JP5809317B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5809317B2
JP5809317B2 JP2014084416A JP2014084416A JP5809317B2 JP 5809317 B2 JP5809317 B2 JP 5809317B2 JP 2014084416 A JP2014084416 A JP 2014084416A JP 2014084416 A JP2014084416 A JP 2014084416A JP 5809317 B2 JP5809317 B2 JP 5809317B2
Authority
JP
Japan
Prior art keywords
substrate
silicon carbide
manufacturing
single crystal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014084416A
Other languages
Japanese (ja)
Other versions
JP2014168083A (en
Inventor
横山 夏樹
夏樹 横山
友幸 染谷
友幸 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014084416A priority Critical patent/JP5809317B2/en
Publication of JP2014168083A publication Critical patent/JP2014168083A/en
Application granted granted Critical
Publication of JP5809317B2 publication Critical patent/JP5809317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、炭化珪素単結晶基板を用いた半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device using a silicon carbide single crystal substrate.

従来の電力用半導体装置(パワー半導体素子)は、シリコン単結晶基板を用いて製造されている。素子の設計や製造技術の進歩によって、高耐圧を維持しながら通電時の抵抗(オン抵抗)を低減し、低損失化を実現してきた。しかしながら、耐圧とオン抵抗とは、基板材料のバンドギャップによって決まるトレードオフの関係にあるため、従来のシリコンを使い続ける限り、性能向上には限界がある。このため、シリコンに代る材料として、炭化珪素や窒化ガリウムに代表されるワイドギャップ半導体が注目されている。ワイドギャップ半導体を用いれば、シリコンを用いた場合よりも、高性能なパワー半導体素子を実現可能なためである。特に炭化珪素を用いた電力用半導体装置の開発が盛んである。その第1の理由は、炭化珪素単結晶基板の高品質化、大口径化が進み、半導体装置の製造に必要な基板の入手が比較的容易なことである。第2の理由は、炭化珪素ではエピタキシャル成長やイオン注入によってn型、p型の両導電型領域を容易に形成出来ることや、熱酸化によって二酸化シリコンを主成分とする膜を形成出来ることにある。これにより、様々な電力用半導体装置を製造出来る可能性が生じているためである。これまでに、スイッチング素子としてはMOSFET (Metal Oxide Semiconductor Field Effect Transistor)やJFET (Junction Field Effect Transistor)といったユニーポーラ素子の他、BJT (Bipolar Junction Field Effect Transistor)も検討されている 。また、整流素子としては、pn接合ダイオードやショットキーバリアダイオードが開発されている。特に高耐圧用として、pn接合ダイオードとショットキーバリアダイオードを組み合わせたJBS(Junction Barrier Shottoky)というダイオード素子も開発されている。   Conventional power semiconductor devices (power semiconductor elements) are manufactured using a silicon single crystal substrate. Advances in device design and manufacturing technology have reduced the resistance (on-resistance) during energization while maintaining a high breakdown voltage, and have achieved a low loss. However, since the breakdown voltage and the on-resistance are in a trade-off relationship determined by the band gap of the substrate material, there is a limit to improving the performance as long as conventional silicon is used. For this reason, wide gap semiconductors typified by silicon carbide and gallium nitride have attracted attention as materials that can replace silicon. This is because if a wide gap semiconductor is used, a high-performance power semiconductor element can be realized as compared with the case where silicon is used. In particular, development of power semiconductor devices using silicon carbide has been active. The first reason is that the quality and size of silicon carbide single crystal substrates are increasing, and it is relatively easy to obtain substrates necessary for manufacturing semiconductor devices. The second reason is that silicon carbide can easily form both n-type and p-type conductivity regions by epitaxial growth and ion implantation, and can form a film mainly composed of silicon dioxide by thermal oxidation. This is because there is a possibility that various power semiconductor devices can be manufactured. So far, unipolar elements such as MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and JFET (Junction Field Effect Transistor) as well as BJT (Bipolar Junction Field Effect Transistor) have been studied as switching elements. As rectifying elements, pn junction diodes and Schottky barrier diodes have been developed. In particular, a diode element called JBS (Junction Barrier Shottoy), which is a combination of a pn junction diode and a Schottky barrier diode, has been developed for high withstand voltage.

特開平5−17229号公報Japanese Patent Laid-Open No. 5-17229 特開2003−146778号公報JP 2003-146778 A

炭化珪素単結晶基板を用いた電力用半導体素子の製造には、シリコン半導体素子の製造で培った製造技術の多くが応用可能であるが、一部の製造技術は炭化珪素向けに新たに開発する必要がある。一般には、炭化珪素単結晶基板の製造技術、炭化珪素の加工技術、炭化珪素のエピタキシャル層形成技術、高温イオン注入技術、不純物活性化技術、オーミックコンタクト形成技術、MOSFET用ゲート絶縁膜形成技術などが、これに該当すると言われている。しかしながら、発明者らの検討により、洗浄技術についても、シリコン向けに確立された技術の流用では不十分であり、炭化珪素に特化した技術が必要であることが分かった。特に金属汚染除去については、シリコン半導体向け製造方法を、そのまま炭化珪素半導体に適用しても、十分な効果が得られないことが明らかとなった。   Many of the manufacturing technologies cultivated in the manufacture of silicon semiconductor devices can be applied to the manufacture of power semiconductor devices using silicon carbide single crystal substrates, but some of the manufacturing technologies will be newly developed for silicon carbide. There is a need. In general, silicon carbide single crystal substrate manufacturing technology, silicon carbide processing technology, silicon carbide epitaxial layer formation technology, high temperature ion implantation technology, impurity activation technology, ohmic contact formation technology, MOSFET gate insulating film formation technology, etc. This is said to be the case. However, as a result of investigations by the inventors, it has been found that diversion of the technology established for silicon is insufficient for the cleaning technology, and a technology specialized for silicon carbide is necessary. In particular, regarding metal contamination removal, it has become clear that a sufficient effect cannot be obtained even if the manufacturing method for a silicon semiconductor is directly applied to a silicon carbide semiconductor.

シリコンの半導体素子の製造では、薬液による洗浄工程が多用されている。アンモニア・過酸化水素混合液、硫酸・過酸化水素混合液、塩酸・過酸化水素混合液、硝酸等の酸化性の薬液中では、シリコンの表面に二酸化シリコンを主成分とする膜が形成される。シリコン表面に存在していた金属元素は、この酸化膜の形成に伴って、酸化膜の上に持ち上げられたり、酸化膜中に取り込まれたりする場合が多い。酸化の後に、フッ酸水溶液で酸化膜を除去すると、酸化膜上や酸化膜中の金属元素も同時に除去される。   In the manufacture of silicon semiconductor elements, a chemical cleaning process is frequently used. In an oxidizing chemical such as ammonia / hydrogen peroxide mixture, sulfuric acid / hydrogen peroxide mixture, hydrochloric acid / hydrogen peroxide mixture, and nitric acid, a film mainly composed of silicon dioxide is formed on the silicon surface. . In many cases, the metal element present on the silicon surface is lifted onto the oxide film or taken into the oxide film as the oxide film is formed. After the oxidation, when the oxide film is removed with a hydrofluoric acid aqueous solution, the metal elements on the oxide film and in the oxide film are also removed at the same time.

従来の炭化珪素単結晶基板を用いた半導体素子の製造方法では、シリコン半導体素子の製造に用いている薬液による洗浄を適宜組み合わせて用いていたが、シリコンの場合とは異なり、炭化珪素では、シリコンを酸化する薬液中に浸漬しても、二酸化シリコンを主成分とする膜が殆ど形成されない。このため、上記のような酸化膜が形成されることによって金属元素が除去される機構が実現しないと考えられる。シリコンではフッ硝酸等により、シリコン自体をエッチングすることも可能であるが、炭化珪素は、水酸化カリウム溶融液のような特殊な薬液によってしかエッチングすることが出来ない。このため、炭化珪素自体を薬液でエッチングすることによって、金属元素も同時に除去するといった手法を適用することも出来ない。   In the conventional method for manufacturing a semiconductor element using a silicon carbide single crystal substrate, cleaning with a chemical solution used for manufacturing a silicon semiconductor element is used in an appropriate combination. However, unlike silicon, silicon carbide uses silicon Even when immersed in a chemical solution that oxidizes, a film containing silicon dioxide as a main component is hardly formed. For this reason, it is considered that a mechanism for removing the metal element is not realized by forming the oxide film as described above. In silicon, silicon itself can be etched with hydrofluoric acid or the like, but silicon carbide can be etched only with a special chemical such as a potassium hydroxide melt. For this reason, it is impossible to apply a technique of simultaneously removing the metal element by etching silicon carbide itself with a chemical solution.

