JP5817794B2 - Method for demethylation or demethoxylation of aromatic compound having methoxy group - Google Patents

Method for demethylation or demethoxylation of aromatic compound having methoxy group Download PDF

Info

Publication number
JP5817794B2
JP5817794B2 JP2013146393A JP2013146393A JP5817794B2 JP 5817794 B2 JP5817794 B2 JP 5817794B2 JP 2013146393 A JP2013146393 A JP 2013146393A JP 2013146393 A JP2013146393 A JP 2013146393A JP 5817794 B2 JP5817794 B2 JP 5817794B2
Authority
JP
Japan
Prior art keywords
catalyst
atomic weight
reaction
alumina
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013146393A
Other languages
Japanese (ja)
Other versions
JP2014129331A (en
Inventor
本間 信孝
信孝 本間
草 末安
草 末安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013146393A priority Critical patent/JP5817794B2/en
Priority to PCT/IB2013/002933 priority patent/WO2014083426A1/en
Priority to MYPI2015701705A priority patent/MY177570A/en
Publication of JP2014129331A publication Critical patent/JP2014129331A/en
Application granted granted Critical
Publication of JP5817794B2 publication Critical patent/JP5817794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、メトキシ基を有する芳香族化合物を脱メチル化又は脱メトキシ化する方法に関する。   The present invention relates to a method for demethylating or demethoxylating an aromatic compound having a methoxy group.

リグニン又はリグニン含有材料に含まれる物質を熱分解又は可溶化し、さらに脱メチル化又は脱メトキシ化反応に付すことにより得られる芳香族化合物には、化学品やモノマー原料等として使用できる有用な物質が多く含まれる。   Aromatic compounds obtained by pyrolyzing or solubilizing substances contained in lignin or lignin-containing materials and further subjecting to demethylation or demethoxylation reaction are useful substances that can be used as chemicals, monomer raw materials, etc. Many are included.

非特許文献1には、リグニンを可溶化して得られた、主にグアヤコール(メトキシフェノール)を含む生成物を改質してフェノール等を生成する技術として、固定床にZrO−Al−FeOx触媒を固定させたガス流通反応装置を用い、500℃で反応を行うことが開示されている。また非特許文献2には、アリールエーテル中の芳香族C−Oとの結合を切る触媒として、均一系ニッケルカルベン触媒が開示されている。 Non-Patent Document 1 discloses ZrO 2 —Al 2 O in a fixed bed as a technique for producing phenol and the like by modifying a product mainly containing guaiacol (methoxyphenol) obtained by solubilizing lignin. It is disclosed that the reaction is carried out at 500 ° C. using a gas flow reactor in which a 3- FeOx catalyst is fixed. Non-Patent Document 2 discloses a homogeneous nickel carbene catalyst as a catalyst for breaking the bond with the aromatic C—O in the aryl ether.

しかしながら、従来の方法は、ZrO−Al−FeOx触媒や、ニッケルカルベン錯体等作製に手間がかかる触媒を用いたものであり、触媒の製造に高額な費用がかかるという問題があった。 However, the conventional method uses a ZrO 2 —Al 2 O 3 —FeOx catalyst or a nickel carbene complex or other catalyst that requires time and effort, and there is a problem that the production of the catalyst is expensive. .

特許文献1には、周期表上で第7族〜第10族の元素からなる群より選ばれる一種又は二種以上の金属を担持したゼオライトを用いて反応性の乏しいリグニンを熱処理することを特徴とする芳香族化合物の製造方法が記載されており、具体的には、リグニンを可溶化した後、これを気化させて気相反応に付すことにより、ベンゼン及びトルエンが得られたことが記載されている。しかしながら、当該方法によりカテコールやフェノールが得られたことは具体的に記載されていない。   Patent Document 1 is characterized by heat-treating lignin having poor reactivity using a zeolite carrying one or more metals selected from the group consisting of elements of Group 7 to Group 10 on the periodic table. Specifically, it is described that benzene and toluene were obtained by solubilizing lignin and then vaporizing it and subjecting it to a gas phase reaction. ing. However, it is not specifically described that catechol or phenol was obtained by this method.

特許文献2には、リグニン又はリグニン含有材料を、水及びアルコール溶媒中、固体酸触媒存在下で分解反応させ、リグニンを可溶化する方法が記載されている。実施例において、固体酸触媒としてγ−アルミナを用いることが記載されている。しかしながら、当該固体酸触媒が脱メチル化性能又は脱メトキシ化性能を有すること、さらに、これによりリグニン又はリグニン含有材料からカテコールやフェノールが得られたことは具体的には記載されていない。   Patent Document 2 describes a method of solubilizing lignin by decomposing lignin or a lignin-containing material in water and an alcohol solvent in the presence of a solid acid catalyst. In the examples, it is described that γ-alumina is used as the solid acid catalyst. However, it is not specifically described that the solid acid catalyst has demethylation performance or demethoxylation performance, and further that catechol or phenol was obtained from lignin or a lignin-containing material.

よって、低コストで簡便に調製し得る触媒を用いて上記のような工業的に有用な芳香族化合物を工業的規模で製造することを可能とする技術が求められていた。   Therefore, there has been a demand for a technique that makes it possible to produce an industrially useful aromatic compound as described above on an industrial scale using a catalyst that can be easily prepared at low cost.

特開2011−127022号公報Japanese Patent Application Laid-Open No. 2011-127022 特開2012−102297号公報JP 2012-102297 A

J. Japan. Petro. Inst, 53(3), 178-183(2010), Takao Masuda et al.J. Japan. Petro. Inst, 53 (3), 178-183 (2010), Takao Masuda et al. Science Vol. 332 no. 6028 pp. 439-443 (2011), Alexey G. Sergeevand John F. HartwigScience Vol. 332 no. 6028 pp. 439-443 (2011), Alexey G. Sergeevand John F. Hartwig

本発明は、メトキシ基を有する芳香族化合物からの脱メチル化又は脱メトキシ化された芳香族化合物の製造方法、特に、低コストで簡便に調製可能な触媒を用いて高収率で脱メチル化又は脱メトキシ化された芳香族化合物を製造する方法を提供することを目的とする。   The present invention relates to a method for producing a demethoxylated or demethoxylated aromatic compound from an aromatic compound having a methoxy group, in particular, a demethylation in a high yield using a catalyst that can be easily prepared at a low cost. Alternatively, it is an object to provide a method for producing a demethoxylated aromatic compound.

本発明者らは、γ-アルミナに高い脱メチル化性能及び脱メトキシ化性能があることを見出し、本発明に至った。すなわち、本発明は以下の発明を包含する。
(1)メトキシ基を有する芳香族化合物をγ-アルミナを含む触媒の存在下で脱メチル化又は脱メトキシ化反応を行う、芳香族化合物の製造方法。
(2)触媒が、Ag、Zr及びNiからなる群から選択される少なくとも1種の金属の酸化物をさらに含む、上記(1)に記載の方法。
(3)触媒が、Feの酸化物をさらに含む、上記(1)又は(2)に記載の方法。
(4)触媒が、酸性シリカをさらに含む、上記(1)〜(3)のいずれかに記載の方法。
(5)γ-アルミナが酸性シリカ表面に担持された形態にある、上記(4)に記載の方法。
(6)メトキシ基を有する芳香族化合物がグアヤコールである、上記(1)〜(5)のいずれかに記載の方法。
(7)液相中で反応を行う、上記(1)〜(6)のいずれかに記載の方法。
(8)γ-アルミナを含む、メトキシ基を有する芳香族化合物の脱メチル化又は脱メトキシ化用触媒。
(9)Ag、Zr及びNiからなる群から選択される少なくとも1種の金属の酸化物をさらに含む、上記(8)に記載の触媒。
(10)Feの酸化物をさらに含む、上記(8)又は(9)に記載の触媒。
(11)酸性シリカをさらに含む、上記(8)〜(10)のいずれかに記載の触媒。
The present inventors have found that γ-alumina has high demethylation performance and demethoxylation performance, and have reached the present invention. That is, the present invention includes the following inventions.
(1) A method for producing an aromatic compound, wherein an aromatic compound having a methoxy group is subjected to demethylation or demethoxylation reaction in the presence of a catalyst containing γ-alumina.
(2) The method according to (1) above, wherein the catalyst further comprises an oxide of at least one metal selected from the group consisting of Ag, Zr and Ni.
(3) The method according to (1) or (2) above, wherein the catalyst further contains an oxide of Fe.
(4) The method according to any one of (1) to (3) above, wherein the catalyst further contains acidic silica.
(5) The method according to (4) above, wherein γ-alumina is supported on the acidic silica surface.
(6) The method according to any one of (1) to (5) above, wherein the aromatic compound having a methoxy group is guaiacol.
(7) The method according to any one of (1) to (6), wherein the reaction is performed in a liquid phase.
(8) A catalyst for demethylation or demethoxylation of an aromatic compound having a methoxy group, including γ-alumina.
(9) The catalyst according to (8), further including an oxide of at least one metal selected from the group consisting of Ag, Zr, and Ni.
(10) The catalyst according to (8) or (9), further including an oxide of Fe.
(11) The catalyst according to any one of (8) to (10), further comprising acidic silica.

