JP5813341B2 - Film forming composition and thin film transistor using the composition - Google Patents

Film forming composition and thin film transistor using the composition Download PDF

Info

Publication number
JP5813341B2
JP5813341B2 JP2011053348A JP2011053348A JP5813341B2 JP 5813341 B2 JP5813341 B2 JP 5813341B2 JP 2011053348 A JP2011053348 A JP 2011053348A JP 2011053348 A JP2011053348 A JP 2011053348A JP 5813341 B2 JP5813341 B2 JP 5813341B2
Authority
JP
Japan
Prior art keywords
compound
film
forming composition
group
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011053348A
Other languages
Japanese (ja)
Other versions
JP2012188549A (en
Inventor
浩史 稲成
浩史 稲成
井手 正仁
正仁 井手
眞鍋 貴雄
貴雄 眞鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011053348A priority Critical patent/JP5813341B2/en
Publication of JP2012188549A publication Critical patent/JP2012188549A/en
Application granted granted Critical
Publication of JP5813341B2 publication Critical patent/JP5813341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プロセス適応性に優れる膜形成用組成物および該組成物を用いた薄膜トランジスタに関する。   The present invention relates to a film forming composition excellent in process adaptability and a thin film transistor using the composition.

近年、往来のアモルファスシリコンや、単結晶シリコン等の無機材料に代わり、有機半導体を用いた素子の開発が進められている。有機半導体素子は製造工程が複雑な無機半導体素子と比較すると、簡易な工程で大面積の素子作成が可能であり、低コストで製造できる可能性がある。また、有機材料ならではの柔軟性、低温製膜が可能といった特徴からプラスチック等を用いるフレキシブル基板への適用性が高い。   In recent years, elements using organic semiconductors have been developed in place of conventional inorganic materials such as amorphous silicon and single crystal silicon. Compared with an inorganic semiconductor element having a complicated manufacturing process, an organic semiconductor element can be manufactured with a large area by a simple process and may be manufactured at low cost. In addition, it has high applicability to flexible substrates using plastics and the like because of the characteristics of organic materials such as flexibility and low temperature film formation.

このような有機半導体素子には、ゲート絶縁膜や、素子の保護膜として無機または有機物質からなる薄膜が使用される。この中で、上記製造コストの低減や、フレキシブル基板への適用性といった有機半導体の特徴を発揮するためには、これらの薄膜も有機物質よりなることが望ましい。このような薄膜としては例えば保護膜に化学的気相成長法(CVD:Chemical Vapor Deposition)によってパリレン等の有機膜を製膜する方法が提案されているが、CVDでは高度な真空プロセスを必要とし、製造工程が複雑となる欠点がある(特許文献1)。   In such an organic semiconductor element, a thin film made of an inorganic or organic material is used as a gate insulating film or a protective film of the element. Among these, in order to exhibit the characteristics of the organic semiconductor such as reduction of the manufacturing cost and applicability to a flexible substrate, it is desirable that these thin films are also made of an organic substance. As such a thin film, for example, a method of forming an organic film such as parylene on the protective film by chemical vapor deposition (CVD) has been proposed, but CVD requires an advanced vacuum process. There is a drawback that the manufacturing process becomes complicated (Patent Document 1).

また塗布や、印刷などのウェットプロセスにより、ポリマーや、硬化性材料を製膜する方法も提案されているが、製膜時に用いる溶剤や、形成した膜により有機半導体がダメージを受け、電気特性が低下するという問題があった(特許文献2)。   A method of forming a polymer or a curable material by a wet process such as coating or printing has also been proposed, but the organic semiconductor is damaged by the solvent used during the film formation or the formed film, and the electrical characteristics are reduced. There has been a problem of reduction (Patent Document 2).

これに対し水溶性樹脂を膜形成材料として用いて塗布する方法が提案されているが、有機半導体膜と水溶性樹脂が反応する恐れがあり、製膜時のダメージも完全には改善されていなかった(特許文献3)。   On the other hand, a method of applying a water-soluble resin as a film forming material has been proposed, but there is a possibility that the organic semiconductor film and the water-soluble resin may react, and the damage during film formation has not been completely improved. (Patent Document 3).

さらにフッ素系溶媒と、フッ素系樹脂を膜形成材料として用いて塗布する方法が提案されているが、フッ素樹脂による膜が他の層に対する密着性が低いという課題があった(特許文献4)。   Furthermore, although a method of applying using a fluorine-based solvent and a fluorine-based resin as a film forming material has been proposed, there is a problem that a film made of a fluorine resin has low adhesion to other layers (Patent Document 4).

特開2006−128623JP 2006-128623 A 特開2006−344952JP 2006-344952 A 特開2008−306188JP2008-306188 特開2010−34342JP2010-34342A

上記事情から本発明の目的は、有機半導体素子の製造プロセス適応性に優れる膜形成用組成物および該組成物を用いた薄膜トランジスタを提供することである。 In view of the above circumstances, an object of the present invention is to provide a film-forming composition having excellent adaptability to the manufacturing process of an organic semiconductor element, and a thin film transistor using the composition.

上記事情に鑑み、本発明者らが鋭意検討した結果、以下の構成を有するもので、上記課題が解決できることを見いだした。すなわち、本願発明は以下の構成を有するものである。 In view of the above circumstances, as a result of intensive studies by the present inventors, it has been found that the above-described problems can be solved with the following configuration. That is, the present invention has the following configuration.

1). 必須成分として、(a)下記式(I)で表される構造を0.6mmol/g以上含有する有機化合物と、(b)有機溶剤とを含有する膜形成用組成物。   1). A film-forming composition containing, as essential components, (a) an organic compound containing 0.6 mmol / g or more of a structure represented by the following formula (I), and (b) an organic solvent.

Figure 0005813341
Figure 0005813341

2). 有機化合物(a)がエポキシ系化合物、アクリル系化合物、フェノール系化合物、ベンゾオキサゾール系化合物、イミド系化合物、シアネート系化合物、ポリオルガノシロキサン系化合物のいずれか1つである1)に記載の膜形成用組成物。   2). The film formation according to 1), wherein the organic compound (a) is any one of an epoxy compound, an acrylic compound, a phenol compound, a benzoxazole compound, an imide compound, a cyanate compound, and a polyorganosiloxane compound. Composition.

3). 有機溶剤(b)が、プロピレンカーボネート、アセトニトリル、ジメチルスルホキシドから選ばれる少なくとも1種を含む1)または2)に記載の膜形成用組成物。   3). The film-forming composition according to 1) or 2), wherein the organic solvent (b) includes at least one selected from propylene carbonate, acetonitrile, and dimethyl sulfoxide.

4). 有機化合物(a)が、硬化性を有する1)〜3)のいずれか一項に記載の膜形成用組成物。   4). The film-forming composition according to any one of 1) to 3), wherein the organic compound (a) has curability.

5). 有機化合物(a)が、光硬化性を有する1)〜4)のいずれか一項に記載の膜形成用組成物。   5). The film-forming composition according to any one of 1) to 4), wherein the organic compound (a) has photocurability.

6). 有機化合物(a)が、カチオン重合、ヒドロシリル化反応のうち少なくとも1種の反応により硬化する化合物である1)〜5)のいずれか一項に記載の膜形成用組成物。   6). The film forming composition according to any one of 1) to 5), wherein the organic compound (a) is a compound that is cured by at least one reaction among cationic polymerization and hydrosilylation reaction.

7). 前記有機化合物(a)が、下記式(X1)または(X2)で表される構造を有する1)〜6)のいずれか一項に記載の膜形成用組成物。   7). The film forming composition according to any one of 1) to 6), wherein the organic compound (a) has a structure represented by the following formula (X1) or (X2).

Figure 0005813341
Figure 0005813341

(式中Rは水素原子以外の元素を表し、それぞれのRは異なっていても同一であってもよい)
8). 有機化合物(a)が、(α)1分子中にSiH基との反応性を有する炭素−炭素二重結合を有する化合物と、(β)SiH基を有するオルガノシロキサン化合物とのヒドロシリル化反応生成物であることを特徴とする、1)〜7)のいずれか一項に記載の膜形成用組成物
9). 化合物(α)が、Si−CH=CH基を有する化合物である8)記載の膜形成用組成物。
(Wherein R 1 represents an element other than a hydrogen atom, and each R 1 may be different or the same)
8). Hydrosilylation reaction product of organic compound (a), (α) a compound having a carbon-carbon double bond having reactivity with SiH group in one molecule, and (β) an organosiloxane compound having SiH group The film-forming composition according to any one of 1) to 7), characterized in that: 9). The film forming composition according to 8) , wherein the compound (α) is a compound having a Si—CH═CH 2 group.

10). 化合物(β)が、下記一般式(II)   10). Compound (β) is represented by the following general formula (II)

Figure 0005813341
Figure 0005813341

(式中R、Rは炭素数1〜10の有機基を表し同一であっても異なっても良く、nは1〜10、mは0〜10の数を表す)
で表されるSiH基を有する環状ポリオルガノシロキサン化合物である、9)〜10)のいずれか一項に記載の膜形成用組成物。
(Wherein R 2, R 3 may be the same or different represents an organic group having 1 to 10 carbon atoms, n represents 1 to 10, m represents a number of 0)
The film forming composition according to any one of 9) to 10), which is a cyclic polyorganosiloxane compound having a SiH group represented by:

11). 有機化合物(a)が、(α)、(β)と、(γ)1分子中に光重合成官能基と、SiH基との反応性を有する炭素―炭素二重結合を有する化合物のヒドロシリル化反応物を含有する9)〜10)のいずれか一項に記載の膜形成用組成物。   11). Hydrosilylation of a compound in which the organic compound (a) has a carbon-carbon double bond having a reactivity with a photopolymerization functional group and a SiH group in one molecule (α), (β), and (γ) The composition for film formation as described in any one of 9) to 10) containing a reactant.

12). 1)〜11)のいずれか一項に記載の膜形成用組成物によって得られる薄膜トランジスタ。   12). A thin film transistor obtained by the film forming composition according to any one of 1) to 11).

本発明によれば、有機半導体素子の製造プロセス適応性に優れる膜形成用組成物および該組成物を用いた薄膜トランジスタを与えうる。   ADVANTAGE OF THE INVENTION According to this invention, the composition for film formation which is excellent in the manufacturing process adaptability of an organic-semiconductor element, and the thin-film transistor using this composition can be provided.

TIPSペンタセン膜のUVスペクトルを示す。The UV spectrum of a TIPS pentacene film is shown.

本発明の膜形成用組成物は、(a)式(I)で表される構造を0.6mmol/g以上含有する有機化合物と、(b)有機溶剤とを含有することが特徴であるが、特に式(I)で表される構造を0.6mmol/g以上有する有機化合物を用いることにより、有機半導体素子の絶縁膜等に使用する際に、有機半導体膜へのダメージを最小にし、電気特性に優れる素子を作成することができる。   The film forming composition of the present invention is characterized in that it contains (a) an organic compound containing 0.6 mmol / g or more of the structure represented by formula (I), and (b) an organic solvent. In particular, by using an organic compound having a structure represented by the formula (I) of 0.6 mmol / g or more, damage to the organic semiconductor film is minimized when used for an insulating film of an organic semiconductor element, etc. An element having excellent characteristics can be created.

有機化合物(a)は膜を形成する成分であり、式(I)で表される構造を0.6mmol/g以上有するものであればその組成は特に限定されず、単一物質でも良いし、複数の物質からなるものであってもよい。   The organic compound (a) is a component that forms a film, and its composition is not particularly limited as long as it has a structure represented by the formula (I) of 0.6 mmol / g or more, and may be a single substance, It may consist of a plurality of substances.

