JP5817362B2 - Signal processing device, pulse wave measuring device, and signal processing method - Google Patents

Signal processing device, pulse wave measuring device, and signal processing method Download PDF

Info

Publication number
JP5817362B2
JP5817362B2 JP2011196897A JP2011196897A JP5817362B2 JP 5817362 B2 JP5817362 B2 JP 5817362B2 JP 2011196897 A JP2011196897 A JP 2011196897A JP 2011196897 A JP2011196897 A JP 2011196897A JP 5817362 B2 JP5817362 B2 JP 5817362B2
Authority
JP
Japan
Prior art keywords
measurement
signal
measurement signal
coefficient
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011196897A
Other languages
Japanese (ja)
Other versions
JP2013056083A5 (en
JP2013056083A (en
Inventor
森田 雅紀
雅紀 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011196897A priority Critical patent/JP5817362B2/en
Publication of JP2013056083A publication Critical patent/JP2013056083A/en
Publication of JP2013056083A5 publication Critical patent/JP2013056083A5/ja
Application granted granted Critical
Publication of JP5817362B2 publication Critical patent/JP5817362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、信号処理装置、脈波計測装置及び信号処理方法に関する。   The present invention relates to a signal processing device, a pulse wave measurement device, and a signal processing method.

指先などの計測部位に光を照射して計測部位を透過又は反射した光を受光するセンサーからの測定値に基づいて生体の脈波を測定する方法が知られている。下記特許文献1には、このような方法で生体の脈波を測定する際、測定対象者の手足の動き、震え、咳など、測定対象者の体動によるアーチファクトが測定信号に混入されている場合に、測定信号から脈動信号とアーチファクト信号とを分離する方法が開示されている。特許文献1の方法は、体動の影響を受けていない安定期間と体動の影響を受けているアーチファクト期間を予め設定し、各期間において、赤色光と赤外光を計測部位に照射して各々受光した受光量に応じた測定信号を取得する。そして、安定期間における赤外光の測定信号に対する赤色光の測定信号のノルム比(φs)と、アーチファクト期間における赤外光の測定信号に対する赤色光の測定信号のノルム比(φn)とを、赤色光の脈動信号とアーチファクト信号の伝達係数とする分離マトリクスを用いて、アーチファクト期間の脈動信号とアーチファクト信号とを分離する。   A method of measuring a pulse wave of a living body based on a measurement value from a sensor that irradiates light to a measurement site such as a fingertip and receives light transmitted or reflected through the measurement site is known. In Patent Document 1 below, when measuring a pulse wave of a living body by such a method, artifacts due to body movements of the measurement subject such as movements, tremors, and coughs of the measurement subject are mixed in the measurement signal. In some cases, a method for separating a pulsation signal and an artifact signal from a measurement signal is disclosed. In the method of Patent Document 1, a stable period that is not affected by body movement and an artifact period that is affected by body movement are set in advance, and in each period, red light and infrared light are irradiated to the measurement site. A measurement signal corresponding to the amount of received light is acquired. Then, the norm ratio (φs) of the red light measurement signal to the infrared light measurement signal in the stable period and the norm ratio (φn) of the red light measurement signal to the infrared light measurement signal in the artifact period are expressed as red. The pulsation signal and the artifact signal in the artifact period are separated by using a separation matrix which is a transmission coefficient of the light pulsation signal and the artifact signal.

特開2009−261458号公報JP 2009-261458 A

ところで、図12に示すように、赤色光(波長:620nm)は、酸化ヘモグロビン(実線)に対する還元ヘモグロビン(破線)の吸光係数比が高く、緑色光や赤外光などは、酸化ヘモグロビンに対する還元ヘモグロビンの吸光係数比が低い。つまり、赤色光は、赤外光や緑色光に比べて還元ヘモグロビンへの感度が高く、より多くの光が吸収される。例えば、計測部位を心臓の高さの位置から低い位置に移動させるなどして計測部位の静脈血量が増加すると還元ヘモグロビンが増加し、赤色光と緑色光の脈波信号の振幅は移動前より減少する。特に、赤色光は緑色光よりも多くの光が吸収されるので、赤色光の振幅の減少量は緑色光よりも大きくなる。つまり、計測部位の静脈血量が増えると、緑色光の振幅の減少量に比べて赤色光の振幅の減少量が大きくなるため、上記ノルム比(φs、φn)の値が変化してしまう。上記分離方法においてノルム比(φs、φn)は静脈血量が変化するとノルム比の計算値に誤差が生じるため、生体の状態が適切に反映された脈動信号を出力することができない。
本発明は、計測部位の静脈血量が変化した場合でも測定対象の生体の状態が反映された脈動信号を出力する技術を提供する。
By the way, as shown in FIG. 12, red light (wavelength: 620 nm) has a high extinction coefficient ratio of reduced hemoglobin (broken line) to oxyhemoglobin (solid line), and green light, infrared light, etc. are reduced hemoglobin to oxyhemoglobin. The extinction coefficient ratio of is low. That is, red light has higher sensitivity to reduced hemoglobin than infrared light and green light, and more light is absorbed. For example, when the measurement site is moved from the height of the heart to a lower position and the venous blood volume in the measurement site increases, the reduced hemoglobin increases, and the amplitude of the pulse wave signals of red light and green light is higher than before the movement. Decrease. In particular, since red light absorbs more light than green light, the amount of decrease in the amplitude of red light is greater than that of green light. That is, when the amount of venous blood at the measurement site increases, the amount of decrease in the amplitude of red light becomes larger than the amount of decrease in the amplitude of green light, and thus the norm ratio (φs, φn) changes. In the separation method, the norm ratio (φs, φn) causes an error in the calculated value of the norm ratio when the venous blood volume changes, so that a pulsation signal that appropriately reflects the state of the living body cannot be output.
The present invention provides a technique for outputting a pulsation signal that reflects the state of a living body to be measured even when the venous blood volume at a measurement site changes.

本発明に係る信号処理装置は、生体の脈波の測定期間である第1測定期間と、前記第1測定期間より前記生体の体動の影響を受けている第2測定期間とにおける、前記生体を透過又は反射した第1の波長の光を受光した受光量に基づく第1測定信号、及び当該生体を透過又は反射した第2の波長の光を受光した受光量に基づく第2測定信号とを取得する取得手段と、前記取得手段で取得された前記第1測定期間と前記第2測定期間の各期間における前記第1測定信号と第2測定信号から、予め定められた脈動を表す周波数帯域の第1周波数成分と、前記第1周波数成分の周波数帯域より低い周波数帯域の第2周波数成分の各信号を各々抽出する抽出手段と、前記抽出手段によって抽出された前記第1測定期間と前記第2測定期間の前記第1周波数成分と前記第2周波数成分の各信号列に基づく前記第2測定信号と前記第1測定信号との相関を表す第1係数と第2係数との差分に応じて、前記第1係数及び前記第2係数を用いて前記第2測定期間における前記第1測定信号と前記第2測定信号に含まれる脈動成分とノイズ成分とを分離する分離処理と、前記第2測定期間における前記第2測定信号の前記第1周波数成分を前記脈動成分とする処理とを選択的に行い、前記第2測定期間における前記脈動成分を出力する出力手段とを備えることを特徴とする。この構成によれば、計測部位の静脈血量が変化した場合でも測定対象の生体の状態が反映された脈動信号を出力することができる。   The signal processing apparatus according to the present invention provides the living body in a first measurement period, which is a measurement period of a pulse wave of a living body, and in a second measurement period, which is affected by body movement of the living body from the first measurement period. A first measurement signal based on the amount of received light having received the first wavelength light transmitted or reflected, and a second measurement signal based on the amount of received light having the second wavelength light transmitted or reflected through the living body. An acquisition means for acquiring, a frequency band representing a predetermined pulsation from the first measurement signal and the second measurement signal in each of the first measurement period and the second measurement period acquired by the acquisition means; Extraction means for extracting each signal of the first frequency component and the second frequency component in a frequency band lower than the frequency band of the first frequency component, the first measurement period extracted by the extraction means, and the second The first lap of the measurement period According to the difference between the first coefficient and the second coefficient representing the correlation between the second measurement signal and the first measurement signal based on each signal sequence of several components and the second frequency component, the first coefficient and the second coefficient Separation processing for separating the first measurement signal in the second measurement period and the pulsation component and noise component included in the second measurement signal using the second coefficient, and the second measurement signal in the second measurement period And an output means for selectively performing the process of using the first frequency component as the pulsation component and outputting the pulsation component in the second measurement period. According to this configuration, it is possible to output a pulsation signal that reflects the state of the living body to be measured even when the venous blood volume at the measurement site changes.

また、本発明に係る信号処理装置は、上記信号処理装置において、前記出力手段は、下記式(1)によって得られるユークリッドノルム比を前記第1係数とし、下記式(2)によって得られるユークリッドノルム比を前記第2係数とし、前記第1係数と前記第2係数との差分が予め定めた閾値の範囲内である場合には、前記第2測定期間における前記第2測定信号の前記第1周波数成分を前記脈動成分とする処理を行い、前記閾値の範囲外である場合には、前記第1係数と前記第2係数とを用いた前記分離処理を行うことを特徴とする。

Figure 0005817362
‖RACpulse2は第1測定期間の第1測定信号の第1周波数成分のノルムである。
‖GACpulse2は第1測定期間の第2測定信号の第1周波数成分のノルムである。
‖RDCpulse2は第1測定期間の第1測定信号の第2周波数成分のノルムである。
‖GDCpulse2は第1測定期間の第2測定信号の第2周波数成分のノルムである。
‖RACnoise(j-k:j+k)2は第2測定期間の第1測定信号の第1周波数成分のノルムである。
‖GACnoise(j-k:j+k)2は第2測定期間の第2測定信号の第1周波数成分のノルムである。
‖RDCnoise(j-k:j+k)2は第2測定期間の第1測定信号の第2周波数成分のノルムである。
‖GDCnoise(j-k:j+k)2は第2測定期間の第2測定信号の第2周波数成分のノルムである。
この構成によれば、計測部位の静脈血量が変化しても、体動によるノイズが含まれている測定信号から脈動成分とノイズ成分とを分離する精度の低下を軽減することができる。 In the signal processing device according to the present invention, in the signal processing device, the output means uses the Euclidean norm ratio obtained by the following equation (1) as the first coefficient, and the Euclidean norm obtained by the following equation (2): When the ratio is the second coefficient, and the difference between the first coefficient and the second coefficient is within a predetermined threshold range, the first frequency of the second measurement signal in the second measurement period The process using the component as the pulsating component is performed, and when the component is out of the range of the threshold value, the separation process using the first coefficient and the second coefficient is performed.
Figure 0005817362
‖R ACpulse2 is the norm of the first frequency component of the first measurement signal of the first measurement period.
‖G ACpulse2 is the norm of the first frequency component of the second measurement signal of the first measurement period.
‖R DCpulse2 is the norm of the second frequency component of the first measurement signal of the first measurement period.
‖G DCpulse2 is the norm of the second frequency component of the second measurement signal of the first measurement period.
‖R ACnoise (jk: j + k ) || 2 is the norm of the first frequency component of the first measurement signal of the second measurement period.
‖G ACnoise (jk: j + k ) || 2 is the norm of the first frequency component of the second measurement signal of the second measurement period.
‖R DCnoise (jk: j + k ) || 2 is the norm of the second frequency component of the first measurement signal of the second measurement period.
‖G DCnoise (jk: j + k ) || 2 is the norm of the second frequency component of the second measurement signal of the second measurement period.
According to this configuration, even if the venous blood volume at the measurement site changes, it is possible to reduce a decrease in accuracy in separating the pulsation component and the noise component from the measurement signal including noise due to body movement.

