electrode group 100 is 0.336 mm. Therefore, the expansion and contraction absorbing portion 108 in the radial direction may have a size of about 0.30 mm to 0.35 mm, and the capacity occupying the battery volume is reduced by slightly reducing the radius of the shaft core, the thickness of the separator, and the outer wall of the battery can. It is applicable without accompanying.

従来は、図6に示す通り、電極群100を径方向に膨張させないために、周方向全周を硬直性捲回電極群固定具600で拘束し固定していた(捲回型固定方法)。ここで、硬直性捲回電極群固定具の600の長手方向の高さは電極高さの3分の1〜1倍程度の幅を持つテープが用いられるが、特に限定はされない。また、硬直性捲回電極群固定具600の材質として、通常、絶縁性があり伸縮性の小さいポリイミドテープが用いられていた。   Conventionally, as shown in FIG. 6, in order not to expand the electrode group 100 in the radial direction, the entire circumference in the circumferential direction is restrained and fixed by the rigid wound electrode group fixture 600 (a wound type fixing method). Here, the height of the rigid wound electrode group fixture 600 in the longitudinal direction is a tape having a width of about one third to one times the electrode height, but is not particularly limited. In addition, as a material of the rigid wound electrode group fixture 600, a polyimide tape having an insulating property and small stretchability is usually used.

しかし、硬直性捲回電極群固定具600で拘束しても、充放電繰り返しにより活物質の膨張は起こるため、電極群100の半径方向への厚み変化は抑制されるものの、その分、活物質層103、105に強大な圧縮力が加えられて、活物質層103、105に存在する活物質間の細孔が潰されてしまう。ここで、従来品について充放電サイクル後の劣化した電池を解体して観察してみると、硬直性捲回電極群固定具600で固定されている位置の活物質間の細孔が主に潰されていることが分かった。活物質間の細孔が潰れることで、前述した通り、電解液中のリチウムイオンの動きが阻害され、電池容量低下や電池性能劣化につながる。   However, even if restrained by the rigid wound electrode group fixture 600, the active material expands due to repeated charge and discharge, and thus the thickness change in the radial direction of the electrode group 100 is suppressed. A strong compressive force is applied to the layers 103 and 105, and the pores between the active materials existing in the active material layers 103 and 105 are crushed. Here, when disassembling and observing the deteriorated battery after the charge / discharge cycle in the conventional product, the pores between the active materials at positions fixed by the rigid wound electrode group fixture 600 are mainly crushed. I found out that By crushing the pores between the active materials, as described above, the movement of lithium ions in the electrolytic solution is hindered, leading to battery capacity reduction and battery performance deterioration.

そこで、本実施例では、図2に示す通り、捲回電極群端部110を伸縮性のテープ102で留める構成を採用する。テープ102は、捲回電極群端部110に一端が貼着され、捲回電極群端部110から突出して他端が電極群100の外周面に貼着されて、電極群100の径方向の膨張収縮に応じて電極群の捲回方向に沿って伸縮する伸縮性を有している。   Therefore, in this embodiment, as shown in FIG. 2, a configuration is adopted in which the wound electrode group end portion 110 is fastened with a stretchable tape 102. One end of the tape 102 is attached to the wound electrode group end 110, the other end projects from the wound electrode group end 110, and the other end is attached to the outer peripheral surface of the electrode group 100. It has elasticity that expands and contracts along the winding direction of the electrode group according to expansion and contraction.

したがって、電極群100の膨張に起因して電極群100に作用する内部応力を緩和することができる。テープ102は、電極群100の膨張に伴い、図1に矢印で示すように、捲回方向に沿って伸張して活物質層103、105に圧縮力が作用するのを抑制し、活物質層103、105に存在する細孔が潰れるのを防止できる。   Accordingly, internal stress acting on the electrode group 100 due to the expansion of the electrode group 100 can be relaxed. As the electrode group 100 expands, the tape 102 expands along the winding direction as shown by an arrow in FIG. 1 to suppress the compressive force from acting on the active material layers 103 and 105, and the active material layer It can prevent that the pore which exists in 103,105 is crushed.