有機化合物(a)中の式(I)で表される構造の含有量は0.6〜5.0mmol/gが好ましく、0.8〜4.0mmol/gがより好ましく、1.5〜3.5mmol/gが特に好ましい。含有量が少ないと本発明の効果が十分に得難くなり、含有量が多すぎると膜形成用組成物の成膜性が悪化する。   The content of the structure represented by the formula (I) in the organic compound (a) is preferably 0.6 to 5.0 mmol / g, more preferably 0.8 to 4.0 mmol / g, and 1.5 to 3 0.5 mmol / g is particularly preferred. If the content is small, it is difficult to obtain the effect of the present invention. If the content is too large, the film forming property of the film-forming composition deteriorates.

また式(I)で表される構造が有するイソシアヌル環構造は、安定性にも優れており、有機化合物(a)がこの構造を有することで絶縁性、耐熱性に優れる膜を得ることができる。さらに式(I)で表される構造に加えて、式(X1)、(X2)で表される構造も含有することによって、より絶縁性、耐熱性に優れる膜を得ることができるので好ましい。式(X1)、(X2)で表される構造は式(I)1molに対して、0.1〜3.0mol含有することが好ましい。   In addition, the isocyanuric ring structure of the structure represented by the formula (I) is excellent in stability, and the organic compound (a) having this structure makes it possible to obtain a film having excellent insulation and heat resistance. . Furthermore, in addition to the structure represented by the formula (I), the structure represented by the formulas (X1) and (X2) is also preferable because a film having more excellent insulation and heat resistance can be obtained. The structure represented by the formulas (X1) and (X2) is preferably contained in an amount of 0.1 to 3.0 mol with respect to 1 mol of the formula (I).

このような有機化合物(a)としては、エポキシ系化合物、アクリル系化合物、フェノール系化合物、ベンゾオキサゾール系化合物、イミド系化合物、シアネート系化合物、ポリオルガノシロキサン系化合物等をあげることができる。このなかでも絶縁性、熱、光に対する安定性の観点から特にポリオルガノシロキサン系化合物が好ましい。   Examples of such an organic compound (a) include epoxy compounds, acrylic compounds, phenol compounds, benzoxazole compounds, imide compounds, cyanate compounds, polyorganosiloxane compounds, and the like. Of these, polyorganosiloxane compounds are particularly preferred from the viewpoints of insulation, heat and light stability.

ポリオルガノシロキサン系化合物とは、シロキサン単位(Si−O−Si)および、構成元素としてC、H、N、O、Sからなる有機基Xとから構成される化合物であれば特に限定はなく、これらのうちエポキシ基、イミド基などの官能基を有するものもポリオルガノシロキサン化合物とする。これら化合物中のシロキサン単位のうち、構成成分中T単位(XSiO3/2)、またはQ単位(SiO4/2)の含有率が高いものほど得られる膜は硬度が高くより耐熱信頼性に優れ、またM単位(XSiO1/2)、またはD単位(XSiO2/2)の含有率が高いものほど膜はより柔軟で低応力なものが得られるので好ましい。 The polyorganosiloxane compound is not particularly limited as long as it is a compound composed of a siloxane unit (Si—O—Si) and an organic group X composed of C, H, N, O, and S as constituent elements, Of these, those having a functional group such as an epoxy group or an imide group are also polyorganosiloxane compounds. Of the siloxane units in these compounds, the higher the content of T units (XSiO 3/2 ) or Q units (SiO 4/2 ) in the constituents, the higher the film obtained, the higher the hardness and the better the heat resistance reliability. Also, the higher the content of M units (X 3 SiO 1/2 ) or D units (X 2 SiO 2/2 ), the more preferable the film is because it provides a more flexible and low stress film.

式(I)で表される構造のポリオルガノシロキサンの導入法としては、SiH基を有するポリシロキサン化合物と、モノアリルイソシアヌレートとをヒドロシリル化反応させることによって得ることができる。   As a method for introducing the polyorganosiloxane having the structure represented by the formula (I), it can be obtained by subjecting a polysiloxane compound having a SiH group and monoallyl isocyanurate to a hydrosilylation reaction.

式(2)で表される構造のポリオルガノシロキサンの導入法としては、SiH基を有するポリシロキサン化合物と、トリアリルイソシアヌレート、ジアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、トリス(2−(メタ)アクリロイルオキシエチル)イソシアヌレートなどのヒドロシリル化反応性を有する2重結合を構造中に有するイソシアヌル環含有化合物とをヒドロシリル化反応させることによって得ることができる。   As a method for introducing a polyorganosiloxane having a structure represented by the formula (2), a polysiloxane compound having a SiH group, triallyl isocyanurate, diallyl isocyanurate, diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, It can be obtained by a hydrosilylation reaction with an isocyanuric ring-containing compound having a double bond having hydrosilylation reactivity in the structure, such as tris (2- (meth) acryloyloxyethyl) isocyanurate.

また、SiH基を有するポリシロキサン化合物としては、(II)で表されるSiH基を有する環状ポリオルガノシロキサン化合物が好適に用いることができる。   As the polysiloxane compound having a SiH group, a cyclic polyorganosiloxane compound having a SiH group represented by (II) can be preferably used.

本発明の膜形成用組成物を用いて作成する膜の膜厚は10nm以上20μm以下が好ましく、20nm以上10μm以下がより好ましい。   The thickness of the film formed using the film forming composition of the present invention is preferably 10 nm to 20 μm, and more preferably 20 nm to 10 μm.

本発明の有機化合物(a)としては、熱や、光などの外部エネルギーにより、架橋反応が進行する硬化性組成物を使用しても良い。この場合、高密度な架橋構造に基づく高度な絶縁性、安定性を有する膜を得ることができる。   As the organic compound (a) of the present invention, a curable composition in which a crosslinking reaction proceeds by external energy such as heat or light may be used. In this case, a film having high insulation and stability based on a high-density cross-linked structure can be obtained.

架橋反応形式としては特に限定されるものではないが、カチオン重合反応、ラジカル重合反応、ヒドロシリル化反応、重縮合反応などが挙げることができ、小さなエネルギーで効率的に架橋反応が進めることができるという観点より、カチオン重合反応、ヒドロシリル化反応が好ましい。また、これらのうち2つ以上の架橋形式を有するものであってもよい。   Although it does not specifically limit as a crosslinking reaction form, Cationic polymerization reaction, radical polymerization reaction, hydrosilylation reaction, polycondensation reaction etc. can be mentioned, and it can be said that a crosslinking reaction can advance efficiently with small energy. From the viewpoint, cationic polymerization reaction and hydrosilylation reaction are preferable. Moreover, you may have two or more types of bridge | crosslinking among these.

カチオン重合反応が進行する硬化性組成物としては、分子内に少なくとも1個のカチオン重合性官能基を有する重合性化合物が用いられる。カチオン重合性官能基としては、エポキシ基、オキセタニル基、架橋性シリコン基、ビニルエーテル基、エピスルフィド基、エチレンイミン基等が挙げられる。なかでも、エポキシ基を有する化合物が好適に用いられる。エポキシ基のなかでも安定性の観点より、脂環式エポキシ基やグリシジル基が好ましく、特に重合性に優れる点では、脂環式エポキシ基が好ましい。   As the curable composition in which the cationic polymerization reaction proceeds, a polymerizable compound having at least one cationic polymerizable functional group in the molecule is used. Examples of the cationic polymerizable functional group include an epoxy group, an oxetanyl group, a crosslinkable silicon group, a vinyl ether group, an episulfide group, and an ethyleneimine group. Of these, compounds having an epoxy group are preferably used. Among the epoxy groups, an alicyclic epoxy group or a glycidyl group is preferable from the viewpoint of stability, and an alicyclic epoxy group is particularly preferable in terms of excellent polymerizability.

ヒドロシリル化反応が進行する硬化性組成物としては、炭素―炭素二重結合を有する化合物と、SiH基を有する化合物の組み合わせが用いられる。炭素−炭素二重結合を有する化合物は一分子中に少なくとも炭素−炭素二重結合を少なくとも1個以上有するものであれば特に限定されるものではなく、ポリシロキサン化合物、有機化合物にかかわらず特に限定なく使用することができる。具体的にはトリアリルイソシアヌレート、ジアリルイソシアヌレート、モノアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、トリス(2−(メタ)アクリロイルオキシエチル)イソシアヌレートなどが好適に使用できる。   As the curable composition in which the hydrosilylation reaction proceeds, a combination of a compound having a carbon-carbon double bond and a compound having a SiH group is used. The compound having a carbon-carbon double bond is not particularly limited as long as it has at least one carbon-carbon double bond in one molecule, and is not particularly limited regardless of a polysiloxane compound or an organic compound. It can be used without. Specifically, triallyl isocyanurate, diallyl isocyanurate, monoallyl isocyanurate, diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, tris (2- (meth) acryloyloxyethyl) isocyanurate can be suitably used. .

本発明の有機化合物(a)として、上記硬化性組成物を用いる場合、膜形成用組成物には、硬化性組成物の架橋形式に応じた重合開始剤もしくは、触媒を用いることができる。
カチオン重合させる場合の重合開始剤としては、活性エネルギー線によりカチオン種又はルイス酸を発生する、活性エネルギー線カチオン重合開始剤、又は熱によりカチオン種又はルイス酸を発生する熱カチオン重合開始剤を用いることができる。特に好ましい活性エネルギー線カチオン重合開始剤には、アリールスルホニウム錯塩、ハロゲン含有錯イオンの芳香族スルホニウムまたはヨードニウム塩並びにII族、V族およびVI族元素の芳香族オニウム塩が包含される。
When the curable composition is used as the organic compound (a) of the present invention, a polymerization initiator or a catalyst corresponding to the crosslinking type of the curable composition can be used for the film-forming composition.
As a polymerization initiator in the case of cationic polymerization, an active energy ray cationic polymerization initiator that generates a cationic species or a Lewis acid by active energy rays, or a thermal cationic polymerization initiator that generates a cationic species or a Lewis acid by heat is used. be able to. Particularly preferred active energy ray cationic polymerization initiators include arylsulfonium complex salts, aromatic sulfonium or iodonium salts of halogen-containing complex ions, and aromatic onium salts of Group II, Group V and Group VI elements.

これらの塩のいくつかは、FX−512(3M社製)、UVR−6990およびUVR−6974(ユニオン・カーバイド社製)、UVE−1014およびUVE−1016(ゼネラル・エレクトリック社製)、KI−85(デグッサ社製)、SP−152およびSP−172(旭電化社製)並びにサンエイドSI−60L、SI−80LおよびSI−100L(三新化学工業社製)、WPI113およびWPI116(和光純薬工業社製)、RHODORSIL PI2074(ローディア社製)、BBI−103(みどり化学社製)として商品として入手できる。   Some of these salts are FX-512 (manufactured by 3M), UVR-6990 and UVR-6974 (manufactured by Union Carbide), UVE-1014 and UVE-1016 (manufactured by General Electric), KI-85. (Degussa), SP-152 and SP-172 (Asahi Denka), Sun-Aid SI-60L, SI-80L and SI-100L (Sanshin Chemical), WPI113 and WPI116 (Wako Pure Chemical Industries) Manufactured), RHODORSIL PI2074 (manufactured by Rhodia), and BBI-103 (manufactured by Midori Chemical).

ラジカル重合させる場合の重合開始剤としては、活性エネルギー線によりラジカル種を発生する、活性エネルギー線ラジカル重合開始剤を用いることができる。   As the polymerization initiator in the case of radical polymerization, an active energy ray radical polymerization initiator that generates radical species by active energy rays can be used.