また、本発明に係る信号処理装置は、上記信号処理装置において、前記第2の波長の光は、前記第1の波長の光よりも酸化ヘモグロビンに対して還元ヘモグロビンの吸光係数が小さいことを特徴とする。この構成によれば、静脈血量の増加による影響が少なく、測定対象の生体の脈動がより反映された脈動信号を出力することができる。   The signal processing device according to the present invention is characterized in that, in the signal processing device, the light having the second wavelength has a smaller extinction coefficient of reduced hemoglobin with respect to oxyhemoglobin than the light having the first wavelength. And According to this configuration, it is possible to output a pulsation signal that is less affected by an increase in venous blood volume and more reflects the pulsation of the living body to be measured.

また、本発明に係る脈波計測装置は、前記第1の波長の光を前記生体に照射し、前記生体を透過又は反射した当該第1の波長の光を受光し、受光量に応じた前記第1測定信号を出力する第1受発光部と、前記第2の波長の光を前記生体に照射し、前記生体を透過又は反射した当該第2の波長の光を受光し、受光量に応じた前記第2測定信号を出力する第2受発光部と、前記第1受発光部と前記第2受発光部から出力された前記第1測定信号及び前記第2測定信号を用いて、前記第2測定期間における脈動成分を出力する上記信号処理装置とを備えることを特徴とする。この構成によれば、計測部位の静脈血量が変化した場合でも測定対象の生体の状態が反映された脈動信号を出力することができる。   Further, the pulse wave measuring device according to the present invention irradiates the living body with the light having the first wavelength, receives the light having the first wavelength that is transmitted or reflected through the living body, and the light according to the amount of received light. A first light receiving and emitting unit that outputs a first measurement signal; and irradiating the living body with light of the second wavelength, receiving light of the second wavelength that is transmitted or reflected through the living body, and according to the amount of received light A second light emitting / receiving unit that outputs the second measurement signal, and the first measurement signal and the second measurement signal output from the first light emitting / receiving unit and the second light receiving / emitting unit, And a signal processing device that outputs a pulsation component in two measurement periods. According to this configuration, it is possible to output a pulsation signal that reflects the state of the living body to be measured even when the venous blood volume at the measurement site changes.

また、本発明に係る信号処理方法は、測定対象の生体の脈波を測定する第1測定期間と、前記第1測定期間よりも前記生体の体動の影響を受けている第2測定期間とにおける、前記生体を透過又は反射した第1の波長の光を受光した受光量に基づく第1測定信号、及び当該生体を透過又は反射した第2の波長の光を受光した受光量に基づく第2測定信号とを取得する取得ステップと、前記取得ステップで取得された前記第1測定期間と前記第2測定期間の各期間における前記第1測定信号と第2測定信号から、予め定められた脈動を表す周波数帯域の第1周波数成分と、前記第1周波数成分の周波数帯域より低い周波数帯域の第2周波数成分の各信号を各々抽出する抽出ステップと、前記抽出ステップによって抽出された前記第1測定期間と前記第2測定期間の前記第1周波数成分と前記第2周波数成分の各信号列に基づく前記第2測定信号と前記第1測定信号との相関を表す第1係数と第2係数との差分に応じて、前記第1係数及び前記第2係数を用いて前記第2測定期間における前記第1測定信号と前記第2測定信号に含まれる脈動成分とノイズ成分とを分離する分離処理と、前記第2測定期間における前記第2測定信号の前記第1周波数成分を前記脈動成分とする処理とを選択的に行い、前記第2測定期間における前記脈動成分を出力する出力ステップとを有することを特徴とする。この構成によれば、計測部位の静脈血量が変化した場合でも測定対象の生体の状態が反映された脈動信号を出力することができる。   Further, the signal processing method according to the present invention includes a first measurement period for measuring a pulse wave of a living body to be measured, and a second measurement period that is affected by body movement of the living body more than the first measurement period. In the first measurement signal based on the amount of received light having received the first wavelength light transmitted or reflected through the living body, and the second based on the amount of received light having received the second wavelength light transmitted or reflected through the living body. An acquisition step of acquiring a measurement signal, and a predetermined pulsation from the first measurement signal and the second measurement signal in each of the first measurement period and the second measurement period acquired in the acquisition step. An extraction step of extracting signals of a first frequency component of a frequency band to be represented and a second frequency component of a frequency band lower than the frequency band of the first frequency component, respectively, and the first measurement period extracted by the extraction step When The difference between the first coefficient and the second coefficient representing the correlation between the second measurement signal and the first measurement signal based on the signal sequence of the first frequency component and the second frequency component in the second measurement period. Accordingly, a separation process that separates the first measurement signal and the pulsation component and the noise component included in the second measurement signal in the second measurement period using the first coefficient and the second coefficient, And a step of selectively performing the process of using the first frequency component of the second measurement signal in two measurement periods as the pulsation component, and outputting the pulsation component in the second measurement period. To do. According to this configuration, it is possible to output a pulsation signal that reflects the state of the living body to be measured even when the venous blood volume at the measurement site changes.

実施形態に係る脈波計測装置の外観を表す図である。It is a figure showing the appearance of the pulse wave measuring device concerning an embodiment. 実施形態に係る脈波計測装置の構成例を示すブロック図である。It is a block diagram showing an example of composition of a pulse wave measuring device concerning an embodiment. 実施形態における信号処理部のハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware constitutions of the signal processing part in embodiment. 実施形態における制御部の機能ブロック図である。It is a functional block diagram of a control part in an embodiment. 実施形態における脈動信号とノイズ信号の計測モデルを表す図である。It is a figure showing the measurement model of a pulsation signal and a noise signal in an embodiment. 実施形態におけるAC成分の波形例を表す図である。It is a figure showing the example of a waveform of AC component in an embodiment. 実施形態におけるDC成分の波形例を表す図である。It is a figure showing the example of a waveform of DC component in an embodiment. 実施形態に係る脈波計測装置の動作フローを表す図である。It is a figure showing the operation | movement flow of the pulse wave measuring device which concerns on embodiment. 実施形態に係る脈波計測装置の動作フローを表す図である。It is a figure showing the operation | movement flow of the pulse wave measuring device which concerns on embodiment. 従来の方法によるノルム比の波形と脈動信号の波形を示す図である。It is a figure which shows the waveform of the norm ratio by the conventional method, and the waveform of a pulsation signal. 実施形態の方法によるノルム比の波形と脈動信号の波形を示す図である。It is a figure which shows the waveform of the norm ratio by the method of embodiment, and the waveform of a pulsation signal. 還元ヘモグロビンと酸化ヘモグロビンに対する吸光係数を表す図である。It is a figure showing the light absorption coefficient with respect to reduced hemoglobin and oxygenated hemoglobin.

<構成>
図1は、本実施形態に係る脈波計測装置の外観を示す図である。図1(a)に示すように、例えば、脈波計測装置1は測定対象の生体2の手などに装着される。脈波計測装置1は、生体2の手首に装着される装置本体10と、脈波を計測する計測部位に装着される脈波センサー20とをケーブル30で接続して構成されている。本実施形態では、脈波センサー20は、図1(b)に示すように、人差指の根元の手のひら側にバンド40によって固定される。装置本体10には、液晶ディスプレイ15と脈波計測装置1を操作するための操作スイッチ16が設けられている。以下、脈波計測装置1の各構成を脈波センサー20、装置本体10の順に説明する。
<Configuration>
FIG. 1 is a diagram illustrating an appearance of a pulse wave measuring apparatus according to the present embodiment. As shown in FIG. 1A, for example, the pulse wave measuring device 1 is worn on the hand of a living body 2 to be measured. The pulse wave measuring device 1 is configured by connecting a device main body 10 attached to a wrist of a living body 2 and a pulse wave sensor 20 attached to a measurement site for measuring a pulse wave with a cable 30. In the present embodiment, the pulse wave sensor 20 is fixed to the palm side of the base of the index finger by a band 40 as shown in FIG. The apparatus main body 10 is provided with an operation switch 16 for operating the liquid crystal display 15 and the pulse wave measuring apparatus 1. Hereinafter, each component of the pulse wave measuring device 1 will be described in the order of the pulse wave sensor 20 and the device main body 10.

図2は、脈波計測装置1の構成を表すブロック図である。脈波センサー20は、第1受発光部210、第2受発光部220、及び駆動部230有する。第1受発光部210は、赤色光の波長(第1の波長の一例)の光を発するLED(Light Emitting Diode)などの発光素子と、赤色光の波長の光を受光するフォトダイオードなどの受光素子とを有する。第2受発光部220は、緑色光の波長(第2の波長の一例)の光を発するLEDなどの発光素子と、緑色光の光を受光するフォトダイオードなどの受光素子とを有する。第1受発光部210の発光素子は、例えば発光ピークの波長が525nm、第2受発光部220の発光素子は、例えば発光ピークの波長が620nmとなるように構成されている。駆動部220は、第1受発光部210と第2受発光部220の各発光素子を駆動させる駆動回路を有し、第1受発光部210と第2受発光部220の各発光素子を交互に発光させる。   FIG. 2 is a block diagram showing the configuration of the pulse wave measuring device 1. The pulse wave sensor 20 includes a first light emitting / receiving unit 210, a second light emitting / receiving unit 220, and a driving unit 230. The first light emitting / receiving unit 210 is a light emitting element such as an LED (Light Emitting Diode) that emits light having a red light wavelength (an example of the first wavelength), and a light receiving element such as a photodiode that receives light having a red light wavelength. Device. The second light emitting / receiving unit 220 includes a light emitting element such as an LED that emits light having a wavelength of green light (an example of the second wavelength), and a light receiving element such as a photodiode that receives the light of green light. The light emitting element of the first light emitting / receiving unit 210 is configured to have a light emission peak wavelength of 525 nm, for example, and the light emitting element of the second light receiving / emitting unit 220 is configured to have a light emission peak wavelength of 620 nm, for example. The drive unit 220 includes a drive circuit that drives the light emitting elements of the first light emitting / receiving unit 210 and the second light emitting / receiving unit 220, and alternately switches the light emitting elements of the first light receiving / emitting unit 210 and the second light receiving / emitting unit 220. Make it emit light.