炭化珪素の焼結体については、いくつかの洗浄方法が考案されている。例えば、特許文献1(特開平5−17229号)には、シリカ砥粒によるブラスト洗浄を用いる方法が記載されているが、ブラスト洗浄により欠陥等の損傷が導入されてしまうため、半導体素子の製造に用いる炭化珪素単結晶基板の洗浄にそのまま用いることは出来ない。また、焼結体をプラズマにさらすことによって清浄化する方法が特許文献2(特開2003−146778号)に記載されている。プラズマ発生ガスは、炭化珪素と反応しないものであれば何でもよいと記載されており、洗浄の機構は、プラズマによる物理的な汚染除去である。そのため、プラズマ発生のためのパワーが大きく、焼結体をプラズマに晒す時間も長い。この方法も基板に与える損傷が大きく、半導体素子の製造に用いる炭化珪素単結晶基板の洗浄にそのまま用いることは出来ない。いずれも、半導体製造装置の部材や、ダミー基板として用いられる炭化珪素の焼結体に限って有効な方法と考えられる。   Several cleaning methods have been devised for silicon carbide sintered bodies. For example, Patent Document 1 (Japanese Patent Laid-Open No. 5-17229) describes a method using blast cleaning with silica abrasive grains. However, since damage such as defects is introduced by blast cleaning, manufacturing of a semiconductor device is described. It cannot be used as it is for cleaning the silicon carbide single crystal substrate used in the above. Further, Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-146778) describes a method of cleaning a sintered body by exposing it to plasma. It is described that the plasma generation gas may be anything as long as it does not react with silicon carbide, and the cleaning mechanism is physical contamination removal by plasma. Therefore, the power for generating plasma is large, and the time for exposing the sintered body to plasma is also long. This method also causes great damage to the substrate, and cannot be used as it is for cleaning a silicon carbide single crystal substrate used for manufacturing a semiconductor element. Any of them is considered to be an effective method only for a member of a semiconductor manufacturing apparatus or a sintered body of silicon carbide used as a dummy substrate.

炭化珪素単結晶中の金属の拡散係数は小さいものの、単結晶中の欠陥に金属が捕らえられ、耐圧を低下させたり、長期信頼性を低下させる可能性は否定出来ない。また、二酸化シリコンを主成分とするゲート絶縁膜や層間絶縁膜等に取込まれた金属元素は容易に拡散する。ゲート絶縁膜や層間絶縁膜の初期特性や長期信頼性に悪影響を及ぼしているであろうことは、容易に推定出来る。シリコン半導体素子では、金属汚染が、製造した素子の初期特性に悪影響を及ぼし、良品率を低下させ、長期信頼性を低下させることが分かっており、炭化珪素半導体素子でも同様と考えられるためである。炭化珪素単結晶基板を用いた半導体素子の製造に適用可能な、有効な金属汚染除去方法の開発が望まれている。   Although the diffusion coefficient of the metal in the silicon carbide single crystal is small, there is an undeniable possibility that the metal is captured by defects in the single crystal and the breakdown voltage is lowered or the long-term reliability is lowered. In addition, the metal element taken into the gate insulating film or interlayer insulating film containing silicon dioxide as a main component easily diffuses. It can be easily estimated that the initial characteristics and long-term reliability of the gate insulating film and the interlayer insulating film will be adversely affected. In silicon semiconductor elements, it is known that metal contamination adversely affects the initial characteristics of the manufactured elements, reduces the yield rate, and reduces long-term reliability. . Development of an effective method for removing metal contamination that can be applied to the manufacture of a semiconductor device using a silicon carbide single crystal substrate is desired.

解決しようとする従来技術の問題点は、炭化珪素単結晶基板を用いた半導体装置の製造方法において、炭化珪素表面の金属汚染が十分除去されていないことである。これにより、製造された炭化珪素半導体素子の初期特性が劣化し、良品率が低下している可能性が高い。また、金属汚染は、半導体装置の長期信頼性にも悪影響を及ぼしていると考えられる。   The problem of the prior art to be solved is that the metal contamination on the silicon carbide surface is not sufficiently removed in the method of manufacturing a semiconductor device using a silicon carbide single crystal substrate. Thereby, there is a high possibility that the initial characteristics of the manufactured silicon carbide semiconductor element are deteriorated and the yield rate is reduced. Metal contamination is also considered to have an adverse effect on the long-term reliability of semiconductor devices.

本発明の主たるものは、炭化珪素単結晶基板の表面の金属汚染を除去する金属汚染除去工程を有する半導体装置の製造方法において、金属汚染除去工程が、炭化珪素単結晶基板の表面を酸化することにより、その炭化珪素単結晶基板の表面に二酸化シリコンを主成分とする膜を形成する薄膜形成工程と、その二酸化シリコンを主成分とする膜を除去する薄膜除去工程とを有することを特徴とする。   The main object of the present invention is to provide a method for manufacturing a semiconductor device having a metal contamination removal step for removing metal contamination on the surface of a silicon carbide single crystal substrate, wherein the metal contamination removal step oxidizes the surface of the silicon carbide single crystal substrate. And a thin film forming step for forming a film containing silicon dioxide as a main component on the surface of the silicon carbide single crystal substrate, and a thin film removing step for removing the film containing silicon dioxide as a main component. .

酸素プラズマに晒されることで基板表面に薄い二酸化シリコンを主成分とする膜が形成される。元々、基板表面に存在していた金属元素は、この酸化膜の上に持ち上げられたり、酸化膜中に取り込まれたりする場合が多い。フッ酸水溶液でこの酸化膜を除去すると、酸化膜上や酸化膜中の金属元素も同時に除去される。これにより、炭化珪素の表面を清浄化出来る。   By being exposed to oxygen plasma, a thin film mainly composed of silicon dioxide is formed on the substrate surface. The metal element originally present on the surface of the substrate is often lifted on the oxide film or taken into the oxide film. When this oxide film is removed with a hydrofluoric acid aqueous solution, metal elements on the oxide film and in the oxide film are also removed at the same time. Thereby, the surface of silicon carbide can be cleaned.

本発明の実施例を説明するための図。The figure for demonstrating the Example of this invention. 本発明の実施例1で説明する炭化珪素単結晶基板の測定点を示す図。The figure which shows the measuring point of the silicon carbide single crystal substrate demonstrated in Example 1 of this invention. 本発明の実施例1で説明する金属汚染の測定点を示す図。The figure which shows the measurement point of the metal contamination demonstrated in Example 1 of this invention. 本発明の実施例1で説明する金属汚染の分析結果を示す図。The figure which shows the analysis result of the metal contamination demonstrated in Example 1 of this invention. 本発明の実施例1で説明する金属汚染の分析結果を示す図。The figure which shows the analysis result of the metal contamination demonstrated in Example 1 of this invention. 本実施例1のpn接合ダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the pn junction diode of the present Example 1. FIG. 本実施例1のpn接合ダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the pn junction diode of the present Example 1. FIG. 本実施例1のpn接合ダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the pn junction diode of the present Example 1. FIG. 本実施例1のpn接合ダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the pn junction diode of the present Example 1. FIG. 本実施例1のpn接合ダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the pn junction diode of the present Example 1. FIG. 本実施例1のpn接合ダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the pn junction diode of the present Example 1. FIG. 本実施例1のpn接合ダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the pn junction diode of the present Example 1. FIG. 本発明の製造方法によるpn接合ダイオードの耐圧分布を示す図。The figure which shows the pressure | voltage resistant distribution of the pn junction diode by the manufacturing method of this invention. 従来の製造方法によるpn接合ダイオードの耐圧分布を示す図。The figure which shows the pressure | voltage resistant distribution of the pn junction diode by the conventional manufacturing method. 本発明の実施例2で説明する金属汚染の分析結果を示す図。The figure which shows the analysis result of the metal contamination demonstrated in Example 2 of this invention. 本発明の実施例2で説明する金属汚染の分析結果を示す図。The figure which shows the analysis result of the metal contamination demonstrated in Example 2 of this invention. 本発明の実施例2で説明する金属汚染の分析結果を示す図。The figure which shows the analysis result of the metal contamination demonstrated in Example 2 of this invention. 本発明の実施例2で説明する金属汚染の分析結果を示す図。The figure which shows the analysis result of the metal contamination demonstrated in Example 2 of this invention. 本発明の実施例2で説明する金属汚染の分析結果を示す図。The figure which shows the analysis result of the metal contamination demonstrated in Example 2 of this invention. 本実施例3のJBSダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the JBS diode of the present Example 3. FIG. 本実施例3のJBSダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the JBS diode of the present Example 3. FIG. 本実施例3のJBSダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the JBS diode of the present Example 3. FIG. 本実施例3のJBSダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the JBS diode of the present Example 3. FIG. 本実施例3のJBSダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the JBS diode of the present Example 3. FIG. 本実施例3のJBSダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the JBS diode of the present Example 3. FIG. 本実施例3のJBSダイオードの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the JBS diode of the present Example 3. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本実施例4のMOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of MOSFET of the present Example 4. FIG. 本発明および従来法により作成したゲート絶縁膜の信頼性評価の結果を示す図。The figure which shows the result of the reliability evaluation of the gate insulating film produced by this invention and the conventional method. 本発明および従来法により作成したゲート絶縁膜の信頼性評価の結果を示す図。The figure which shows the result of the reliability evaluation of the gate insulating film produced by this invention and the conventional method. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG. 本実施例5のトレンチ型MOSFETの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the trench type MOSFET of the present Example 5. FIG.