ヒドロシリル化反応させる場合の触媒としては、例えば次のようなものを用いることができる。白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH=CH(PPh、Pt(CH=CHCl)、白金−ビニルシロキサン錯体(例えば、Pt(ViMeSiOSiMeVi)、Pt[(MeViSiO))、白金−ホスフィン錯体(例えば、Pt(PPh、Pt(PBu)、白金−ホスファイト錯体(例えば、Pt[P(OPh)、Pt[P(OBu))(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。 As the catalyst for the hydrosilylation reaction, for example, the following can be used. Platinum simple substance, alumina, silica, carbon black or the like supported on solid platinum, chloroplatinic acid, a complex of chloroplatinic acid and alcohol, aldehyde, ketone or the like, platinum-olefin complex (for example, Pt (CH 2 = CH 2) 2 (PPh 3) 2, Pt (CH 2 = CH 2) 2 Cl 2), platinum - vinylsiloxane complex (e.g., Pt (ViMe 2 SiOSiMe 2 Vi ) n, Pt [(MeViSiO) 4] m ), a platinum-phosphine complex (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ), a platinum-phosphite complex (eg, Pt [P (OPh) 3 ] 4 , Pt [P (OBu) 3 ] 4) (in the formula, Me represents a methyl group, Bu a butyl group, Vi is vinyl group, Ph represents a phenyl group, n, m is an integer.), Jikaruboni Dichloroplatinum, Karstedt catalyst, and platinum-hydrocarbon complexes described in Ashby US Pat. Nos. 3,159,601 and 3,159,622, and Lamoreaux, US Pat. No. 3,220,972. Examples include platinum alcoholate catalysts described in the text.

更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。   In addition, platinum chloride-olefin complexes described in Modic US Pat. No. 3,516,946 are also useful in the present invention.

特に硬化性組成物の中で、光により架橋反応が進行する光硬化性組成物は、硬化反応が短時間で行えることから有用である。このような光硬化組成物の架橋形式は特に限定されず、上記硬化性組成物と同様なものが使用可能であり、上記重合開始剤、触媒のうち光により活性化し、ラジカル、またはカチオン種を発生する光重合開始剤と組み合わせることにより光硬化性を付与することができる。   In particular, a photocurable composition in which a crosslinking reaction proceeds by light among curable compositions is useful because the curing reaction can be performed in a short time. The crosslinking type of such a photocurable composition is not particularly limited, and the same type as the above curable composition can be used. It is activated by light among the above polymerization initiator and catalyst, and radicals or cationic species are selected. Photo-curability can be imparted by combining with a generated photopolymerization initiator.

また、本発明の有機化合物(a)は式(I)で表される構造を有することにより、アルカリ現像性を有し得る。そのため光硬化性を付与することにより、工業的に有用なリソグラフィー性を有することができる。   Moreover, the organic compound (a) of the present invention can have alkali developability by having a structure represented by the formula (I). Therefore, industrially useful lithography properties can be obtained by imparting photocurability.

本発明の有機化合物(a)として、ポリオルガノシロキサン系化合物を用いる場合、好適なものとして、次の態様が挙げられる。
下記化合物(α)と(β)、さらに必要に応じて(γ)のヒドロシリル化反応生成物:
(α)SiH基との反応性を有する炭素−炭素二重結合を有する有機化合物。
(β)SiH基を有するオルガノシロキサン化合物。
(γ)、光重合性官能基と、SiH基との反応性を有する炭素−炭素二重結合とを有する化合物
以下、ポリオルガノシロキサン系化合物の好ましい態様につき、説明する。
As the organic compound (a) of the present invention, when a polyorganosiloxane compound is used, the following embodiments are preferable.
The hydrosilylation reaction product of the following compounds (α) and (β) and, if necessary, (γ):
(Α) An organic compound having a carbon-carbon double bond having reactivity with a SiH group.
(Β) An organosiloxane compound having a SiH group.
(Γ), Compound Having Photopolymerizable Functional Group and Carbon-Carbon Double Bond Reactive with SiH Group Hereinafter, preferred embodiments of the polyorganosiloxane compound will be described.

これら化合物(α)、(β)、(γ)はそれぞれに対応する1種の化合物を用いてもよいし、必要に応じて複数種の化合物を用いてもよい。   As these compounds (α), (β), and (γ), one type of compound corresponding to each may be used, or a plurality of types of compounds may be used as necessary.

化合物(α)について説明する。
化合物(α)は、SiH基との反応性を有する炭素−炭素二重結合を有する化合物であれば限定されるものではない。
The compound (α) will be described.
The compound (α) is not limited as long as it is a compound having a carbon-carbon double bond having reactivity with the SiH group.

特に式(I)で表される構造を有する化合物をこの化合物(α)として用い、有機化合物(a)に導入することが好ましい。入手性の観点より、具体的にはモノアリルイソシアヌル酸が挙げられる。また得られる膜の耐熱性、絶縁性に優れるという観点より、式(X1)、(X2)で表される構造を有する化合物も併用することが好ましい。入手性の観点より、トリアリルイソシアヌレート、ジアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、トリス(2−(メタ)アクリロイルオキシエチル)イソシアヌレートなどが具体的に挙げられる。   In particular, a compound having a structure represented by the formula (I) is preferably used as the compound (α) and introduced into the organic compound (a). Specifically, monoallyl isocyanuric acid is mentioned from the viewpoint of availability. Moreover, it is preferable to use together the compound which has a structure represented by Formula (X1) and (X2) from a viewpoint that it is excellent in the heat resistance of the film | membrane obtained, and insulation. Specific examples include triallyl isocyanurate, diallyl isocyanurate, diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, and tris (2- (meth) acryloyloxyethyl) isocyanurate.

また得られる膜が透明性に優れる観点より、アルケニル基を有するポリシロキサン化合物との併用が好ましく、特に入手性の観点より、ジメチルビニルシリル基で末端が封鎖されたポリもしくはオリゴシロキサン、具体的に1,3,5,7−ビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジビニル−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリビニル−トリメチルシクロシロキサン、1,3,5,7,9−ペンタビニル−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサビニル−1,3,5,7,9,11−ヘキサメチルシクロシロキサン等の環状シロキサン化合物が好ましい。   Further, from the viewpoint of excellent transparency of the obtained film, it is preferable to use it together with a polysiloxane compound having an alkenyl group. Particularly, from the viewpoint of availability, a poly or oligosiloxane whose end is blocked with a dimethylvinylsilyl group, specifically 1,3,5,7-vinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trivinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-divinyl-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-trimethylcyclosiloxane, 1,3,5,7,9-pentavinyl- 1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexavinyl-1,3,5,7,9,11-hexameth Cyclic siloxane compounds such as Le cyclosiloxanes are preferred.

化合物(β)について説明する。
化合物(β)については1分子中に少なくとも2個のSiH基を有するオルガノポリシロキサン化合物であれば特に限定されず、例えば、1分子中に少なくとも2個のSiH基を有するもの等が使用できる。
The compound (β) will be described.
The compound (β) is not particularly limited as long as it is an organopolysiloxane compound having at least two SiH groups in one molecule. For example, compounds having at least two SiH groups in one molecule can be used.

これらのうち、入手性および化合物(α)、(γ)との反応性が良いという観点からは、さらに、(II)で表される、1分子中に少なくとも3個のSiH基を有する環状オルガノポリシロキサンが好ましい。   Among these, from the viewpoint of availability and reactivity with the compounds (α) and (γ), it is further represented by (II) a cyclic organo group having at least three SiH groups in one molecule. Polysiloxane is preferred.

一般式(II)で表される化合物中の置換基R、Rは、炭素数1〜10の有機基であればよいが炭化水素基であることが好ましく、メチル基であることがより好ましい。 The substituents R 2 and R 3 in the compound represented by the general formula (II) may be any organic group having 1 to 10 carbon atoms, but are preferably a hydrocarbon group, and more preferably a methyl group. preferable.

一般式(II)で表される化合物としては、入手容易性及び反応性の観点からは、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
上記した各種化合物(β)は単独もしくは2種以上のものを混合して用いることが可能である。
The compound represented by the general formula (II) is preferably 1,3,5,7-tetramethylcyclotetrasiloxane from the viewpoint of availability and reactivity.
The various compounds (β) described above can be used alone or in combination of two or more.

化合物(γ)について説明する。
化合物(γ)は、1分子中に光重合性官能基を少なくとも1個と、SiH基との反応性を有する炭素−炭素二重結合を少なくとも1個有する化合物であれば特に限定されない。
The compound (γ) will be described.
The compound (γ) is not particularly limited as long as it is a compound having at least one photopolymerizable functional group and at least one carbon-carbon double bond having reactivity with a SiH group in one molecule.

光重合性官能基としては、エポキシ基、アルコキシシリル基、ビニルエーテル基、(メタ)アクリロイル基、オキセタニル基、等があげられるが、反応性・化合物の安定性の観点より、光重合性官能基の少なくとも1個は、エポキシ基が好ましい。   Examples of the photopolymerizable functional group include an epoxy group, an alkoxysilyl group, a vinyl ether group, a (meth) acryloyl group, an oxetanyl group, etc. From the viewpoint of reactivity and compound stability, At least one is preferably an epoxy group.

光重合性官能基としてエポキシ基を有する化合物(γ)の具体例としては、ビニルシクロヘキセンオキシド、アリルグリシジルエーテル、ジアリルモノグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等が挙げられ、光重合反応性に優れている観点より、脂環式エポキシ基を有する化合物であるビニルシクロヘキセンオキシドが特に好ましい。   Specific examples of the compound (γ) having an epoxy group as a photopolymerizable functional group include vinylcyclohexene oxide, allyl glycidyl ether, diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, and the like. From the viewpoint of superiority, vinylcyclohexene oxide, which is a compound having an alicyclic epoxy group, is particularly preferable.

またヒドロシリル化反応の際、光重合性官能基の種類を問わず、2種以上の化合物(γ)を併用することもできる。   Moreover, in the case of hydrosilylation reaction, 2 or more types of compounds ((gamma)) can also be used together regardless of the kind of photopolymerizable functional group.

このような光重合性官能基はポリオルガノシロキサン系化合物中に、0.1〜50mmol/g含有することが好ましく、0.3〜30mmol/g含有することがより好ましい。
含有量が少ないと、硬化が不十分となり、含有量が多すぎると膜形成用組成物の安定性が悪化する。
Such a photopolymerizable functional group is preferably contained in the polyorganosiloxane compound in an amount of 0.1 to 50 mmol / g, and more preferably 0.3 to 30 mmol / g.
When the content is small, curing becomes insufficient, and when the content is too large, the stability of the film-forming composition is deteriorated.

(ヒドロシリル化触媒)
これら化合物(α)、化合物(β)および化合物(γ)を用いて、ヒドロシリル化反応によりポリオルガノシロキサン系化合物を合成する際の触媒には、膜形成液に添加するヒドロシリル化触媒と同様のものが使用できる。
(Hydrosilylation catalyst)
The catalyst for synthesizing a polyorganosiloxane compound by hydrosilylation reaction using the compound (α), compound (β) and compound (γ) is the same as the hydrosilylation catalyst added to the film forming liquid. Can be used.

(化合物(α)、化合物(β)および化合物(γ)の反応)
本発明の光硬化性組成物に使用できるポリオルガノシロキサン系化合物としては、上述したとおり、化合物(α)、化合物(β)、および化合物(γ)の反応をヒドロシリル化触媒の存在下で反応させることにより得られる化合物が挙げられる。
(Reaction of compound (α), compound (β) and compound (γ))
As described above, the polyorganosiloxane compound that can be used in the photocurable composition of the present invention is a reaction of the compound (α), the compound (β), and the compound (γ) in the presence of a hydrosilylation catalyst. The compound obtained by this is mentioned.

化合物(α)、化合物(β)、および化合物(γ)を反応させる際、過剰の化合物(α)と化合物(β)とを、もしくは、過剰の化合物(β)と化合物(α)とをヒドロシリル化反応させた後、一旦、未反応の化合物(α)もしくは化合物(β)を除き、得られた反応物と化合物(γ)をヒドロシリル化反応させると低分子量体を含有しにくいという観点から好ましい。   When the compound (α), the compound (β), and the compound (γ) are reacted, an excess of the compound (α) and the compound (β) or an excess of the compound (β) and the compound (α) is hydrosilylated. It is preferable from the viewpoint that it is difficult to contain a low-molecular-weight substance once the unreacted compound (α) or compound (β) is removed and the resulting reaction product and compound (γ) are hydrosilylated after the reaction. .