図1(b)において、計測部位(指)と接触している脈波センサー10の部分には、ガラス板などの光を透過させる透過板(図示略)が設けられており、透過板の下方に第1受発光部210と第2受発光部220とが設けられている。第1受発光部210と第2受発光部220の各発光素子は、透過板の方向が光軸方向となるように固定され、第1受発光部210と第2受発光部220の各受光素子は、透過板の方向に受光面が向くように固定されている。各発光素子から発した光は透過板を透過して計測部位に照射され、計測部位から反射した光を透過板を介して各受光素子が受光し、各受光素子の受光量に応じた測定信号がケーブル30を介して装置本体10へ送出される。以下、第1受発光部210で受光された受光量を示す測定信号を第1測定信号、第2受発光部220で受光された受光量を示す測定信号を第2測定信号と称する。   In FIG. 1B, a portion of the pulse wave sensor 10 that is in contact with the measurement site (finger) is provided with a transmission plate (not shown) that transmits light, such as a glass plate, below the transmission plate. The first light emitting / receiving unit 210 and the second light emitting / receiving unit 220 are provided. The light emitting elements of the first light receiving and emitting unit 210 and the second light receiving and emitting unit 220 are fixed so that the direction of the transmission plate is the optical axis direction. The element is fixed so that the light receiving surface faces the direction of the transmission plate. The light emitted from each light emitting element is transmitted through the transmission plate and irradiated to the measurement site, and the light reflected from the measurement site is received by each light receiving device through the transmission plate, and a measurement signal corresponding to the amount of light received by each light receiving device. Is sent to the apparatus main body 10 via the cable 30. Hereinafter, a measurement signal indicating the amount of received light received by the first light receiving / emitting unit 210 is referred to as a first measurement signal, and a measurement signal indicating the amount of received light received by the second light receiving / emitting unit 220 is referred to as a second measurement signal.

装置本体10は、制御部110、信号処理部120、計時部130、クロック供給部140、表示部150、及び操作部160を有する。制御部110は、CPU(Central Processing Unit)とメモリ(ROM(Read Only Memory)及びRAM(Random Access Memory)を有し、ROMに記憶されている制御プログラムをCPUが実行することにより制御部110と接続されている各部を制御し、脈波センサー20で検出された測定信号から生体の脈動を示す脈動成分を出力する出力処理を行う。なお、制御部110の機能の詳細は後述する。   The apparatus main body 10 includes a control unit 110, a signal processing unit 120, a time measuring unit 130, a clock supply unit 140, a display unit 150, and an operation unit 160. The control unit 110 includes a CPU (Central Processing Unit), a memory (ROM (Read Only Memory), and a RAM (Random Access Memory)), and the CPU executes a control program stored in the ROM so that the control unit 110 The connected unit is controlled to perform an output process for outputting a pulsation component indicating the pulsation of the living body from the measurement signal detected by the pulse wave sensor 20. The details of the function of the control unit 110 will be described later.

信号処理部120は、取得手段及び抽出手段の一例である。信号処理部120は、脈波センサー20からケーブル30を介して出力された第1測定信号と第2測定信号を取得し、各測定信号の波形に含まれる脈動成分(AC(Alternating Current)成分)と、各測定信号の波形に含まれる基線ゆらぎ成分(DC(Direct Current)成分)とを抽出する。AC成分は、計測部位の動脈血によって反射された光量の変化、つまり動脈における心拍動を表しており経時的に変化する。DC成分は、計測部位の動脈及び静脈以外の生体組織と静脈血によって反射された光量を表し、脈動成分と比べて十分に低い周波数である。なお、AC成分は、第1周波数成分の一例であり、DC成分は、第2周波数成分の一例である。   The signal processing unit 120 is an example of an acquisition unit and an extraction unit. The signal processing unit 120 acquires the first measurement signal and the second measurement signal output from the pulse wave sensor 20 via the cable 30, and a pulsation component (AC (Alternating Current) component) included in the waveform of each measurement signal. And a baseline fluctuation component (DC (Direct Current) component) included in the waveform of each measurement signal. The AC component represents a change in the amount of light reflected by arterial blood at the measurement site, that is, a heartbeat in the artery, and changes with time. The DC component represents the amount of light reflected by living tissue other than the artery and vein at the measurement site and venous blood, and has a sufficiently low frequency compared to the pulsation component. The AC component is an example of a first frequency component, and the DC component is an example of a second frequency component.

ここで、信号処理部120のハードウェア構成を図3に示す。信号処理部120は、第1測定信号と第2測定信号からDC成分を除去する各フィルター121a,121bと、フィルター121a,121bによって抽出された各AC成分を予め定められたゲインで増幅する増幅回路122−1,122−2と、増幅されたAC成分の各信号を各々A/D(Analog-Digital)変換するA/D変換回路123−1,123−2とを有する。また、信号処理部120は、第1測定信号と第2測定信号に含まれるAC成分を除去する各フィルター124a,124bと、フィルター124a,124bによって抽出されたDC成分の各信号を各々A/D変換するA/D変換回路123−3,123−4とを有する。フィルター121a,121bは、例えばカットオフ周波数が脈動成分の周波数を表す1.7Hz〜5Hzであるバンドパスフィルターなどでもよい。フィルター124a,124bは、脈動の周波数よりも低い周波数(例えば1Hz以下)を取り出す移動平均フィルターでもよいし、脈動の周波数帯域を除去するローパスフィルターでもよい。   Here, the hardware configuration of the signal processing unit 120 is shown in FIG. The signal processing unit 120 includes filters 121a and 121b that remove DC components from the first measurement signal and the second measurement signal, and an amplification circuit that amplifies the AC components extracted by the filters 121a and 121b with a predetermined gain. 122-1 and 122-2, and A / D conversion circuits 123-1 and 123-2 for A / D (Analog-Digital) conversion of the amplified signals of the AC components, respectively. In addition, the signal processing unit 120 converts each signal of the DC components extracted by the filters 124a and 124b and the filters 124a and 124b to remove the AC components included in the first measurement signal and the second measurement signal, respectively, from the A / D. A / D conversion circuits 123-3 and 123-4 for conversion are included. The filters 121a and 121b may be, for example, bandpass filters having a cutoff frequency of 1.7 Hz to 5 Hz representing the frequency of the pulsating component. The filters 124a and 124b may be moving average filters that extract a frequency lower than the pulsation frequency (for example, 1 Hz or less), or may be low-pass filters that remove the pulsation frequency band.

A/D変換回路123−1,123−2は、予め定められたサンプリング周波数で第1測定信号と第2測定信号の各AC成分の信号を量子化し、A/D変換回路123−3,123−4は、予め定められたサンプリング周波数で第1測定信号と第2測定信号の各DC成分の信号を量子化する。本実施形態では、例えばサンプリング周波数は100Hzであり、10ビットで量子化される。   The A / D conversion circuits 123-1 and 123-2 quantize the signals of the AC components of the first measurement signal and the second measurement signal at a predetermined sampling frequency, and the A / D conversion circuits 123-3 and 123. -4 quantizes each DC component signal of the first measurement signal and the second measurement signal at a predetermined sampling frequency. In the present embodiment, for example, the sampling frequency is 100 Hz, and quantization is performed with 10 bits.

計時部130は、クロック供給部140の計時クロック信号をカウントして時刻を計時する。クロック供給部140は、発振回路と分周回路とを有し、発振回路によって基準クロック信号を制御部110へ供給するとともに、分周回路により計時用の計時クロック信号を生成して制御部110へ供給する。   The clock unit 130 counts the clock signal from the clock supply unit 140 and clocks the time. The clock supply unit 140 includes an oscillation circuit and a frequency dividing circuit. The clock supply unit 140 supplies a reference clock signal to the control unit 110 by the oscillation circuit, and generates a time measuring clock signal for time measurement by the frequency dividing circuit to the control unit 110. Supply.

表示部150は、液晶ディスプレイ15を有し、制御部110の制御の下、計時部130で計時された時刻の情報や脈波を測定するためのメニュー画面、測定結果などの各種画像を表示する。操作部160は、操作スイッチ16を有し、操作スイッチ16が操作された操作信号を制御部110へ送出する。   The display unit 150 includes the liquid crystal display 15, and displays various images such as time information measured by the time measuring unit 130, a menu screen for measuring pulse waves, and measurement results under the control of the control unit 110. . The operation unit 160 includes an operation switch 16 and sends an operation signal indicating that the operation switch 16 has been operated to the control unit 110.

次に、制御部110の機能について説明する。図4は、制御部110の出力処理の機能を実現するための機能ブロック図である。制御部110は、出力部110aを有する。出力部110aは、出力手段の一例である。出力部110aは、信号処理部120によって第1測定信号及び第2測定信号から各々抽出されてA/D変換されたAC成分(AC1,AC2)とDC成分(DC1,DC2)の信号列を用いて、体動による影響を受けているノイズ期間(第2測定期間)における第1測定信号及び第2測定信号のAC成分に含まれる脈動成分とノイズ成分とを分離し、分離した脈動成分を示す脈波データを表示部150に表示する。具体的には、出力部110aは、ノイズ期間の第1測定信号及び第2測定信号と、ノイズ期間と比べて体動の影響を殆ど受けていない安定期間(第1測定期間)における第1測定信号及び第2測定信号とから各々抽出されたAC成分とDC成分の各信号列に基づく第2測定信号と第1測定信号の相関を表す第1係数及び第2係数として、安定期間におけるAC成分とDC成分の各信号列の第2測定信号に対する第1測定信号のノルム比(φs)と、ノイズ期間におけるAC成分とDC成分の各信号列の第2測定信号に対する第1測定信号のノルム比(φn)とを用い、ノイズ期間のAC成分に含まれる脈動成分とノイズ成分とを分離する。以下、本実施形態における分離方法をより詳細に説明する。   Next, functions of the control unit 110 will be described. FIG. 4 is a functional block diagram for realizing the output processing function of the control unit 110. The control unit 110 includes an output unit 110a. The output unit 110a is an example of an output unit. The output unit 110a uses a signal sequence of AC components (AC1, AC2) and DC components (DC1, DC2) extracted from the first measurement signal and the second measurement signal by the signal processing unit 120 and A / D-converted. Thus, the pulsation component and the noise component included in the AC component of the first measurement signal and the second measurement signal in the noise period (second measurement period) affected by body movement are separated, and the separated pulsation component is shown. The pulse wave data is displayed on the display unit 150. Specifically, the output unit 110a performs the first measurement signal and the second measurement signal in the noise period, and the first measurement in the stable period (first measurement period) that is hardly affected by body movement compared to the noise period. AC component in the stable period as a first coefficient and a second coefficient representing the correlation between the second measurement signal and the first measurement signal based on each signal sequence of the AC component and the DC component respectively extracted from the signal and the second measurement signal The norm ratio (φs) of the first measurement signal to the second measurement signal of each signal sequence of the DC component and the norm ratio of the first measurement signal to the second measurement signal of each signal sequence of the AC component and DC component in the noise period (Φn) is used to separate the pulsation component and the noise component included in the AC component of the noise period. Hereinafter, the separation method in the present embodiment will be described in more detail.