本実施例のリチウムイオン二次電池C1によれば、電極群100の捲回軸方向に亘って延在するようにテープ102が取り付けられるので、電極群100が径方向に膨張した場合に、電極群100の捲回軸方向に亘って均一な力で留めることができる。したがって、従来のように、捲回軸方向の一部分に局所的に圧縮力が作用するのを防ぐことができる。   According to the lithium ion secondary battery C1 of the present embodiment, since the tape 102 is attached so as to extend over the winding axis direction of the electrode group 100, when the electrode group 100 expands in the radial direction, the electrode The group 100 can be clamped with a uniform force over the winding axis direction. Therefore, it is possible to prevent a compressive force from acting locally on a part in the winding axis direction as in the prior art.

次に、実施例2の構成を図3に示す。また、図3について充放電サイクルを繰り返して膨張した後の構成を図4に示す。ここで、既に説明した図1、図2に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。   Next, the configuration of the second embodiment is shown in FIG. Further, FIG. 4 shows a configuration after the expansion by repeating the charge / discharge cycle in FIG. Here, the description is abbreviate | omitted about the part which has the same code | symbol shown by already demonstrated FIG. 1, FIG. 2, and the part which has the same function.

本実施例において特徴的なことは、実施例1のテープ102の代わりに、電極群100に外嵌されて、もしくは、電極群100の外周面に周状に連続して塗布されて、電極群100の外周面を被覆し、電解液の浸透により、電極群100の径方向の膨張に伴い漸次溶解して、厚みが漸次薄くなる可溶性の被覆体300を設けたことを特徴としている。   What is characteristic in this embodiment is that the electrode group 100 is externally fitted to the electrode group 100 instead of the tape 102 of the first embodiment, or is applied continuously to the outer peripheral surface of the electrode group 100 in a circumferential manner. The outer peripheral surface of the electrode assembly 100 is covered, and a soluble covering 300 is provided which gradually dissolves as the electrode group 100 expands in the radial direction due to permeation of the electrolyte, and the thickness gradually decreases.

そして、電極群100が電池缶101に接触する大きさまで膨張する場合、被覆体300は完全に溶解して消失しても良い。さらに、この被覆体300には、充放電サイクルの繰り返しによる電解液の劣化を抑制する添加剤が含まれることが望ましい。   And when the electrode group 100 expand | swells to the magnitude | size which contacts the battery can 101, the coating body 300 may melt | dissolve completely and may lose | disappear. Furthermore, it is desirable that the covering 300 includes an additive that suppresses deterioration of the electrolytic solution due to repeated charge / discharge cycles.

前述した通り、電極群100が膨張する前の電池使用初期段階では、電極群100における正極板、セパレータ107、負極板、セパレータ107の密着性を保持する必要がある。しかし、充放電サイクルを繰り返すにつれ徐々に電極群100が膨張するため、図4に示すように、電極群100の外周面が電池缶101の内周面に接面して電極群100が電池缶101により保持される段階では、被覆体300は不必要な部品となる。   As described above, in the initial stage of battery use before the electrode group 100 expands, it is necessary to maintain the adhesion of the positive electrode plate, the separator 107, the negative electrode plate, and the separator 107 in the electrode group 100. However, as the charge / discharge cycle is repeated, the electrode group 100 gradually expands. Therefore, as shown in FIG. 4, the electrode group 100 comes into contact with the inner peripheral surface of the battery can 101 and the electrode group 100 becomes the battery can. In the stage held by 101, the covering 300 becomes an unnecessary part.

そこで、電極群100の膨張に伴い、徐々に被覆体300が電解液に溶解し、かつ、電解液の性能を落とさないような材質を採用することで、電極群100の電極層の活物質間の細孔が潰れず、電池性能劣化を抑制できる。さらに、電解液により溶解する被覆体300を用いることで、電解液の電極群100に対する高い浸透性が発揮され、初期の電池性能向上にも効果を発揮する。   Therefore, by adopting a material that gradually dissolves the covering 300 in the electrolytic solution as the electrode group 100 expands and does not deteriorate the performance of the electrolytic solution, The pores are not crushed and battery performance deterioration can be suppressed. Furthermore, by using the covering 300 that is dissolved by the electrolytic solution, high permeability of the electrolytic solution with respect to the electrode group 100 is exhibited, and the effect of improving the initial battery performance is also exhibited.