反応温度としては種々設定できるが、この場合好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。   The reaction temperature can be variously set. In this case, the lower limit of the preferable temperature range is 30 ° C., more preferably 50 ° C., and the upper limit of the preferable temperature range is 200 ° C., more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical. The reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required.

反応時間、反応時の圧力も必要に応じ種々設定できる。
ヒドロシリル化反応の際に酸素を使用できる。反応容器の気相部に酸素を添加することで、ヒドロシリル化反応を促進できる。酸素の添加量を爆発限界下限以下とする点から、気相部の酸素体積濃度は3%以下に管理する必要がある。酸素添加によるヒドロシリル化反応の促進効果が見られるという点からは、気相部の酸素体積濃度は0.1%以上が好ましく、1%以上がより好ましい。
Various reaction times and pressures during the reaction can be set as required.
Oxygen can be used during the hydrosilylation reaction. The hydrosilylation reaction can be promoted by adding oxygen to the gas phase portion of the reaction vessel. From the point of setting the amount of oxygen to be below the lower limit of explosion limit, the oxygen volume concentration in the gas phase must be controlled to 3% or less. In view of promoting the hydrosilylation reaction effect by the addition of oxygen, the oxygen volume concentration in the gas phase is preferably at least 0.1%, more preferably at least 1%.

ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2−ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。   A solvent may be used during the hydrosilylation reaction. Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction. Specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1, Ether solvents such as 3-dioxolane and diethyl ether, ketone solvents such as acetone and methyl ethyl ketone, and halogen solvents such as chloroform, methylene chloride and 1,2-dichloroethane can be preferably used. The solvent can also be used as a mixed solvent of two or more types. As the solvent, toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable. The amount of solvent to be used can also be set as appropriate.

化合物(α)、化合物(β)および化合物(γ)をヒドロシリル化反応させた後に、溶媒及び/又は未反応の化合物を除去することもできる。これらの揮発分を除去することにより、得られる反応物が揮発分を有さないため、該反応物を用いて硬化物を作成する場合に、揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては、例えば、減圧脱揮が挙げられる。減圧脱揮する場合、低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは80℃である。高温で処理すると増粘等の変質を伴いやすい。
本発明のカチオン重合性化合物としてのオルガノポリシロキサン系化合物の上記製造方法では、目的によって種々の添加剤を使用できる。
After the compound (α), the compound (β) and the compound (γ) are hydrosilylated, the solvent and / or the unreacted compound can be removed. By removing these volatile components, the reaction product obtained does not have volatile components. Therefore, when creating a cured product using the reaction product, problems of voids and cracks due to volatilization of volatile components are unlikely to occur. . Examples of the removal method include vacuum devolatilization. When devolatilizing under reduced pressure, it is preferable to treat at a low temperature. The upper limit of the preferable temperature in this case is 100 ° C, more preferably 80 ° C. When treated at high temperatures, it tends to be accompanied by alterations such as thickening.
In the above production method of the organopolysiloxane compound as the cationically polymerizable compound of the present invention, various additives can be used depending on the purpose.

本発明の有機溶剤(b)は単独で使用してもよく、2種以上併用してもよい。膜形成液中の有機溶剤(b)の量は、膜形成液全体100重量部中、好ましくは10〜90重量部、より好ましくは30〜80重量部である。有機溶剤(b)が少ないと、膜形成用組成物の粘度が高くなり、成膜性が悪化する。   The organic solvent (b) of the present invention may be used alone or in combination of two or more. The amount of the organic solvent (b) in the film forming liquid is preferably 10 to 90 parts by weight, more preferably 30 to 80 parts by weight, based on 100 parts by weight of the whole film forming liquid. When there is little organic solvent (b), the viscosity of the composition for film formation will become high, and film formability will deteriorate.

溶剤の種類は特に限定されないが、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、プロピレングリコール−1−モノメチルエーテル−2−アセテート(PGMEA)、エチレングリコールジエチルエーテル等のグリコール系溶剤、クロロホルム、塩化メチレン、1,2−ジクロロエタン等のハロゲン系溶媒、炭酸プロピレン、ジメチルスルホキシド、アセトニトリルを好適に用いることができる。   The type of the solvent is not particularly limited, but specific examples include hydrocarbon solvents such as benzene, toluene, hexane and heptane, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane and diethyl ether. Solvents, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, glycol solvents such as propylene glycol-1-monomethyl ether-2-acetate (PGMEA), ethylene glycol diethyl ether, chloroform, methylene chloride, 1, 2 -Halogen solvents such as dichloroethane, propylene carbonate, dimethyl sulfoxide, and acetonitrile can be preferably used.

この中でも有機半導体素子の絶縁膜等に使用する際に、有機半導体膜へのダメージをより小さくできるという点で。炭酸プロピレン、ジメチルスルホキシド、アセトニトリルが特に好ましい。これら3種の有機溶剤と他の有機溶剤とを併用する場合、有機半導体膜へのダメージの観点から、他の有機溶剤の含有量は3種の有機溶剤に対し、20重量部以下が好ましく、10重量部以下がより好ましい。   Among them, when used for an insulating film of an organic semiconductor element, damage to the organic semiconductor film can be further reduced. Particularly preferred are propylene carbonate, dimethyl sulfoxide and acetonitrile. When these three kinds of organic solvents are used in combination with other organic solvents, the content of the other organic solvents is preferably 20 parts by weight or less with respect to the three kinds of organic solvents, from the viewpoint of damage to the organic semiconductor film. 10 parts by weight or less is more preferable.

本発明の膜形成用組成物の調製方法は特に限定されず、種々の方法で調製可能である。各種成分を成膜直前に混合調製しても良く、全成分を予め混合調製した一液の状態で低温貯蔵しておいても良い。
本発明の膜形成用組成物は、基材の状態に合わせ適宜、溶剤による粘度調整、界面活性剤による表面張力調整を行っても良い。
The method for preparing the film forming composition of the present invention is not particularly limited, and can be prepared by various methods. Various components may be mixed and prepared immediately before film formation, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance.
The film forming composition of the present invention may be subjected to viscosity adjustment with a solvent and surface tension adjustment with a surfactant as appropriate according to the state of the substrate.

また本発明の有機化合物(a)を、光照射により架橋反応を進行させて硬化物させる場合、光硬化させるための光源としては、使用する重合開始剤や増感剤の吸収波長を発光する光源を使用すればよく、通常200〜450nmの範囲の波長を含む光源、例えば、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、カーボンアークランプ、発光ダイオードなどを使用できる。   Moreover, when making the organic compound (a) of this invention harden | cure by making a crosslinking reaction advance by light irradiation, as a light source for carrying out photocuring, the light source which light-emits the absorption wavelength of the polymerization initiator and sensitizer to be used. Can be used, and a light source usually having a wavelength in the range of 200 to 450 nm, such as a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a high-power metal halide lamp, a xenon lamp, a carbon arc lamp, or a light-emitting diode can be used. .

露光量は特に制限されないが、好ましい露光量の範囲は1〜1000mJ/cm、より好ましくは1〜500mJ/cmであり、さらに好ましくは1〜300mJ/cmである。露光量が少ないと表面荒れや、膜厚の減少、パターンエッジ部の欠けが生じる。
露光量が多いと急硬化のために変色することがある。
The exposure amount is not particularly limited, but a preferable exposure amount range is 1-1000 mJ / cm 2 , more preferably 1-500 mJ / cm 2 , and further preferably 1-300 mJ / cm 2 . If the exposure amount is small, the surface becomes rough, the film thickness decreases, and the pattern edge portion is chipped.
If the exposure amount is large, the color may change due to rapid curing.

成膜後、溶媒の蒸発、硬化反応の促進等の点から加熱することが好ましい。その加熱温度は特に限定されるものではないが、周辺の耐熱性の低い部材への影響が小さいという観点より、200℃以下であることが好ましく、特に樹脂基板などを用いる場合には、寸法安定性等を考慮すると180℃以下であることが好ましい。   After film formation, it is preferable to heat from the viewpoint of evaporation of the solvent, acceleration of curing reaction, and the like. Although the heating temperature is not particularly limited, it is preferably 200 ° C. or less from the viewpoint that the influence on the surrounding low heat-resistant member is small, and in particular when using a resin substrate or the like, dimensional stability Considering properties and the like, it is preferably 180 ° C. or lower.

また本発明の有機化合物(a)について、アルカリ現像により微細パターニングすることも可能である。そのパターニング形成について特に限定される方法はなく、一般的に行われる浸漬法やスプレー法等の現像方法により未露光部を溶解・除去し所望のパターン形成させることができる。   The organic compound (a) of the present invention can be finely patterned by alkali development. The patterning formation is not particularly limited, and a desired pattern can be formed by dissolving / removing the unexposed portion by a commonly used developing method such as an immersion method or a spray method.

現像液については、一般に使用するものであれば特に限定なく使用することができ、具体例としては、テトラメチルアンモニウムハイドロオキサイド水溶液やコリン水溶液等の有機アルカリ水溶液や、水酸化カリウム水溶液、水酸化ナトリウム水溶液、炭酸カリウム水溶液、炭酸ナトリウム水溶液、炭酸リチウム水溶液などの無機アルカリ水溶液やこれら水溶液に溶解速度等の調整のためにアルコールや界面活性剤などを添加したもの等を挙げることができる。   The developer can be used without particular limitation as long as it is generally used. Specific examples thereof include organic alkali aqueous solutions such as tetramethylammonium hydroxide aqueous solution and choline aqueous solution, potassium hydroxide aqueous solution, sodium hydroxide. Examples thereof include inorganic aqueous alkali solutions such as aqueous solutions, potassium carbonate aqueous solutions, sodium carbonate aqueous solutions, and lithium carbonate aqueous solutions, and those obtained by adding alcohol or a surfactant to these aqueous solutions in order to adjust the dissolution rate.

また現像液の水溶液濃度に関しては、露光部と未露光部のコントラストがつきやすいという観点より、25重量部以下であることが好ましく、より好ましくは10重量部以下、更に好ましくは5重量部以下であることが好ましい。   Further, the aqueous solution concentration of the developer is preferably 25 parts by weight or less, more preferably 10 parts by weight or less, and still more preferably 5 parts by weight or less, from the viewpoint that the contrast between the exposed part and the unexposed part is easily obtained. Preferably there is.

(添加剤について)
本発明の膜形成用組成物には、必要に応じて種々の添加剤を添加することができる。
(About additives)
Various additives can be added to the film-forming composition of the present invention as necessary.

(増感剤)
本発明の膜形成用組成物には、有機化合物(b)を光エネルギーで硬化させる場合には、光の感度向上のおよびg線(436nm)、h線(405nm)、i線(365nm)と言われるような高波長の光に感度を持たせるために、適宜、増感剤を添加する事ができる。添加する化合物には、アントラセン系化合物、チオキサントン系化合物などが挙げることができる。
(Sensitizer)
In the film-forming composition of the present invention, when the organic compound (b) is cured with light energy, the sensitivity of light is improved, and g-line (436 nm), h-line (405 nm), i-line (365 nm) In order to give sensitivity to light having a high wavelength as mentioned, a sensitizer can be appropriately added. Examples of the compound to be added include anthracene compounds and thioxanthone compounds.

アントラセン系化合物の具体例としては、アントラセン、2−エチル−9,10−ジメトキシアントラセン、9,10−ジメチルアントラセン、9,10−ジブトキシアントラセン、9,10−ジプロポキシアントラセン、9,10−ジエトキシアントラセン、1,4−ジメトキシアントラセン、9−メチルアントラセン、2−エチルアントラセン、2−tert−ブチルアントラセン、2,6−ジ−tert−ブチルアントラセン、9,10−ジフェニル−2,6−ジ−tert−ブチルアントラセン等が挙げられ、特に入手しやすい観点より、アントラセン、9,10−ジメチルアントラセン、9,10−ジブトキシアントラセン、9,10−ジプロポキシアントラセン、9,10−ジエトキシアントラセン等が好ましい。   Specific examples of the anthracene compound include anthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-dimethylanthracene, 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene, and 9,10-di. Ethoxyanthracene, 1,4-dimethoxyanthracene, 9-methylanthracene, 2-ethylanthracene, 2-tert-butylanthracene, 2,6-di-tert-butylanthracene, 9,10-diphenyl-2,6-di- tert-butylanthracene and the like can be mentioned, and from the viewpoint of easy availability, anthracene, 9,10-dimethylanthracene, 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diethoxyanthracene and the like preferable.