第1測定信号(赤色光)と第2測定信号(緑色光)の計測モデルを図5のように定義する。図5において、pは、時刻tnにおける脈動を示す脈動信号であり、nは、時刻tnにおけるノイズを示すノイズ信号である。また、Gは、第2受発光部220の受光素子、つまり緑色光(G)の端子であり、Rは、第1受発光部210の受光素子、つまり赤色光(R)の端子である。脈動信号pは、伝達係数1でG端子に伝達され、伝達係数φsでR端子に伝達される。ノイズ信号nは、伝達係数1でG端子に伝達され、伝達係数φnでR端子に伝達される。従って、この計測モデルにおいて時刻tnにおけるφsは、時刻tnにG端子に伝達される脈動信号Gp(tn)と、時刻tnにR端子に伝達される脈動信号Rp(tn)との比(φs=Rp(tn)/Gp(tn))で表される。また、時刻tnにおけるφnは、時刻tnにG端子に伝達されるノイズ信号Gn(tn)と、時刻tnにR端子に伝達されるノイズ信号Rp(tn)との比(φn=Rp(tn)/Gp(tn))で表される。測定時刻tnからtn+kまで拡張してp,n,G,Rをベクトルとして定義すると、φsは、以下の式(3)で示すノルム比(ユークリッドノルム比)で表される。なお、‖Rpulse‖2は、安定期間における第1測定信号のベクトルのノルムを示し、‖Gpulse‖2は、安定期間における第2測定信号のベクトルのノルムを示している。 A measurement model of the first measurement signal (red light) and the second measurement signal (green light) is defined as shown in FIG. In FIG. 5, p is a pulsation signal indicating pulsation at time tn, and n is a noise signal indicating noise at time tn. G is a light receiving element of the second light receiving and emitting unit 220, that is, a terminal for green light (G), and R is a light receiving element of the first light receiving and emitting unit 210, that is, a terminal for red light (R). The pulsation signal p is transmitted to the G terminal with the transmission coefficient 1, and is transmitted to the R terminal with the transmission coefficient φs. The noise signal n is transmitted to the G terminal with the transmission coefficient 1, and is transmitted to the R terminal with the transmission coefficient φn. Accordingly, in this measurement model, φs at time tn is the ratio of the pulsation signal Gp (tn) transmitted to the G terminal at time tn and the pulsation signal Rp (tn) transmitted to the R terminal at time tn (φs = Rp (tn) / Gp (tn)). Φn at time tn is the ratio of the noise signal Gn (tn) transmitted to the G terminal at time tn and the noise signal Rp (tn) transmitted to the R terminal at time tn (φn = Rp (tn) / Gp (tn)). When p, n, G, and R are defined as vectors by extending from the measurement time tn to tn + k, φs is expressed by a norm ratio (Euclidean norm ratio) represented by the following equation (3). Incidentally, ‖Rpulse‖ 2 represents the norm of a vector of the first measurement signal in the stable period, ‖Gpulse‖ 2 shows a norm of a vector of the second measurement signal in the stable period.

Figure 0005817362
Figure 0005817362

一方、ノイズ期間をある時点Jを基点とする前後kの期間(J−k:J+k)として捉えると、時点Jを含む(2k+1)個のノルムを用いたノイズ期間のノルム比は以下の式(4)で求められる。なお、‖Rnoise(J-k:J+k)2は、ノイズ期間における第1測定信号のベクトルのノルムを示し、‖Gnoise(J-k:J+k)2は、ノイズ期間における第2測定信号のベクトルのノルムを示している。 On the other hand, if the noise period is regarded as a period k before and after k at a certain time point J (Jk: J + k), the norm ratio of the noise period using (2k + 1) norms including the time point J is expressed by the following formula ( 4). ‖R noise (Jk: J + k)2 indicates the norm of the vector of the first measurement signal during the noise period, and ‖G noise (Jk: J + k)2 indicates the second measurement during the noise period. The norm of the signal vector is shown.

Figure 0005817362
Figure 0005817362

つまり、φsは、安定期間における第2測定信号に対する第1測定信号のベクトルのノルム比であり、φ(J)nは、ノイズ期間における第2測定信号に対する第1測定信号のベクトルのノルム比である。図5に示す計測モデルは以下の式(5)で表され、脈動信号pとノイズ信号nを分離するためには以下の式(6)で示す逆行列演算を行えばよい。この式(6)における逆行列が分離マトリクスである。   That is, φs is the norm ratio of the vector of the first measurement signal to the second measurement signal in the stable period, and φ (J) n is the norm ratio of the vector of the first measurement signal to the second measurement signal in the noise period. is there. The measurement model shown in FIG. 5 is expressed by the following equation (5). In order to separate the pulsation signal p and the noise signal n, an inverse matrix operation represented by the following equation (6) may be performed. The inverse matrix in Equation (6) is a separation matrix.

Figure 0005817362
Figure 0005817362

従来の方法では、第1測定信号と第2測定信号からノイズ成分をある程度低減させた各信号、つまりAC成分の信号列を用いて式(3)、式(4)によりφsとφ(J)nを算出するようにしている。上述したように、計測部位を心臓の高さから心臓より低い位置に移動させて計測部位の静脈血量を増加させると、図6(a)(b)の波形で示すように、赤色光と緑色光の各AC成分の波形の振幅は移動前と比べて小さくなる。特に、赤色光の振幅は、赤色光と緑色光の還元ヘモグロビンに対する感度の違いから、緑色光よりも減少量が大きくなる。そのため、安定期間とノイズ期間における赤色光と緑色光の各AC成分を用いて上記φsとφ(J)nを算出すると、分子(赤色光(第1測定信号)のAC成分のノルム)の減少量が分母(緑色光(第2測定信号)のAC成分のノルム)の減少量より大きくなり、静脈血量が増加する前と後とでφsとφ(J)nが小さくなる。   In the conventional method, φs and φ (J) are obtained from Equations (3) and (4) using each signal obtained by reducing noise components to some extent from the first measurement signal and the second measurement signal, that is, a signal sequence of AC components. n is calculated. As described above, when the measurement site is moved from the height of the heart to a position lower than the heart to increase the venous blood volume of the measurement site, as shown in the waveforms of FIGS. The amplitude of the waveform of each AC component of green light is smaller than before the movement. In particular, the amount of decrease in the amplitude of red light is greater than that of green light due to the difference in sensitivity of red light and green light to reduced hemoglobin. Therefore, when φs and φ (J) n are calculated using the AC components of red light and green light during the stable period and noise period, the numerator (norm of the AC component of red light (first measurement signal)) decreases. The amount becomes larger than the denominator (the norm of the AC component of the green light (second measurement signal)), and φs and φ (J) n become smaller before and after the increase in venous blood volume.

一方、第1測定信号と第2測定信号からAC成分を除去したDC成分は、静脈血量の増加に伴って増加する傾向がある。以下、その理由を説明する。受光素子であるフォトダイオードは、光が入射されない状態では抵抗値が大きくなる特性を有し、光が多く入射されるほど出力電圧の振幅が大きくなる傾向がある。   On the other hand, the DC component obtained by removing the AC component from the first measurement signal and the second measurement signal tends to increase as the venous blood volume increases. The reason will be described below. A photodiode, which is a light receiving element, has a characteristic that a resistance value increases in a state where light is not incident, and the amplitude of an output voltage tends to increase as more light is incident.

図7は、光が全く入射されない状態(暗状態)と赤色光や緑色光の光が入射した状態の出力電圧を表す図である。この図に示すように、暗状態の場合には、期間Aと期間B共に出力電圧は常にVccとなり、赤色光や緑色光が入射した場合には、期間Aより期間Bの方が受光素子で受光される光の量が少なくなるため、期間Bにおいては、光の減少量に伴って出力電圧が増加する。つまり、計測部位を心臓より低い位置に移動させて静脈血量を増加させると、赤色光と緑色光の各受光素子は、移動前よりも入射する光の量が少なくなるため出力電圧は増加する。特に、緑色光より赤色光の方がより多くの光が吸収されるため、受光素子で受光される赤色光の量は緑色光よりも少なくなり、出力電圧の増加量は緑色光よりも赤色光の方が大きくなる。   FIG. 7 is a diagram illustrating output voltages in a state where no light is incident (dark state) and in a state where red light or green light is incident. As shown in this figure, in the dark state, the output voltage is always Vcc in both the period A and the period B. When red light or green light is incident, the period B is a light receiving element than the period A. Since the amount of received light is reduced, in the period B, the output voltage increases as the amount of light decreases. In other words, if the measurement site is moved to a position lower than the heart to increase the venous blood volume, the light receiving elements for red light and green light receive less light than before the movement, and the output voltage increases. . In particular, red light absorbs more light than green light, so the amount of red light received by the light receiving element is less than green light, and the increase in output voltage is red light than green light. Is bigger.

DC成分は、出力電圧の時間変化をフィルター124a,124bで除去したものである。上記したDC成分の変化を式(3)と式(4)にあてはめると、安定期間及びノイズ期間において静脈血量が増加した場合のφs及びφ(J)nは相対的に大きくなることが分かる。そこで、本実施形態の分離方法では、静脈血量の変化に伴って変化するAC成分とDC成分のノルム比を用いて分離マトリクスを構成し、その分離マトリクスを式(6)に適用することとしている。   The DC component is obtained by removing the time change of the output voltage with the filters 124a and 124b. When the change of the DC component described above is applied to Equation (3) and Equation (4), it can be seen that φs and φ (J) n when the venous blood volume increases during the stable period and the noise period are relatively large. . Therefore, in the separation method of the present embodiment, the separation matrix is configured using the norm ratio of the AC component and the DC component that changes with changes in the venous blood volume, and the separation matrix is applied to Equation (6). Yes.

具体的には、測定時刻tn〜tn+kまでの赤色光(第1測定信号)と緑色光(第2測定信号)の各AC成分の値を要素とするベクトルを、RAC=(RACn ACn+1 ACn+2 ・・・・RACn+k)、各GAC=(GACn ACn+1 ACn+2 ・・・・GACn+k)とし、測定時刻tn〜tn+kまでの赤色光(第1測定信号)と緑色光(第2測定信号)の各DC成分の値を要素とするベクトルを、RDC=(RDCn DCn+1 DCn+2 ・・・・RDCn+k)、GDC=(GDCn DCn+1 DCn+2 ・・・・GDCn+k)とする。 Specifically, a vector having the values of the AC components of red light (first measurement signal) and green light (second measurement signal) from measurement time tn to tn + k as elements is R AC = (R ACn R ACn +1 R ACn + 2 ... R ACn + k ), each G AC = (G ACn G ACn + 1 G ACn + 2 ... G ACn + k ), and red from the measurement time tn to tn + k R DC = (R DCn R DCn + 1 R DCn + 2 ... R DCn + is a vector having elements of the DC component values of light (first measurement signal) and green light (second measurement signal) . k ), G DC = (G DCn G DCn + 1 G DCn + 2 ... G DCn + k ).