本発明によれば、低コストで簡便に調製可能な触媒を用いてメトキシ基を有する芳香族化合物を高収率で脱メチル化又は脱メトキシ化することができる。   According to the present invention, an aromatic compound having a methoxy group can be demethylated or demethoxylated in a high yield using a catalyst that can be easily prepared at low cost.

図1は、本発明の方法を気相反応にて行うための装置を示す図である。FIG. 1 is a view showing an apparatus for carrying out the method of the present invention by a gas phase reaction. 図2は、本発明の方法を液相反応にて行うための装置を示す図である。FIG. 2 is a diagram showing an apparatus for performing the method of the present invention by a liquid phase reaction. 図3は、実施例1−7及び比較例1−2の方法により得られたフェノール収率を示す図である。FIG. 3 is a graph showing the phenol yield obtained by the methods of Example 1-7 and Comparative Example 1-2. 図4は、実施例1及び8−10の方法により得られたフェノール収率を示す図である。FIG. 4 is a graph showing the phenol yield obtained by the methods of Examples 1 and 8-10. 図5は、実施例1及び8−10の方法により得られた生成物の数(生成物種数)を示す図である。FIG. 5 is a diagram showing the number of products (number of product species) obtained by the methods of Examples 1 and 8-10. 図6は、実施例8及び11−13の方法により得られたフェノール選択率を示す図である。FIG. 6 is a graph showing the phenol selectivity obtained by the methods of Examples 8 and 11-13. 図7は、実施例9及び14−16の方法により得られたフェノール選択率を示す図である。FIG. 7 is a graph showing the phenol selectivity obtained by the methods of Examples 9 and 14-16. 図8は、実施例10及び17−19の方法により得られたフェノール選択率を示す図である。FIG. 8 is a graph showing the phenol selectivity obtained by the methods of Examples 10 and 17-19. 図9は、実施例20及び21の方法により得られたフェノール収率を示す図である。FIG. 9 is a graph showing the phenol yield obtained by the methods of Examples 20 and 21. 図10は、実施例20及び21の方法により得られた芳香族化合物収率を示す図である。FIG. 10 is a diagram showing the yield of aromatic compounds obtained by the methods of Examples 20 and 21. 図11は、実施例8−10及び22−26の方法により得られたフェノール収率を示す図である。FIG. 11 is a graph showing the phenol yield obtained by the methods of Examples 8-10 and 22-26. 図12は、実施例22及び26−28の方法により得られたフェノール収率を示す図である。FIG. 12 is a graph showing the phenol yield obtained by the methods of Examples 22 and 26-28.

本発明者らは、γ-アルミナに高い脱メチル化性能及び脱メトキシ化性能があることを見出し、メトキシ基を有する芳香族化合物をγ-アルミナを含む触媒の存在下で脱メチル化又は脱メトキシ化反応を行うことにより、高収率で脱メチル化又は脱メトキシ化された芳香族化合物が得られることを見出した。さらに、Ag、Zr及びNiからなる群から選択される少なくとも1種の金属の酸化物や酸性シリカを触媒に含ませることにより、さらに高い脱メチル化性能及び脱メトキシ化性能を有する触媒が得られることを見出した。本発明に使用される触媒は低コストで簡便に調製することができる。   The present inventors have found that γ-alumina has high demethylation performance and demethoxylation performance, and an aromatic compound having a methoxy group is demethylated or demethoxylated in the presence of a catalyst containing γ-alumina. It has been found that an aromatic compound demethylated or demethoxylated in a high yield can be obtained by carrying out the conversion reaction. Furthermore, a catalyst having higher demethylation performance and demethoxylation performance can be obtained by including at least one metal oxide or acidic silica selected from the group consisting of Ag, Zr and Ni in the catalyst. I found out. The catalyst used in the present invention can be easily prepared at low cost.

本発明の方法に用いられるメトキシ基を有する芳香族化合物は、特に制限されないが、例えば、リグニンを分解又は可溶化した際に得られる化合物が含まれ、具体的には、グアヤコール、アニソール、シリンゴール(2,6−ジメトキシフェノール)、2−メトキシ−4−メチルフェノール、イソオイゲノール及びこれらの誘導体が挙げられ、これらの中で、グアヤコール、アニソールが好ましい。上記誘導体としては、グアイアシルグリセロール−β−グアイアシルエーテル等が挙げられる。リグニンを含有する材料としては、例えば、パームヤシの樹幹・空房、バガス、稲わら、麦わら、トウモロコシ残渣(コーンストーバー、コーンコブ、コーンハル)、ヤトロファ種皮・殻、木材チップ等が挙げられる。また、リグニンを可溶化する方法としては、例えばJ. Japan. Petro. Inst, 53(3), 178-183(2010) Takao Masuda et al.に記載される方法が挙げられ、当該文献に記載される方法によればグアヤコールを主成分とした混合物が得られる。本発明の方法に用いられる原料は、少なくとも1種のメトキシ基を有する芳香族化合物を主成分として含有するものであれば、他の化合物を含有するものであってもよい。   The aromatic compound having a methoxy group used in the method of the present invention is not particularly limited, but includes, for example, a compound obtained when lignin is decomposed or solubilized, and specifically includes guaiacol, anisole, and syringol. (2,6-dimethoxyphenol), 2-methoxy-4-methylphenol, isoeugenol and derivatives thereof are mentioned. Among these, guaiacol and anisole are preferable. Examples of the derivative include guaiacylglycerol-β-guaiacyl ether. Examples of the material containing lignin include palm tree trunks / air bunch, bagasse, rice straw, straw, corn residues (corn stover, corn cob, corn hull), Jatropha seed coat / shell, wood chip and the like. Examples of a method for solubilizing lignin include the method described in J. Japan. Petro. Inst, 53 (3), 178-183 (2010) Takao Masuda et al. According to this method, a mixture containing guaiacol as a main component can be obtained. The raw material used in the method of the present invention may contain other compounds as long as it contains an aromatic compound having at least one methoxy group as a main component.

本発明の方法により得られる芳香族化合物としては、具体的には、フェノール、カテコール、クレゾール、2−メチルカテコール、4−メチルカテコール、ピロガロール、3−メトキシカテコールが挙げられる。クレゾールは、o−、m−及びp−クレゾールのいずれでもよいが、o−クレゾールが好ましい。   Specific examples of the aromatic compound obtained by the method of the present invention include phenol, catechol, cresol, 2-methylcatechol, 4-methylcatechol, pyrogallol, and 3-methoxycatechol. The cresol may be any of o-, m- and p-cresol, but o-cresol is preferred.

本発明の方法に用いられる触媒はγ-アルミナを含む。γ-アルミナを用いることにより、メトキシ基を有する芳香族化合物の改質率(メトキシ基を有する芳香族化合物の反応率)及び目的とする生成物の選択率(反応生成物中に含まれる目的とする生成物の割合)を向上させ、その結果、従来の触媒(ZrO−Al−FeOx触媒等)と比較して、目的とする生成物の収率を向上させることができる。当該効果を有効に発揮させる観点から、γ-アルミナの含有量は、触媒に対して、50〜100質量%であることが好ましく、90〜100質量%であることが特に好ましい。γ-アルミナとしては、市販の活性アルミナ、例えば、住友化学株式会社製の活性アルミナKC−501及びKHS−46を用いることができる。尚、上記含有量は触媒原料に基づき算出したものであるが、得られた触媒中の当該成分の含有量は、触媒原料に基づき算出した含有量と比較して0〜3%減少する可能性がある。 The catalyst used in the method of the present invention includes γ-alumina. By using γ-alumina, the modification rate of the aromatic compound having a methoxy group (reaction rate of the aromatic compound having a methoxy group) and the selectivity of the target product (the purpose included in the reaction product) As a result, the yield of the target product can be improved as compared with conventional catalysts (such as ZrO 2 —Al 2 O 3 —FeOx catalyst). From the viewpoint of effectively exhibiting the effect, the content of γ-alumina is preferably 50 to 100% by mass, and particularly preferably 90 to 100% by mass with respect to the catalyst. As γ-alumina, commercially available activated alumina such as activated alumina KC-501 and KHS-46 manufactured by Sumitomo Chemical Co., Ltd. can be used. In addition, although the said content was computed based on the catalyst raw material, content of the said component in the obtained catalyst may reduce 0 to 3% compared with the content computed based on the catalyst raw material. There is.

本発明の方法に用いられる触媒は、Ag、Zr及びNiからなる群から選択される少なくとも1種の金属の酸化物をさらに含むことが好ましく、Niの酸化物を含むことが特に好ましい。Ag、Zr及びNiの酸化物としては、それぞれ、Ag、ZrO及びNiOを挙げることができる。これにより、目的とする生成物の収率を向上させることができる。当該効果を有効に発揮させる観点から、γ-アルミナのAl原子量と上記金属の原子量とのモル比は、99.9:0.1〜98.0:2.0であることが好ましく、99.85:0.15〜99.0:1.0であることが特に好ましい。尚、上記γ-アルミナのAl原子量と上記金属の原子量とのモル比は触媒原料に基づき算出したものであるが、得られた触媒においては、上記比は、好ましくは99.9:0.1〜98.2:1.8、特に好ましくは99.8:0.2〜99.2:0.8となる可能性がある。 The catalyst used in the method of the present invention preferably further contains an oxide of at least one metal selected from the group consisting of Ag, Zr and Ni, and particularly preferably contains an oxide of Ni. Examples of the oxides of Ag, Zr, and Ni include Ag 2 O 3 , ZrO 2, and NiO, respectively. Thereby, the yield of the target product can be improved. From the viewpoint of effectively exhibiting the effect, the molar ratio between the Al atomic weight of γ-alumina and the atomic weight of the metal is preferably 99.9: 0.1 to 98.0: 2.0. 85: 0.15 to 99.0: 1.0 is particularly preferable. The molar ratio between the Al atomic weight of the γ-alumina and the atomic weight of the metal is calculated based on the catalyst raw material. In the obtained catalyst, the ratio is preferably 99.9: 0.1. To 98.2: 1.8, particularly preferably 99.8: 0.2 to 99.2: 0.8.