チオキサントン系の具体例としては、チオキサントン、2−クロロチオキサントン、2,5−ジエチルジオキサントン等が挙げられる。   Specific examples of the thioxanthone series include thioxanthone, 2-chlorothioxanthone, 2,5-diethyldioxanthone and the like.

硬化物の透明性に優れる観点からはアントラセンが好ましく、硬化性組成物との相溶性に優れる観点からは9,10−ジブトキシアントラセン、9,10−ジプロポキシアントラセン、9,10−ジエトキシアントラセン等が好ましい。   Anthracene is preferable from the viewpoint of excellent transparency of the cured product, and 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene, and 9,10-diethoxyanthracene from the viewpoint of excellent compatibility with the curable composition. Etc. are preferred.

またこれらの増感剤は単独で使用してもよく、2種以上併用してもよい。増感剤の添加量は、硬化時間、膜中の増感剤残存の点、着色性等の点から有機化合物(b)100重量部に対して、0.1〜10重量部であることが好ましく、0.1〜5重量部であることがより好ましい。   These sensitizers may be used alone or in combination of two or more. The addition amount of the sensitizer is 0.1 to 10 parts by weight with respect to 100 parts by weight of the organic compound (b) from the viewpoints of curing time, sensitizer remaining in the film, colorability and the like. Preferably, it is 0.1 to 5 parts by weight.

(接着性改良剤)
本発明の膜形成用組成物には、接着性改良剤を添加することもできる。接着性改良剤としては一般に用いられている接着剤の他、例えば種々のカップリング剤、エポキシ化合物、オキセタン化合物、フェノール樹脂、クマロン−インデン樹脂、ロジンエステル樹脂、テルペン−フェノール樹脂、α−メチルスチレン−ビニルトルエン共重合体、ポリエチルメチルスチレン、芳香族ポリイソシアネート等を挙げることができる。
(Adhesion improver)
An adhesion improver can also be added to the film-forming composition of the present invention. In addition to commonly used adhesives as adhesion improvers, for example, various coupling agents, epoxy compounds, oxetane compounds, phenol resins, coumarone-indene resins, rosin ester resins, terpene-phenol resins, α-methylstyrene -Vinyl toluene copolymer, polyethyl methyl styrene, aromatic polyisocyanate, etc. can be mentioned.

カップリング剤としては例えばシランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。   An example of the coupling agent is a silane coupling agent. The silane coupling agent is not particularly limited as long as it is a compound having at least one functional group reactive with an organic group and one hydrolyzable silicon group in the molecule. The group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handling. From the viewpoints of adhesion and adhesiveness, an epoxy group, a methacryl group, and an acrylic group are particularly preferable. As the hydrolyzable silicon group, an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.

好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。   Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane Alkoxysilanes which can be exemplified.

シランカップリング剤の添加量としては種々設定できるが、有機化合物(b)100重量部に対して、好ましくは0.1〜20重量部、より好ましくは0.3〜10重量部、さらに好ましくは0.5〜5重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと膜の物性に悪影響を及ぼす場合がある。これらのカップリング剤、シランカップリング剤、エポキシ化合物等は単独で使用してもよく、2種以上併用してもよい。   The amount of the silane coupling agent can be variously set, but is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 10 parts by weight, and still more preferably, with respect to 100 parts by weight of the organic compound (b). 0.5 to 5 parts by weight. If the addition amount is small, the effect of improving the adhesiveness does not appear, and if the addition amount is large, the physical properties of the film may be adversely affected. These coupling agents, silane coupling agents, epoxy compounds and the like may be used alone or in combination of two or more.

(リン化合物)
本発明の有機化合物(a)を光又は熱により硬化させ、特に膜が透明性を要求される用途で使用する場合は、光又は熱による硬化後の色相を改善するために、膜形成用組成物にリン化合物を添加するのが好ましい。リン化合物の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、サイクリックネオペンタンテトライルビス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6−ジ−t−ブチル−4−メチルフェニル)ホスファイト、ビス[2−t−ブチル−6−メチル−4−{2−(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類から選ばれる酸化防止剤、又は、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のオキサホスファフェナントレンオキサイド類から選ばれる着色防止剤が好ましく使用される。
(Phosphorus compound)
In the case where the organic compound (a) of the present invention is cured by light or heat and used in applications where the film requires transparency, a film-forming composition is used to improve the hue after curing by light or heat. It is preferable to add a phosphorus compound to the product. Specific examples of phosphorus compounds include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol diphosphite, tris (2,4-di-t-butyl). Phenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl phosphite), cyclic neopentane tetrayl bis (2,4-di-t-butylphenyl) phosphite, cyclic neopentane tetrayl bis (2, Phosphites such as 6-di-t-butyl-4-methylphenyl) phosphite, bis [2-t-butyl-6-methyl-4- {2- (octadecyloxycarbonyl) ethyl} phenyl] hydrogen phosphite An antioxidant selected from the group 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa- Coloring agents selected from oxaphosphaphenanthrene oxides such as 10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide are preferably used. Is done.

リン化合物の使用量は、有機化合物(b)100重量部に対して、好ましくは0.01〜10重量部、より好ましくは0.1〜5重量部である。リン化合物の使用量が少ないと、色相の改善効果が少なくなる。使用量が多くなると、膜の物性に悪影響を及ぼす場合がある。   The amount of the phosphorus compound used is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the organic compound (b). If the amount of the phosphorus compound used is small, the effect of improving the hue decreases. If the amount used is increased, the physical properties of the film may be adversely affected.

(充填材)
本発明の膜形成用組成物には必要に応じて充填材を添加してもよい。
充填材としては各種のものが用いられるが、例えば、石英、ヒュームシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系充填材、窒化ケイ素、銀粉、アルミナ、水酸化アルミニウム、酸化チタン、ガラス繊維、炭素繊維、マイカ、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、無機バルーン等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用或いは/及び提案されている充填材等を挙げることができる。
(Filler)
You may add a filler to the composition for film formation of this invention as needed.
Various fillers are used. For example, silica-based fillers such as quartz, fume silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine powder amorphous silica, silicon nitride, silver powder, etc. Inorganic fillers such as alumina, aluminum hydroxide, titanium oxide, glass fiber, carbon fiber, mica, carbon black, graphite, diatomaceous earth, clay, clay, talc, calcium carbonate, magnesium carbonate, barium sulfate, inorganic balloon As a filler for a conventional sealing material such as an epoxy type, a filler that is generally used or / and proposed can be used.

(老化防止剤)
本発明の膜形成用組成物には老化防止剤を添加してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。
(Anti-aging agent)
An antioxidant may be added to the film-forming composition of the present invention. Examples of the anti-aging agent include citric acid, phosphoric acid, sulfur-based anti-aging agent and the like in addition to the anti-aging agents generally used such as hindered phenol type.

ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。   As the hindered phenol-based anti-aging agent, various types such as Irganox 1010 available from Ciba Specialty Chemicals are used.

硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。   Sulfur-based antioxidants include mercaptans, mercaptan salts, sulfide carboxylic acid esters, sulfides including hindered phenol sulfides, polysulfides, dithiocarboxylates, thioureas, thiophosphates, sulfonium Examples thereof include compounds, thioaldehydes, thioketones, mercaptals, mercaptols, monothioacids, polythioacids, thioamides, and sulfoxides. These anti-aging agents may be used alone or in combination of two or more.

(ラジカル禁止剤)
本発明の膜形成用組成物にはラジカル禁止剤を添加してもよい。ラジカル禁止剤としては、例えば、2,6−ジ−t−ブチル−3−メチルフェノール(BHT)、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、テトラキス(メチレン−3(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)メタン等のフェノール系ラジカル禁止剤や、フェニル−β−ナフチルアミン、α−ナフチルアミン、N,N’−第二ブチル−p−フェニレンジアミン、フェノチアジン、N,N’−ジフェニル−p−フェニレンジアミン等のアミン系ラジカル禁止剤等が挙げられる。これらのラジカル禁止剤は単独で使用してもよく、2種以上併用してもよい。
(Radical inhibitor)
A radical inhibitor may be added to the film-forming composition of the present invention. Examples of the radical inhibitor include 2,6-di-t-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), tetrakis (methylene- Phenol radical inhibitors such as 3 (3,5-di-t-butyl-4-hydroxyphenyl) propionate) methane, phenyl-β-naphthylamine, α-naphthylamine, N, N′-secondary butyl-p- Examples include amine radical inhibitors such as phenylenediamine, phenothiazine, N, N′-diphenyl-p-phenylenediamine, and the like. These radical inhibitors may be used alone or in combination of two or more.

(紫外線吸収剤)
本発明の膜形成用組成物には紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば2(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6−テトラメチル−4−ピペリジン)セバケート等が挙げられる。これらの紫外線吸収剤は単独で使用してもよく、2種以上併用してもよい。
(UV absorber)
An ultraviolet absorber may be added to the film forming composition of the present invention. Examples of the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidine) sebacate and the like. Can be mentioned. These ultraviolet absorbers may be used alone or in combination of two or more.

(その他添加剤)
本発明の膜形成用組成物には、その他、着色剤、離型剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、アンチモン−ビスマス等のイオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を本発明の目的および効果を損なわない範囲において添加することができる。
(Other additives)
The film-forming composition of the present invention includes other colorants, mold release agents, flame retardants, flame retardant aids, surfactants, antifoaming agents, emulsifiers, leveling agents, anti-fogging agents, antimony-bismuth and the like. Ion trap agent, thixotropic agent, tackifier, storage stability improver, ozone degradation inhibitor, light stabilizer, thickener, plasticizer, reactive diluent, antioxidant, heat stabilizer, conductivity The purpose and effect of the present invention include a property imparting agent, an antistatic agent, a radiation shielding agent, a nucleating agent, a phosphorus peroxide decomposing agent, a lubricant, a pigment, a metal deactivator, a thermal conductivity imparting agent, and a physical property modifier. Can be added within a range that does not impair.

(薄膜トランジスタについて)
本発明で得られる硬化性組成物を絶縁膜として得られる薄膜トランジスタとは、電界効果トランジスタ(FET)を示し、ソース、ドレイン、ゲート電極から形成されている3端子型、およびバックゲートを含む4端子型のトランジスタのことであり、ゲート電極に電圧印加することで発生するチャネルの電界によりソース/ドレイン間の電流を制御する薄膜型のトランジスタを示す。
(About thin film transistors)
The thin film transistor obtained by using the curable composition obtained in the present invention as an insulating film refers to a field effect transistor (FET), a three-terminal type formed from a source, a drain, and a gate electrode, and a four-terminal including a back gate. A thin film transistor which is a type transistor and controls a current between a source and a drain by an electric field of a channel generated by applying a voltage to a gate electrode.

薄膜トランジスタ構造としては、ゲート電極の配置に関してボトムゲート型、トップゲート型、さらにはソース/ドレイン電極の配置に関し、ボトムコンタクト型、トップコンタクト型など適用する表示デバイス構造に応じて様々な組み合わせ、配置で設計可能であり、特にはその構造は限定されない。   As for the thin film transistor structure, there are various combinations and arrangements depending on the display device structure to be applied, such as bottom gate type, top gate type, and source / drain electrode arrangement with respect to the arrangement of the gate electrode, such as bottom contact type and top contact type. Design is possible, and the structure is not particularly limited.