そして、AC成分のベクトルとDC成分のベクトルの各々について、緑色光(第2測定信号)に対する赤色光(第1測定信号)のベクトルのノルム比を以下の式(7)、式(8)によって求め、以下の式(9)によりAC成分とDC成分の各ノルム比を加算したφAC+DCを求める。なお、式(7)、式(8)において、‖RAC2は、第1測定信号のAC成分のベクトルのノルムを示し、‖GAC2は、第2測定信号のAC成分のベクトルのノルムを示し、‖RDC2は、第1測定信号のDC成分のベクトルのノルムを示し、‖GDC2は、第2測定信号のDC成分のベクトルのノルムを示している。 For each of the AC component vector and the DC component vector, the norm ratio of the red light (first measurement signal) vector to the green light (second measurement signal) is expressed by the following equations (7) and (8). Then, φ AC + DC obtained by adding the norm ratios of the AC component and the DC component is obtained by the following equation (9). Note that equation (7), in equation (8), ‖R AC2 shows a norm of a vector of the AC component of the first measurement signal, ‖G AC2 vector of the AC component of the second measurement signal ‖R DC2 represents the norm of the DC component vector of the first measurement signal, and ‖G DC2 represents the norm of the DC component vector of the second measurement signal.

Figure 0005817362
Figure 0005817362

式(9)に式(3)と式(4)を適用して安定期間とノイズ期間のノルム比を算出すると、以下の式(10)、式(11)で示すノルム比となる。なお、式(10)、式(11)において、‖RACpulse2は安定期間における第1測定信号のAC成分のノルム、‖GACpulse2は安定期間における第2測定信号のAC成分のノルム、‖RDCpulse2は安定期間における第1測定信号のDC成分のノルム、‖GDCpulse2は安定期間における第2測定信号のDC成分のノルムである。また、‖RACnoise(j-k:j+k)2はノイズ期間における第1測定信号のAC成分のノルム、‖GACnoise(j-k:j+k)2はノイズ期間における第2測定信号のAC成分のノルム、‖RDCnoise(j-k:j+k)2はノイズ期間における第1測定信号のDC成分のノルム、‖GDCnoise(j-k:j+k)2はノイズ期間における第2測定信号のDC成分のノルムである。 When the norm ratio between the stable period and the noise period is calculated by applying the expressions (3) and (4) to the expression (9), the norm ratios represented by the following expressions (10) and (11) are obtained. Incidentally, formula (10), in equation (11), ‖R ACpulse2 norm of the AC component of the first measurement signal in the stable period, ‖G ACpulse2-norm of the AC component of the second measurement signal in the stable period , ‖R DCpulse2 norm of the DC component of the first measurement signal in the stable period, ‖G DCpulse2 is the norm of the DC component of the second measurement signal in the stable period. Further, ‖R ACnoise (jk: j + k) || 2 is the AC component of the first measurement signal in the noise period norm, ‖G ACnoise (jk: j + k) || 2 is AC of the second measurement signal in the noise period components of the norm, ‖R DCnoise (jk: j + k) || 2 is the DC component of the first measurement signal in the noise period norm, ‖G DCnoise (jk: j + k) || 2 is the second measurement signal in the noise period Is the norm of the DC component.

Figure 0005817362
Figure 0005817362

ここで、式(6)の逆行列を展開した式(12)を以下に示す。   Here, Expression (12) obtained by expanding the inverse matrix of Expression (6) is shown below.

Figure 0005817362
Figure 0005817362

式(12)においてφ(J)nがφsの値に近づくとき、式(12)は発散してしまう。φ(J)nがφsの値に近づく場合というのは、そのノイズ期間における測定信号はノイズの影響を受けていないと考えられるため、この場合には、式(12)による分離処理を行わず、緑色光(第2測定信号)のAC成分のデータをその期間における脈動成分として出力するようにする。上述したように、緑色光は、赤色光に比べて還元ヘモグロビンに対する吸光係数が低く、静脈血に対する感度が低いと考えられる。そのため、緑色光は赤色光よりも静脈血の増加によるノイズ成分が少なく、脈動信号をよく表しているといえる。   In the equation (12), when φ (J) n approaches the value of φs, the equation (12) diverges. When φ (J) n approaches the value of φs, it is considered that the measurement signal in the noise period is not affected by noise, and in this case, the separation processing according to Expression (12) is not performed. The AC component data of the green light (second measurement signal) is output as the pulsation component during that period. As described above, green light has a lower extinction coefficient for reduced hemoglobin than red light, and is considered to be less sensitive to venous blood. Therefore, it can be said that green light has a smaller noise component due to the increase in venous blood than red light, and well represents a pulsation signal.

本実施形態において、ノイズ期間におけるノルム比φ(J)nがφsに近づいたか否かは、φsを基準とする下限係数m1と上限係数m2によって定められた閾値範囲内にあるか否かによって判断する。つまり、あるノイズ期間のφ(J)nが、(m1×φs)≦φ(J)n≦(m2×φs)の条件を満たす場合には、ノルム比φ(J)nがφsに近づいたと判断し、そのノイズ期間における第2測定信号のAC成分のデータを脈動成分とする。一方、あるノイズ期間のφ(J)nが上記条件を満たさない場合には、ノルム比φ(J)nがφsに近づいていないと判断し、式(10)によって求められたノルム比をφs、上記式(11)によって求められたノルム比をφ(J)nとして式(12)に代入し、ノイズ期間で測定された第1測定信号及び第2測定信号のAC成分を用いて式(12)の演算を行い、脈動信号(脈動成分)pとノイズ信号(ノイズ成分)nとを分離して脈動信号(脈動成分)pを出力する。   In the present embodiment, whether or not the norm ratio φ (J) n in the noise period is close to φs is determined by whether or not the norm ratio φ (J) n is within the threshold range defined by the lower limit coefficient m1 and the upper limit coefficient m2 based on φs. To do. That is, when φ (J) n in a certain noise period satisfies the condition of (m1 × φs) ≦ φ (J) n ≦ (m2 × φs), the norm ratio φ (J) n is close to φs. The data of the AC component of the second measurement signal in the noise period is determined as the pulsation component. On the other hand, if φ (J) n in a certain noise period does not satisfy the above condition, it is determined that the norm ratio φ (J) n is not close to φs, and the norm ratio obtained by the equation (10) is φs The norm ratio obtained by the above equation (11) is substituted into the equation (12) as φ (J) n, and the AC component of the first measurement signal and the second measurement signal measured in the noise period is used for the equation (12). 12), the pulsation signal (pulsation component) p and the noise signal (noise component) n are separated and the pulsation signal (pulsation component) p is output.

<動作例>
以下、本実施形態に係る脈波計測装置1の動作例を説明する。図8、図9は、脈波計測装置1の動作フローを示す図である。なお、以下の説明では、説明の便宜上、安定期間として測定対象者の体動の影響を受けないように安静な状態で脈波を測定する期間と、ノイズ期間として測定対象者が計測部位を動かすなどして体動の影響を受ける状態で脈波を測定する期間とを予め設け、安定期間の脈波の測定を行った後、ノイズ期間の脈波の測定を行う。
<Operation example>
Hereinafter, an operation example of the pulse wave measuring apparatus 1 according to the present embodiment will be described. 8 and 9 are diagrams showing an operation flow of the pulse wave measuring apparatus 1. FIG. In the following explanation, for convenience of explanation, the measurement subject moves the measurement site as a stable period so that the pulse wave is measured in a resting state so as not to be affected by the body movement of the measurement subject and the noise period. For example, a pulse wave is measured in a state in which the pulse wave is measured in advance under the influence of body motion, and the pulse wave is measured during the stable period, and then the pulse wave is measured during the noise period.

図8において、脈波計測装置1の制御部110は、操作部160を介して脈波を測定する操作を受付けると(ステップS10:YES)、脈波センサー20において第1受発光部210と第2受発光部220とから一定の時間間隔で交互に脈波センサー20が装着されている計測部位に赤色光と緑色光とを照射して、計測部位から反射された赤色光と緑色光を各々受光し、受光量に応じた第1測定信号及び第2測定信号を制御部110に送出する(ステップS11)。なお、制御部110は、操作部160を介して脈波を測定する操作を受付けなければ(ステップS10:NO)、操作がなされるまで待機する。   In FIG. 8, when the control unit 110 of the pulse wave measuring device 1 accepts an operation for measuring a pulse wave via the operation unit 160 (step S10: YES), the pulse wave sensor 20 and the first light emitting / receiving unit 210 The red light and the green light reflected from the measurement part are respectively irradiated by irradiating the measurement part to which the pulse wave sensor 20 is alternately mounted from the two light receiving and emitting units 220 with a constant time interval. The first measurement signal and the second measurement signal corresponding to the received light amount are transmitted to the control unit 110 (step S11). If control unit 110 does not accept an operation for measuring a pulse wave via operation unit 160 (step S10: NO), control unit 110 waits until the operation is performed.

制御部110は、信号処理部120において、脈波センサー20から送出された第1測定信号と第2測定信号を取得して、第1測定信号と第2測定信号とからAC成分とDC成分を各々抽出する。そして、制御部110は、信号処理部120において、抽出した第1測定信号と第2測定信号の各AC成分の信号を各々増幅してA/D変換すると共に、抽出した第1測定信号と第2測定信号の各DC成分の信号をA/D変換し、A/D変換された各AC成分と各DC成分のデータをRAMに時系列に記憶する(ステップS12)。   In the signal processing unit 120, the control unit 110 acquires the first measurement signal and the second measurement signal transmitted from the pulse wave sensor 20, and obtains an AC component and a DC component from the first measurement signal and the second measurement signal. Extract each one. Then, in the signal processing unit 120, the control unit 110 amplifies and A / D-converts each AC component signal of the extracted first measurement signal and second measurement signal, and extracts the first measurement signal and the first measurement signal. The signals of the DC components of the two measurement signals are A / D converted, and the A / D converted AC components and DC component data are stored in the RAM in time series (step S12).

制御部110は、RAMに記憶されている第1測定信号と第2測定信号のAC成分とDC成分の各データから連続するn個のデータを読み出し、読み出したAC成分とDC成分について、第2測定信号に対する第1測定信号のノルム比を式(7)、式(8)によって求め、式(10)によりAC成分とDC成分の各ノルム比を加算することにより安定期間におけるノルム比(φs)を求め、求めたノルム比φsをRAMに記憶する(ステップS13)。   The control unit 110 reads consecutive n pieces of data from the AC component and DC component data of the first measurement signal and the second measurement signal stored in the RAM, and the second AC component and DC component are read with respect to the second data. The norm ratio of the first measurement signal to the measurement signal is obtained by the equations (7) and (8), and the norm ratio (φs) in the stable period is obtained by adding the norm ratios of the AC component and the DC component by the equation (10). And the obtained norm ratio φs is stored in the RAM (step S13).