以下に、本発明の実施例を図面を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

炭化珪素単結晶基板の表面を酸素プラズマに晒すことによって炭化珪素単結晶基板の表面に厚さ5nm未満の二酸化シリコンを主成分とする膜を形成し、炭化珪素表面に形成された二酸化シリコンを主成分とする膜を、炭化珪素の単結晶基板を、フッ酸を含むエッチング液に浸漬することによって除去する金属汚染除去工程を炭化珪素単結晶基板を用いた半導体装置の製造方法に適用する。これにより、製造する半導体素子の初期特性が改善され、良品率が増加する。また、長期信頼性も向上する。   By exposing the surface of the silicon carbide single crystal substrate to oxygen plasma, a film mainly composed of silicon dioxide having a thickness of less than 5 nm is formed on the surface of the silicon carbide single crystal substrate, and the silicon dioxide formed on the silicon carbide surface is mainly used. A metal contamination removal step of removing the silicon carbide single crystal substrate by immersing the silicon carbide single crystal substrate in an etching solution containing hydrofluoric acid is applied to a method for manufacturing a semiconductor device using the silicon carbide single crystal substrate. Thereby, the initial characteristics of the semiconductor element to be manufactured are improved, and the yield rate is increased. Long-term reliability is also improved.

図1乃至図6を用いて説明する。本実施例は、pn接合ダイオードの製造に適用した実施例である。図1に、本発明によるpn接合ダイオードの製造方法の工程フローを図示する。炭化珪素単結晶基板を作るために、まず、炭化珪素の単結晶(4H−SiC)からなるインゴットを作製した。このインゴットの製造には、現在、最も一般的な昇華法を用いたが、溶融法などの他の炭化珪素単結晶成長技術を用いてもよい。単結晶としては、4H−SiCの他にも、2H−SiC、6H−SiC、3C−SiC等、他の結晶形の炭化珪素単結晶を用いることも出来る。インゴットの単結晶炭化珪素には、窒素が3×1018cm−3含まれていて高濃度のn型となっている。次に、作製したインゴットから薄い板状に単結晶基板を切り出した。この工程は一般にスライス工程と呼ばれている。単結晶基板の表面が(0001)面から[11−20]方向に4°のオフ角を有するように切り出した。(0001)面の他、(000−1)面や(11−20)面が表面になるように切り出してもよい。また、オフ角は4°に限らず、0〜8°程度であれば他の角度でも構わない。直径は最大部で76.2mmであり、主副2つのオリエンテーションフラットが形成してある。直径は76.2mmに限らず、他の寸法でも構わない。 This will be described with reference to FIGS. This embodiment is an embodiment applied to the manufacture of a pn junction diode. FIG. 1 shows a process flow of a method of manufacturing a pn junction diode according to the present invention. In order to make a silicon carbide single crystal substrate, first, an ingot made of a single crystal of silicon carbide (4H—SiC) was produced. Currently, the most common sublimation method is used for manufacturing the ingot, but other silicon carbide single crystal growth techniques such as a melting method may be used. As the single crystal, in addition to 4H—SiC, other crystal forms of silicon carbide single crystal such as 2H—SiC, 6H—SiC, and 3C—SiC can also be used. The ingot single crystal silicon carbide contains 3 × 10 18 cm −3 of nitrogen and has a high concentration of n-type. Next, a single crystal substrate was cut into a thin plate shape from the manufactured ingot. This process is generally called a slicing process. The surface of the single crystal substrate was cut out so as to have an off angle of 4 ° in the [11-20] direction from the (0001) plane. In addition to the (0001) plane, the (000-1) plane or the (11-20) plane may be cut out. Further, the off angle is not limited to 4 °, and may be any other angle as long as it is about 0 to 8 °. The maximum diameter is 76.2 mm, and two main and sub orientation flats are formed. The diameter is not limited to 76.2 mm, and other dimensions may be used.

次に、切り出した基板を、研削工程で適当な厚さまで粗削りした。研削工程の代わりに、研磨工程を用いてもよい。その後、研削した基板の表面や裏面を平坦かつ鏡面に仕上げるために研磨工程で磨いた。研磨方法としては、化学機械研磨(CMP; Chemical Mechanical Polishing)を適用した。本実施例では、この研磨工程で、スライス工程や研削工程で基板に導入された欠陥や傷の除去を兼ねたが、必要に応じて、プラズマを利用したドライエッチング等の特別な処理を加えて表面の変質層を除去してもよい。その場合、これらの工程は研磨工程の前、または後に挿入する。CMPによる研磨は、3段階に分けて行い、スラリーや研磨条件を選択することにより、基板表面の平坦度を徐々に高め、3段階目の研磨で鏡面とした。基板裏面の研磨は表面とは異なる条件で、2段階目に分けて行った。研磨後の基板の厚さは350μmとしたが、厚さは他の寸法としても構わない。スライスから研磨に至る工程の間に、基板に付着した有機物や金属汚染を除去するための薬液洗浄、水洗、乾燥工程を適宜実施したが、最終的な清浄化は、研磨工程後に本発明の金属汚染除去工程を適用して実現した。研磨後の炭化珪素単結晶基板の表面と裏面を酸素プラズマに晒すことにより酸化し、その後、フッ酸を含むエッチング液に基板を浸漬することにより、この酸化膜を除去した。   Next, the cut substrate was roughly cut to an appropriate thickness in a grinding process. A polishing process may be used instead of the grinding process. Thereafter, the ground and polished surfaces were polished in a polishing process in order to finish them flat and mirror-finished. As a polishing method, chemical mechanical polishing (CMP; Chemical Mechanical Polishing) was applied. In this example, this polishing process also served to remove defects and scratches introduced into the substrate in the slicing process and grinding process, but if necessary, a special process such as dry etching using plasma was added. The altered layer on the surface may be removed. In that case, these steps are inserted before or after the polishing step. Polishing by CMP was performed in three stages, and the flatness of the substrate surface was gradually increased by selecting the slurry and polishing conditions to obtain a mirror surface by the third stage polishing. Polishing of the back surface of the substrate was performed in a second stage under different conditions from the front surface. Although the thickness of the substrate after polishing is 350 μm, the thickness may be other dimensions. During the process from slicing to polishing, chemical cleaning, water washing, and drying processes for removing organic substances and metal contamination adhered to the substrate were appropriately performed. The final cleaning was performed after the polishing process. Realized by applying decontamination process. The surface and back surface of the polished silicon carbide single crystal substrate were oxidized by exposing them to oxygen plasma, and then the substrate was immersed in an etchant containing hydrofluoric acid to remove the oxide film.

研磨後の金属汚染除去工程の詳細を記す。酸素プラズマ処理にはマイクロ波を用いたドライエッチング装置を用いて行った。処理の条件は、酸素流量200sccm、反応室内圧力5Pa、マイクロ波のソース電力800W、RFバイアス電力5Wで時間は表面、裏面共に60秒である。装置の電極形状はほぼ直径200mmの円形である。従って、単位面積当りのRFバイアス電力は、0.016W/cmということになる。まず、炭化珪素単結晶基板の表面を上向きにして表面側の処理を施し、次に、炭化珪素シリコン基板の裏面を上向きにして裏面側の処理を施した。この酸素ブラズマ処理によって、炭化珪素シリコン基板の表面、裏面には二酸化シリコンを主成分とする膜が形成される。シリコン面からなる表面に形成された二酸化シリコンを主成分とする膜の厚さを測定すると、2nm未満であった。 Details of the metal contamination removal process after polishing will be described. The oxygen plasma treatment was performed using a dry etching apparatus using microwaves. The processing conditions are an oxygen flow rate of 200 sccm, a pressure in the reaction chamber of 5 Pa, a microwave source power of 800 W, and an RF bias power of 5 W, and the time is 60 seconds for both the front and back surfaces. The electrode shape of the device is a circle with a diameter of approximately 200 mm. Therefore, the RF bias power per unit area is 0.016 W / cm 2 . First, the surface side treatment was performed with the surface of the silicon carbide single crystal substrate facing up, and then the back surface treatment was performed with the back surface of the silicon carbide silicon substrate facing up. By this oxygen plasma treatment, a film mainly composed of silicon dioxide is formed on the front and back surfaces of the silicon carbide silicon substrate. When the thickness of the film mainly composed of silicon dioxide formed on the surface composed of the silicon surface was measured, it was less than 2 nm.

