JP5812604B2 - Continuously variable transmission with drive belt, method of operating continuously variable transmission, and method of manufacturing drive belt - Google Patents

Continuously variable transmission with drive belt, method of operating continuously variable transmission, and method of manufacturing drive belt Download PDF

Info

Publication number
JP5812604B2
JP5812604B2 JP2010538358A JP2010538358A JP5812604B2 JP 5812604 B2 JP5812604 B2 JP 5812604B2 JP 2010538358 A JP2010538358 A JP 2010538358A JP 2010538358 A JP2010538358 A JP 2010538358A JP 5812604 B2 JP5812604 B2 JP 5812604B2
Authority
JP
Japan
Prior art keywords
variable transmission
continuously variable
belt
drive belt
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010538358A
Other languages
Japanese (ja)
Other versions
JP2011506885A (en
Inventor
ヨハネス マリア ファン デル メーア コルネリス
ヨハネス マリア ファン デル メーア コルネリス
ソッツ−ポラック ガヴリラ
ソッツ−ポラック ガヴリラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2011506885A publication Critical patent/JP2011506885A/en
Application granted granted Critical
Publication of JP5812604B2 publication Critical patent/JP5812604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0487Friction gearings
    • F16H57/0489Friction gearings with endless flexible members, e.g. belt CVTs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/24Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using chains or toothed belts, belts in the form of links; Chains or belts specially adapted to such gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Heat Treatment Of Articles (AREA)
  • General Details Of Gearings (AREA)

Description

本発明は、以下の請求項1の前提部に記載の連続可変トランスミッションに関し、このトランスミッションは、例えば欧州特許出願公開第1167829号明細書から従来公知である。   The invention relates to a continuously variable transmission according to the preamble of claim 1, which transmission is conventionally known, for example from EP-A-1167829.

このようなトランスミッションは、通常、例えば欧州特許出願公開第0626526号明細書から自体公知のいわゆるプッシュベルトの形式の駆動ベルトを有している。公知のプッシュベルトは、鋼製の横断エレメントを有しており、これらの横断エレメントは、主に横断エレメントを拘束及び案内するという機能を有する無端引張り手段の円周に関してベルトに自由に摺動可能に設けられている。通常、無端引張り手段は、互いに重ね合わされた、すなわち半径方向に積層された平坦でかつ薄い金属製のリングの2つの組から成っている。   Such a transmission usually has a drive belt in the form of a so-called push belt known per se, for example from EP 0 626 526 A1. Known push belts have steel transverse elements that are freely slidable on the belt with respect to the circumference of the endless pulling means, which mainly have the function of restraining and guiding the transverse elements. Is provided. Typically, the endless pulling means consists of two sets of flat and thin metal rings that are superimposed on one another, ie radially stacked.

このようなトランスミッションにおいて、トルクは、締付力の影響を受けながら個々のプーリの円錐形の鋼製のディスクの間にベルトを締め付けることにより、一方のプーリから他方のプーリへ伝達され、そのために、プーリの少なくとも一方のディスクは、アクチュエータによって軸方向に可動に設けられている。前記トルクの伝達は、駆動プーリの回転運動をベルトに摩擦によって伝達することによって行われ、ベルトのエレメントには、プーリのディスクと接触するための軸方向接触領域が設けられている。他方のプーリ、つまり被動プーリにおいて、駆動プーリの前記回転運動により生じた力は、逆に前記ベルトから被動プーリのディスクへ同じく摩擦によって伝達される。各プーリにおいてベルトが走行する半径を、各プーリにおける締付力を相対的に変化させることによって変化させることができ、これにより、このような半径の間の数学的比率は、いわゆるトランスミッションの幾何学的な比を表し、これに対して、プーリの回転速度の比は、トランスミッションの実際の速度比を表している。   In such transmissions, torque is transmitted from one pulley to the other by tightening the belt between the conical steel discs of the individual pulleys while being influenced by the tightening force. The at least one disk of the pulley is provided so as to be movable in the axial direction by an actuator. The torque is transmitted by transmitting the rotational movement of the driving pulley to the belt by friction, and the belt element is provided with an axial contact area for contacting the pulley disk. In the other pulley, that is, the driven pulley, the force generated by the rotational movement of the driving pulley is transmitted from the belt to the disk of the driven pulley by friction. The radius that the belt travels in each pulley can be changed by relatively changing the clamping force in each pulley, so that the mathematical ratio between these radii is the so-called transmission geometry. In contrast, the ratio of the rotational speed of the pulley represents the actual speed ratio of the transmission.