本発明の方法に用いられる触媒は、Feの酸化物をさらに含むことが好ましい。鉄の酸化物としては、FeO、Fe、Fe、FeOOH及びこれらの混合体を挙げることができる。これにより、目的とする生成物の収率を向上させることができる。当該効果を有効に発揮させる観点から、γ-アルミナのAl原子量と上記金属の原子量とのモル比は、99.9:0.1〜98.0:2.0であることが好ましく、99.85:0.15〜99.0:1.5であることが特に好ましい。尚、上記γ-アルミナのAl原子量と上記金属の原子量とのモル比は触媒原料に基づき算出したものであるが、得られた触媒においては、上記比は、好ましくは99.9:0.1〜98.2:1.8、特に好ましくは99.8:0.2〜99.2:0.8となる可能性がある。 The catalyst used in the method of the present invention preferably further contains an oxide of Fe. Examples of iron oxides include FeO, Fe 3 O 4 , Fe 2 O 3 , FeOOH, and mixtures thereof. Thereby, the yield of the target product can be improved. From the viewpoint of effectively exhibiting the effect, the molar ratio between the Al atomic weight of γ-alumina and the atomic weight of the metal is preferably 99.9: 0.1 to 98.0: 2.0. It is particularly preferable that the ratio is 85: 0.15 to 99.0: 1.5. The molar ratio between the Al atomic weight of the γ-alumina and the atomic weight of the metal is calculated based on the catalyst raw material. In the obtained catalyst, the ratio is preferably 99.9: 0.1. To 98.2: 1.8, particularly preferably 99.8: 0.2 to 99.2: 0.8.

本発明の方法に用いられる触媒は、酸性シリカをさらに含むことが好ましい。これにより、反応後に生成する反応生成物種数を低減させることができ、反応生成物からの目的とする生成物の精製をより効率的に行うことができる。また、酸性シリカのような固体酸はその表面にH原子が存在するため、H原子を効率的に反応系に供給することができ、よって反応速度を向上させることができると考えられる。当該効果を有効に発揮させる観点から、γ-アルミナのAl原子量と酸性シリカ由来のSi原子量とのモル比は、97:3〜60:40であることが好ましく、80:20〜70:30であることが特に好ましい。また、酸性シリカは、比表面積が大きいため反応点を多く確保することができ、その表面にγ-アルミナが担持された形態で触媒中に含まれることが好ましい。尚、上記γ-アルミナのAl原子量と酸性シリカ由来のSi原子量とのモル比は触媒原料に基づき算出したものであるが、得られた触媒においては、上記比は、好ましくは96:4〜65:35、特に好ましくは80:20〜75:25となる可能性がある。   The catalyst used in the method of the present invention preferably further contains acidic silica. As a result, the number of reaction product species generated after the reaction can be reduced, and the target product from the reaction product can be purified more efficiently. In addition, since solid atoms such as acidic silica have H atoms on their surfaces, it is considered that H atoms can be efficiently supplied to the reaction system, and thus the reaction rate can be improved. From the viewpoint of effectively exhibiting the effect, the molar ratio between the Al atomic weight of γ-alumina and the Si atomic weight derived from acidic silica is preferably 97: 3 to 60:40, and 80:20 to 70:30. It is particularly preferred. In addition, since acidic silica has a large specific surface area, it is possible to ensure a large number of reaction points, and it is preferable that acidic silica be contained in the catalyst in a form in which γ-alumina is supported on the surface. The molar ratio between the Al atomic weight of the γ-alumina and the Si atomic weight derived from acidic silica is calculated based on the catalyst raw material. In the obtained catalyst, the ratio is preferably 96: 4 to 65. : 35, particularly preferably 80:20 to 75:25.

本発明の方法に用いられる触媒は、目的とする生成物の選択率をさらに向上させる観点から、γ-アルミナに加えて、酸性シリカとNiの酸化物の両方を含有することが好ましい。Niの含有量は、γ-アルミナのAl原子量と酸性シリカ由来のSi原子量との総モル量100モル%に対して、0.1〜2.0モル%であることが好ましく、0.15〜1.0モル%であることが特に好ましい。尚、上記含有量は触媒原料に基づき算出したものであるが、得られた触媒中の当該成分の含有量は、触媒原料に基づき算出した含有量と比較して0〜5%減少する可能性がある。   The catalyst used in the method of the present invention preferably contains both acidic silica and an oxide of Ni in addition to γ-alumina from the viewpoint of further improving the selectivity of the target product. The content of Ni is preferably 0.1 to 2.0 mol% with respect to 100 mol% of the total molar amount of Al atomic weight of γ-alumina and Si atomic weight derived from acidic silica, It is especially preferable that it is 1.0 mol%. In addition, although the said content was computed based on the catalyst raw material, content of the said component in the obtained catalyst may reduce 0-5% compared with the content computed based on the catalyst raw material. There is.

本発明の方法に用いられる触媒は、含浸担持法、イオン交換法等により製造することができる。   The catalyst used in the method of the present invention can be produced by an impregnation support method, an ion exchange method or the like.

本発明の方法に用いられる触媒は、好ましくは乾燥及び粉砕後に、例えば大気中で、焼成処理を行って得られたものであることが好ましい。焼成温度は、350℃〜800℃であることが好ましく、450℃〜600℃であることが特に好ましい。焼成処理は、好ましくは1〜4.5時間、特に好ましくは1.5〜2.5時間行う。焼成処理を行うことにより、目的とする生成物の収率を向上させることができる。特に本発明の方法を気相にて行う場合上記のような条件を採用することが好ましい。   The catalyst used in the method of the present invention is preferably obtained by performing a calcination treatment, for example, in the air after drying and pulverization. The firing temperature is preferably 350 ° C to 800 ° C, and particularly preferably 450 ° C to 600 ° C. The firing treatment is preferably performed for 1 to 4.5 hours, particularly preferably 1.5 to 2.5 hours. By performing the baking treatment, the yield of the target product can be improved. In particular, when the method of the present invention is carried out in the gas phase, it is preferable to employ the above conditions.

本発明の方法に係る脱メチル化反応及び脱メトキシ化反応は、気相又は液相にて行うことができる。   The demethylation reaction and the demethoxylation reaction according to the method of the present invention can be performed in a gas phase or a liquid phase.

本発明の方法は、反応後の生成物の分離を容易にする観点から、気相にて行うことが好ましい。気相反応は、例えば、図1に示すような装置を用いて行うことができる。   The method of the present invention is preferably carried out in the gas phase from the viewpoint of facilitating separation of the product after the reaction. The gas phase reaction can be performed using, for example, an apparatus as shown in FIG.

本発明の方法を気相にて行う場合、溶媒としては、水、二酸化炭素(特に、超臨界二酸化炭素)を用いることが好ましく、水を用いることが特に好ましい。水としては、通常の水、イオン交換水、蒸留水等が挙げられ、水道水、工業用水等も使用できる。   When the method of the present invention is carried out in the gas phase, it is preferable to use water or carbon dioxide (particularly supercritical carbon dioxide) as the solvent, and it is particularly preferable to use water. Examples of water include normal water, ion exchange water, distilled water, and the like, and tap water, industrial water, and the like can also be used.

本発明の方法を気相にて行う場合、原料(メトキシ基を有する芳香族化合物)の溶媒に対する質量比は、特に制限されないが、十分な量の溶媒を使用して流動性を上げることにより触媒に原料を供給しやすくし、かつ経済性の面から溶媒により消費される熱量を抑える観点から、通常0.1〜5、好ましくは0.3〜1である。   When the method of the present invention is carried out in the gas phase, the mass ratio of the raw material (aromatic compound having a methoxy group) to the solvent is not particularly limited, but the catalyst is obtained by increasing the fluidity using a sufficient amount of solvent. From the viewpoint of making it easy to supply the raw material and suppressing the amount of heat consumed by the solvent from the economical aspect, it is usually 0.1 to 5, preferably 0.3 to 1.

本発明の方法を気相にて行う場合、触媒の原料(メトキシ基を有する芳香族化合物)に対する質量比は、特に制限されないが、通常1〜10000、好ましくは100〜1000である。触媒は劣化し始めた時点で交換することが好ましいが、経済性の面から初期活性より50%低下した時点で交換してもよい。また触媒は、流動層反応装置を用いて再生を繰り返しながら使用してもよい。   When performing the method of this invention in a gaseous phase, although mass ratio with respect to the raw material (aromatic compound which has a methoxy group) of a catalyst is not restrict | limited, Usually, it is 1-10000, Preferably it is 100-1000. The catalyst is preferably replaced when it starts to deteriorate, but it may be replaced when it is reduced by 50% from the initial activity in terms of economy. Moreover, you may use a catalyst, repeating reproduction | regeneration using a fluidized bed reaction apparatus.