酸素プラズマ処理の後、まず、炭化珪素単結晶基板を王水に180秒浸漬し、水洗後、120℃に保った硫酸・過酸化水素水混合液に180秒浸した。硫酸と過酸化水素水(31%水溶液)の混合比は、7:3である。水洗の後、フッ酸水溶液に180秒浸漬した。フッ酸(55%水溶液)と水の混合比は、1:20である。このフッ酸水溶液への浸漬により、酸素プラズマ処理で炭化珪素単結晶基板の表面、裏面に形成された二酸化シリコンを主成分とする膜が除去される。最後に、アンモニア・過酸化水素混合液に120秒浸漬した後、水洗を施し、スピンドライヤーにより基板を乾燥した。比較のために、従来の製造方法による炭化珪素単結晶基板も作製した。インゴットから切り出した後、化学機械研磨により、表面、裏面を磨く工程までは本実施例中の本発明の製造方法による炭化珪素単結晶基板と同様である。最終的な清浄化は、研磨工程後に従来の金属汚染除去工程を適用した。すなわち、本発明とは異なり、基板を酸素プラズマに晒す処理は用いず、王水、硫酸・過酸化水素水混合液、フッ酸水溶液、アンモニア・過酸化水素水混合液による薬液洗浄のみを基板に施した。用いた薬液の成分や洗浄の条件は、本実施例中の本発明による炭化珪素単結晶基板と同様である。   After the oxygen plasma treatment, first, the silicon carbide single crystal substrate was immersed in aqua regia for 180 seconds, washed with water, and then immersed in a sulfuric acid / hydrogen peroxide mixture kept at 120 ° C. for 180 seconds. The mixing ratio of sulfuric acid and hydrogen peroxide solution (31% aqueous solution) is 7: 3. After washing with water, it was immersed in a hydrofluoric acid aqueous solution for 180 seconds. The mixing ratio of hydrofluoric acid (55% aqueous solution) and water is 1:20. By dipping in this hydrofluoric acid aqueous solution, the film mainly composed of silicon dioxide formed on the front and back surfaces of the silicon carbide single crystal substrate by oxygen plasma treatment is removed. Finally, after being immersed in a mixed solution of ammonia and hydrogen peroxide for 120 seconds, the substrate was washed with water and dried with a spin dryer. For comparison, a silicon carbide single crystal substrate by a conventional manufacturing method was also produced. After cutting out from the ingot, the process of polishing the front and back surfaces by chemical mechanical polishing is the same as that of the silicon carbide single crystal substrate according to the manufacturing method of the present invention in this embodiment. For final cleaning, a conventional metal decontamination process was applied after the polishing process. That is, unlike the present invention, the treatment of exposing the substrate to oxygen plasma is not used, and only chemical cleaning with aqua regia, sulfuric acid / hydrogen peroxide mixture, hydrofluoric acid aqueous solution, ammonia / hydrogen peroxide mixture is performed on the substrate. gave. The components of the chemical solution used and the cleaning conditions are the same as those of the silicon carbide single crystal substrate according to the present invention in this example.

図2Cに本発明を適用した本実施例の炭化珪素単結晶基板の表面の金属汚染を分析した結果を示す。図3に従来の製造方法による炭化珪素炭化珪素単結晶基板の表面の金属汚染を分析した結果を示す。分析には全反射蛍光X線分析を用い、チタン、クロム、鉄、ニッケル、銅、亜鉛について、基板表面の5点について測定した。図2Aの炭化珪素単結晶基板21の表面には、主オリエンテーションフラット22と、副オリエンテーションフラット23が形成されている。図2Bに示すように、中心24が測定点1である。測定点1を中心とした直径20mmの円上に測定点2、3、4、5が均等に配置されている。なお、測定点1〜5は、図2のウエハ面上の24、25、26、27、28にそれぞれ対応している。図2Bの29に示す形式で、各測定点における各金属元素の表面濃度を表示した。単位は図中にも示したように、x1010atoms/cmである。管理基準値は、3x1010atoms/cmとしている。 FIG. 2C shows the result of analyzing metal contamination on the surface of the silicon carbide single crystal substrate of this example to which the present invention is applied. FIG. 3 shows the result of analyzing the metal contamination on the surface of the silicon carbide single crystal substrate by the conventional manufacturing method. The total reflection X-ray fluorescence analysis was used for the analysis, and titanium, chromium, iron, nickel, copper, and zinc were measured at five points on the substrate surface. A main orientation flat 22 and a sub-orientation flat 23 are formed on the surface of the silicon carbide single crystal substrate 21 of FIG. 2A. As shown in FIG. 2B, the center 24 is the measurement point 1. Measurement points 2, 3, 4, and 5 are evenly arranged on a circle having a diameter of 20 mm with the measurement point 1 as the center. Measurement points 1 to 5 correspond to 24, 25, 26, 27, and 28 on the wafer surface in FIG. The surface concentration of each metal element at each measurement point is displayed in the format indicated by 29 in FIG. 2B. The unit is x10 10 atoms / cm 2 as shown in the figure. The management reference value is 3 × 10 10 atoms / cm 2 .

図3についても、図2Cと同様の測定点について、図2Cと同様の形式で、各測定点における各金属元素の表面濃度を表示した。図3に示したように、従来の製造方法による基板表面には、鉄、銅の元素が残存しているが、図2Cから分かるように、本発明の製造方法による基板表面では、鉄、銅を含む全ての元素が管理基準値限界以下しか存在していない。鉄、銅がどの段階で基板表面に付着するかは不明であるが、スライス工程、研削工程の工具類や、研磨工程のスラリーなどからの汚染が疑われる。残存する金属汚染の違いは、炭化珪素単結晶基板表面の酸化の有無によると考えられる。   Also for FIG. 3, the surface concentration of each metal element at each measurement point is displayed for the same measurement point as in FIG. 2C in the same format as in FIG. 2C. As shown in FIG. 3, iron and copper elements remain on the substrate surface by the conventional manufacturing method, but as can be seen from FIG. 2C, iron, copper are formed on the substrate surface by the manufacturing method of the present invention. All elements including are present below the control standard limit. It is unclear at which stage iron or copper adheres to the substrate surface, but contamination from tools in the slicing process, grinding process, slurry in the polishing process, etc. is suspected. The difference in the remaining metal contamination is considered to be due to the presence or absence of oxidation on the surface of the silicon carbide single crystal substrate.

すなわち、本発明の製造方法による場合には、酸素プラズマに晒されることで基板表面に薄い二酸化シリコンを主成分とする膜が形成される。元々、基板表面に存在していた金属元素は、この酸化膜の上に持ち上げられたり、酸化膜中に取り込まれたりする場合が多い。フッ酸水溶液でこの酸化膜を除去すると、酸化膜上や酸化膜中の金属元素も同時に除去される。従来の製造方法は、シリコン半導体素子の製造方法を転用したものであるが、シリコン単結晶基板の場合とは異なり、炭化珪素単結晶基板では、過酸化水素を含む薬液中に浸漬しても、二酸化シリコンを主成分とする膜が殆ど形成されない。このため、酸化膜が形成されることによって金属元素が除去される機構が実現しないと考えられる。   That is, according to the manufacturing method of the present invention, a film mainly composed of thin silicon dioxide is formed on the substrate surface by being exposed to oxygen plasma. The metal element originally present on the surface of the substrate is often lifted on the oxide film or taken into the oxide film. When this oxide film is removed with a hydrofluoric acid aqueous solution, metal elements on the oxide film and in the oxide film are also removed at the same time. The conventional manufacturing method is a diversion of the manufacturing method of the silicon semiconductor element. Unlike the silicon single crystal substrate, the silicon carbide single crystal substrate is immersed in a chemical solution containing hydrogen peroxide, A film composed mainly of silicon dioxide is hardly formed. For this reason, it is considered that a mechanism for removing the metal element is not realized by forming the oxide film.

本実施例では炭化珪素単結晶基板自体の化学機械研磨の後に本発明の金属汚染除去工程を適用したが、デバイス作製の途中で二酸化シリコン膜や多結晶シリコン膜等を研磨した後に適用しても有効である。本実施例と同様に金属汚染を除去する効果がある。   In this example, the metal contamination removal process of the present invention was applied after chemical mechanical polishing of the silicon carbide single crystal substrate itself. However, it may be applied after polishing a silicon dioxide film, a polycrystalline silicon film, or the like during device fabrication. It is valid. As in this embodiment, there is an effect of removing metal contamination.

上述のようにして作製した炭化珪素単結晶基板をパワーデバイスの作製に適用するために、ドリフト層(電界緩和層)として、基板表面に窒素を含む炭化珪素のn型エピタキシャル層を形成した。エピタキシャル成長装置に本発明の製造方法による基板と従来の製造方法による基板各2枚を同時に設置し、水素の流量を10slmに調整して反応室内圧力を10kPaとした。高周波誘導加熱により基板を1400℃に加熱し、10分間保った。この際、基板表面がエッチングされ、基板加工時に導入され、残存していた欠陥や傷を含む損傷層が除去される。基板温度を1500℃まで昇温した後、水素10slmに加え、プロパン0.6sccm、モノシラン2.5sccm、窒素0.2sccmを同時に反応室に供給した。この状態を140分間維持した後、プロパン、モノシラン、窒素の供給と加熱を止め、水素中で基板を冷却した。しかる後、2枚の炭化珪素単結晶基板を取り出し、エピタキシャル層の濃度と厚さを測定した。4枚共に、エピタキシャル層の窒素濃度は2×1016cm−3、厚さは8μmであった。 In order to apply the silicon carbide single crystal substrate produced as described above to the production of a power device, a silicon carbide n-type epitaxial layer containing nitrogen was formed on the substrate surface as a drift layer (electric field relaxation layer). A substrate produced by the production method of the present invention and two substrates produced by the conventional production method were simultaneously installed in the epitaxial growth apparatus, the hydrogen flow rate was adjusted to 10 slm, and the pressure in the reaction chamber was adjusted to 10 kPa. The substrate was heated to 1400 ° C. by high frequency induction heating and kept for 10 minutes. At this time, the substrate surface is etched and introduced during the processing of the substrate, and the damaged layer including the remaining defects and scratches is removed. After raising the substrate temperature to 1500 ° C., in addition to hydrogen 10 slm, propane 0.6 sccm, monosilane 2.5 sccm, and nitrogen 0.2 sccm were simultaneously supplied to the reaction chamber. After maintaining this state for 140 minutes, the supply and heating of propane, monosilane, and nitrogen were stopped, and the substrate was cooled in hydrogen. Thereafter, two silicon carbide single crystal substrates were taken out, and the concentration and thickness of the epitaxial layer were measured. In all four sheets, the nitrogen concentration of the epitaxial layer was 2 × 10 16 cm −3 and the thickness was 8 μm.