薄膜トランジスタの半導体層種として様々な形態のものが提案されており、アモルファスシリコン(aSi)、ポリシリコン(pSi)、微結晶シリコン(μ−cSi)等のシリコン系半導体、ZnO、InGaZnOなどの酸化物系半導体やペンタセン、オリゴチオフェン、フタロシアニンなどの化合物を用いる有機半導体、カーボンナノチューブ、グラフェン、フラーレン等を用いる炭素系半導体などが代表的なものとして挙げられ、特に限定されず適用できる。その中でも低温プロセスでありプラスチックフィルム上で形成しやすいという観点から、有機半導体を用いるものが好ましい。   Various types of thin film transistor semiconductor layers have been proposed, including silicon-based semiconductors such as amorphous silicon (aSi), polysilicon (pSi), and microcrystalline silicon (μ-cSi), and oxides such as ZnO and InGaZnO. Typical examples include organic semiconductors, organic semiconductors using compounds such as pentacene, oligothiophene, and phthalocyanine, and carbon-based semiconductors using carbon nanotubes, graphene, fullerenes, and the like. Among these, those using an organic semiconductor are preferable from the viewpoint of being a low-temperature process and being easily formed on a plastic film.

また半導体層の形成方法に関しては、CVD法、スパッタリング、蒸着、塗布など様々な工法が提案されており、特に限定されない。低温プロセスでプラスチックフィルム上での形成がしやすいという観点よりスパッタ、蒸着、塗布法で形成できることが好ましく、印刷プロセスのような簡便なプロセスを用いて量産できることよりコストメリットの観点から塗布法で形成できるものがより好ましい。   Moreover, regarding the method for forming the semiconductor layer, various methods such as CVD, sputtering, vapor deposition, and coating have been proposed and are not particularly limited. It is preferable that it can be formed by sputtering, vapor deposition, or coating method from the viewpoint of easy formation on a plastic film in a low temperature process, and it is formed by coating method from the viewpoint of cost merit because it can be mass-produced using a simple process such as a printing process. What can be done is more preferable.

電極材料に関しては、特に限定せず使用することができるが、簡便に入手できるAu、Al、Pt、Mo、Ti、Cr、Ni、Cu、ITO、PEDOT/PSS等の導電性高分子、導電ペースト、メタルインクなどが好適に用いられる。抵抗が低く、高い導電性を得られることよりAl、Mo、Ti、Cr、Ni、Cuなどが好ましく、また透明性が必要な箇所に適用できる観点からは、ITO、PEDOT/PSSが好ましく、電極表面が酸化されにくくの安定性に優れるという観点からは、Au、Ptが好ましく、印刷プロセスにより形成できることよりPEDOT/PSS等の導電性高分子、導電ペースト、メタルインクが好ましく用いられる。   Regarding the electrode material, it can be used without any particular limitation, but it can be easily obtained, such as Au, Al, Pt, Mo, Ti, Cr, Ni, Cu, ITO, PEDOT / PSS, etc., conductive polymer, conductive paste Metal ink or the like is preferably used. Al, Mo, Ti, Cr, Ni, Cu and the like are preferable because of low resistance and high conductivity, and ITO and PEDOT / PSS are preferable from the viewpoint of being applicable to places where transparency is required. Au and Pt are preferable from the viewpoint that the surface is hardly oxidized and excellent in stability, and conductive polymers such as PEDOT / PSS, conductive paste, and metal ink are preferably used because they can be formed by a printing process.

本発明の膜形成用組成物を用いる絶縁膜の代表的な適用部位としては、ゲート電極と半導体との間に形成されるゲート絶縁膜、素子全体を覆うように形成されるパッシベーション膜が挙げることができる。   Typical application parts of the insulating film using the film forming composition of the present invention include a gate insulating film formed between the gate electrode and the semiconductor, and a passivation film formed so as to cover the entire element. Can do.

(絶縁膜の形成方法)
本発明の膜形成用組成物を用いる絶縁膜はCVD、スパッタなどに比べ製造工程が簡便であり、コストの面で有利な塗布法で形成することができる。具体的にはスピンコーティング、ディップコーティング、ロールコーティング、スクリーンコーティング、スプレーコーティング、スピンキャスティング、フローコーティング、スクリーン印刷、インクジェットまたはドロップキャスティングなどの方法で成膜することができる。また成膜する基材の状態に合わせ適宜、溶剤による粘度調整、界面活性剤による表面張力調整を行っても良い。
(Method of forming insulating film)
The insulating film using the film-forming composition of the present invention has a simpler manufacturing process than CVD and sputtering, and can be formed by a coating method advantageous in terms of cost. Specifically, the film can be formed by a method such as spin coating, dip coating, roll coating, screen coating, spray coating, spin casting, flow coating, screen printing, inkjet or drop casting. Further, viscosity adjustment with a solvent and surface tension adjustment with a surfactant may be appropriately performed in accordance with the state of the substrate on which the film is formed.

一般に有機半導体を用いて薄膜トランジスタを作成する場合、ボトムゲート構造ではパッシベーション膜が、トップゲート構造ではゲート絶縁膜がそれぞれ有機半導体膜上に形成される。これらの絶縁膜形成用組成物を塗布法にて有機半導体膜上に塗布すると、有機半導体への構造変化などのダメージが生じ、トランジスタ特性が大きく低下することがある。そのため特性が良好な薄膜トランジスタを得るには、絶縁膜形成用組成物の塗布前後で有機半導体膜の構造変化を小さくすることが重要である。   In general, when a thin film transistor is formed using an organic semiconductor, a passivation film is formed on the organic semiconductor film in the bottom gate structure, and a gate insulating film is formed on the organic semiconductor film in the top gate structure. When these compositions for forming an insulating film are applied onto an organic semiconductor film by a coating method, damage such as a structural change to the organic semiconductor may occur, and transistor characteristics may be greatly deteriorated. Therefore, in order to obtain a thin film transistor with good characteristics, it is important to reduce the structural change of the organic semiconductor film before and after the application of the insulating film forming composition.

本発明の膜形成用組成物を用いて製造される薄膜トランジスタは、アクティブマトリクス型のフラットパネルディスプレイにおける画素トランジスタとして用いることができる。この際、ディスプレイを安定的に駆動させるためトランジスタの特性として、閾値電圧、ON/OFF比が重要特性として挙げられる。   The thin film transistor manufactured using the film forming composition of the present invention can be used as a pixel transistor in an active matrix flat panel display. At this time, in order to drive the display stably, the threshold voltage and the ON / OFF ratio are cited as important characteristics as transistor characteristics.

ここで言う閾値電圧とは、トランジスタがON状態となり半導体層に電流が流れ始める電圧値を示し、トランジスタの電流伝達特性においてソース/ドレイン間に流れる電流Id、ゲート印加電圧Vgとした際の(Id)1/2とVg間のグラフにおいて線形部分の延長線とVg 軸との交点より算出される。トランジスタの駆動にかかる消費電力が小さくなるという観点より、−14〜14Vであることが好ましく、さらに−12〜12Vであることが好ましい。 The threshold voltage mentioned here indicates a voltage value at which a transistor starts to be turned on and a current starts to flow through the semiconductor layer. In the current transfer characteristics of the transistor, the current Id flowing between the source / drain and the gate applied voltage Vg (Id) ) Calculated from the intersection of the extension of the linear portion and the Vg axis in the graph between 1/2 and Vg. From the viewpoint of reducing power consumption for driving the transistor, it is preferably −14 to 14V, more preferably −12 to 12V.

ON/OFF電流比とは、トランジスタの電流伝達特性におけるソース/ドレイン間に流れる電流Idの最大電流値と最小電流値の比(Ion/Ioff)で表され、大きければ大きいほどスイッチとしての機能に優れることを示し、駆動に大電流を要する方式の駆動も可能となることより1.0×10以上であることが好ましく、5.0×10以上であることがさらに好ましい。 The ON / OFF current ratio is expressed as a ratio (Ion / Ioff) of the maximum current value and the minimum current value of the current Id flowing between the source and the drain in the current transfer characteristic of the transistor. It is preferably 1.0 × 10 2 or more, and more preferably 5.0 × 10 2 or more, since it shows superiority and enables driving of a method requiring a large current for driving.

以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。   Examples and Comparative Examples of the present invention are shown below, but the present invention is not limited to the following.

(有機半導体膜構造変化の評価)
実施例1〜4、比較例1のように調整した膜形成用組成物を有機半導体膜上に塗布した際の構造変化を、UVスペクトルによって評価した。
(Evaluation of organic semiconductor film structure change)
Structural changes when the film forming compositions prepared as in Examples 1 to 4 and Comparative Example 1 were applied on the organic semiconductor film were evaluated by UV spectrum.

ガラス基板に6.13−ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPSペンタセン)溶液(0.5%クロロホルム溶液)をスピンコートにより塗布、100℃のホットプレート上で10分間加熱し、有機半導体膜を形成させ、その上に膜形成用組成物を2000rpm、20secの条件でスピンコートにより塗布し、150℃のホットプレート上で1時間加熱し、絶縁膜を形成した。
UVスペクトルは紫外可視分光光度計(日本分光社製 JASCO JSV 560)により、空気中での250〜800nmの光線透過率を測定した。
A 6.13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene) solution (0.5% chloroform solution) was applied to a glass substrate by spin coating, and heated on a hot plate at 100 ° C. for 10 minutes to form an organic semiconductor film. The film-forming composition was applied thereon by spin coating under the conditions of 2000 rpm and 20 sec, and heated on a hot plate at 150 ° C. for 1 hour to form an insulating film.
The UV spectrum was measured with a UV-visible spectrophotometer (JASCO JSV 560 manufactured by JASCO Corporation) for light transmittance of 250 to 800 nm in air.

TIPSペンタセン膜上に実施例1〜4、比較例1の膜形成用組成物を塗布し、150℃のホットプレート上で1時間加熱した後にUVスペクトルを測定し、TIPSペンタセン膜の極大ピークのある波長335nmでの吸収強度の減少率を算出した。なお、実施例1〜4、比較例1の膜形成用組成物をガラス上に塗布し加熱して得られた膜にはほとんど吸収が認められなかった。TIPSペンタセン膜のUVスペクトルを図1に、波長335nmでの吸収強度の減少率の算出結果を表1に示す。   The film forming compositions of Examples 1 to 4 and Comparative Example 1 were applied on the TIPS pentacene film, heated on a hot plate at 150 ° C. for 1 hour, and then measured for UV spectrum, and the TIPS pentacene film had a maximum peak. The decrease rate of the absorption intensity at a wavelength of 335 nm was calculated. In addition, absorption was hardly recognized by the film | membrane obtained by apply | coating the composition for film formation of Examples 1-4 and the comparative example 1 on glass, and heating. The UV spectrum of the TIPS pentacene film is shown in FIG. 1, and the calculation result of the reduction rate of the absorption intensity at the wavelength of 335 nm is shown in Table 1.

この結果からわかるように、本発明の膜形成用組成物を用いることにより、有機半導体膜上に絶縁膜を設ける際のダメージを低減することができる。   As can be seen from this result, by using the film forming composition of the present invention, damage when an insulating film is provided on the organic semiconductor film can be reduced.

(薄膜トランジスタの製作)
ガラス基板にアルミ(Al)を用いて厚さ500Åのゲート電極を形成し、その上にポリイミド樹脂をスピンコートにより塗布し、厚さ1μmのゲート絶縁膜を形成した。さらに蒸着により500Åの厚さにペンタセンの有機半導体膜を形成させ、その上にチャネル長さ100μm、チャネル幅5mmのマスクを用いて蒸着によって厚さ300Åのソース/ ドレインAu電極を形成した。
(Production of thin film transistors)
A gate electrode having a thickness of 500 mm was formed on a glass substrate using aluminum (Al), and a polyimide resin was applied thereon by spin coating to form a gate insulating film having a thickness of 1 μm. Further, a pentacene organic semiconductor film having a thickness of 500 mm was formed by vapor deposition, and a source / drain Au electrode having a thickness of 300 mm was formed thereon by vapor deposition using a mask having a channel length of 100 μm and a channel width of 5 mm.