次に、図9において、制御部110は、ノイズ期間についても上述したステップS10、S11、S12の処理を行い、RAMに記憶されている第1測定信号と第2測定信号のAC成分とDC成分の各データから時刻t=Jを基点として前後に連続する2k+1個のデータを読み出し、式(11)により時刻Jにおけるノルム比(φ(J)n)を求める(ステップS24)。   Next, in FIG. 9, the control unit 110 also performs the processes of steps S <b> 10, S <b> 11, and S <b> 12 described above for the noise period, and the AC component and DC component of the first measurement signal and the second measurement signal stored in the RAM. 2k + 1 pieces of continuous data are read out from the data at time t = J as the base point, and the norm ratio (φ (J) n) at time J is obtained by equation (11) (step S24).

制御部110は、ノルム比φ(J)nが安定期間のノルム比(φs)を基準とする予め定められた閾値範囲内(m1×φs≦φ(J)n≦m2×φs)である場合には(ステップS25:YES)、時点Jにおける第2測定信号のAC成分のデータを脈動成分として出力する(ステップS26)。   When the norm ratio φ (J) n is within a predetermined threshold range (m1 × φs ≦ φ (J) n ≦ m2 × φs) based on the norm ratio (φs) of the stable period, the control unit 110 (Step S25: YES), the AC component data of the second measurement signal at time J is output as a pulsation component (step S26).

一方、制御部110は、ノルム比φ(J)nがノルム比φsを基準とする予め定められた閾値範囲内(m1×φs≦φ(J)n≦m2×φs)でない場合には(ステップS25:NO)、ノルム比φsとノルム比φ(J)nと、時刻Jにおける第1測定信号と第2測定信号のAC成分の各値とを式(12)に代入して演算し、時刻t=Jにおける第1測定信号と第2測定信号から脈動成分とノイズ成分とを分離する。そして、制御部110は、分離した脈動成分のデータを時刻Jにおける脈動成分として出力する(ステップS27)。制御部110は、ノイズ期間における脈波の測定を終了する指示が操作部160を介してなされなければ(ステップS28:NO)、時刻tの値に1をインクリメントして(ステップS29)、第1測定信号と第2測定信号について上述したステップS24以下の処理を行い、また、ノイズ期間における脈波の測定を終了する指示が操作部160を介してなされると(ステップ28:YES)、脈波の測定を終了する。   On the other hand, when the norm ratio φ (J) n is not within a predetermined threshold range based on the norm ratio φs (m1 × φs ≦ φ (J) n ≦ m2 × φs), the control unit 110 (step S25: NO), the norm ratio φs and the norm ratio φ (J) n, and the values of the AC components of the first measurement signal and the second measurement signal at time J are substituted into equation (12) for calculation. A pulsation component and a noise component are separated from the first measurement signal and the second measurement signal at t = J. And the control part 110 outputs the data of the separated pulsation component as a pulsation component in the time J (step S27). If the instruction to end the measurement of the pulse wave in the noise period is not made via the operation unit 160 (step S28: NO), the control unit 110 increments the value of time t by 1 (step S29), and the first When the processing from step S24 described above is performed on the measurement signal and the second measurement signal and an instruction to end the pulse wave measurement in the noise period is given via the operation unit 160 (step 28: YES), the pulse wave End the measurement.

図10(a)(b)は、AC成分だけを用いて安定期間とノイズ期間のノルム比(φs、φ(J)n)を算出した場合の各ノルム比の波形図と脈動信号の出力結果を表す波形図とを示す図である。また、図11(a)(b)は、上述した実施形態の方法でノルム比(φs、φ(J)n)を算出した場合の各ノルム比の波形図と脈動信号の波形図とを示す図である。図10、図11の例において、期間A(0〜20sec)は、計測部位を心臓の高さの位置で脈波を計測した期間、期間B(20〜50sec)は、計測部位を心臓の高さから低い位置に移動させて脈波を計測した期間であり、いずれの期間においても体動によるノイズが発生しないよう安静な状態で計測を行った。また、図10(a)、図11(a)において、破線は、測定開始から10sec間の第1測定信号及び第2測定信号を用いて式(10)によって算出されたノルム比φsを表し、網掛け部分は、下限係数m1=0.8、上限係数m2=1.2とするφsの閾値範囲を示している。実線は、期間A及び期間Bの各期間において測定された第1測定信号及び第2測定信号を用いて式(11)によって算出されたφ(J)nを表しており、この例では、時間幅を2s(サンプリング周波数100Hzの場合、k=100)としている。   FIGS. 10A and 10B are waveform diagrams of the respective norm ratios and the output results of the pulsation signal when the norm ratios (φs, φ (J) n) between the stable period and the noise period are calculated using only the AC component. It is a figure which shows the wave form diagram showing. 11A and 11B show a waveform diagram of each norm ratio and a waveform diagram of a pulsation signal when the norm ratios (φs, φ (J) n) are calculated by the method of the above-described embodiment. FIG. 10 and 11, the period A (0 to 20 sec) is a period during which a pulse wave is measured at the position of the heart at the measurement site, and the period B (20 to 50 sec) is the measurement site at the heart height. This was a period in which the pulse wave was measured by moving to a lower position, and the measurement was performed in a resting state so that noise due to body movement did not occur in any period. Moreover, in FIG. 10A and FIG. 11A, the broken line represents the norm ratio φs calculated by the equation (10) using the first measurement signal and the second measurement signal for 10 seconds from the start of measurement, The shaded portion indicates the threshold range of φs where the lower limit coefficient m1 = 0.8 and the upper limit coefficient m2 = 1.2. The solid line represents φ (J) n calculated by the equation (11) using the first measurement signal and the second measurement signal measured in the periods A and B. In this example, the solid line The width is 2 s (k = 100 when the sampling frequency is 100 Hz).

図10(a)、図11(a)に示すように、期間Aは計測部位が心臓の高さの位置であり、体動の影響が殆ど無い状態であるため、ノルム比φsとφ(J)nは近い値となっており、図10(b)、図11(b)に示すように安定した脈動信号が出力されている。図10(a)、図11(a)におけるφ(J)nは、計測部位が心臓より低い位置に移動された20sec付近では移動による体動の影響を受けて一旦上昇し、その後下降している。計測部位を移動した後は安静な状態で計測を行っているため、計測部位の移動後において静脈血量は変化しても脈波は期間Aと同様に安定しているはずである。   As shown in FIGS. 10 (a) and 11 (a), the period A is a position where the measurement site is at the height of the heart and there is almost no influence of body movement, so the norm ratios φs and φ (J ) N is a close value, and a stable pulsation signal is output as shown in FIGS. 10 (b) and 11 (b). In FIG. 10 (a) and FIG. 11 (a), φ (J) n rises once under the influence of body movement due to movement in the vicinity of 20 seconds when the measurement site is moved to a position lower than the heart, and then falls. Yes. Since the measurement is performed in a resting state after moving the measurement site, the pulse wave should be stable as in the period A even if the venous blood volume changes after the measurement site is moved.

しかし、図10(a)に示すように、AC成分だけで算出されたノルム比φ(J)nは、静脈血量の増加によってφsの閾値範囲を超えて下降している。そのため、体動によるノイズの影響を受けていると判断されて分離処理が行われ、期間Bの脈動信号は図10(b)に示すように安定した波形となっていない。一方、図11(a)におけるφ(J)nは、AC成分とDC成分とを用いて算出されているため、計測部位の移動後において静脈血量が増加しても、移動前と移動後のノルム比φ(J)nの差が低減され、ノルム比φsの閾値範囲内に収まっている。その結果、ノルム比φsの閾値範囲内の期間における脈動信号としては、緑色光(第2測定信号)のAC成分の信号が出力され、期間Aと同様に脈波が安定した波形が得られている。   However, as shown in FIG. 10 (a), the norm ratio φ (J) n calculated only by the AC component falls below the threshold range of φs due to the increase in venous blood volume. For this reason, it is determined that it is affected by noise due to body movement, separation processing is performed, and the pulsation signal in period B does not have a stable waveform as shown in FIG. On the other hand, φ (J) n in FIG. 11A is calculated using an AC component and a DC component. Therefore, even if the venous blood volume increases after movement of the measurement site, before and after movement. The difference in norm ratio φ (J) n is reduced and falls within the threshold range of norm ratio φs. As a result, as the pulsation signal in the period within the threshold range of the norm ratio φs, an AC component signal of green light (second measurement signal) is output, and a waveform with a stable pulse wave is obtained as in the period A. Yes.

上記より、上述した実施形態の方法によって脈動信号を出力することで、AC成分だけでノルム比を算出する場合と比べ、静脈血量の変化に伴うノルム比の変化が抑制されると共に、静脈血量の増加によるノイズと体動によるノイズとが区別され、測定対象者の状態をよく表した脈動信号を出力することができる。   As described above, by outputting the pulsation signal by the method of the above-described embodiment, the change in norm ratio accompanying the change in venous blood volume is suppressed and the venous blood is compared with the case where the norm ratio is calculated using only the AC component. Noise due to an increase in volume and noise due to body movement are distinguished, and a pulsation signal that well represents the state of the measurement subject can be output.

<変形例>
本発明は、上述した実施形態に限定されるものではなく、以下のように変形させて実施してもよい。また、以下の変形例を組み合わせてもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and may be carried out by being modified as follows. Further, the following modifications may be combined.

(1)上述した実施形態では、測定対象者に着脱可能な脈波センサー20と本体装置10で構成される脈波計測装置1について説明したが、第1測定信号と第2測定信号を取得し、本体装置10の信号処理部120及び制御部110の機能を有する信号処理装置であれば本体装置10の構成に限らない。信号処理装置として、例えばPCや携帯情報端末などの装置を用いる場合には、有線又は無線により脈波センサー20と通信接続し、脈波センサー20から出力される第1測定信号と第2測定信号を取得するようにしてもよい。また、信号処理装置は、脈波センサー20で測定された第1測定信号と第2測定信号の波形データが予め記憶された記憶装置から第1測定信号と第2測定信号の各波形データを読み出し、第1測定信号と第2測定信号を取得してもよい。 (1) In the above-described embodiment, the pulse wave measurement device 1 including the pulse wave sensor 20 that can be attached to and detached from the measurement subject and the main body device 10 has been described. However, the first measurement signal and the second measurement signal are acquired. As long as the signal processing device has the functions of the signal processing unit 120 and the control unit 110 of the main body device 10, the configuration of the main body device 10 is not limited. For example, when a device such as a PC or a portable information terminal is used as the signal processing device, the first measurement signal and the second measurement signal output from the pulse wave sensor 20 are connected to the pulse wave sensor 20 by wired or wireless communication. May be obtained. The signal processing device reads the waveform data of the first measurement signal and the second measurement signal from the storage device in which the waveform data of the first measurement signal and the second measurement signal measured by the pulse wave sensor 20 is stored in advance. The first measurement signal and the second measurement signal may be acquired.