ベルトとプーリとの摩擦接触によって必然的に生ぜしめられる熱を除去するために、トランスミッションの作動中にトランスミッションのベルトとプーリ部材とを冷却することは必須である。これに関して、ベルトの横断エレメントは通常最も決定的な部材である。なぜならば、横断エレメントの鋼は、現代のトランスミッションの設計において通常適用される高レベルの前記締付力に確実に耐えることができるように、加熱(オーステナイト化)、急冷、及びその後の焼きもどしによって硬化させられているからである。ある臨界温度よりも高く加熱されると、焼きもどしプロセスが継続し、横断エレメントは、締付力の影響を受けて急速に摩耗するか、又は破断することさえある。したがって、公知のトランスミッションは、さらに、合成潤滑油等の冷却剤をベルトに供給し、その後、この冷却剤をポンプによって貯蔵容器を介して循環させるための冷却装置を有しており、この公知の冷却装置は、さらに、冷却剤自体を冷却するための部材、つまりオイルクーラ等の熱交換装置を有している。   In order to remove the heat inevitably generated by the frictional contact between the belt and pulley, it is essential to cool the transmission belt and pulley member during transmission operation. In this regard, the transverse element of the belt is usually the most critical member. This is because the steel of the transverse element is heated (austenitized), quenched, and subsequently tempered to ensure that it can withstand the high levels of clamping forces normally applied in modern transmission designs. This is because it is cured. When heated above a certain critical temperature, the tempering process continues and the transverse element may wear rapidly or even break under the influence of the clamping force. Therefore, the known transmission further comprises a cooling device for supplying a coolant such as synthetic lubricating oil to the belt and then circulating the coolant through the storage container by means of a pump. The cooling device further includes a member for cooling the coolant itself, that is, a heat exchange device such as an oil cooler.

この場合、ベルトに供給される冷却剤の流量及び温度が、除去される熱を大きく決定し、つまり最終的には、トランスミッションの作動中にベルトが達する最大温度を決定する。実際には、冷却剤の供給流量が多くなるほど及び/又は供給温度が低くなるほど、トランスミッションの全体的な効率は低くなる。なぜならば、冷却装置によってより多くの動力が消費されるからである。したがって、例えば、関連のあるトランスミッション条件に従って供給流量を制御することによって及び/又は供給流をまずトランスミッションの最も高温の部分に案内することにより、供給流量を少なくすることによってトランスミッションの効率を高めることは一般的な開発目標であった。これらの公知の努力の幾つかの例は、特開平09−053711号公報、欧州特許出願公開第0688980号明細書、及び米国特許第7125355号明細書によって提供されている。   In this case, the flow rate and temperature of the coolant supplied to the belt greatly determines the heat removed, ie ultimately the maximum temperature that the belt reaches during operation of the transmission. In practice, the higher the coolant supply flow rate and / or the lower the supply temperature, the lower the overall efficiency of the transmission. This is because more power is consumed by the cooling device. Thus, increasing the efficiency of the transmission by reducing the supply flow, for example, by controlling the supply flow according to the relevant transmission conditions and / or by guiding the supply flow first to the hottest part of the transmission. It was a general development goal. Some examples of these known efforts are provided by JP 09-053711, EP 0688980 and US Pat. No. 7,125,355.

本発明の目的は、冷却装置の作動のために必要とされる動力量を減じることによって、公知のトランスミッション、特にトランスミッションの作動効率を向上させることである。   The object of the present invention is to improve the operating efficiency of known transmissions, in particular transmissions, by reducing the amount of power required for the operation of the cooling device.