本発明の方法を気相にて行う場合、反応温度は、特に制限されないが、通常350〜550℃、好ましくは400〜500℃である。   When the method of the present invention is carried out in the gas phase, the reaction temperature is not particularly limited, but is usually 350 to 550 ° C, preferably 400 to 500 ° C.

本発明の方法を気相にて行う場合、反応時間(原料と触媒との接触時間)は、特に制限されないが、通常0.01〜1秒、好ましくは0.1〜1秒である。   When performing the method of this invention in a gaseous phase, although reaction time (contact time of a raw material and a catalyst) in particular is not restrict | limited, Usually, 0.01 to 1 second, Preferably it is 0.1 to 1 second.

本発明の方法を気相にて行う場合、窒素、アルゴン等の不活性ガスの雰囲気下で行うことが好ましい。   When performing the method of this invention in a gaseous phase, it is preferable to carry out in inert gas atmosphere, such as nitrogen and argon.

本発明の方法を気相にて行う場合、反応圧力(絶対圧)は、特に制限されないが、0.1(大気圧)〜1MPaが好ましい。より好ましい条件は、溶媒と温度によって影響されるため適宜設定する。   When the method of the present invention is carried out in the gas phase, the reaction pressure (absolute pressure) is not particularly limited, but is preferably 0.1 (atmospheric pressure) to 1 MPa. More preferable conditions are appropriately set because they are affected by the solvent and temperature.

本発明の方法は、原料を気化させるためのエネルギーを必要とせず経済的である点で、液相にて行うことが好ましい。液相反応は、例えば、図2に示すような装置を用いて行うことができる。   The method of the present invention is preferably carried out in a liquid phase because it does not require energy for vaporizing the raw material and is economical. The liquid phase reaction can be performed using, for example, an apparatus as shown in FIG.

本発明の方法を液相にて行う場合、溶媒としては、水、反応後の生成物から有用物を除いた後の残渣水、溶融塩、イオン流体を用いることが好ましく、水を用いることが特に好ましい。水としては、通常の水、イオン交換水、蒸留水等が挙げられ、水道水、工業用水等も使用できる。   When the method of the present invention is carried out in the liquid phase, it is preferable to use water, residual water after removing useful substances from the product after reaction, molten salt, ionic fluid, and water as the solvent. Particularly preferred. Examples of water include normal water, ion exchange water, distilled water, and the like, and tap water, industrial water, and the like can also be used.

本発明の方法を液相にて行う場合、原料(メトキシ基を有する芳香族化合物)の溶媒に対する質量比は、特に制限されないが、反応物の均一性を確保する観点から、通常0.1〜100、好ましくは1〜20である。液相反応の場合、高濃度スラリー状で反応を行うことができる。   When the method of the present invention is performed in a liquid phase, the mass ratio of the raw material (aromatic compound having a methoxy group) to the solvent is not particularly limited, but is usually 0.1 to 0.1% from the viewpoint of ensuring the uniformity of the reaction product. 100, preferably 1-20. In the case of a liquid phase reaction, the reaction can be performed in the form of a high concentration slurry.

本発明の方法を液相にて行う場合、触媒の原料(メトキシ基を有する芳香族化合物)に対する質量比は、特に制限されないが、通常1〜100、好ましくは1〜50である。   When performing the method of this invention in a liquid phase, the mass ratio with respect to the raw material (aromatic compound which has a methoxy group) of a catalyst is although it does not restrict | limit, Usually, it is 1-100, Preferably it is 1-50.

本発明の方法を液相にて行う場合、反応温度は、特に制限されないが、通常300〜400℃である。   When the method of the present invention is performed in a liquid phase, the reaction temperature is not particularly limited, but is usually 300 to 400 ° C.

本発明の方法を液相にて行う場合、反応時間は、特に制限されないが、通常0.5〜3時間、好ましくは1〜2時間である。   When the method of the present invention is carried out in the liquid phase, the reaction time is not particularly limited, but is usually 0.5 to 3 hours, preferably 1 to 2 hours.

本発明の方法を液相にて行う場合、窒素、アルゴン等の不活性ガスの雰囲気下又は大気等の含酸素雰囲気下で行うことが好ましい。   When performing the method of this invention in a liquid phase, it is preferable to carry out in the atmosphere of inert gas, such as nitrogen and argon, or oxygen-containing atmosphere, such as air | atmosphere.

本発明の方法を液相にて行う場合、反応圧力は、特に制限されないが、5〜15MPaが好ましい。より好ましい条件は、溶媒と温度によって影響されるため適宜設定する。   When the method of the present invention is performed in a liquid phase, the reaction pressure is not particularly limited, but is preferably 5 to 15 MPa. More preferable conditions are appropriately set because they are affected by the solvent and temperature.

本発明の方法により得られる生成物は、カラムクロマトグラフィー、再結晶法、及び溶媒抽出法等の通常の方法により、反応液中から分離・精製することができる。また、生成物の同定には、元素分析、NMRスペクトル、IRスペクトル、質量分析等の各種手段が用いられる。   The product obtained by the method of the present invention can be separated and purified from the reaction solution by usual methods such as column chromatography, recrystallization method, and solvent extraction method. For product identification, various means such as elemental analysis, NMR spectrum, IR spectrum, and mass spectrometry are used.

本発明の方法により得られる、カテコール及びフェノール等の芳香族化合物は、化学品やモノマー原料等として使用することができる。   Aromatic compounds such as catechol and phenol obtained by the method of the present invention can be used as chemical products and monomer raw materials.

以下、本発明を実施例により説明するが、本発明は実施例の範囲に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to the range of an Example.

実施例1−21及び比較例1−2
気相反応
気相反応の手順を図1を参照しながら以下に説明する。
図1に示す装置において、触媒をセットする反応管の下流側に、反応後の生成物をトラップするバブリングトラップを2つ設けた。バブリングトラップA中にはアセトンを入れ、0℃(氷冷)で生成物をトラップした。さらに下流のバブリングトラップB中にはアセトン/水=6mL/2mL溶液を入れ、バブリングトラップAで取りきれなかった生成物をトラップした。また、石英で作られた反応管の上流側に、グアヤコール(メトキシフェノール)と、窒素+水蒸気を導入する開口部を設けた。
Example 1-21 and Comparative Example 1-2
The procedure of gas phase reaction vapor phase reaction is described below with reference to FIG.
In the apparatus shown in FIG. 1, two bubbling traps for trapping the product after the reaction are provided on the downstream side of the reaction tube in which the catalyst is set. Acetone was placed in the bubbling trap A, and the product was trapped at 0 ° C. (ice cooling). Further, acetone / water = 6 mL / 2 mL solution was placed in the downstream bubbling trap B, and the product that could not be removed by the bubbling trap A was trapped. An opening for introducing guaiacol (methoxyphenol) and nitrogen + water vapor was provided upstream of the reaction tube made of quartz.

上記のようにセットされた装置の管状炉の均熱帯となる箇所に触媒を約0.5gセットした。窒素及び水蒸気を上流側から30分流通させ、反応管内のガス雰囲気を調整した(窒素流量100cc/分、飽和蒸気量22.5g/m)。次に、管状炉を500℃にセットし、熱電対(図示せず)にて触媒温度が500℃に到達したことを確認した。 About 0.5 g of the catalyst was set in a place where the tubular furnace of the apparatus set as described above was in the soaking zone. Nitrogen and water vapor were allowed to flow from the upstream side for 30 minutes to adjust the gas atmosphere in the reaction tube (nitrogen flow rate 100 cc / min, saturated vapor amount 22.5 g / m 3 ). Next, the tubular furnace was set at 500 ° C., and it was confirmed by a thermocouple (not shown) that the catalyst temperature reached 500 ° C.

窒素+水蒸気を流通させた状態で、原料のグアヤコールを細管にて直接、触媒に触れさせて反応を開始させた。   In a state where nitrogen and water vapor were circulated, the raw material guaiacol was directly brought into contact with the catalyst through a thin tube to initiate the reaction.

5分後、ガス流通を停止し、2つのトラップ中にトラップされた反応生成物をガスクロマトグラフィ(FID−GC[島津製作所製、FID−GC2010plus]、カラムDB−17MS[アジレントテクノロジー社製])を用いて分析した。   After 5 minutes, the gas flow was stopped, and the reaction product trapped in the two traps was subjected to gas chromatography (FID-GC [manufactured by Shimadzu Corporation, FID-GC2010plus], column DB-17MS [manufactured by Agilent Technologies]). And analyzed.

液相反応
液相反応は図2に示すようなSUS製オートクレーブを用いて以下の手順で行った。
オートクレーブの中に所定量のグアヤコール、水及び触媒をこの順に入れ、200rpmで撹拌しながら昇温した。所定の温度を2時間保持した後、撹拌を停止して急冷した。反応中、オートクレーブに装着した圧力計により圧力を計測した。
液相反応後の生成物の分析は以下のように行った。
Liquid Phase Reaction The liquid phase reaction was carried out by the following procedure using an SUS autoclave as shown in FIG.
A predetermined amount of guaiacol, water and catalyst were put in this order in the autoclave, and the temperature was raised while stirring at 200 rpm. After maintaining the predetermined temperature for 2 hours, the stirring was stopped and the mixture was rapidly cooled. During the reaction, the pressure was measured with a pressure gauge attached to the autoclave.
Analysis of the product after the liquid phase reaction was performed as follows.