被覆体300は、電極群100に外嵌される筒体、もしくは、電極群100の外周面に周状に連続して塗布されて電極群100の外周面を被覆する塗布材であってもよい。被覆体300の材質の具体例としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤などが代表的な材質として挙げられ、電解液への溶解性について粘着付与剤等で調整されるが、これに限られるものではない。   The covering body 300 may be a cylinder that is externally fitted to the electrode group 100, or a coating material that is continuously applied to the outer peripheral surface of the electrode group 100 in a circumferential manner to cover the outer peripheral surface of the electrode group 100. . Specific examples of the material of the cover 300 include rubber adhesives, acrylic adhesives, silicone adhesives, and the like, and the solubility in the electrolytic solution is adjusted with a tackifier or the like. However, it is not limited to this.

また、電解液に溶解する被覆体300の構成例として、周状に連続して塗布される塗布材の層間に電解液の劣化を抑制する添加剤を予め実装させ、電解液に浸漬すると徐々に電解液に添加剤が溶解し、電池の長寿命化を実現できる。具体的な添加剤として、被膜成長を抑え高温特性を向上させるビニレンカーボネート等が挙げられるが、これに限られるものではない。なお、被覆体300は、筒体や塗布材に限定されるものではなく、電極群100を被覆できるものであればよく、例えば電極群100の外周面に貼り付ける貼付体であってもよい。   In addition, as an example of the structure of the covering 300 that dissolves in the electrolytic solution, an additive that suppresses the deterioration of the electrolytic solution is mounted in advance between the layers of the coating material that is continuously applied in a circumferential shape, and when the immersion is immersed in the electrolytic solution The additive dissolves in the electrolyte, and the battery life can be extended. Specific examples of the additive include vinylene carbonate which suppresses film growth and improves high temperature characteristics, but is not limited thereto. The covering body 300 is not limited to a cylindrical body or a coating material, and may be any adhesive body that can cover the electrode group 100, for example, an adhesive body that is attached to the outer peripheral surface of the electrode group 100.

実施例3の構成を図5に示す。   The configuration of Example 3 is shown in FIG.

本実施例において特徴的なことは、実施例1のテープ102や実施例2の被覆体300の代わりに、電極群100の外周面と電池缶101の内周面との間に、電極群100の径方向の膨張に応じて厚みが漸次薄くなる収縮性の膨張吸収体500を設けたことである。   What is characteristic in the present embodiment is that the electrode group 100 is interposed between the outer peripheral surface of the electrode group 100 and the inner peripheral surface of the battery can 101 instead of the tape 102 of the first embodiment and the covering 300 of the second embodiment. In other words, the shrinkable expansion absorbent body 500 whose thickness gradually decreases in accordance with the expansion in the radial direction is provided.

本実施例では、膨張収縮吸収部108は設けずに、収縮性のある膨張吸収体500を、電池缶101の内部に設けて電極群100の密着性を保持し、電極群100の膨張を許容する方法について示している。   In this embodiment, the expansion / contraction absorption part 108 is not provided, but a contraction-type expansion absorber 500 is provided inside the battery can 101 to maintain the adhesion of the electrode group 100 and allow the electrode group 100 to expand. Shows how to do.