本発明によれば、前記目的は、請求項1の特徴部の特徴を有するトランスミッションによって達成される。本発明は、冷却装置自体を最適化するのではなく、驚くべきことにトランスミッションによって必要とされる冷却努力がまず減じられるようにトランスミッションの設計を変更することにおいて解決手段を提供する。本発明は、横断エレメントのために決定される材料硬さが、実際にはプーリディスクとの摩擦接触による摩耗及び裂断に耐えるための表面硬さとしてだけ必要とされるという考え方から出発している。原理的には、十分な強度を依然として提供しながら、横断エレメントのコア硬さの値を著しく低くすることができる。横断エレメントが、表面硬化処理によって付加的に硬化されている場合、エレメントの急冷硬化されたコア材料は、つまり、場合によってはトランスミッションの作動中にさえも、かなりより低いコア硬さ値に焼戻しされることができる。したがって、このように設計されたトランスミッションは、著しくより高い温度において作動させられることができ、トランスミッションによって必要とされる冷却努力が減じられる。実際には、これは、冷却剤の最小限に必要とされる供給流量が好適には減じられかつ/又は冷却剤の許容される最大供給温度が好適には上昇されることを意味する。   According to the invention, the object is achieved by a transmission having the features of claim 1. The present invention does not optimize the cooling system itself, but surprisingly provides a solution in modifying the transmission design such that the cooling effort required by the transmission is first reduced. The invention starts from the idea that the material hardness determined for the transverse element is actually only required as surface hardness to withstand wear and tear due to frictional contact with the pulley disk. Yes. In principle, the core hardness value of the transverse element can be significantly reduced while still providing sufficient strength. If the transverse element is additionally hardened by a surface hardening process, the quench-hardened core material of the element is tempered to a much lower core hardness value, i.e., possibly even during transmission operation. Can. Thus, a transmission designed in this way can be operated at significantly higher temperatures, reducing the cooling effort required by the transmission. In practice, this means that the supply flow required for the minimum of coolant is preferably reduced and / or the maximum allowable supply temperature of coolant is preferably increased.

すなわち、最も好適な実施態様において、本発明は、冷却装置を有する連続可変トランスミッションに関し、冷却装置は、しかしながら、オイルクーラ等の熱交換装置を具備していない。この手段は冷却努力を著しく軽減し、これにより、特に冷却剤を循環させるために必要とされるポンピング努力が軽減される。これに関して、慣用的には、トランスミッションの作動中の冷却剤の供給温度は約80〜90℃に制限されるが、本発明によるトランスミッションでは、100℃を超える供給温度、潜在的に110℃から125℃までの供給温度、場合によってはさらに僅かに高い温度、例えば130℃までが容易に許容されることができる。単に偶然ではなく、より長時間にわたって、すなわちトランスミッションの全体的な作動又はサービス時間の実質的な部分にわたってである。   That is, in the most preferred embodiment, the present invention relates to a continuously variable transmission having a cooling device, which does not include a heat exchange device such as an oil cooler. This measure significantly reduces the cooling effort, and in particular reduces the pumping effort required to circulate the coolant. In this regard, conventionally, the supply temperature of the coolant during operation of the transmission is limited to about 80-90 ° C., but in the transmission according to the invention, the supply temperature exceeds 100 ° C., potentially 110 ° C. to 125 ° C. Feed temperatures up to 0 ° C., and in some cases even slightly higher temperatures, eg up to 130 ° C., can easily be tolerated. It is not merely a coincidence but over a longer period of time, ie over a substantial part of the overall operation or service time of the transmission.

本発明は、ベルトに冷却剤の流れを継続して供給することによってトランスミッションのベルトを冷却するための冷却装置が設けられた連続可変トランスミッションを作動させる方法にも関する。本発明による方法において、冷却剤の供給流は、冷却剤の温度が作動中に100℃以上に達するように調節される。このように制御されたトランスミッションにおいて、前記供給流は、慣用的に適用される流れに対して実質的に減じられることができかつ/又は慣用的に適用される熱交換装置の冷却能力は、サイズが減じられることができ、又は潜在的にトランスミッションから完全に省略されることもできる。   The invention also relates to a method of operating a continuously variable transmission provided with a cooling device for cooling the belt of the transmission by continuously supplying a coolant flow to the belt. In the method according to the invention, the coolant feed stream is adjusted so that the temperature of the coolant reaches 100 ° C. or more during operation. In such a controlled transmission, the feed flow can be substantially reduced with respect to the conventionally applied flow and / or the cooling capacity of the conventionally applied heat exchange device is sized Can be reduced or potentially omitted entirely from the transmission.