オートクレーブに残存した液状物を遠心分離にかけた後、上澄みをアセトンに溶解させて、ガスクロマトグラフィ(FID−GC[島津製作所製、FID−GC2010plus]、カラムDB−17MS[アジレントテクノロジー社製])を用いて分析した。さらに、オートクレーブが常温になった後、シリンジで内部のガスを採取し、ガスクロマトグラフィ(TCD−GC[島津製作所製、TCD−GC2010plus]、FID−GC[島津製作所製、FID−GC2010plus])を用いて生成ガスを分析した。   After centrifuging the liquid remaining in the autoclave, the supernatant was dissolved in acetone, and gas chromatography (FID-GC [manufactured by Shimadzu Corporation, FID-GC2010plus], column DB-17MS [manufactured by Agilent Technologies]) was used. And analyzed. Furthermore, after the autoclave reaches room temperature, the internal gas is collected with a syringe, and gas chromatography (TCD-GC [manufactured by Shimadzu Corp., TCD-GC2010plus], FID-GC [manufactured by Shimadzu Corp., FID-GC2010plus]) is used. The generated gas was analyzed.

[実施例1]
住友化学株式会社製の活性アルミナKC−501(住化アルケム株式会社より入手)を400℃×2時間で焼成して得られた触媒を用いて、表1に示す条件下で気相反応を行った。
[Example 1]
Using a catalyst obtained by calcining activated alumina KC-501 manufactured by Sumitomo Chemical Co., Ltd. (available from Sumika Alchem Co., Ltd.) at 400 ° C. for 2 hours, a gas phase reaction was performed under the conditions shown in Table 1. It was.

[実施例2]
住友化学株式会社製の活性アルミナKC−501(住化アルケム株式会社より入手)に下記の方法にて銀を担持させた。
[Example 2]
Silver was supported on activated alumina KC-501 (available from Sumika Alchem Co., Ltd.) manufactured by Sumitomo Chemical Co., Ltd. by the following method.

500ccビーカーに150cc〜200ccのイオン交換水を入れ、活性アルミナKC−501(約10g)を加えた。得られた溶液を室温下、200rpmで約10分間攪拌した。   A 500 cc beaker was charged with 150 cc to 200 cc of ion exchange water, and activated alumina KC-501 (about 10 g) was added. The resulting solution was stirred for about 10 minutes at 200 rpm at room temperature.

硝酸銀(ナカライテスク製)を、活性アルミナKC−501のAl原子量:Ag原子量=99:1(mol)となる量加えて、室温下、200rpmで約10分間攪拌した。   Silver nitrate (manufactured by Nacalai Tesque) was added in an amount such that Al atomic weight: Ag atomic weight = 99: 1 (mol) of activated alumina KC-501, and stirred at room temperature for about 10 minutes at 200 rpm.

その後、80℃に設定したホットスターラーを用いて、水が蒸発するまで溶液を攪拌した後、120℃乾燥機(Air雰囲気)にて一昼夜乾燥させた。   Thereafter, the solution was stirred using a hot stirrer set to 80 ° C. until the water evaporated, and then dried in a 120 ° C. dryer (Air atmosphere) for a whole day and night.

得られた粉末を、めのう乳鉢で約5分間粉砕し、粉砕した粉末を400℃電気炉(Air雰囲気)で2時間焼成した。さらに、得られた粉末を、めのう乳鉢で約5分間粉砕して触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
The obtained powder was pulverized for about 5 minutes in an agate mortar, and the pulverized powder was baked in a 400 ° C. electric furnace (Air atmosphere) for 2 hours. Further, the obtained powder was pulverized in an agate mortar for about 5 minutes to obtain a catalyst.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例3]
硝酸銀の代わりに酸化銅(II)(ナカライテスク製)を活性アルミナKC−501のAl原子量:Cu原子量=99:1(mol)となる量で用いた以外は実施例2と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 3]
The catalyst was prepared in the same manner as in Example 2 except that copper (II) oxide (manufactured by Nacalai Tesque) was used instead of silver nitrate in an amount such that the Al atomic weight of the activated alumina KC-501: Cu atomic weight = 99: 1 (mol). Obtained.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例4]
硝酸銀の代わりにオキシ塩化ジルコニウム(ナカライテスク製)を活性アルミナKC−501のAl原子量:Zr原子量=99:1(mol)となる量で用いた以外は実施例2と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 4]
A catalyst was obtained in the same manner as in Example 2 except that zirconium oxychloride (manufactured by Nacalai Tesque) was used instead of silver nitrate in such an amount that the Al atomic weight of the activated alumina KC-501: Zr atomic weight = 99: 1 (mol). .
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例5]
硝酸銀の代わりに硝酸ニッケル(ナカライテスク製)を活性アルミナKC−501のAl原子量:Ni原子量=99.85:0.15(mol)となる量で用いた以外は実施例2と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 5]
A catalyst was prepared in the same manner as in Example 2 except that nickel nitrate (manufactured by Nacalai Tesque) was used instead of silver nitrate in an amount of Al atom weight of activated alumina KC-501: Ni atom weight = 99.85: 0.15 (mol). Got.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例6]
硝酸銀の代わりに硝酸ニッケル(ナカライテスク製)を活性アルミナKC−501のAl原子量:Ni原子量=99.30:0.70(mol)となる量で用いた以外は実施例2と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 6]
A catalyst was prepared in the same manner as in Example 2 except that nickel nitrate (manufactured by Nacalai Tesque) was used instead of silver nitrate in an amount of Al atom weight of activated alumina KC-501: Ni atom weight = 99.30: 0.70 (mol). Got.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例7]
硝酸銀の代わりに硝酸ニッケル(ナカライテスク製)を活性アルミナKC−501のAl原子量:Ni原子量=99:1(mol)となる量で用いた以外は実施例2と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 7]
A catalyst was obtained in the same manner as in Example 2 except that nickel nitrate (manufactured by Nacalai Tesque) was used instead of silver nitrate in an amount of Al atom weight: Ni atom weight of activated alumina KC-501 = 99: 1 (mol).
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例8]
500ccビーカーに150cc〜200ccのイオン交換水を入れ、酸性シリカ[ローディア製](約0.5g)を加え、室温下、200rpmで約10分間攪拌した。
[Example 8]
In a 500 cc beaker, 150 cc to 200 cc of ion exchange water was added, acidic silica [manufactured by Rhodia] (about 0.5 g) was added, and the mixture was stirred at room temperature at 200 rpm for about 10 minutes.

硝酸アルミニウム9水和物(ナカライテスク製)を、硝酸アルミニウムのAl原子量:Si原子量=95:5(mol)となる量加えて、室温下、200rpmで約10分間攪拌した。   Aluminum nitrate nonahydrate (manufactured by Nacalai Tesque) was added in such an amount that the Al atomic weight of aluminum nitrate: Si atomic weight = 95: 5 (mol), and the mixture was stirred at 200 rpm at room temperature for about 10 minutes.

その後、60℃に設定したホットスターラーを用いて、水が蒸発するまで溶液を低速回転で攪拌した後、120℃乾燥機(Air雰囲気)にて一昼夜乾燥させた。   Thereafter, using a hot stirrer set at 60 ° C., the solution was stirred at a low speed until water evaporated, and then dried for a whole day and night in a 120 ° C. dryer (Air atmosphere).

得られた粉末を、めのう乳鉢で約5分間粉砕し、粉砕した粉末を700℃電気炉(Air雰囲気)で4時間焼成した。さらに、得られた粉末を、めのう乳鉢で約5分間粉砕して触媒を得た。   The obtained powder was pulverized in an agate mortar for about 5 minutes, and the pulverized powder was baked in a 700 ° C. electric furnace (Air atmosphere) for 4 hours. Further, the obtained powder was pulverized in an agate mortar for about 5 minutes to obtain a catalyst.

酸性シリカは、昇温脱離法測定装置(Temperature-Programmed Desorption:TPD)を用い、酸性シリカ担体(SiO)に塩基プローブ分子であるアンモニアを吸着させた後、触媒温度を昇温させ100℃〜550℃までに脱離したアンモニア量が酸性シリカ担体重量当たり0.65mmol/gである酸性性質を有するものを用いた。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
For acidic silica, a temperature-desorption method measuring device (Temperature-Programmed Desorption: TPD) is used to adsorb ammonia, which is a base probe molecule, to acidic silica support (SiO 2 ), and then the catalyst temperature is raised to 100 ° C. Those having an acidic property in which the amount of ammonia desorbed up to ˜550 ° C. was 0.65 mmol / g per weight of acidic silica support were used.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例9]
酸性シリカと硝酸アルミニウム9水和物とを硝酸アルミニウムのAl原子量:Si原子量=90:10(mol)となる量で用いた以外は実施例8と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 9]
A catalyst was obtained in the same manner as in Example 8 except that acidic silica and aluminum nitrate nonahydrate were used in an amount of Al atomic weight: Si atomic weight of aluminum nitrate = 90: 10 (mol).
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例10]
酸性シリカと硝酸アルミニウム9水和物とを硝酸アルミニウムのAl原子量:Si原子量=80:20(mol)となる量で用いた以外は実施例8と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 10]
A catalyst was obtained in the same manner as in Example 8 except that acidic silica and aluminum nitrate nonahydrate were used in an amount of Al atomic weight: Si atomic weight of aluminum nitrate = 80: 20 (mol).
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例11]
実施例8で得られた触媒1gを150cc〜200ccのイオン交換水に入れ、室温下、200rpmで約10分間攪拌した。
[Example 11]
1 g of the catalyst obtained in Example 8 was put into 150 cc to 200 cc of ion exchange water, and stirred at room temperature at 200 rpm for about 10 minutes.