具体的には、多孔性フィルムで膨張吸収体500を構成し、電極群100の膨張に伴い、膨張吸収体500が徐々に薄くなるような柔軟性を有する構成をとる。多孔性フィルムとは、ポリエチレン、ポリプロピレン、PPS等の樹脂、EPDM等のゴムを素材とする。より柔軟性が必要な場合はガラス繊維で強化されていないものを用いる。多孔質であることにより、電極群100の膨張に対して柔軟に変形することができる。このような構造を取ることで、膨張収縮吸収部108のようなスペースが存在しないため、電池缶101内部における捲回された電極群100のずれや振動を抑制でき、より安全性の高い長寿命電池を得ることができる。   Specifically, the expansion absorber 500 is configured with a porous film, and the expansion absorber 500 is configured to have flexibility such that the expansion absorber 500 gradually becomes thinner as the electrode group 100 expands. The porous film is made of a resin such as polyethylene, polypropylene or PPS, or a rubber such as EPDM. If more flexibility is required, one not reinforced with glass fiber is used. By being porous, the electrode assembly 100 can be flexibly deformed with respect to expansion. By adopting such a structure, since there is no space like the expansion / contraction absorption part 108, the displacement and vibration of the wound electrode group 100 inside the battery can 101 can be suppressed, and a longer life with higher safety. A battery can be obtained.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

100 電極群
101 電池缶
102 テープ
103 正極活物質層
104 正極集電箔(アルミニウム箔)
105 負極活物質層
106 負極集電箔(銅箔)
107 セパレータ
108 膨張収縮吸収部
109 軸芯
110 捲回電極群端部(捲き終わり端部)
300 被覆体
500 膨張吸収体
600 硬直性捲回電極群固定具
C1 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 100 Electrode group 101 Battery can 102 Tape 103 Positive electrode active material layer 104 Positive electrode current collection foil (aluminum foil)
105 Negative electrode active material layer 106 Negative electrode current collector foil (copper foil)
107 Separator 108 Expansion / Shrink Absorption Portion 109 Axle Core 110 End of Winding Electrode Group (End of Firing)
300 Cover 500 Expansion Absorber 600 Rigid Winding Electrode Group Fixture C1 Lithium Ion Secondary Battery

Claims (3)

電極板が捲回された電極群と、該電極群が収容される電池缶と、該電池缶に注液される電解液と、を有するリチウムイオン二次電池であって、
前記電極群の外周面に取り付けられて前記電極群の捲回状態を維持し、前記電極群の径方向の膨張に応じて変形して該膨張を許容する保持手段を有し、
前記保持手段は、前記電極群に外嵌されて、もしくは、前記電極群の外周面に周状に連続して塗布されて、該電極群の外周面を被覆し、前記電解液の浸透により、前記電極群の径方向の膨張に伴い漸次溶解して、厚みが漸次薄くなる可溶性の被覆体を有し、
前記被覆体は、前記電解液の劣化を抑制する添加剤を含み、
該添加剤は、前記被覆体の溶解に伴って漸次、前記電解液に溶解することを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising: an electrode group in which an electrode plate is wound; a battery can in which the electrode group is accommodated; and an electrolyte solution poured into the battery can,
A holding means that is attached to the outer peripheral surface of the electrode group and maintains the wound state of the electrode group, deforms according to the radial expansion of the electrode group, and allows the expansion;
The holding means is externally fitted to the electrode group or is continuously applied circumferentially to the outer peripheral surface of the electrode group to cover the outer peripheral surface of the electrode group, and by penetration of the electrolyte solution, A soluble coating that gradually dissolves with the radial expansion of the electrode group and the thickness gradually decreases,
The covering includes an additive that suppresses deterioration of the electrolytic solution,
The additive is gradually dissolved in the electrolytic solution as the covering is dissolved.
前記被覆体は、前記溶解により消失することを特徴とする請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the covering disappears by the dissolution. 前記電極板は、負極集電体の表面に負極活物質層が形成された負極板を有し、
前記負極活物質層には、負極活物質としてグラファイトが含まれていることを特徴とする請求項1またはに記載のリチウムイオン二次電池。
The electrode plate has a negative electrode plate in which a negative electrode active material layer is formed on the surface of a negative electrode current collector,
The lithium ion secondary battery according to claim 1 or 2 , wherein the negative electrode active material layer contains graphite as a negative electrode active material.
JP2014530400A 2012-08-13 2012-08-13 Lithium ion secondary battery Expired - Fee Related JP5820531B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070590 WO2014027388A1 (en) 2012-08-13 2012-08-13 Lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
JP5820531B2 true JP5820531B2 (en) 2015-11-24
JPWO2014027388A1 JPWO2014027388A1 (en) 2016-07-25