基板表面を光学顕微鏡で観察することにより、コメット欠陥、キャロット欠陥等のエピ欠陥を目視により数えたところ、本発明の製造方法による炭化珪素単結晶基板では、従来の製造方法による炭化珪素単結晶基板の約60%にまで、エピ欠陥の密度が減少していることが分かった。次に、本発明の製造方法による基板と従来の製造方法による基板各1枚について、水酸化カリウム溶融液を用いてエッチピットを形成し、基底面転位密度を比較した。この方法は転位の観察方法としてよく知られている方法である。本発明による炭化珪素単結晶基板上のエピタキシャル層では260cm−2、従来の製造方法による炭化珪素単結晶基板上のエピタキシャル層では380cm−2であった。基底面転位密度については、本発明による炭化珪素基板上の方が、従来の製造方法による炭化珪素基板上よりも、約30%低減された。 By observing the surface of the substrate with an optical microscope and visually counting epi defects such as comet defects and carrot defects, the silicon carbide single crystal substrate according to the manufacturing method of the present invention is a silicon carbide single crystal substrate according to the conventional manufacturing method. It was found that the density of epi defects decreased to about 60%. Next, etch pits were formed using a potassium hydroxide melt for each of the substrate produced by the production method of the present invention and the substrate produced by the conventional production method, and the basal plane dislocation densities were compared. This method is a well-known method for observing dislocations. The epitaxial layer on the silicon carbide single crystal substrate according to the present invention was 260 cm −2 , and the epitaxial layer on the silicon carbide single crystal substrate according to the conventional manufacturing method was 380 cm −2 . The basal plane dislocation density was reduced by about 30% on the silicon carbide substrate according to the present invention than on the silicon carbide substrate according to the conventional manufacturing method.

n型エピタキシャル層を形成した本発明の製造方法による基板と、比較のために従来の製造方法による基板の各1枚を用いて、pnダイオードを作製した。図4A−Fは、本実施例のpn接合ダイオードの製造工程を示す断面図である。pn接合ダイオードの周囲には、電界を緩和するためのターミネーション領域を形成したが、ターミネーション領域は、図4A−Fでは省略して記載した。図4Fに示すように、本実施例のpn接合ダイオードは、単結晶炭化珪素基板41の主表面上に設けられ窒素を含む厚さ8μmのn型のドリフト層42と、ドリフト層42の表面の一部に設けられ、アルミニウムを含む厚さが約0.5μmのp型ドープ層43と、p型ドープ層43の表面に設けられアルミニウムを含む厚さが0.1μmの高濃度p型層44層を備えている。単結晶炭化珪素基板41、n型ドリフト層42の窒素濃度(ドナー濃度)はそれぞれ、3×1018cm−3、2×1016cm−3であり、p型ドープ層43、高濃度p型層44のアルミニウム濃度(アクセプタ濃度)は、それぞれ、2×1018cm−3、5×1019cm−3である。図4Bに示すように、ドリフト層42の表面の一部にアルミニウムのイオン注入を行い、p型ドープ層43を形成する。 A pn diode was fabricated using each of the substrate according to the manufacturing method of the present invention in which an n-type epitaxial layer was formed and the substrate according to the conventional manufacturing method for comparison. 4A to 4F are cross-sectional views showing the manufacturing process of the pn junction diode of this example. A termination region for relaxing the electric field is formed around the pn junction diode, but the termination region is omitted in FIGS. 4A to 4F. As shown in FIG. 4F, the pn junction diode of this example includes an n-type drift layer 42 that is provided on the main surface of single-crystal silicon carbide substrate 41 and has a thickness of 8 μm, and includes a surface of drift layer 42. A p-type doped layer 43 having a thickness of about 0.5 μm including aluminum and a high-concentration p-type layer 44 having a thickness of 0.1 μm including aluminum provided on the surface of the p-type doped layer 43. With layers. The single crystal silicon carbide substrate 41 and the n-type drift layer 42 have nitrogen concentrations (donor concentrations) of 3 × 10 18 cm −3 and 2 × 10 16 cm −3 , respectively, and the p-type doped layer 43 and the high-concentration p-type. The aluminum concentration (acceptor concentration) of the layer 44 is 2 × 10 18 cm −3 and 5 × 10 19 cm −3 , respectively. As shown in FIG. 4B, aluminum ions are implanted into part of the surface of the drift layer 42 to form a p-type doped layer 43.

続いて、図4Cに示すように、p型ドープ層43の表面にp型、ドリフト層43よりも高濃度となるようにアルミニウムのイオン注入を行い、高濃度p型層44を形成する。p型ドープ層43、高濃度p型層44のイオン注入を行った後、アルゴン雰囲気中で1850℃1分の活性化熱処理を施した。その後、図4Dに図示するように、プラズマCVD(Chemical Vapor Deposition)法により二酸化シリコン膜45形成し、ダイオードの電極部分を開口した。次にスパッタ装置を用いて表面と裏面にそれぞれ厚さ50nmのニッケル膜を形成し、RTA(Rapid Thermal Anneal)装置を用いて、アルゴン雰囲気中で800℃1分の熱処理を施す。しかる後に、アンモニア・過酸化水素混合液中に炭化珪素単結晶基板41を浸漬して未反応のニッケル膜を除去すると図4Eのようになり、表面開口部の炭化珪素単結晶基板上と、裏面にニッケル珪化物を主成分とする層46、47が形成された。ここでもう一度RTA装置を用いて、今度はアルゴン雰囲気中で1000℃1分の熱処理を施した。図4Fに示すように表面側には厚さ3μmのアルミニウム電極48を形成した。アルミニウム膜の形成にはスパッタ装置を用い、公知のリソグラフィ工程とウェットエッチング技術によりパターニングを施した。裏面には、スパッタ装置を用いて、厚さ100nmのニッケル膜49を形成し、裏面電極とした。最後に、ポリイミド樹脂からなる保護膜50を形成し、ダイオード電極のアルミニウム膜48上を開口した。以上のように、本発明の製造方法により、本実施例のpn接合ダイオードを作製した。   Subsequently, as shown in FIG. 4C, aluminum ions are implanted into the surface of the p-type doped layer 43 so as to have a higher concentration than the p-type and drift layer 43, thereby forming a high-concentration p-type layer 44. After ion implantation of the p-type doped layer 43 and the high-concentration p-type layer 44, activation heat treatment was performed at 1850 ° C. for 1 minute in an argon atmosphere. Thereafter, as shown in FIG. 4D, a silicon dioxide film 45 was formed by plasma CVD (Chemical Vapor Deposition), and the electrode portion of the diode was opened. Next, a nickel film having a thickness of 50 nm is formed on the front and back surfaces using a sputtering apparatus, and heat treatment is performed at 800 ° C. for 1 minute in an argon atmosphere using an RTA (Rapid Thermal Anneal) apparatus. After that, when the silicon carbide single crystal substrate 41 is immersed in a mixed solution of ammonia and hydrogen peroxide to remove the unreacted nickel film, the result is as shown in FIG. 4E. Then, layers 46 and 47 mainly composed of nickel silicide were formed. Here, using the RTA apparatus once again, this time heat treatment was performed at 1000 ° C. for 1 minute in an argon atmosphere. As shown in FIG. 4F, an aluminum electrode 48 having a thickness of 3 μm was formed on the surface side. For the formation of the aluminum film, a sputtering apparatus was used, and patterning was performed by a known lithography process and wet etching technique. On the back surface, a nickel film 49 having a thickness of 100 nm was formed using a sputtering apparatus to form a back electrode. Finally, a protective film 50 made of polyimide resin was formed, and an opening was made on the aluminum film 48 of the diode electrode. As described above, the pn junction diode of this example was manufactured by the manufacturing method of the present invention.