硝酸ニッケル(II)6水和物(ナカライテスク製)を、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=95:5:0.15(mol)となる量加えて、室温下、200rpmで約10分間攪拌した。   Nickel (II) nitrate hexahydrate (manufactured by Nacalai Tesque) was added in an amount of aluminum nitrate such that Al atomic weight: Si atomic weight: Ni atomic weight = 95: 5: 0.15 (mol), and about 200 rpm at room temperature. Stir for 10 minutes.

その後、80℃に設定したホットスターラーを用いて、水が蒸発するまで溶液を攪拌した後、120℃乾燥機(Air雰囲気)にて一昼夜乾燥させた。   Thereafter, the solution was stirred using a hot stirrer set to 80 ° C. until the water evaporated, and then dried in a 120 ° C. dryer (Air atmosphere) for a whole day and night.

得られた粉末を、めのう乳鉢で約5分間粉砕し、粉砕した粉末を400℃電気炉(Air雰囲気)で2時間焼成した。さらに、得られた粉末を室温に戻した後、めのう乳鉢で約5分間粉砕して触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
The obtained powder was pulverized for about 5 minutes in an agate mortar, and the pulverized powder was baked in a 400 ° C. electric furnace (Air atmosphere) for 2 hours. Furthermore, after the obtained powder was returned to room temperature, it was ground in an agate mortar for about 5 minutes to obtain a catalyst.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例12]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=95:5:0.7(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 12]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 95: 5: 0.7 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例13]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=95:5:1.0(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 13]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 95: 5: 1.0 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例14]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=90:10:0.15(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 14]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 90: 10: 0.15 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例15]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=90:10:0.7(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 15]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 90: 10: 0.7 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例16]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=90:10:1.0(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 16]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 90: 10: 1.0 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例17]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=80:20:0.15(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 17]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 80: 20: 0.15 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例18]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=80:20:0.7(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 18]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 80: 20: 0.7 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例19]
硝酸ニッケルを、硝酸アルミニウムのAl原子量:Si原子量:Ni原子量=80:20:1.0(mol)となる量で用いた以外は実施例11と同様にして触媒を得た。
得られた触媒を用いて表1に示す条件下で気相反応を行った。
[Example 19]
A catalyst was obtained in the same manner as in Example 11 except that nickel nitrate was used in an amount of Al atomic weight: Si atomic weight: Ni atomic weight = 80: 20: 1.0 (mol) of aluminum nitrate.
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.

[実施例20]
住友化学株式会社製の活性アルミナKC−501(住化アルケム株式会社より入手)を400℃×2時間で焼成して得られた触媒を用いて、表1に示す条件下で液相反応を行った。オートクレーブ容量は40mLであった。
[Example 20]
Using a catalyst obtained by calcining activated alumina KC-501 (available from Sumika Alchem Co., Ltd.) manufactured by Sumitomo Chemical Co., Ltd. at 400 ° C. for 2 hours, a liquid phase reaction was performed under the conditions shown in Table 1. It was. The autoclave capacity was 40 mL.

[実施例21]
住友化学株式会社製の活性アルミナKC−501(住化アルケム株式会社より入手)を400℃×2時間で焼成して得られた触媒を用いて、表1に示す条件下で液相反応を行った。オートクレーブ容量は200mLであった。
[Example 21]
Using a catalyst obtained by calcining activated alumina KC-501 (available from Sumika Alchem Co., Ltd.) manufactured by Sumitomo Chemical Co., Ltd. at 400 ° C. for 2 hours, a liquid phase reaction was performed under the conditions shown in Table 1. It was. The autoclave capacity was 200 mL.

[比較例1]
触媒を用いずに表1に示す条件下で気相反応を行った。
[Comparative Example 1]
Gas phase reactions were carried out under the conditions shown in Table 1 without using a catalyst.

[比較例2]
鉄-アルミ-ジルコニア系触媒をJ. Japan. Petro. Inst, 53(3), 178-183(2010)に記載の方法を参照に以下のように合成した。
[Comparative Example 2]
An iron-aluminum-zirconia catalyst was synthesized as follows with reference to the method described in J. Japan. Petro. Inst, 53 (3), 178-183 (2010).

テフロンビーカー中の撹拌下の蒸留水1.5Lに、Fe(NO−9HO(226.2g)、Al(NO−9HO(52.5g)及びZrOCl−8HO(11.3g)をこの順序で加えてすべてを溶解させ、約2時間撹拌した。得られた溶液を撹拌しながら、これに48.7%NaOH水溶液(300g)を320μl/分で滴下して、共沈させた。滴下完了後一昼夜攪拌を続けた。 To 1.5 L of distilled water under stirring in a Teflon beaker, Fe (NO 3 ) 3 -9H 2 O (226.2 g), Al (NO 3 ) 3 -9H 2 O (52.5 g) and ZrOCl 2 -8H 2 O (11.3 g) was added in this order to dissolve everything and stirred for about 2 hours. While the obtained solution was stirred, 48.7% NaOH aqueous solution (300 g) was added dropwise at 320 μl / min to cause coprecipitation. Stirring was continued all day and night after the completion of the dropwise addition.

70℃〜80℃の湯を用いてpHが7〜8になるまで湯洗を行った後、固液分離を行い、得られたケーキ状の固形物を120℃で一昼夜乾燥させた。
乾燥した固形物をめのう乳鉢で粉砕し、700℃で4時間焼成を行った。
After washing with hot water at 70 ° C. to 80 ° C. until the pH reached 7-8, solid-liquid separation was performed, and the resulting cake-like solid was dried at 120 ° C. overnight.
The dried solid was pulverized in an agate mortar and baked at 700 ° C. for 4 hours.

得られた触媒を用いて表1に示す条件下で気相反応を行った。
実施例1−21及び比較例1及び2の反応条件及びその結果を表1に示す。
A gas phase reaction was performed under the conditions shown in Table 1 using the obtained catalyst.
The reaction conditions and results of Example 1-21 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 0005817794
Figure 0005817794

図3より、γ-アルミナを用いると(実施例1)、触媒を用いない場合(比較例1)、従来のFe系の触媒を用いる場合(比較例2)と比較してフェノール収率が向上することがわかる。また、Ag、Zr、Niの酸化物をさらに含有する触媒を用いた場合に(実施例2及び4−7)、γ-アルミナ単独である場合(実施例1)と比較してフェノール収率が顕著に向上した。   From FIG. 3, when γ-alumina is used (Example 1), the yield of phenol is improved as compared with the case where no catalyst is used (Comparative Example 1) and the case where a conventional Fe-based catalyst is used (Comparative Example 2). I understand that In addition, when a catalyst further containing oxides of Ag, Zr, and Ni was used (Examples 2 and 4-7), the phenol yield was lower than when γ-alumina alone (Example 1) was used. Remarkably improved.

図4及び5より、γ-アルミナにさらに酸性シリカを担持させた場合(実施例8−10)、γ-アルミナ単独である場合(実施例1)と比較してフェノール収率が向上し、かつ生成物種数(ガスクロマトグラフィ検出限界である0.002%以上のピークとして検出可能な生成物の数)が低減することがわかる。   4 and 5, when the acidic silica is further supported on γ-alumina (Example 8-10), the phenol yield is improved as compared with the case where γ-alumina is used alone (Example 1), and It can be seen that the number of product species (the number of products detectable as a peak of 0.002% or more which is the gas chromatography detection limit) is reduced.

図6及び7より、γ-アルミナと酸性シリカにNiの酸化物をさらに含有する触媒(実施例11−13、14−16)を用いた場合に、Niの酸化物を含有しない場合(実施例8、9)と比較して、フェノール選択率が向上することがわかる。酸性シリカを5又は10%担持させた場合はNiが1.0%である場合に最も活性が向上した。これに対し、図8に示すように、酸性シリカを20%担持させた場合はNiが0.15%である場合にフェノール選択率が最も活性が向上した。これは、Niが多くなると触媒活性が過剰に上がり、生成したフェノールがさらに別の化合物に変化することが理由として考えられる。   6 and 7, when a catalyst (Examples 11-13 and 14-16) further containing Ni oxide in γ-alumina and acidic silica was used, no Ni oxide was contained (Examples). It can be seen that the phenol selectivity is improved as compared with 8, 9). When 5% or 10% of acidic silica was supported, the activity was most improved when Ni was 1.0%. On the other hand, as shown in FIG. 8, when 20% acidic silica was supported, the activity of phenol selectivity was most improved when Ni was 0.15%. This is presumably because the catalytic activity increases excessively as the amount of Ni increases, and the produced phenol changes to another compound.