Family

ID=50685457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014530400A Expired - Fee Related JP5820531B2 (en) 2012-08-13 2012-08-13 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5820531B2 (en)
WO (1) WO2014027388A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139272A1 (en) * 2018-01-09 2019-07-18 주식회사 엘지화학 Battery case comprising gas adsorption layer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221819B2 (en) * 2014-02-25 2017-11-01 株式会社豊田自動織機 Power storage device
CN110809834B (en) * 2017-06-30 2024-02-23 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
WO2021095551A1 (en) * 2019-11-13 2021-05-20 株式会社豊田自動織機 Electrical storage device
CN115377567B (en) * 2022-08-24 2023-10-20 苏州时代华景新能源有限公司 Gradient slow-release structure of high-expansion cylindrical battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150971A (en) * 1992-10-30 1994-05-31 Sony Corp Cylindrical nonaqueous electrolyte secondary battery
JPH11273743A (en) * 1998-03-24 1999-10-08 Sony Corp Cylindrical nonaqueous electrolyte secondary battery
JP2003257495A (en) * 2002-03-05 2003-09-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2009146749A (en) * 2007-12-14 2009-07-02 Nec Tokin Corp Nonaqueous secondary battery
JP2012142206A (en) * 2011-01-04 2012-07-26 Hitachi Maxell Energy Ltd Lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150971A (en) * 1992-10-30 1994-05-31 Sony Corp Cylindrical nonaqueous electrolyte secondary battery
JPH11273743A (en) * 1998-03-24 1999-10-08 Sony Corp Cylindrical nonaqueous electrolyte secondary battery
JP2003257495A (en) * 2002-03-05 2003-09-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2009146749A (en) * 2007-12-14 2009-07-02 Nec Tokin Corp Nonaqueous secondary battery
JP2012142206A (en) * 2011-01-04 2012-07-26 Hitachi Maxell Energy Ltd Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139272A1 (en) * 2018-01-09 2019-07-18 주식회사 엘지화학 Battery case comprising gas adsorption layer
KR102234218B1 (en) * 2018-01-09 2021-03-31 주식회사 엘지화학 Battery Case Having Gas Adsorption Layer
US11581592B2 (en) 2018-01-09 2023-02-14 Lg Energy Solution, Ltd. Battery case having gas adsorption layer

Also Published As

Publication number Publication date
JPWO2014027388A1 (en) 2016-07-25
WO2014027388A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP6357708B2 (en) Electrode assembly
KR100686804B1 (en) Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same
EP3065205B1 (en) Electrode and cell having electrode
JP5820531B2 (en) Lithium ion secondary battery
KR102152143B1 (en) Electrode Assembly Comprising Separator Having Insulation-enhancing Part Formed on Edge Portion of Electrode
KR20110052594A (en) Application of force in electrochemical cells
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
JP6604324B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2008300692A (en) Power storage device
KR102547065B1 (en) Secondary battery
KR102183772B1 (en) Process for Preparation of Pouch-typed Battery Cell Using Member for Preventing Electrolyte Leakage
JP7049708B2 (en) Flexible battery, this manufacturing method and auxiliary battery including it
JP2021512464A5 (en)
JP2010198988A (en) Film case type power storage device
WO2012114586A1 (en) Lithium ion cell
JP2013140825A (en) Laminate type electrical storage element
JP5838073B2 (en) Cylindrical wound battery
JP2011134685A (en) Secondary battery
TW201703334A (en) Stack-folding typed electrode assembly
JP2014002836A (en) Wound secondary battery
JP2007123009A (en) Wound type battery
JP2006079960A (en) Flat nonaqueous electrolyte secondary battery
KR102297666B1 (en) Secondary battery and manufacturing method thereof
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP2019145330A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

LAPS Cancellation because of no payment of annual fees