2枚の単結晶炭化珪素基板上に作製した1枚当たり200個のpn接合ダイオードの初期特性を評価した。本発明の製造方法によるpn接合ダイオードと、従来の製造方法によるpn接合ダイオードの耐圧分布を図5A、Bにそれぞれ示す。耐圧600V以上(電流<0.1mAで定義)を良品とすると、良品率は、本発明の製造方法によるpn接合ダイオードでは87%(図5A)、従来の製造方法によるpn接合ダイオードでは47%(図5B)であった。これは、主として、本発明の製造方法によるpn接合ダイオードでは、従来の製造方法によるpn接合ダイオードの約60%にまで、ドリフト層中のエピ欠陥の密度が減少していることの効果であると考えられる。   The initial characteristics of 200 pn junction diodes per sheet fabricated on two single crystal silicon carbide substrates were evaluated. The breakdown voltage distributions of the pn junction diode according to the manufacturing method of the present invention and the pn junction diode according to the conventional manufacturing method are shown in FIGS. 5A and 5B, respectively. Assuming that a withstand voltage of 600 V or more (defined as current <0.1 mA) is a non-defective product, the yield rate is 87% for the pn junction diode according to the manufacturing method of the present invention (FIG. 5A) and 47% for the pn junction diode according to the conventional manufacturing method ( FIG. 5B). This is mainly due to the fact that in the pn junction diode according to the manufacturing method of the present invention, the density of epi defects in the drift layer is reduced to about 60% of the pn junction diode according to the conventional manufacturing method. Conceivable.

次にpn接合ダイオードに、50A/cmの電流を通電し、そのままで10時間保持して、オン電圧の増大を調べた。従来の製造方法で作製したpn接合ダイオードでは、測定した25個のダイオード中8個で約1Vのオン電圧の増加が観測されたが、本発明の製造方法を用いたpn接合ダイオードでは、測定した25個全てのダイオードで0.1V以下の増加に抑制された。これは、単結晶炭化珪素基板を作製する最後で実施された金属汚染除去工程の効果の違いを反映していると考えられる。このような通電時の特性変動の機構は、まだ研究途上にあり、全てが解明されている訳ではないが、一般にpn接合ダイオードのオン電圧の変動には、基底面転位が関与していると考えられている。本発明の製造方法によるエピタキシャル成長層の方が、従来の製造方法によるエピタキシャル成長層よりも基底面転位密度が小さいことが、この違いをもたらしたと考えられる。さらに、通電時の特性変動に作用するのは、全ての基底面転位ではなく、基底面転位の一部であるとも言われている。変動に作用する基底面転位には、何らかの金属不純物が修飾されているという説もある。この説が正しいとすると、基底面転位密度そのものの違いよりも、本発明の製造方法では、基板表面の研磨後に、基板表面に残存する金属汚染を大幅に減らしたことにより、エピタキシャル層中に取り込まれる金属汚染が減少し、その結果、通電変動に作用する基底面転位の密度を低減させた効果である可能性がある。
金属不純物が捕らえられた基底面転位の密度が低減したことは、耐圧不良品の数を減らし、良品率を向上させることにも寄与した可能性がある。
Next, a current of 50 A / cm 2 was passed through the pn junction diode and held for 10 hours, and the increase in on-voltage was examined. In the pn junction diode manufactured by the conventional manufacturing method, an increase in the on-voltage of about 1 V was observed in 8 of the 25 measured diodes, but the measurement was performed in the pn junction diode using the manufacturing method of the present invention. All 25 diodes were suppressed to an increase of 0.1 V or less. This is considered to reflect the difference in the effect of the metal contamination removal process performed at the end of producing the single crystal silicon carbide substrate. The mechanism of such characteristic fluctuations during energization is still under study, and not all has been elucidated, but in general, basal plane dislocations are involved in fluctuations in the on-voltage of pn junction diodes. It is considered. It is thought that this difference was caused by the fact that the epitaxial growth layer formed by the manufacturing method of the present invention has a lower basal plane dislocation density than the epitaxial growth layer formed by the conventional manufacturing method. Furthermore, it is said that it is not all basal plane dislocations but part of the basal plane dislocations that affect the characteristic fluctuation during energization. There is also a theory that basal plane dislocations that affect fluctuations are modified with some metal impurities. If this theory is correct, rather than the difference in the basal plane dislocation density itself, in the manufacturing method of the present invention, after polishing the substrate surface, the metal contamination remaining on the substrate surface is greatly reduced, so that it is incorporated into the epitaxial layer. This may have the effect of reducing the density of basal plane dislocations acting on energization fluctuations.
The reduction in the density of basal plane dislocations in which metal impurities are trapped may have contributed to the reduction in the number of defective pressure-resistant products and the improvement of the yield rate.

本発明の製造方法を適用することにより、従来の製造方法を用いた場合よりもpn接合ダイオードの良品率が向上し、通電時の特性変動も大幅に抑制された。なお、本実施例では、二酸化シリコンを主成分とする膜の形成には、ドライエッチング装置による酸素プラズマ処理を用いたが、アッシャ装置等、他の装置を用いて酸素プラズマ処理を実施することも可能である。本実施例でドライエッチング装置を用いた理由は、反応室のクリーニングが可能なためである。本実施例の装置では、本実施例の酸素プラズマ処理を完了した後に、塩素と酸素の混合ガスのプラズマで反応室内をクリーニングした。清浄なシリコン基板に対するアルゴンプラズマ処理を施して金属汚染を検査したところ、処理前の清浄度と同レベルであり、この処理に用いたことよる装置汚染の影響はなかった。クリーニング機構のない装置を用いる場合には、装置の清浄度の維持が困難となる。酸化方法として、陽極酸化、熱酸化、オゾンによる酸化等を用いることも可能である。ただし、熱酸化の場合には温度が1000℃程度の高温となるため、装置の清浄度維持がさらに困難となる欠点がある。オゾンを用いた酸化の場合には、通常の酸素を用いた熱酸化よりも低温化が可能である。オゾンは、熱酸化で用いる他、紫外線照射と併用したり、酸素プラズマ処理と併用することで、炭化珪素単結晶基板表面の酸化を促す効果を有する。   By applying the manufacturing method of the present invention, the yield of non-defective pn junction diodes was improved as compared with the case of using the conventional manufacturing method, and the characteristic fluctuation during energization was greatly suppressed. In this embodiment, oxygen plasma treatment using a dry etching apparatus is used to form a film containing silicon dioxide as a main component. However, oxygen plasma treatment may be performed using another apparatus such as an asher apparatus. Is possible. The reason why the dry etching apparatus is used in this embodiment is that the reaction chamber can be cleaned. In the apparatus of this example, after the oxygen plasma treatment of this example was completed, the reaction chamber was cleaned with plasma of a mixed gas of chlorine and oxygen. When a clean silicon substrate was subjected to argon plasma treatment to inspect metal contamination, it was found to be at the same level as the cleanliness before the treatment, and there was no influence of device contamination due to this treatment. When an apparatus without a cleaning mechanism is used, it is difficult to maintain the cleanliness of the apparatus. As the oxidation method, anodic oxidation, thermal oxidation, oxidation with ozone, or the like can be used. However, in the case of thermal oxidation, since the temperature is as high as about 1000 ° C., there is a drawback that it becomes more difficult to maintain the cleanliness of the apparatus. In the case of oxidation using ozone, the temperature can be lowered compared to thermal oxidation using ordinary oxygen. In addition to being used for thermal oxidation, ozone has an effect of promoting oxidation of the surface of the silicon carbide single crystal substrate when used in combination with ultraviolet irradiation or in combination with oxygen plasma treatment.

また、表面に形成する二酸化シリコンを主成分とする膜の厚さは、5nm未満であることが望ましい。5nm以上の膜厚まで酸化すると、後のフッ酸水溶液を用いた酸化膜除去の際に、炭化珪素単結晶基板表面に僅ではあるが凹凸が生じる。基板表面に生じた凹凸は、pn接合ダイオードの逆方向リーク電流を増加させる原因となることが分かっているためである。厚さが5nm未満の酸化は、酸素プラズマ処理では、RFバイアス電力等を選択することにより、容易に実現することが出来た。他の酸化方法を用いた場合にも、処理条件を適切に選択すれば、本実施例と同様に膜厚5nm未満の酸化は可能である。   Moreover, it is desirable that the thickness of the film mainly composed of silicon dioxide formed on the surface is less than 5 nm. When the film is oxidized to a thickness of 5 nm or more, slight unevenness is generated on the surface of the silicon carbide single crystal substrate when the oxide film is subsequently removed using a hydrofluoric acid aqueous solution. This is because the unevenness generated on the substrate surface is known to cause an increase in reverse leakage current of the pn junction diode. Oxidation with a thickness of less than 5 nm could be easily realized by selecting RF bias power or the like in the oxygen plasma treatment. Even when other oxidation methods are used, oxidation with a film thickness of less than 5 nm is possible as in this embodiment, if the processing conditions are appropriately selected.