γ-アルミナを用いて液相反応を行った場合、反応温度350℃(実施例20)ではフェノール収率が顕著に向上し(図9)、反応温度300℃(実施例21)ではカテコールを主成分とする芳香族化合物の収率が顕著に向上した(図10)。   When a liquid phase reaction is performed using γ-alumina, the phenol yield is remarkably improved at a reaction temperature of 350 ° C. (Example 20) (FIG. 9), and catechol is mainly used at a reaction temperature of 300 ° C. (Example 21). The yield of aromatic compounds as components was significantly improved (FIG. 10).

実施例22−28
気相反応
[実施例22]
500ccビーカーに150cc〜200ccのイオン交換水を入れ、酸性シリカ[ローディア製](約0.5g)を加え、室温下、200rpmで約10分間攪拌した。
Examples 22-28
Gas phase reaction [Example 22]
In a 500 cc beaker, 150 cc to 200 cc of ion exchange water was added, acidic silica [manufactured by Rhodia] (about 0.5 g) was added, and the mixture was stirred at room temperature at 200 rpm for about 10 minutes.

硝酸アルミニウム9水和物(ナカライテスク製)を、硝酸アルミニウムのAl原子量:Si原子量=70:30(mol)となる量加えて、室温下、200rpmで約10分間攪拌した。   Aluminum nitrate nonahydrate (manufactured by Nacalai Tesque) was added in an amount of Al nitrate: Si atomic weight = 70: 30 (mol) of aluminum nitrate, and stirred at 200 rpm at room temperature for about 10 minutes.

その後、60℃に設定したホットスターラーを用いて、水が蒸発するまで溶液を低速回転で攪拌した後、120℃乾燥機(Air雰囲気)にて一昼夜乾燥させた。   Thereafter, using a hot stirrer set at 60 ° C., the solution was stirred at a low speed until water evaporated, and then dried for a whole day and night in a 120 ° C. dryer (Air atmosphere).

得られた粉末を、めのう乳鉢で約5分間粉砕し、粉砕した粉末を400℃電気炉(Air雰囲気)で4時間焼成した。さらに、得られた粉末を、めのう乳鉢で約5分間粉砕して触媒を得た。   The obtained powder was pulverized in an agate mortar for about 5 minutes, and the pulverized powder was baked in a 400 ° C. electric furnace (Air atmosphere) for 4 hours. Further, the obtained powder was pulverized in an agate mortar for about 5 minutes to obtain a catalyst.

酸性シリカは、昇温脱離法測定装置(Temperature-Programmed Desorption:TPD)を用い、酸性シリカ担体(SiO)に塩基プローブ分子であるアンモニアを吸着させた後、触媒温度を昇温させ100℃〜550℃までに脱離したアンモニア量が酸性シリカ担体重量当たり0.65mmol/gである酸性性質を有するものを用いた。
得られた触媒を用いて表2に示す条件下で気相反応を行った。
For acidic silica, a temperature-desorption method measuring device (Temperature-Programmed Desorption: TPD) is used to adsorb ammonia, which is a base probe molecule, to acidic silica support (SiO 2 ), and then the catalyst temperature is raised to 100 ° C. Those having an acidic property in which the amount of ammonia desorbed up to ˜550 ° C. was 0.65 mmol / g per weight of acidic silica support were used.
A gas phase reaction was performed under the conditions shown in Table 2 using the obtained catalyst.

[実施例23]
実施例8で得られた触媒1gを150cc〜200ccのイオン交換水に入れ、室温下、200rpmで約10分間攪拌した。
[Example 23]
1 g of the catalyst obtained in Example 8 was put into 150 cc to 200 cc of ion exchange water, and stirred at room temperature at 200 rpm for about 10 minutes.

硝酸鉄(III)9水和物(ナカライテスク製)を、硝酸アルミニウムのAl原子量:Si原子量:Fe原子量=95:5:1(mol)となる量加えて、室温下、200rpmで約10分間攪拌した。   Iron nitrate (III) 9 hydrate (manufactured by Nacalai Tesque) is added in an amount of aluminum nitrate such as Al atomic weight: Si atomic weight: Fe atomic weight = 95: 5: 1 (mol), and about 10 minutes at 200 rpm at room temperature. Stir.

その後、80℃に設定したホットスターラーを用いて、水が蒸発するまで溶液を攪拌した後、120℃乾燥機(Air雰囲気)にて一昼夜乾燥させた。   Thereafter, the solution was stirred using a hot stirrer set to 80 ° C. until the water evaporated, and then dried in a 120 ° C. dryer (Air atmosphere) for a whole day and night.

得られた粉末を、めのう乳鉢で約5分間粉砕し、粉砕した粉末を500℃電気炉(Air雰囲気)で2時間焼成した。さらに、得られた粉末を室温に戻した後、めのう乳鉢で約5分間粉砕して触媒を得た。
得られた触媒を用いて表2に示す条件下で気相反応を行った。
The obtained powder was pulverized in an agate mortar for about 5 minutes, and the pulverized powder was baked in a 500 ° C. electric furnace (Air atmosphere) for 2 hours. Furthermore, after the obtained powder was returned to room temperature, it was ground in an agate mortar for about 5 minutes to obtain a catalyst.
A gas phase reaction was performed under the conditions shown in Table 2 using the obtained catalyst.

[実施例24]
硝酸アルミニウムのAl原子量:Si原子量:Fe原子量=90:10:1(mol)とした以外は実施例23と同様にして触媒を得た。
得られた触媒を用いて表2に示す条件下で気相反応を行った。
[Example 24]
A catalyst was obtained in the same manner as in Example 23 except that Al atomic weight: Si atomic weight: Fe atomic weight of aluminum nitrate = 90: 10: 1 (mol).
A gas phase reaction was performed under the conditions shown in Table 2 using the obtained catalyst.

[実施例25]
硝酸アルミニウムのAl原子量:Si原子量:Fe原子量=80:20:1(mol) とした以外は実施例23と同様にして触媒を得た。
得られた触媒を用いて表2に示す条件下で気相反応を行った。
[Example 25]
A catalyst was obtained in the same manner as in Example 23 except that Al atomic weight: Si atomic weight: Fe atomic weight of aluminum nitrate = 80: 20: 1 (mol).
A gas phase reaction was performed under the conditions shown in Table 2 using the obtained catalyst.

[実施例26]
硝酸アルミニウムのAl原子量:Si原子量:Fe原子量=70:30:1(mol) とした以外は実施例23と同様にして触媒を得た。
得られた触媒を用いて表2に示す条件下で気相反応を行った。
[Example 26]
A catalyst was obtained in the same manner as in Example 23 except that Al atomic weight: Si atomic weight: Fe atomic weight of aluminum nitrate = 70: 30: 1 (mol).
A gas phase reaction was performed under the conditions shown in Table 2 using the obtained catalyst.

[実施例27]
硝酸アルミニウムのAl原子量:Si原子量:Fe原子量=70:30:1(mol)とし、700℃で焼成した以外は実施例23と同様にして触媒を得た。
得られた触媒を用いて表2に示す条件下で気相反応を行った。
[Example 27]
A catalyst was obtained in the same manner as in Example 23 except that Al atom weight of aluminum nitrate: Si atom weight: Fe atomic weight = 70: 30: 1 (mol), and calcined at 700 ° C.
A gas phase reaction was performed under the conditions shown in Table 2 using the obtained catalyst.

[実施例28]
硝酸アルミニウムのAl原子量:Si原子量:Fe原子量=70:30:1(mol)とし、400℃で焼成した以外は実施例23と同様にして触媒を得た。
[Example 28]
A catalyst was obtained in the same manner as in Example 23 except that Al atom weight of aluminum nitrate: Si atom weight: Fe atomic weight = 70: 30: 1 (mol), and calcined at 400 ° C.

得られた触媒を用いて表2に示す条件下で気相反応を行った。   A gas phase reaction was performed under the conditions shown in Table 2 using the obtained catalyst.

実施例22−28の反応条件及びその結果を表2に示す。   The reaction conditions and results for Examples 22-28 are shown in Table 2.

Figure 0005817794
Figure 0005817794

図11より、γ-アルミナと酸性シリカにFeの酸化物をさらに含有する触媒(実施例23−26)を用いた場合に、それぞれ対応するFeの酸化物を含有しない触媒(実施例8−10および22)と比較して、フェノール収率が向上することがわかる。   From FIG. 11, when a catalyst (Examples 23 to 26) further containing an oxide of Fe in γ-alumina and acidic silica was used, a catalyst not containing the corresponding oxide of Fe (Examples 8 to 10). It can be seen that the phenol yield is improved as compared with (22) and (22).

図12より、酸性シリカを30%担持させた場合(実施例26−28)、500℃で焼成を行った場合にフェノール収率が最も向上した。これは500℃で焼成を行った場合には、鉄酸化物が十分活性化され、かつγ-アルミナ及び酸性シリカ表面の細孔がつぶれることによる活性の低下が生じないことが理由として考えられる。   From FIG. 12, when yielding 30% acidic silica (Examples 26-28), the yield of phenol was most improved when calcined at 500 ° C. This is presumably because, when calcination is performed at 500 ° C., the iron oxide is sufficiently activated and the activity does not decrease due to the collapse of the pores on the surface of γ-alumina and acidic silica.