(2)上述した実施形態では、赤色光と緑色光の光を各々発する発光素子を用いる例を説明したが、例えば、赤色光と赤外光など、発光ピークが異なる波長の光であって、還元ヘモグロビンと酸化ヘモグロビンに対する吸光係数が異なる光であればこの組み合わせには限らない。この場合、酸化ヘモグロビンよりも還元ヘモグロビンに対する吸光係数が低いか同程度である光の測定信号のAC成分を脈動成分として出力する。 (2) In the above-described embodiment, an example using a light emitting element that emits red light and green light, respectively, has been described. The combination is not limited to this as long as the extinction coefficients for reduced hemoglobin and oxidized hemoglobin are different. In this case, the AC component of the light measurement signal whose extinction coefficient for reduced hemoglobin is lower or similar to that of oxyhemoglobin is output as a pulsating component.

(3)上述した実施形態では、安定期間として脈波を測定する期間を設け、安定期間の測定結果を用いてノルム比φsを算出する例を説明したが、測定対象者の体動の影響を受けないように安静な状態で予め測定した測定結果に基づくノルム比φsが脈波計測装置1に予め記憶されていてもよい。この場合には、脈波計測装置1において、算出されたノルム比φsを記憶する記憶手段を設けるように構成する。 (3) In the above-described embodiment, the example in which the period for measuring the pulse wave is provided as the stable period and the norm ratio φs is calculated using the measurement result of the stable period has been described. The norm ratio φs based on the measurement result measured in advance in a quiet state so as not to be received may be stored in the pulse wave measuring device 1 in advance. In this case, the pulse wave measuring apparatus 1 is configured to include a storage unit that stores the calculated norm ratio φs.

(4)上述した実施形態では、計測部位において反射された光を第1受発光部210及び第2受発光部220で受光する例を説明したが、計測部位を透過した光を受光するように構成してもよい。 (4) In the above-described embodiment, the example in which the light reflected by the measurement site is received by the first light receiving and emitting unit 210 and the second light receiving and emitting unit 220 has been described. However, the light transmitted through the measurement site is received. It may be configured.

(5)上述した実施形態では、人差指を計測部位として脈波センサー20を装着する例を説明したが、計測部位としては、例えば、手の甲、手首、足の甲、耳朶などの生体の部位であればこれに限定されない。 (5) In the above-described embodiment, the example in which the pulse wave sensor 20 is mounted using the index finger as the measurement site has been described. However, the measurement site may be a biological site such as the back of the hand, the wrist, the back of the foot, or the earlobe. It is not limited to this.

(6)上述した実施形態では、第2測定信号と第1測定信号の相関を表す係数としてユークリッドノルムを用いたノルム比φs、φ(J)nを適用する例を説明したが、安定期間とノイズ期間の第1測定信号及び第2測定信号のAC成分とDC成分の最大値ノルムを用いてノルム比φs、φ(J)nを算出してもよい。 (6) In the above-described embodiment, the example in which the norm ratios φs and φ (J) n using the Euclidean norm are applied as the coefficients representing the correlation between the second measurement signal and the first measurement signal has been described. The norm ratios φs and φ (J) n may be calculated using the maximum norms of the AC and DC components of the first measurement signal and the second measurement signal in the noise period.

1・・・脈波計測装置、10・・・本体装置、15・・・液晶ディスプレイ、16・・・操作スイッチ、20・・・脈波センサー、30・・・ケーブル、40・・・バンド、110・・・制御部、110a・・・出力部、120・・・信号処理部、121a,121b,124a,124b・・・フィルター、122−1,122−2・・・増幅回路、123−1,123−2,123−3,123−4・・・A/D変換回路、130・・・計時部、140・・・クロック供給部、150・・・表示部、160・・・操作部、210・・・第1受発光部、220・・・第2受発光部、230・・・駆動部   DESCRIPTION OF SYMBOLS 1 ... Pulse wave measuring device, 10 ... Main body device, 15 ... Liquid crystal display, 16 ... Operation switch, 20 ... Pulse wave sensor, 30 ... Cable, 40 ... Band, DESCRIPTION OF SYMBOLS 110 ... Control part, 110a ... Output part, 120 ... Signal processing part, 121a, 121b, 124a, 124b ... Filter, 122-1, 122-2 ... Amplification circuit, 123-1 , 123-2, 123-3, 123-4 ... A / D conversion circuit, 130 ... timer, 140 ... clock supply unit, 150 ... display unit, 160 ... operation unit, 210: first light emitting / receiving unit, 220: second light emitting / receiving unit, 230: driving unit

Claims (9)