図6乃至図10を用いて説明する。本実施例は、pn接合ダイオードの製造に適用した実施例である。本実施例で用いた4H−SiC、4°オフ単結晶炭化珪素基板は、仕様を指定して、ある基板メーカーから購入した物である。結晶面は表面がシリコン面((0001)面)、裏面がカーボン面((000−1)面)だが、表面は(0001)面から[11−20]方向に4°のオフ角を有する。基板上へのドリフト層のエピタキシャル成長も基板メーカーで実施した。納入後の基板を検査したところ、直径は最大部で76.2mmであり、主副2つのオリエンテーションフラットが形成してある。厚さは350μmである。   This will be described with reference to FIGS. This embodiment is an embodiment applied to the manufacture of a pn junction diode. The 4H-SiC, 4 ° -off single crystal silicon carbide substrate used in this example is a product purchased from a certain substrate manufacturer with specifications. The crystal face is a silicon face ((0001) face) and the back face is a carbon face ((000-1) face), but the front face has an off angle of 4 ° in the [11-20] direction from the (0001) face. The substrate layer manufacturer also performed epitaxial growth of the drift layer on the substrate. When the substrate after delivery was inspected, the maximum diameter was 76.2 mm, and two main and sub orientation flats were formed. The thickness is 350 μm.

エピタキシャル層の窒素濃度は2×1016cm−3、厚さは8μmと、指定した仕様の通りであった。図6に、納入後の基板について、表面の金属汚染を分析した結果を示す。測定方法、測定箇所や結果の表示形式は実施例1中の図2Cと同様である。基板表面には、チタン、クロム、鉄、ニッケル、銅、亜鉛全ての元素が残存していた。これらの金属元素がどの段階で基板表面に付着したかは不明であるが、単結晶炭化珪素基板を作製するためのスライス工程、研削工程の工具類や、研磨工程のスラリーなどからの汚染が疑われる。さらには、エピタキシャル成長中に汚染が取り込まれている可能性もある。基板の研磨工程の後には、実施例1に記したような本発明の金属汚染除去工程は実施されていないので、基板表面に残存していた金属元素がエピタキシャル層に取り込まれたと考えられるし、エピタキシャル成長装置内で、金属元素が表面に残存した基板が繰り返し加熱されることにより、エピタキシャル成長装置自体も金属元素によって汚染されている可能性が高く、そこからエピタキシャル成長中に金属元素を取り込む可能性もあると考えられる。さらに、エピタキシャル成長装置の部材に金属元素が含まれていて、エピタキシャル成長のための加熱時に部材が高温となり、そこから金属元素が飛び出し、基板がそれを取り込む可能性もある。 The epitaxial layer had a nitrogen concentration of 2 × 10 16 cm −3 and a thickness of 8 μm as specified. FIG. 6 shows the result of analyzing metal contamination on the surface of the substrate after delivery. The measurement method, measurement location, and result display format are the same as those in FIG. 2C in the first embodiment. All elements of titanium, chromium, iron, nickel, copper and zinc remained on the substrate surface. It is unclear at which stage these metal elements have adhered to the substrate surface, but contamination from slicing and grinding tools for manufacturing a single crystal silicon carbide substrate, polishing process slurry, etc. is suspected. Is called. Furthermore, contamination may be introduced during the epitaxial growth. After the substrate polishing step, the metal contamination removal step of the present invention as described in Example 1 is not performed, so it is considered that the metal element remaining on the substrate surface was taken into the epitaxial layer, In the epitaxial growth apparatus, the substrate on which the metal element remains on the surface is repeatedly heated, so that the epitaxial growth apparatus itself is likely to be contaminated by the metal element, and the metal element may be taken in during the epitaxial growth from there. it is conceivable that. Further, the metal element is contained in the member of the epitaxial growth apparatus, and the member becomes high temperature during heating for epitaxial growth, and the metal element may jump out of the member, and the substrate may take it in.

まず、2枚を共に、王水に180秒浸漬し、水洗後、120℃に保った硫酸・過酸化水素水混合液に180秒浸した。硫酸と過酸化水素水(31%水溶液)の混合比は、7:3である。水洗の後、フッ酸水溶液に180秒浸漬した。フッ酸(55%水溶液)と水の混合比は、1:20である。このフッ酸水溶液への浸漬により、酸素プラズマ処理で炭化珪素単結晶基板の表面、裏面に形成された二酸化シリコンを主成分とする膜が除去される。最後に、アンモニア・過酸化水素混合液に120秒浸漬した後、水洗を施し、スピンドライヤーにより基板を乾燥した。この一連の洗浄工程は、金属汚染の除去という点では必ずしも不可欠ではないが、酸素プラズマ処理を行うマイクロ波を用いたドライエッチング装置の汚染を少しでも防ぐ目的で実施した。図7に一連の洗浄工程後に再度、2枚中1枚の基板表面の金属汚染を分析した結果を示す。洗浄により、チタン、クロム、ニッケル、銅の汚染は除去されたが、鉄と亜鉛は洗浄後も残存している。   First, both were immersed in aqua regia for 180 seconds, washed with water, and then immersed in a sulfuric acid / hydrogen peroxide mixture maintained at 120 ° C. for 180 seconds. The mixing ratio of sulfuric acid and hydrogen peroxide solution (31% aqueous solution) is 7: 3. After washing with water, it was immersed in a hydrofluoric acid aqueous solution for 180 seconds. The mixing ratio of hydrofluoric acid (55% aqueous solution) and water is 1:20. By dipping in this hydrofluoric acid aqueous solution, the film mainly composed of silicon dioxide formed on the front and back surfaces of the silicon carbide single crystal substrate by oxygen plasma treatment is removed. Finally, after being immersed in a mixed solution of ammonia and hydrogen peroxide for 120 seconds, the substrate was washed with water and dried with a spin dryer. This series of cleaning steps is not necessarily essential in terms of removing metal contamination, but was performed for the purpose of preventing contamination of a dry etching apparatus using microwaves that perform oxygen plasma treatment. FIG. 7 shows the result of analyzing the metal contamination on the surface of one of the two substrates again after a series of cleaning steps. Cleaning removed the contamination of titanium, chromium, nickel, and copper, but iron and zinc remained after cleaning.

次いで、2枚中1枚に対して、酸素プラズマ処理を施した。酸素プラズマ処理にはマイクロ波を用いたドライエッチング装置を用いて行った。処理の条件は、酸素流量200sccm、反応室内圧力5Pa、マイクロ波のソース電力800W、RFバイアス電力7Wで時間は表面、裏面共に60秒である。装置の電極形状はほぼ直径200mmの円形である。従って、単位面積当りのRFバイアス電力は、0.022W/cmということになる。まず、炭化珪素単結晶基板の表面を上向きにして表面側の処理を施し、次に、炭化珪素シリコン基板の裏面を上向きにして裏面側の処理を施した。この酸素ブラズマ処理によって、炭化珪素単結晶基板の表面、裏面には二酸化シリコンを主成分とする膜が形成される。二酸化シリコンを主成分とする膜の厚さは、シリコン面からなる表面では3nm未満であった。この段階で、再度基板表面の金属汚染を分析した結果を図8に示す。酸素プラズマ処理だけでは金属汚染は低減されず、鉄と亜鉛が残存していた。本発明の製造方法では、炭化珪素単結晶基板に損傷が導入されないように、RFバイアス電力を十分に低く設定している。このため、金属汚染がイオンの衝突によって物理的に除去される機構は、ほとんど発現しないためと考えられる。処理に用いたエッチング装置は、塩素と酸素の混合ガスを用いた反応室内クリーニングを実施した後に、シリコン基板を用いて金属汚染を検査したところ、処理前の清浄度と同レベルであり、この処理に用いたことよる装置汚染の影響が残ることはなかった。 Next, oxygen plasma treatment was performed on one of the two sheets. The oxygen plasma treatment was performed using a dry etching apparatus using microwaves. The processing conditions are an oxygen flow rate of 200 sccm, a reaction chamber pressure of 5 Pa, a microwave source power of 800 W, and an RF bias power of 7 W, and the time is 60 seconds on both the front and back surfaces. The electrode shape of the device is a circle with a diameter of approximately 200 mm. Therefore, the RF bias power per unit area is 0.022 W / cm 2 . First, the surface side treatment was performed with the surface of the silicon carbide single crystal substrate facing up, and then the back surface treatment was performed with the back surface of the silicon carbide silicon substrate facing up. By this oxygen plasma treatment, a film mainly composed of silicon dioxide is formed on the front and back surfaces of the silicon carbide single crystal substrate. The thickness of the film mainly composed of silicon dioxide was less than 3 nm on the surface composed of the silicon surface. FIG. 8 shows the result of analyzing the metal contamination on the substrate surface again at this stage. Oxygen plasma treatment alone did not reduce metal contamination and iron and zinc remained. In the manufacturing method of the present invention, the RF bias power is set sufficiently low so that damage is not introduced into the silicon carbide single crystal substrate. For this reason, it is thought that the mechanism by which metal contamination is physically removed by ion collision hardly develops. The etching apparatus used for the treatment was subjected to cleaning in the reaction chamber using a mixed gas of chlorine and oxygen, and then the metal contamination was inspected using a silicon substrate. There was no effect of the contamination of the equipment due to the use.