本発明の方法は低コストかつ簡便に行うことができるため、リグニンからの、有用な化学物質であるカテコール及びフェノール等の芳香族化合物の工業的規模での製造に好ましく適用できる。   Since the method of the present invention can be carried out at low cost and simply, it can be preferably applied to the production of aromatic compounds such as catechol and phenol, which are useful chemical substances, from lignin on an industrial scale.

Claims (9)

グアヤコールを主成分として含む混合物酸性シリカ表面に担持された形態にあるγ−アルミナを含む触媒の存在下、気相にて脱メチル化又は脱メトキシ化反応を行う、フェノールの製造方法であって、
γ-アルミナのAl原子量と酸性シリカ由来のSi原子量とのモル比が、97:3〜60:40である、上記方法
A method for producing phenol , wherein a mixture containing guaiacol as a main component is subjected to demethylation or demethoxylation reaction in the gas phase in the presence of a catalyst containing γ-alumina in a form supported on the surface of acidic silica. ,
The above method, wherein the molar ratio between the Al atomic weight of γ-alumina and the Si atomic weight derived from acidic silica is 97: 3 to 60:40 .
触媒が、Ag、Zr及びNiからなる群から選択される少なくとも1種の金属の酸化物をさらに含む、請求項1に記載の方法。   The method of claim 1, wherein the catalyst further comprises an oxide of at least one metal selected from the group consisting of Ag, Zr and Ni. 触媒が、Ag及びZrからなる群から選択される少なくとも1種の金属の酸化物をさらに含む、請求項1に記載の方法。The method of claim 1, wherein the catalyst further comprises an oxide of at least one metal selected from the group consisting of Ag and Zr. 触媒が、Feの酸化物をさらに含む、請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3 , wherein the catalyst further comprises an oxide of Fe. グアヤコールを主成分として含む混合物がグアヤコールである、請求項1〜のいずれか1項に記載の方法。 Guaiacol mixtures is guaiacol containing as a main component, The method according to any one of claims 1-4. 酸性シリカ表面に担持された形態にあるγ−アルミナを含む、グアヤコールを主成分として含む混合物気相での脱メチル化又は脱メトキシ化反応用触媒であって、
γ-アルミナのAl原子量と酸性シリカ由来のSi原子量とのモル比が、97:3〜60:40である、上記触媒
A catalyst for demethylation or demethoxylation reaction in a gas phase of a mixture containing guaiacol as a main component, comprising γ-alumina in a form supported on an acidic silica surface ,
The catalyst as described above, wherein the molar ratio between the Al atomic weight of γ-alumina and the Si atomic weight derived from acidic silica is 97: 3 to 60:40 .
Ag、Zr及びNiからなる群から選択される少なくとも1種の金属の酸化物をさらに含む、請求項に記載の触媒。 The catalyst according to claim 6 , further comprising an oxide of at least one metal selected from the group consisting of Ag, Zr and Ni. Ag及びZrからなる群から選択される少なくとも1種の金属の酸化物をさらに含む、請求項6に記載の触媒。The catalyst according to claim 6, further comprising an oxide of at least one metal selected from the group consisting of Ag and Zr. Feの酸化物をさらに含む、請求項又はに記載の触媒。 The catalyst according to claim 7 or 8 , further comprising an oxide of Fe.
JP2013146393A 2012-11-30 2013-07-12 Method for demethylation or demethoxylation of aromatic compound having methoxy group Active JP5817794B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013146393A JP5817794B2 (en) 2012-11-30 2013-07-12 Method for demethylation or demethoxylation of aromatic compound having methoxy group
PCT/IB2013/002933 WO2014083426A1 (en) 2012-11-30 2013-11-27 Method for demeshylating or demethoxylating aromatic compound having methoxy group and catalyst used in the method
MYPI2015701705A MY177570A (en) 2012-11-30 2013-11-27 Method for demethylating or demethoxylating aromatic compound having methoxy group and catalyst used in the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012262608 2012-11-30
JP2012262608 2012-11-30
JP2013146393A JP5817794B2 (en) 2012-11-30 2013-07-12 Method for demethylation or demethoxylation of aromatic compound having methoxy group

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015045503A Division JP5892277B2 (en) 2012-11-30 2015-03-09 Catalyst for demethylation or demethoxylation reaction in a liquid phase of a mixture containing guaiacol as a main component, and method for producing phenol or catechol using the same

Publications (2)

Publication Number Publication Date
JP2014129331A JP2014129331A (en) 2014-07-10
JP5817794B2 true JP5817794B2 (en) 2015-11-18

Family

ID=50030341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146393A Active JP5817794B2 (en) 2012-11-30 2013-07-12 Method for demethylation or demethoxylation of aromatic compound having methoxy group

Country Status (3)

Country Link
JP (1) JP5817794B2 (en)
MY (1) MY177570A (en)
WO (1) WO2014083426A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210130273A1 (en) * 2017-08-03 2021-05-06 Universiteit Antwerpen Method for the deacylation and/or dealkylation of compounds
CN109772333B (en) * 2017-11-15 2022-03-18 中国科学院大连化学物理研究所 Metal surface coating catalyst directly prepared from solid and application thereof
CN109772332B (en) * 2017-11-15 2022-03-18 中国科学院大连化学物理研究所 Supported metal catalyst directly prepared from solid and application thereof
WO2021200689A1 (en) * 2020-03-31 2021-10-07 三菱ケミカル株式会社 Catalyst, method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB600839A (en) * 1945-06-07 1948-04-20 Peter Spence & Sons Ltd Production of nuclear methylated phenols from anisole
JPS51149248A (en) * 1975-06-13 1976-12-22 Agency Of Ind Science & Technol Process for preparing o-phenylphenol
US4381413A (en) * 1981-07-24 1983-04-26 Conoco Inc. Process for converting anisoles to ortho-methylated phenolic products
US5171895A (en) * 1992-03-23 1992-12-15 Merichem Company Removal of guaiacol from cresylic acid feedstreams
US7888537B2 (en) * 2006-12-29 2011-02-15 Uop Llc Solid acid catalyst and process for decomposition of cumene hydroperoxide
EP2297071B1 (en) * 2008-04-14 2016-03-30 ExxonMobil Chemical Patents Inc. Process for producing cyclohexylbenzene
JP2011127022A (en) 2009-12-18 2011-06-30 Tosoh Corp Method for producing aromatic compound from lignin
JP5605797B2 (en) 2010-11-12 2014-10-15 出光興産株式会社 Method for solubilizing lignin

Also Published As

Publication number Publication date
WO2014083426A8 (en) 2015-07-02
WO2014083426A1 (en) 2014-06-05
MY177570A (en) 2020-09-21
JP2014129331A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
CN108236955B (en) Preparation method of catalyst for synthesizing ethanol by dimethyl oxalate hydrogenation, catalyst obtained by preparation method and application of catalyst
Zhang et al. Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide
Aresta et al. Cerium (IV) oxide modification by inclusion of a hetero-atom: A strategy for producing efficient and robust nano-catalysts for methanol carboxylation
JP5827343B2 (en) Useful catalysts for Fischer-Tropsch synthesis
JP5817794B2 (en) Method for demethylation or demethoxylation of aromatic compound having methoxy group
McKenna et al. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO 2
Wu et al. Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts
Peng et al. Fabrication of ordered mesoporous solid super base with high thermal stability from mesoporous carbons
JP6307225B2 (en) Catalyst preparation method using a rapid drying step and its use for Fischer-Tropsch synthesis
TWI280153B (en) Composite oxide catalyst
JP2014530092A (en) Process for the preparation of modified V-Ti-P catalysts for the synthesis of 2,3-unsaturated carboxylic acids
Jinesh et al. Allylbenzene isomerisation over as-synthesized MgAl and NiAl containing LDHs: Basicity-activity relationships
Yadagiri et al. An inexpensive and environmentally friendly activated marble waste as a catalyst for vapour phase dehydration of 1, 4-butanediol to tetrahydrofuran
Śliwa et al. Influence of montmorillonite K10 modification with tungstophosphoric acid on hybrid catalyst activity in direct dimethyl ether synthesis from syngas
JP2015529556A5 (en)
JP5906167B2 (en) Metal oxide catalyst, method for producing the same, and method for producing alkadiene
DK3126048T3 (en) Process for preparing catalyst loaded polyphenylene particles, the obtained polyphenylene particles and their use as catalysts
JP5892277B2 (en) Catalyst for demethylation or demethoxylation reaction in a liquid phase of a mixture containing guaiacol as a main component, and method for producing phenol or catechol using the same
JP5928460B2 (en) Method for preparing pseudoionone
Lee et al. Influence of dehydrating agents on the oxidative carbonylation of methanol for dimethyl carbonate synthesis over a Cu/Y-zeolite catalyst
Zhang et al. Effect of treatment temperature on the crystal structure of activated carbon supported CuCl2–PdCl2 catalysts in the oxidative carbonylation of ethanol to diethyl carbonate
Ivanov et al. Alumina supported copper-manganese catalysts for combustion of exhaust gases: Effect of preparation method
JP2009034659A (en) Catalyst for synthesizing hydrocarbons, method for manufacturing the same and method for producing hydrocarbons by using the same
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
Natkański et al. Physicochemical properties of hydrogel template-synthesized copper (II) oxide-modified clay influencing its catalytic activity in toluene combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R151 Written notification of patent or utility model registration

Ref document number: 5817794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250