さらにその上から膜形成用組成物を2000rpm、20secの条件でスピンコートにより塗布し、65℃のホットプレート上で5分加熱し、露光装置(高圧水銀ランプ、マスクアライメント装置 MA−10 ミカサ社製)を用い、50μm角のパターンマスクを通して、200mJ/cm2で露光し(プロキシミティ露光、ギャップ12μm)、65℃のホットプレート上で2分加熱し、アルカリ性現像液(TMAH2.38%水溶液)に60秒浸漬後、60秒水洗して、50μm角コンタクトホールを形成した。さらに150℃でポストベイクして厚さ2.0μmのパッシベーション膜を形成し、薄膜トランジスタを製作した。   Further, a film-forming composition was applied from above by spin coating under the conditions of 2000 rpm and 20 sec, heated on a hot plate at 65 ° C. for 5 minutes, and exposed to light (high pressure mercury lamp, mask alignment device MA-10 manufactured by Mikasa Co., Ltd.). ) Through a 50 μm square pattern mask (proximity exposure, gap 12 μm), and heated on a hot plate at 65 ° C. for 2 minutes to 60% alkaline developer (TMAH 2.38% aqueous solution). After dipping for 2 seconds, it was washed with water for 60 seconds to form a 50 μm square contact hole. Further, post-baking was performed at 150 ° C. to form a passivation film having a thickness of 2.0 μm, and a thin film transistor was manufactured.

(トランジスタ特性評価)
本発明の膜形成用組成物を用いて上記のように作成した薄膜トランジスタについて、半導体パラメーターアナライザー(Agilent4156)を用い電流伝達特性を評価した。ソース/ドレイン間に−40Vの電圧を印加した状態で、ゲート電極に20〜−40Vで印加した際のソース/ドレイン間電流量(Id)をプロットし伝達特性とした。得られた電流伝達特性の曲線からトランジスタ特性を下記の方法によって算出した結果を表1に示す。
(Transistor characteristic evaluation)
About the thin-film transistor created as mentioned above using the film forming composition of this invention, the current transfer characteristic was evaluated using the semiconductor parameter analyzer (Agilent 4156). With the voltage of −40 V applied between the source / drain, the amount of current (Id) between the source and drain when applied to the gate electrode at 20 to −40 V was plotted to obtain the transfer characteristics. Table 1 shows the result of calculating the transistor characteristics from the obtained current transfer characteristic curve by the following method.

Figure 0005813341
Figure 0005813341

この結果から、本発明の膜形成用組成物により、電流特性に優れる薄膜トランジスタが得られることがわかる。   From this result, it can be seen that a thin film transistor having excellent current characteristics can be obtained by the film forming composition of the present invention.

(閾値電圧)
電流伝達特性の曲線においてソース/ドレイン間に流れる電流Id、ゲート印加電圧Vgとした際の(Id)1/2 とVg 間の曲線より線形領域の延長線とVg 軸との交点より算出した。
(Threshold voltage)
It was calculated from the intersection of the extension line of the linear region and the Vg axis from the curve between (Id) 1/2 and Vg when the current Id flowing between the source / drain and the gate applied voltage Vg in the current transfer characteristic curve.

(ON/OFF電流比)
オン時の電流Ionは、電流伝達特性の曲線において飽和領域での最大電流値とし、オフ時の電流Ioffは、オフ状態の最小電流から求めた。ON/OFF電流比Ion/Ioffは、オン状態の最大電流値とオフ状態の最小電流値との比から算出した。
(ON / OFF current ratio)
The on-state current Ion is the maximum current value in the saturation region in the current transfer characteristic curve, and the off-state current Ioff is obtained from the off-state minimum current. The ON / OFF current ratio Ion / Ioff was calculated from the ratio between the maximum current value in the on state and the minimum current value in the off state.

(製造例1)
500mL四つ口フラスコにトルエン80g、1,4−ジオキサン20g、1,3,5,7−テトラメチルシクロテトラシロキサン50gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。モノアリルイソシアヌレート14.1g、1,4−ジオキサン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。滴下終了から1時間後にH−NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7−テトラメチルシクロテトラシロキサン、1,4−ジオキサン及びトルエンを減圧留去し、無色透明の液体「反応物B1」を得た。
(Production Example 1)
Into a 500 mL four-necked flask, put 80 g of toluene, 20 g of 1,4-dioxane, 50 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and after replacing the gas phase with nitrogen, heat and stir at an internal temperature of 105 ° C. did. A mixture of 14.1 g of monoallyl isocyanurate, 70.0 g of 1,4-dioxane, and 0.0163 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes. One hour after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 95% or more, and the reaction was terminated by cooling. Unreacted 1,3,5,7-tetramethylcyclotetrasiloxane, 1,4-dioxane and toluene were distilled off under reduced pressure to obtain a colorless and transparent liquid “Reactant B1”.

100mL四つ口フラスコにトルエン20g、1,4−ジオキサン5g、「反応物B1」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド3.0gおよびトルエン3.0gの混合液を加え、添加3時間後にH−NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却した後、1,4−ジオキサン及びトルエンを減圧留去し、「反応物1」を得た。1H−NMRの測定により、標準物質をジブロモエタンとした時の当量換算でSiH基を6.1mmol/g、エポキシ基2.5mmol/gおよび、式(I)で表される構造を1.8mmol/g有するポリオルガノシロキサン化合物であることを確認した。 A 100 mL four-necked flask was charged with 20 g of toluene, 5 g of 1,4-dioxane, and 10 g of “Reactant B1”, and the gas phase portion was purged with nitrogen and heated at an internal temperature of 105 ° C. Here, 3.0 g of vinylcyclohexene oxide and A mixed solution of 3.0 g of toluene was added, and 3 hours after the addition, it was confirmed by 1 H-NMR that the reaction rate of the vinyl group was 95% or more. After cooling the reaction solution, 1,4-dioxane and toluene were distilled off under reduced pressure to obtain “Reaction product 1”. By 1H-NMR measurement, SiH group was converted to 6.1 mmol / g in terms of equivalent when the standard substance was dibromoethane, epoxy group was 2.5 mmol / g, and the structure represented by the formula (I) was 1.8 mmol. / G of polyorganosiloxane compound was confirmed.

(製造例2)
500mL四つ口フラスコにトルエン80g、1,4−ジオキサン20g、1,3,5,7−テトラメチルシクロテトラシロキサン50gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。モノアリルイソシアヌレート14.1g、1,4−ジオキサン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。滴下終了から1時間後にH−NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7−テトラメチルシクロテトラシロキサン、1,4−ジオキサン及びトルエンを減圧留去し、無色透明の液体「反応物B2」を得た。
(Production Example 2)
Into a 500 mL four-necked flask, put 80 g of toluene, 20 g of 1,4-dioxane, 50 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and after replacing the gas phase with nitrogen, heat and stir at an internal temperature of 105 ° C. did. A mixture of 14.1 g of monoallyl isocyanurate, 70.0 g of 1,4-dioxane, and 0.0163 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes. One hour after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 95% or more, and the reaction was terminated by cooling. Unreacted 1,3,5,7-tetramethylcyclotetrasiloxane, 1,4-dioxane and toluene were distilled off under reduced pressure to obtain a colorless and transparent liquid “Reactant B2”.

100mL四つ口フラスコにトルエン20g、1,4−ジオキサン10g、「反応物B2」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここに、ジアリルイソシアヌレート4.9g、トルエン14.9g添加3時間後にH−NMRでビニル基の反応率が95%以上であることを確認した後、さらにビニルシクロヘキセンオキシド3.8gおよびトルエン3.0gの混合液を加え、添加3時間後にH−NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却した後、1,4−ジオキサン及びトルエンを減圧留去し、「反応物2」を得た。1H−NMRの測定により標準物質をジブロモエタンとした時の当量換算でSiH基を3.0mmol/g、エポキシ基1.5mmol/gおよび、式(I)で表される構造を1.0mmol/g、(X1)で表される構造を0.5mmol/g有するポリオルガノシロキサン化合物であることを確認した。 A 100 mL four-necked flask was charged with 20 g of toluene, 10 g of 1,4-dioxane, and 10 g of “Reactant B2”, and the gas phase was replaced with nitrogen and heated at an internal temperature of 105 ° C., where 4.9 g of diallyl isocyanurate was added. 3 hours after addition of 14.9 g of toluene, 1 H-NMR confirmed that the reaction rate of the vinyl group was 95% or more, and then added a mixture of 3.8 g of vinylcyclohexene oxide and 3.0 g of toluene, and added After 3 hours, it was confirmed by 1 H-NMR that the reaction rate of the vinyl group was 95% or more. After cooling the reaction solution, 1,4-dioxane and toluene were distilled off under reduced pressure to obtain “Reaction product 2”. By 1 H-NMR measurement, SiH group is 3.0 mmol / g, epoxy group is 1.5 mmol / g in terms of equivalent when the standard substance is dibromoethane, and the structure represented by formula (I) is 1.0 mmol / g. g, a polyorganosiloxane compound having a structure represented by (X1) of 0.5 mmol / g was confirmed.

(製造例3)
500mL四つ口フラスコにトルエン80g、1,4−ジオキサン20g、1,3,5,7−テトラメチルシクロテトラシロキサン50gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。モノアリルイソシアヌレート20.1g、ジアリルイソシアヌレート12.4g、1,4−ジオキサン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。滴下終了から1時間後にH−NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7−テトラメチルシクロテトラシロキサン、1,4−ジオキサン及びトルエンを減圧留去し、無色透明の液体「反応物B3」を得た。
(Production Example 3)
Into a 500 mL four-necked flask, put 80 g of toluene, 20 g of 1,4-dioxane, 50 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and after replacing the gas phase with nitrogen, heat and stir at an internal temperature of 105 ° C. did. A mixture of 20.1 g of monoallyl isocyanurate, 12.4 g of diallyl isocyanurate, 70.0 g of 1,4-dioxane and 0.0163 g of a platinum vinylsiloxane complex in xylene (containing 3 wt% as platinum) was added dropwise over 30 minutes. did. One hour after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 95% or more, and the reaction was terminated by cooling. Unreacted 1,3,5,7-tetramethylcyclotetrasiloxane, 1,4-dioxane and toluene were distilled off under reduced pressure to obtain a colorless and transparent liquid “Reactant B3”.

100mL四つ口フラスコにトルエン20g、1,4−ジオキサン10g、「反応物B3」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここに、テトラメチルテトラビニルシクロテトラシロキサン2g、トルエン4.0g添加3時間後にH−NMRでビニル基の反応率が95%以上であることを確認した後、さらにビニルシクロヘキセンオキシド1.8gおよびトルエン2.0gの混合液を加え、添加3時間後にH−NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し後、1,4−ジオキサン及びトルエンを減圧留去し、「反応物3」を得た。H−NMRの測定により標準物質をジブロモエタンとした時の当量換算でSiH基を3.5mmol/g、エポキシ基1.8mmol/gおよび、式(I)で表される構造を1.3mmol/g、(X1)で表される構造を0.6mmol/g有するポリオルガノシロキサン化合物であることを確認した。 A 100 mL four-necked flask was charged with 20 g of toluene, 10 g of 1,4-dioxane, and 10 g of “Reactant B3”, and the gas phase was purged with nitrogen and heated at an internal temperature of 105 ° C. 3 hours after adding 2 g of siloxane and 4.0 g of toluene, 1 H-NMR confirmed that the reaction rate of the vinyl group was 95% or more, and then added 1.8 g of vinylcyclohexene oxide and 2.0 g of toluene. 3 hours after the addition, it was confirmed by 1 H-NMR that the reaction rate of the vinyl group was 95% or more. After cooling the reaction solution, 1,4-dioxane and toluene were distilled off under reduced pressure to obtain “Reaction product 3”. The structure represented by the formula (I) is 3.5 mmol / g of SiH group and 1.8 mmol / g of epoxy group in terms of equivalent when the standard substance is dibromoethane by measurement of 1 H-NMR. / G, a polyorganosiloxane compound having a structure represented by (X1) of 0.6 mmol / g was confirmed.