生体の脈波の測定期間である第1測定期間と第2測定期間とにおける、前記生体を透過した又は前記生体で反射した第1の波長の光を受光した受光量に基づく第1測定信号、及び前記生体を透過した又は前記生体で反射した第2の波長の光を受光した受光量に基づく第2測定信号とを取得する取得手段と、
記第1測定期間と前記第2測定期間における前記第1測定信号と第2測定信号から、第1周波数成分の信号と、前記第1周波数成分の周波数帯域より低い周波数帯域の第2周波数成分の信号とを抽出する抽出手段と、
前記抽出手段によって抽出された前記第1測定期間及び前記第2測定期間における前記第1周波数成分の信号と前記第2周波数成分の信号とに基づ前記第2測定信号と前記第1測定信号との相関を表す第1係数と第2係数とを算出し、前記第1係数と前記第2係数と差に応じて、前記第1係数及び前記第2係数を用いて前記第2測定期間における前記第1測定信号と前記第2測定信号に含まれる脈動成分とノイズ成分とを分離する分離処理と、前記第2測定期間における前記第2測定信号の前記第1周波数成分を前記脈動成分とする処理とを選択的に行い、前記第2測定期間における前記脈動成分を出力する出力手段と
を備えることを特徴とする信号処理装置。
A first measurement signal based on a received light amount of light having a first wavelength transmitted through or reflected by the living body in a first measurement period and a second measurement period, which are measurement periods of a pulse wave of the living body; and obtaining means for obtaining a second measurement signal based on the received light amount of the received light to light of the second wavelength reflected by the transmitted or the biological the biological,
From the first measuring signal in the second measurement period before and Symbol first measurement period and a second measurement signal, a signal of the first frequency component, a second frequency of the lower frequency band than the frequency band of the first frequency component extraction means to extract the component of the signal,
Wherein the first measurement period extracted by the extracting means and the second signal of the first frequency component in the measurement period and the second frequency component of the signal and the based-out the second measurement signal and the first measurement signal The first coefficient and the second coefficient representing the correlation between the first coefficient and the second coefficient are calculated, and the second measurement period is calculated using the first coefficient and the second coefficient according to the difference between the first coefficient and the second coefficient. Separation processing for separating a pulsation component and a noise component included in the first measurement signal and the second measurement signal, and the first frequency component of the second measurement signal in the second measurement period as the pulsation component And an output means for selectively outputting the pulsating component in the second measurement period.
前記出力手段は、下記式(1)によって得られるを前記第1係数とし、下記式(2)によって得られるを前記第2係数とすることを特徴とする請求項1に記載の信号処理装置。
Figure 0005817362
‖RACpulse‖は第1測定期間の第1測定信号の第1周波数成分のノルムである。
‖GACpulse‖は第1測定期間の第2測定信号の第1周波数成分のノルムである。
‖RDCpulse‖は第1測定期間の第1測定信号の第2周波数成分のノルムである。
‖GDCpulse‖は第1測定期間の第2測定信号の第2周波数成分のノルムである。
‖RACnoise(j-k:j+k)‖は第2測定期間の第1測定信号の第1周波数成分のノルムである。
‖GACnoise(j-k:j+k)‖は第2測定期間の第2測定信号の第1周波数成分のノルムである。
‖RDCnoise(j-k:j+k)‖は第2測定期間の第1測定信号の第2周波数成分のノルムである。
‖GDCnoise(j-k:j+k)‖は第2測定期間の第2測定信号の第2周波数成分のノルムである。
And the output means, and the first coefficient value obtained by the following equation (1), the signal processing according to the value obtained by the following formula (2) in claim 1, characterized in that the said second coefficient apparatus.
Figure 0005817362
‖RACpulse‖ 2 is a norm of a first frequency component of the first measurement signal of the first measurement period.
‖GACpulse‖ 2 is a norm of a first frequency component of the second measurement signal of the first measurement period.
‖RDCpulse‖ 2 is a norm of a second frequency component of the first measurement signal of the first measurement period.
‖GDCpulse‖ 2 is a norm of a second frequency component of the second measurement signal of the first measurement period.
‖RACnoise (jk: j + k) || 2 is the norm of the first frequency component of the first measurement signal of the second measurement period.
‖GACnoise (jk: j + k) || 2 is the norm of the first frequency component of the second measurement signal of the second measurement period.
‖RDCnoise (jk: j + k) || 2 is the norm of the second frequency component of the first measurement signal of the second measurement period.
‖GDCnoise (jk: j + k) || 2 is the norm of the second frequency component of the second measurement signal of the second measurement period.
前記第1係数と前記第2係数との差が予め定めた閾値の範囲内である場合には、前記第2測定期間における前記第2測定信号の前記第1周波数成分を前記脈動成分とする処理を行い、前記閾値の範囲外である場合には、前記第1係数と前記第2係数とを用いた前記分離処理を行うことを特徴とする請求項2に記載の信号処理装置。  When the difference between the first coefficient and the second coefficient is within a predetermined threshold range, the process using the first frequency component of the second measurement signal in the second measurement period as the pulsation component 3. The signal processing apparatus according to claim 2, wherein the separation processing using the first coefficient and the second coefficient is performed when the value is outside the range of the threshold value. 4. 前記第2の波長の光は、前記第1の波長の光よりも酸化ヘモグロビンに対して還元ヘモグロビンの吸光係数が小さいことを特徴とする請求項1から3のいずれか一項に記載の信号処理装置。 The light of the second wavelength, the signal processing according to any one of claims 1 to 3, wherein the absorption coefficient of reduced hemoglobin with respect to oxygenated hemoglobin than the light of the first wavelength is small apparatus. 前記第1の波長の光を前記生体に照射し、前記生体を透過した又は前記生体で反射した前記第1の波長の光を受光し、受光量に応じた前記第1測定信号を出力する第1受発光部と、
前記第2の波長の光を前記生体に照射し、前記生体を透過した又は前記生体で反射した前記第2の波長の光を受光し、受光量に応じた前記第2測定信号を出力する第2受発光部と、
前記第1受発光部と前記第2受発光部から出力された前記第1測定信号及び前記第2測定信号を用いて、前記第2測定期間における脈動成分を出力する請求項1からのいずれか一項に記載の信号処理装置と
を備えることを特徴とする脈波計測装置。
The said light of the first wavelength is irradiated to the living body, receiving the first light of a wavelength reflected by the transmitted or the biological the biological, and outputs the first measurement signal corresponding to the received light amount 1 light emitting and receiving unit;
The second light having a wavelength of irradiating the living body, and receiving the second light of the wavelength reflected by the transmitted or the biological the biological, and outputs the second measurement signal corresponding to the amount of received light Two light emitting and receiving parts;
Using the first measurement signal and the second measurement signal outputted from the first light receiving and emitting unit and the second light receiving and emitting unit, according to claim 1 from 4 outputting the ripple component in the second measurement period A pulse wave measuring device comprising: the signal processing device according to any one of the above.
測定対象の生体の脈波を測定する第1測定期間と、前記生体の体動の影響を受けている第2測定期間とにおける、前記生体を透過した又は前記生体で反射した第1の波長の光を受光した受光量に基づく第1測定信号、及び前記生体を透過した又は前記生体で反射した第2の波長の光を受光した受光量に基づく第2測定信号とを取得する取得ステップと、
記第1測定期間及び前記第2測定期間における前記第1測定信号と第2測定信号から、第1周波数成分の信号と、前記第1周波数成分の周波数帯域より低い周波数帯域の第2周波数成分の信号とを抽出する抽出ステップと、
前記抽出ステップによって抽出された前記第1測定期間及び前記第2測定期間における前記第1周波数成分の信号と前記第2周波数成分の信号とに基づ前記第2測定信号と前記第1測定信号との相関を表す第1係数と第2係数とを算出し、前記第1係数と前記第2係数と差に応じて、前記第1係数及び前記第2係数を用いて前記第2測定期間における前記第1測定信号と前記第2測定信号に含まれる脈動成分とノイズ成分とを分離する分離処理と、前記第2測定期間における前記第2測定信号の前記第1周波数成分を前記脈動成分とする処理とを選択的に行い、前記第2測定期間における前記脈動成分を出力する出力ステップと
を有することを特徴とする信号処理方法。
A first measurement period for measuring the pulse wave of the measurement target living body, in a second measurement period that is affected by the body movement of the living body, first wavelength reflected by the transmitted or the biological the biological an obtaining step of obtaining a second measurement signal based on the first measurement signal, and a light receiving amount of receiving light of the second wavelength reflected by the transmitted or the biological the biological based on the amount of received light and receiving light,
From the first measurement signal before Symbol first measurement period and the second measurement period and a second measurement signal, a signal of the first frequency component, a second frequency of the lower frequency band than the frequency band of the first frequency component An extraction step for extracting component signals;
Signal and the second frequency component of the signal and based-out the second measurement signal to said first measuring signal of the first frequency component in the first measurement period and the second measurement period extracted by the extraction step The first coefficient and the second coefficient representing the correlation between the first coefficient and the second coefficient are calculated, and the second measurement period is calculated using the first coefficient and the second coefficient according to the difference between the first coefficient and the second coefficient. Separation processing for separating a pulsation component and a noise component included in the first measurement signal and the second measurement signal, and the first frequency component of the second measurement signal in the second measurement period as the pulsation component And a step of outputting the pulsation component in the second measurement period selectively.
生体の脈波の測定期間である第1測定期間と、前記生体の体動の影響を受けている第2測定期間とにおける、前記生体を透過した又は前記生体で反射した第1の波長の光を受光した受光量に基づく第1測定信号、及び前記生体を透過した又は前記生体で反射した第2の波長の光を受光した受光量に基づく第2測定信号とを取得する取得手段と、
前記第1測定期間及び前記第2測定期間における前記第1測定信号と第2測定信号とから、第1周波数成分の信号と、前記第1周波数成分の周波数帯域より低い周波数帯域の第2周波数成分の信号を抽出する抽出手段と、
前記抽出手段によって抽出された前記第1測定期間及び前記第2測定期間における前記第1周波数成分の信号と前記第2周波数成分の信号に基づき前記第2測定信号と前記第1測定信号との相関を表す第1係数及び第2係数とを算出し、前記第1係数と前記第2係数とを用いて、前記第2測定期間における前記第1測定信号と前記第2測定信号とに含まれる脈動成分とノイズ成分とを分離する分離手段と
を備えることを特徴とする信号処理装置。
Light having a first wavelength transmitted through the living body or reflected by the living body in a first measuring period, which is a measurement period of the pulse wave of the living body, and in a second measuring period, which is affected by body movement of the living body An acquisition means for acquiring a first measurement signal based on the amount of received light received and a second measurement signal based on the amount of received light having received the second wavelength light transmitted through or reflected by the living body;
From the first measurement signal and the second measurement signal in the first measurement period and the second measurement period, a signal of a first frequency component and a second frequency component in a frequency band lower than the frequency band of the first frequency component Extracting means for extracting the signal of
Wherein the first measurement period extracted by the extracting means and the second measurement period the second measuring signal based on a signal before SL signal and the second frequency component of the first frequency component that put on the first measurement signal The first coefficient and the second coefficient representing the correlation with each other are calculated, and the first measurement signal and the second measurement signal in the second measurement period are calculated using the first coefficient and the second coefficient. A signal processing apparatus comprising: a separation unit that separates a pulsation component and a noise component contained therein.
前記分離手段は、前記第1測定期間における前記第2測定信号に対する前記第1測定信号の前記第1周波数成分と前記第2周波数成分の各値を加算した値を前記第1係数とし、前記第2測定期間における前記第2測定信号に対する前記第1測定信号の第1周波数成分と前記第2周波数成分の各値を加算した値を前記第2係数として用いることを特徴とする請求項7に記載の信号処理装置。The separating means sets a value obtained by adding each value of the first frequency component and the second frequency component of the first measurement signal to the second measurement signal in the first measurement period as the first coefficient, and The value obtained by adding each value of the first frequency component and the second frequency component of the first measurement signal with respect to the second measurement signal in two measurement periods is used as the second coefficient. Signal processing equipment. 生体の脈波の測定期間である第1測定期間と、前記生体の体動の影響を受けている第2測定期間とにおける、前記生体を透過した又は前記生体で反射した第1の波長の光を受光した受光量に基づく第1測定信号、及び前記生体を透過した又は前記生体で反射した第2の波長の光を受光した受光量に基づく第2測定信号を取得する取得ステップと、Light having a first wavelength transmitted through the living body or reflected by the living body in a first measuring period, which is a measurement period of the pulse wave of the living body, and in a second measuring period, which is affected by body movement of the living body Obtaining a first measurement signal based on the amount of received light received, and a second measurement signal based on the amount of received light having received the second wavelength of light transmitted through or reflected by the living body;
前記第1測定期間及び前記第2測定期間における前記第1測定信号と第2測定信号とから、第1周波数成分の信号と、前記第1周波数成分の周波数帯域より低い周波数帯域の第2周波数成分の信号を抽出する抽出ステップと、From the first measurement signal and the second measurement signal in the first measurement period and the second measurement period, a signal of a first frequency component and a second frequency component in a frequency band lower than the frequency band of the first frequency component An extraction step for extracting the signal of
前記抽出ステップによって抽出された前記第1測定期間と前記第2測定期間の前記第1周波数成分の信号と前記第2周波数成分の信号に基づき前記第2測定信号と前記第1測定信号との相関を表す第1係数及び第2係数を算出し、前記第1係数及び前記第2係数を用いて、前記第2測定期間における前記第1測定信号と前記第2測定信号に含まれる脈動成分とノイズ成分とを分離する分離ステップとCorrelation between the second measurement signal and the first measurement signal based on the first frequency component signal and the second frequency component signal of the first measurement period and the second measurement period extracted by the extraction step. The first coefficient and the second coefficient representing the pulsation component and noise included in the first measurement signal and the second measurement signal in the second measurement period are calculated using the first coefficient and the second coefficient. Separating step to separate the components and
を有することを特徴とする信号処理方法。A signal processing method characterized by comprising:
JP2011196897A 2011-09-09 2011-09-09 Signal processing device, pulse wave measuring device, and signal processing method Active JP5817362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196897A JP5817362B2 (en) 2011-09-09 2011-09-09 Signal processing device, pulse wave measuring device, and signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196897A JP5817362B2 (en) 2011-09-09 2011-09-09 Signal processing device, pulse wave measuring device, and signal processing method

Publications (3)

Publication Number Publication Date
JP2013056083A JP2013056083A (en) 2013-03-28
JP2013056083A5 JP2013056083A5 (en) 2014-10-02
JP5817362B2 true JP5817362B2 (en) 2015-11-18

Family

ID=48132524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196897A Active JP5817362B2 (en) 2011-09-09 2011-09-09 Signal processing device, pulse wave measuring device, and signal processing method

Country Status (1)

Country Link
JP (1) JP5817362B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160113529A1 (en) 2014-10-23 2016-04-28 Samsung Electronics Co., Ltd. Blood pressure measuring apparatus, wrist watch type terminal having the same, and method of measuring blood pressure
JP6482235B2 (en) * 2014-10-23 2019-03-13 三星電子株式会社Samsung Electronics Co.,Ltd. Blood pressure measurement device, wristwatch terminal, and blood pressure measurement method
JP6385839B2 (en) * 2015-01-29 2018-09-05 シャープ株式会社 Pulse wave measuring device and pulse wave measuring method
JP6735333B2 (en) * 2018-12-28 2020-08-05 三星電子株式会社Samsung Electronics Co.,Ltd. Blood pressure measuring device, wristwatch terminal, and blood pressure measuring method

Also Published As

Publication number Publication date
JP2013056083A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP2013056082A (en) Signal processing apparatus, pulse wave measuring apparatus and signal processing method
Karlen et al. Adaptive pulse segmentation and artifact detection in photoplethysmography for mobile applications
US9480407B2 (en) Device and method for removal of ambient noise signal from a photoplethysmograph
US9060746B2 (en) Systems and methods for detecting arrhythmia from a physiological signal
US20210153756A1 (en) Reliable acquisition of photoplethysmographic data
Preejith et al. Design, development and clinical validation of a wrist-based optical heart rate monitor
JP2009072417A (en) Biological information processor and processing method
WO2013165740A1 (en) Systems and methods for identifying portions of a physilogical signal usable for determining physiiological information
JP6251997B2 (en) Pulse data detection device, pulse data detection method, and pulse data detection program
JP5817362B2 (en) Signal processing device, pulse wave measuring device, and signal processing method
KR20170041117A (en) Apparatus and method for measuring bio-information
EP2953536A1 (en) Systems and methods for determining respiration information using frequency demodulation
JP2013176535A (en) Pulse wave measurement apparatus and program
JP6482235B2 (en) Blood pressure measurement device, wristwatch terminal, and blood pressure measurement method
JP2013111444A (en) Device for determination of hemostasis state, pulse wave measurement device and method for determination of hemostasis state
JP2009261458A (en) Signal processing method and pulse photometer using the same
TWI432175B (en) Multi - channel physiological signal measuring device for ear and its method
JP2022160608A (en) Biological signal processing device and control method of the same
KR101786014B1 (en) SPO2 measurement system based on wrist-type photoplethysmography and method thereof
JP6735333B2 (en) Blood pressure measuring device, wristwatch terminal, and blood pressure measuring method
JP5432848B2 (en) Pulse photometer and pulse rate identification method
JP2020130875A (en) Biological signal analysis apparatus and control method thereof
Soni et al. Delineation of raw plethysmograph using wavelets for mobile based pulse oximeters
WO2014124025A1 (en) Systems and methods for determining respiration information from a physiological signal using amplitude demodulation
EP2848194B1 (en) Method, system and apparatus for generating pulse estimate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140813

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5817362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350