本発明によれば、横断エレメントの付加的な表面硬さは、駆動ベルトの製造において、鋼マトリックスの相転移に依存しない複数の公知の表面硬化処理のうちの1つ、例えば適切な被膜材料、例えば窒化チタンによる被膜形成、ショットピーニング及び/又は窒化(浸炭窒化)を用いることによって実現されてよい。特に、駆動ベルトを製造する方法は、好適には、エレメントをオーステナイト化及び急冷しかつその後エレメントを例えばアンモニアを含む処理雰囲気において同時に焼戻し及び窒化する処理ステップに提供する前記ステップによって、横断エレメントを表面硬化することとコア硬化することとの組合せを含む。択一的に又は付加的に、前記オーステナイト化するステップにおいて、横断エレメントは同時に浸炭されることができる、すなわち、オーステナイト化は浸炭処理雰囲気中で行われる。しかしながら、この後者の浸炭プロセスは、高温で炭素が豊富な環境において横断エレメントをコア硬化するステップの前に、例えばまずエレメントを溶融塩に浸漬することによって行われてもよい。   According to the invention, the additional surface hardness of the transverse element is one of a number of known surface hardening treatments that do not depend on the phase transition of the steel matrix in the production of the drive belt, For example, it may be realized by using a film formation with titanium nitride, shot peening and / or nitriding (carbonitriding). In particular, the method of manufacturing the drive belt preferably comprises the step of austenizing and quenching the element and then providing the transverse element to the surface by said step of providing the element to a simultaneous tempering and nitriding step in a processing atmosphere containing eg ammonia Includes a combination of curing and core curing. As an alternative or in addition, in the austenitizing step, the transverse elements can be simultaneously carburized, i.e. austenitizing takes place in a carburizing atmosphere. However, this latter carburizing process may be performed, for example, by first immersing the element in molten salt before the step of core curing the transverse element in a high temperature, carbon rich environment.

本発明の好適な実施形態において、横断エレメントの最終的なコア硬さは、54〜64HRC(ロックウェル硬さCスケール)、より好適には56〜60HRCの値を有しているのに対し、横断エレメントの表面硬さは60HRCよりも大きく、より好適には64HRCよりも高い。さらに、本発明によれば、プーリディスクも、表面硬化処理によっても付加的に硬化され、好適には、横断エレメントの表面硬さ値と同等の表面硬さ、すなわち、横断エレメントの表面硬さ値から4HRC、より好適には5%未満だけ異なる値を有する表面硬さに達する。個々の表面硬さ値のこのような平均化により、前記摩擦接触を受ける接触面の組み合わされた機械的摩耗は好適には最小限に抑制される。好適には、プーリディスクのコア材料も、表面より柔軟であり、ひいてはより延性である。好適には、プーリディスクには、50〜60HRCの値を有するコア硬さが提供されている。   In a preferred embodiment of the present invention, the ultimate core hardness of the transverse element has a value of 54-64 HRC (Rockwell hardness C scale), more preferably 56-60 HRC, The surface hardness of the transverse element is greater than 60 HRC, more preferably greater than 64 HRC. Furthermore, according to the invention, the pulley disk is also additionally hardened by a surface hardening treatment, preferably a surface hardness equivalent to the surface hardness value of the transverse element, ie the surface hardness value of the transverse element. To surface hardness with values differing by 4 HRC, more preferably by less than 5%. Such averaging of the individual surface hardness values preferably minimizes the combined mechanical wear of the contact surfaces that are subjected to the frictional contact. Preferably, the core material of the pulley disc is also softer than the surface and thus more ductile. Preferably, the pulley disk is provided with a core hardness having a value of 50-60 HRC.