(製造例4)
500mL四つ口フラスコにトルエン80g、1,4−ジオキサン20g、1,3,5,7−テトラメチルシクロテトラシロキサン50gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。トリアリルイソシアヌレート3.8g、ジアリルイソシアヌレート5.0g、1,4−ジオキサン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。
滴下終了から1時間後にH−NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7−テトラメチルシクロテトラシロキサン及びトルエンを減圧留去し、無色透明の液体「反応物B4」を得た。
(Production Example 4)
Into a 500 mL four-necked flask, put 80 g of toluene, 20 g of 1,4-dioxane, 50 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and after replacing the gas phase with nitrogen, heat and stir at an internal temperature of 105 ° C. did. A mixed liquid of 3.8 g of triallyl isocyanurate, 5.0 g of diallyl isocyanurate, 70.0 g of 1,4-dioxane and 0.0163 g of a platinum vinylsiloxane complex in xylene (containing 3 wt% as platinum) is dropped over 30 minutes. did.
One hour after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 95% or more, and the reaction was terminated by cooling. Unreacted 1,3,5,7-tetramethylcyclotetrasiloxane and toluene were distilled off under reduced pressure to obtain a colorless and transparent liquid “Reactant B4”.

100mL四つ口フラスコにトルエン30g、「反応物B4」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド3.0gおよびトルエン3.0gの混合液を加え、添加3時間後にH−NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し後、1,4−ジオキサン及びトルエンを減圧留去し、「反応物4」を得た。1H−NMRの測定により、標準物質をジブロモエタンとした時の当量換算でSiH基を3.5mmol/gおよび、エポキシ基を2.0mmol/g、(X1)で表される構造を0.5mmol/g、(X2)で表される構造を1.0mmol/g有するポリオルガノシロキサン化合物であることを確認した。なお、式(I)で表される構造は有していない。 A 100 mL four-necked flask was charged with 30 g of toluene and 10 g of “Reactant B4”, the gas phase was replaced with nitrogen, and then heated at an internal temperature of 105 ° C. A mixed solution of 3.0 g of vinylcyclohexene oxide and 3.0 g of toluene. 3 hours after the addition, it was confirmed by 1 H-NMR that the reaction rate of the vinyl group was 95% or more. After cooling the reaction solution, 1,4-dioxane and toluene were distilled off under reduced pressure to obtain “Reaction product 4”. According to the measurement of 1H-NMR, the equivalent structure when the standard substance was dibromoethane was converted to an equivalent equivalent of 3.5 mmol / g of SiH group, 2.0 mmol / g of epoxy group, and 0.5 mmol of the structure represented by (X1). / G, a polyorganosiloxane compound having a structure represented by (X2) of 1.0 mmol / g was confirmed. In addition, it does not have the structure represented by Formula (I).

(実施例1)
有機化合物(b)としての「反応物1」5g、炭酸プロピレン10g、BBI−103(ミドリ化学製、カチオン重合開始剤)0.02g、9,10−ジプロポキシアントラセン0.01gを用いて膜形成組成物を調整した。
(Example 1)
Film formation using 5 g of “reactant 1” as organic compound (b), 10 g of propylene carbonate, 0.02 g of BBI-103 (manufactured by Midori Chemical, cationic polymerization initiator), 0.01 g of 9,10-dipropoxyanthracene The composition was adjusted.

(実施例2〜4、比較例1)
有機溶剤(a)と、有機化合物(b)を表1のように変更した以外は、実施例1と同様に膜形成用組成物を調整した。
なお、PGMEAはプロピレングリコール−1−モノメチルエーテル−2−アセテートの、DMSOはジメチルスルホキシドのそれぞれの略である。
(Examples 2 to 4, Comparative Example 1)
A film-forming composition was prepared in the same manner as in Example 1 except that the organic solvent (a) and the organic compound (b) were changed as shown in Table 1.
PGMEA is an abbreviation for propylene glycol-1-monomethyl ether-2-acetate, and DMSO is an abbreviation for dimethyl sulfoxide.

Claims (11)

必須成分として、(a)下記式(I)で表される構造を0.6mmol/g以上含有する有機化合物と、(b)有機溶剤とを含有する膜形成用組成物であって、
Figure 0005813341
有機化合物(a)がエポキシ系化合物、アクリル系化合物、フェノール系化合物、ベンゾオキサゾール系化合物、イミド系化合物、シアネート系化合物、ポリオルガノシロキサン系化合物のいずれか1つである膜形成用組成物。
An essential component is (a) a film forming composition containing an organic compound containing 0.6 mmol / g or more of the structure represented by the following formula (I), and (b) an organic solvent ,
Figure 0005813341
The film forming composition wherein the organic compound (a) is any one of an epoxy compound, an acrylic compound, a phenol compound, a benzoxazole compound, an imide compound, a cyanate compound, and a polyorganosiloxane compound.
有機溶剤(b)が、プロピレンカーボネート、アセトニトリル、ジメチルスルホキシドから選ばれる少なくとも1種を含む請求項1に記載の膜形成用組成物。 The film-forming composition according to claim 1, wherein the organic solvent (b) contains at least one selected from propylene carbonate, acetonitrile, and dimethyl sulfoxide. 有機化合物(a)が、硬化性を有する請求項1又は2に記載の膜形成用組成物。 Organic compound (a) film forming composition according to claim 1 or 2 having curability. 有機化合物(a)が、光硬化性を有する請求項1〜のいずれか一項に記載の膜形成用組成物。 The film-forming composition according to any one of claims 1 to 3 , wherein the organic compound (a) has photocurability. 有機化合物(a)が、カチオン重合、ヒドロシリル化反応のうち少なくとも1種の反応により硬化する化合物である請求項1〜のいずれか一項に記載の膜形成用組成物。 The film-forming composition according to any one of claims 1 to 4 , wherein the organic compound (a) is a compound that is cured by at least one of a cationic polymerization and a hydrosilylation reaction. 前記有機化合物(a)が、下記式(X1)または(X2)で表される構造を有する請求項1〜のいずれか一項に記載の膜形成用組成物。
Figure 0005813341
(式中Rは水素原子以外の元素を表し、それぞれのRは異なっていても同一であってもよい)
The film-forming composition according to any one of claims 1 to 5 , wherein the organic compound (a) has a structure represented by the following formula (X1) or (X2).
Figure 0005813341
(Wherein R 1 represents an element other than a hydrogen atom may be the same even if each R 1 is different)
有機化合物(a)が、(α)1分子中にSiH基との反応性を有する炭素−炭素二重結合を有する化合物と、(β)SiH基を有するオルガノシロキサン化合物とのヒドロシリル化反応生成物であることを特徴とする、請求項1〜のいずれか一項に記載の膜形成用組成物 Hydrosilylation reaction product of organic compound (a), (α) a compound having a carbon-carbon double bond having reactivity with SiH group in one molecule, and (β) an organosiloxane compound having SiH group and characterized in that, the film forming composition according to any one of claims 1-6. 化合物(α)が、Si−CH=CH基を有する化合物である請求項に記載の膜形成用組成物。 The film forming composition according to claim 7 , wherein the compound (α) is a compound having a Si—CH═CH 2 group. 化合物(β)が、下記一般式(II)
Figure 0005813341
(式中R、Rは炭素数1〜10の有機基を表し同一であっても異なっても良く、nは1〜10、mは0〜10の数を表す)で表されるSiH基を有する環状ポリオルガノシロキサン化合物である、請求項に記載の膜形成用組成物。
Compound (β) is represented by the following general formula (II)
Figure 0005813341
(Wherein R 2 and R 3 represent an organic group having 1 to 10 carbon atoms, which may be the same or different, n represents 1 to 10, and m represents a number of 0 to 10). The film-forming composition according to claim 8 , which is a cyclic polyorganosiloxane compound having a group.
有機化合物(a)が、(α)、(β)と、(γ)1分子中に光重合官能基と、SiH基との反応性を有する炭素−炭素二重結合を有する化合物のヒドロシリル化反応物を含有する請求項8又は9に記載の膜形成用組成物。 Organic compound (a) is, (α), (β) and, (gamma) 1 and a photopolymerizable functional group in the molecule, carbon reactive with SiH groups - hydrosilylation of a compound having a carbon double bond The film-forming composition according to claim 8 or 9 , comprising a reactant. 請求項1〜1のいずれか一項に記載の膜形成用組成物によって得られる薄膜トランジスタ。 A thin film transistor obtained by the film forming composition according to any one of claims 1 to 10 .
JP2011053348A 2011-03-10 2011-03-10 Film forming composition and thin film transistor using the composition Active JP5813341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053348A JP5813341B2 (en) 2011-03-10 2011-03-10 Film forming composition and thin film transistor using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053348A JP5813341B2 (en) 2011-03-10 2011-03-10 Film forming composition and thin film transistor using the composition

Publications (2)

Publication Number Publication Date
JP2012188549A JP2012188549A (en) 2012-10-04
JP5813341B2 true JP5813341B2 (en) 2015-11-17

Family

ID=47082069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053348A Active JP5813341B2 (en) 2011-03-10 2011-03-10 Film forming composition and thin film transistor using the composition

Country Status (1)

Country Link
JP (1) JP5813341B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116195039A (en) * 2020-07-22 2023-05-30 株式会社钟化 Thin film transistor element and method for manufacturing the same
JP2023077454A (en) * 2021-11-25 2023-06-06 信越化学工業株式会社 Cyclic organosiloxane containing imide bonds and polymerizable unsaturated bonds, and curable resin composition comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148569A (en) * 1985-12-23 1987-07-02 Matsushita Electric Works Ltd Resin composition
JP4251890B2 (en) * 2003-03-13 2009-04-08 四国化成工業株式会社 Method for producing monoallyl isocyanurate compound
EP2538276A4 (en) * 2010-02-19 2015-02-25 Nissan Chemical Ind Ltd Composition for formation of resist underlayer film containing silicon having nitrogen-containing ring
JP5685037B2 (en) * 2010-09-29 2015-03-18 株式会社カネカ Organic semiconductor device manufacturing method and organic semiconductor device obtained by the manufacturing method
JP6133532B2 (en) * 2010-11-10 2017-05-24 株式会社カネカ Top gate organic thin film transistor manufacturing method and organic thin film transistor obtained by the manufacturing method

Also Published As

Publication number Publication date
JP2012188549A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5491197B2 (en) Curable composition having alkali developability, insulating thin film and thin film transistor using the same
US8809414B2 (en) Photocurable composition and cured product
JP5685037B2 (en) Organic semiconductor device manufacturing method and organic semiconductor device obtained by the manufacturing method
JP6506822B2 (en) Positive photosensitive composition, thin film transistor and compound
JP2011221192A (en) Curable composition and cured product
JP2010258378A (en) Insulating thin film, and thin-film transistor using the same
JP6945289B2 (en) A method for producing a photocurable composition having alkali developability and a pattern cured film.
JP5813341B2 (en) Film forming composition and thin film transistor using the composition
JP6161263B2 (en) Curable composition and thin film, and thin film transistor using the same
JP6133532B2 (en) Top gate organic thin film transistor manufacturing method and organic thin film transistor obtained by the manufacturing method
JP5749446B2 (en) Photocurable composition
JP6706454B2 (en) Negative curable composition, cured product and laminate
JP2012107113A (en) Curable composition and thin film transistor using the same
JP6596306B2 (en) Positive curable composition, cured product and thin film transistor
JP2013173809A (en) Curable composition
JP5890631B2 (en) Gate insulating film for organic TFT and organic TFT element having the insulating film
JP2013191379A (en) Method for forming liquid repellent-lyophilic pattern layer
JP6739224B2 (en) Positive photosensitive composition for forming barrier ribs
JP2013071984A (en) Curable composition
JP2017090514A (en) Negative Photosensitive Composition
JP2013087167A (en) Curable composition
JP2011219583A (en) Light curable composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R150 Certificate of patent or registration of utility model

Ref document number: 5813341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250