本発明は、特に、例えば国際公開第2006/062400号パンフレットから公知のような、凸状に湾曲したプーリディスクを有するトランスミッションにおいて適用されるのに適している。このようなトランスミッションにおいて、個々の必要なエレメントの表面硬さ及びコア硬さの値の差は、プーリディスクとベルトの横断エレメントとの極めて集中した摩擦接触のために、特に重要である。   The invention is particularly suitable for application in a transmission having a convexly curved pulley disk, as is known, for example, from WO 2006/062400. In such transmissions, the difference in surface hardness and core hardness values of the individual required elements is particularly important due to the very concentrated frictional contact between the pulley disk and the belt transverse element.

Claims (2)

連続可変トランスミッションを作動させる方法において、前記連続可変トランスミッションに、2つのプーリが設けられており、各プーリが、幅が可変のほぼV字形の周方向の溝を規定しており、プーリの周囲に巻き掛けられた駆動ベルトが設けられており、該駆動ベルトが、ベルトの無端引張り手段に設けられた多数の表面硬化された鋼製の横断エレメントを有しており、該横断エレメントが、54〜64HRCの値を有するコア硬さと、60HRCよりも高い値を有する表面硬さとを有しており、プーリディスクが、横断エレメントの表面硬さ値から4HRC未満だけ又は5%未満だけずれた値を有する表面硬さと、50〜60HRCのコア硬さ値とを有しており、ベルトに冷却剤の流れを連続的に供給し、その後にポンプによって冷却剤を再循環させることによってベルトを冷却するための冷却装置が設けられているものにおいて、
冷却剤の供給流を、100℃以上の温度に達するように調節し、
冷却剤の供給流を、冷却剤の温度が130℃を超えないように調節する
ことを特徴とする、連続可変トランスミッションを作動させる方法。
In the method of operating a continuously variable transmission, the continuously variable transmission is provided with two pulleys, each pulley defining a substantially V-shaped circumferential groove of variable width, A wound drive belt is provided, the drive belt having a number of surface-hardened steel transverse elements provided on the endless tension means of the belt, the transverse elements being 54 to Having a core hardness having a value of 64 HRC and a surface hardness having a value higher than 60 HRC, the pulley disc having a value deviating by less than 4 HRC or less than 5% from the surface hardness value of the transverse element and surface hardness, has a core hardness value of 50~60HRC, continuously feeding a flow of coolant to the belt, then cooled by a pump In those by recirculating cooling system for cooling the belt is provided,
Adjusting the coolant feed stream to reach a temperature of 100 ° C. or higher;
The feed stream of coolant, the coolant temperature, characterized in <br/> be adjusted so as not to exceed 130 ° C., a method of operating a continuously variable transmission.
プーリディスクを、半径方向外方へ凸状に湾曲させる、請求項1記載の方法。   The method of claim 1, wherein the pulley disk is curved convex outward in the radial direction.
JP2010538358A 2007-12-17 2007-12-17 Continuously variable transmission with drive belt, method of operating continuously variable transmission, and method of manufacturing drive belt Active JP5812604B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/064037 WO2009076999A1 (en) 2007-12-17 2007-12-17 Continuously variable transmission incorporating a drive belt, method for operating it and method for manufacturing the drive belt

Publications (2)

Publication Number Publication Date
JP2011506885A JP2011506885A (en) 2011-03-03
JP5812604B2 true JP5812604B2 (en) 2015-11-17

Family

ID=39712591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010538358A Active JP5812604B2 (en) 2007-12-17 2007-12-17 Continuously variable transmission with drive belt, method of operating continuously variable transmission, and method of manufacturing drive belt

Country Status (5)

Country Link
EP (1) EP2235397A1 (en)
JP (1) JP5812604B2 (en)
KR (1) KR20100096249A (en)
CN (1) CN101903685B (en)
WO (1) WO2009076999A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2003033C2 (en) * 2009-06-17 2010-12-20 Bosch Gmbh Robert Method for operating a continuously variable transmission incorporating a drive belt.
NL1041640B1 (en) * 2015-12-22 2017-07-03 Bosch Gmbh Robert Transverse element for a drive belt, drive belt and method for manufacturing such a transverse element.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196439A (en) * 1986-02-21 1987-08-29 Toyota Motor Corp Belt type continuously variable transmission
JPS62196444A (en) * 1986-02-21 1987-08-29 Toyota Motor Corp Belt type continuously variable transmission
JPH01234638A (en) * 1988-03-14 1989-09-19 Toyota Motor Corp V-block for chain belt
JPH01269761A (en) * 1988-04-21 1989-10-27 Mazda Motor Corp Controller for belt type continuously variable transmission
JP2973666B2 (en) * 1991-12-03 1999-11-08 トヨタ自動車株式会社 Belt-type continuously variable transmission for vehicles
JP3209323B2 (en) * 1996-10-11 2001-09-17 日産自動車株式会社 Plate element and belt for belt-type continuously variable transmission, and belt-type continuously variable transmission
JPH10141459A (en) * 1996-11-05 1998-05-29 Nissan Motor Co Ltd Lubrication device for belt type continuously variable transmission
DE10026223A1 (en) * 1999-06-16 2001-01-25 Luk Lamellen & Kupplungsbau Determining operating life of fluid, especially gearbox oil, involves using algorithm relating variation in useful life to temperature in inverse proportion to rate of change in reaction rate
JP3737952B2 (en) * 2001-02-16 2006-01-25 本田技研工業株式会社 CVT belt push block and manufacturing method thereof
JP2003056649A (en) * 2001-08-10 2003-02-26 Honda Motor Co Ltd Belt for continuously variable transmission
JP3938897B2 (en) * 2002-09-30 2007-06-27 ジヤトコ株式会社 Hydraulic control device for belt type continuously variable transmission
JP4973972B2 (en) * 2003-08-22 2012-07-11 日産自動車株式会社 Low friction sliding member for continuously variable transmission and continuously variable transmission oil composition used therefor
NL1027685C2 (en) * 2004-12-08 2006-06-09 Bosch Gmbh Robert Drive belt for a transmission with bombed pulley discs.
CN101305220B (en) * 2005-11-08 2010-12-01 罗伯特·博世有限公司 Speed-variation device with belt wheel and drive belt

Also Published As

Publication number Publication date
EP2235397A1 (en) 2010-10-06
CN101903685A (en) 2010-12-01
CN101903685B (en) 2015-07-22
JP2011506885A (en) 2011-03-03
KR20100096249A (en) 2010-09-01
WO2009076999A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5432451B2 (en) Steel member, heat treatment method thereof, and production method thereof
CN101490439B (en) Sheave member for belt continuously variable transmissions and method of manufacturing it
JP2009204024A (en) Large rolling bearing
JP5812604B2 (en) Continuously variable transmission with drive belt, method of operating continuously variable transmission, and method of manufacturing drive belt
US6659909B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP5496218B2 (en) Method of manufacturing a drive belt, drive belt, and method of operating a continuously variable transmission having such a drive belt
NL1037185C2 (en) Transverse element for a drive belt, drive belt and method for manufacturing such a transverse element.
CN108474448B (en) Transverse element for a drive belt, drive belt and method for manufacturing such a transverse element
CN102803792B (en) For running the method for the stepless speed variator being combined with driving belt
WO2005035802A1 (en) Heat treatment system
JP7179615B2 (en) Method for austenitizing and/or carburizing steel transverse elements for drive belts for continuously variable transmissions
JP2005121080A (en) Rolling bearing for supporting belt type continuously-variable transmission pulley shaft
EP3397877B1 (en) Method for manufacturing steel transverse elements for a drive belt for a continuously variable transmission
CN109563907B (en) Flexible steel ring made of martensitic steel and provided with a nitrided surface layer
CN118009002A (en) Design and surface treatment process for microstructure of continuously variable transmission driving belt pushing piece
JP2005256884A (en) Pulley device incorporating one-way clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5812604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250