しかる後、王水、硫酸・過酸化水素水混合液、フッ酸水溶液、アンモニア・過酸化水素水混合液による薬液洗浄を再び基板に施した。用いた薬液の成分や洗浄の条件は、本実施例中の本発明による炭化珪素単結晶基板に対する洗浄と同様である。この一連の薬液洗浄は、酸素プラズマ処理を施していない基板についても行い、再び表面を分析した。   Thereafter, chemical cleaning with aqua regia, sulfuric acid / hydrogen peroxide mixture, hydrofluoric acid aqueous solution, and ammonia / hydrogen peroxide mixture was performed on the substrate again. The components of the chemical solution used and the cleaning conditions are the same as the cleaning of the silicon carbide single crystal substrate according to the present invention in this example. This series of chemical cleaning was performed on a substrate not subjected to oxygen plasma treatment, and the surface was analyzed again.

図9に本実施例の炭化珪素単結晶基板の表面の金属汚染を分析した結果を示す。図10に酸素プラズマ処理を用いない従来の製造方法による炭化珪素炭化珪素単結晶基板の表面の金属汚染を分析した結果を示す。従来の製造方法による基板表面には、鉄、亜鉛の元素が残存しているが、本発明の製造方法による基板表面では、鉄、亜鉛を含む全ての元素が検出限界以下しか存在していない。残存する金属汚染の違いは、炭化珪素単結晶基板表面の酸化の有無によると考えられる。すなわち、本発明の製造方法による場合には、酸素プラズマに晒されることで基板表面に薄い二酸化シリコンを主成分とする膜が形成される。元々、基板表面に存在していた金属元素は、この酸化膜の上に持ち上げられたり、酸化膜中に取り込まれたりする場合が多い。フッ酸水溶液でこの酸化膜を除去すると、酸化膜上や酸化膜中の金属元素も同時に除去される。これに対して、シリコン半導体素子の製造で用いられていた従来の製造方法を炭化珪素半導体素子の製造にそのまま適用すると、シリコンシリコン単結晶基板の場合とは異なり、炭化珪素単結晶基板では、過酸化水素を含む薬液中に浸漬しても、二酸化シリコンを主成分とする膜が殆ど形成されない。このため、上記のような金属汚染除去の機構が実現しないと考えられる。   FIG. 9 shows the result of analyzing metal contamination on the surface of the silicon carbide single crystal substrate of this example. FIG. 10 shows the result of analyzing metal contamination on the surface of a silicon carbide silicon carbide single crystal substrate by a conventional manufacturing method that does not use oxygen plasma treatment. Although the elements of iron and zinc remain on the substrate surface by the conventional manufacturing method, all the elements including iron and zinc exist below the detection limit on the substrate surface by the manufacturing method of the present invention. The difference in the remaining metal contamination is considered to be due to the presence or absence of oxidation on the surface of the silicon carbide single crystal substrate. That is, according to the manufacturing method of the present invention, a film mainly composed of thin silicon dioxide is formed on the substrate surface by being exposed to oxygen plasma. The metal element originally present on the surface of the substrate is often lifted on the oxide film or taken into the oxide film. When this oxide film is removed with a hydrofluoric acid aqueous solution, metal elements on the oxide film and in the oxide film are also removed at the same time. On the other hand, when the conventional manufacturing method used in the manufacture of silicon semiconductor elements is applied to the manufacture of silicon carbide semiconductor elements as they are, in the case of silicon silicon single crystal substrates, in silicon carbide single crystal substrates, Even when immersed in a chemical solution containing hydrogen oxide, a film containing silicon dioxide as a main component is hardly formed. For this reason, it is considered that the mechanism for removing metal contamination as described above is not realized.

本発明の製造方法と従来の製造方法によって金属汚染を除去した基板各1枚を用いて、実施例1と同様のpn接合ダイオードを作製し、pn接合ダイオードの初期特性を評価した。評価したpnダイオードの個数は基板1枚当たり200個である。耐圧600V以上(電流<0.1mAで定義)を良品とすると、良品率は、本発明の製造方法によるpn接合ダイオードでは75%、従来の製造方法によるpn接合ダイオードでは45%であった。ドリフト層中のエピ欠陥の密度は、本発明の製造方法によるpn接合ダイオードでも、来の製造方法によるpn接合ダイオードでも大きな違いはないはずである。また、ドリフト層中の基底面転位の密度も同様に、大きな違いはないはずである。実施例1中でも述べたように、何らかの金属不純物が修飾されている基底面転位が耐圧を低下させる原因となるという説がある。ドリフト層表面の金属汚染を低減したことにより、pn接合ダイオードの作成中の活性化熱処理中等にドリフト層に取り込まれる金属元素が減少し、その結果、ドリフト層中の、金属不純物が捕らえられた基底面転位の密度が低減したことが、耐圧不良品の数を減らし、良品率を向上させることにも寄与した可能性があるが、機構の詳細は不明である。   A pn junction diode similar to that of Example 1 was fabricated using each one substrate from which metal contamination was removed by the manufacturing method of the present invention and the conventional manufacturing method, and the initial characteristics of the pn junction diode were evaluated. The number of pn diodes evaluated is 200 per substrate. Assuming that a withstand voltage of 600 V or higher (defined as current <0.1 mA) is a non-defective product, the non-defective product rate was 75% for the pn junction diode according to the manufacturing method of the present invention and 45% for the pn junction diode according to the conventional manufacturing method. The density of epi defects in the drift layer should not be significantly different between the pn junction diode according to the manufacturing method of the present invention and the pn junction diode according to the conventional manufacturing method. Similarly, the density of basal plane dislocations in the drift layer should not be significantly different. As described in Example 1, there is a theory that a basal plane dislocation modified with some metal impurities causes a decrease in breakdown voltage. By reducing the metal contamination on the surface of the drift layer, the metal elements taken into the drift layer during activation heat treatment during the production of the pn junction diode are reduced, and as a result, the base in which the metal impurities are trapped in the drift layer. Although the reduction in the density of plane dislocations may have contributed to the reduction in the number of defective pressure-resistant products and the improvement of the non-defective product rate, details of the mechanism are unknown.

次にpn接合ダイオードに、50A/cmの電流を通電し、そのままで10時間保持して、オン電圧の増大を調べた。従来の製造方法で作製したpn接合ダイオードを25個測定した結果、13個で約1Vのオン電圧の増加が観測されたが、本発明の製造方法を用いたpn接合ダイオードでは、25個全てが0.2V以下の増加に抑制された。この違いも耐圧と同様に、本発明の製造方法によるpn接合ダイオードでは、ドリフト層中の、金属不純物が捕らえられた基底面転位の密度が減少したためと考えられるが、機構の詳細は不明である。 Next, a current of 50 A / cm 2 was passed through the pn junction diode and held for 10 hours, and the increase in on-voltage was examined. As a result of measuring 25 pn junction diodes manufactured by the conventional manufacturing method, an increase in the on-voltage of about 1 V was observed with 13; however, in the pn junction diode using the manufacturing method of the present invention, all 25 pn junction diodes were observed. The increase was suppressed to 0.2 V or less. This difference is also considered to be due to a decrease in the density of basal plane dislocations in which the metal impurities are trapped in the drift layer in the pn junction diode according to the manufacturing method of the present invention, as with the breakdown voltage, but the details of the mechanism are unknown. .

なお、本実施例で用いた(0001)面の他、(000−1)面や(11−20)面の基板を用いてもよい。また、オフ角は4°に限らず、0〜8°程度であれば他の角度でも構わない。また、基板の直径や厚さは、他の寸法でも構わない。これらの基板を用いても、本発明と同様の効果がもたらされる。   In addition to the (0001) plane used in this embodiment, a (000-1) plane or (11-20) plane substrate may be used. Further, the off angle is not limited to 4 °, and may be any other angle as long as it is about 0 to 8 °. Also, other dimensions may be used for the diameter and thickness of the substrate. Even if these substrates are used, the same effects as those of the present invention are brought about.

図11A−Gを用いて説明する。本実施例は、本発明をショットキー障壁とpn接合の複合したJBSダイオードの製造に適用した実施例である。図11A−Cは、実施例のJBSダイオードの製造工程を示す断面図である。JBSダイオードの周囲には、電界を緩和するためのターミネーション領域を形成したが、ターミネーション領域は、図11では省略して記載した。図11Cに示すように、本実施例のJBSダイオードは、炭化珪素単結晶基板111の主表面上に設けられ、窒素を含む厚さ約20μmのn型のドリフト層112と、ドリフト層112の表面の一部に設けられ、Alを含む厚さが1μmのp型ドープ層113と、p型ドープ層113の上部に設けられ、Alを含む厚さが0.1μmの高濃度p型層114を備えている。炭化珪素単結晶基板111、n型ドリフト層112のドナー濃度は、それぞれ、それぞれ、3×1018cm−3、2×1015cm−3であり、p型ドープ層113、高濃度p型層114のアクセプタ濃度は、それぞれ、2×1018cm−3、5×1019cm−3である。 It demonstrates using FIG. 11A-G. The present embodiment is an embodiment in which the present invention is applied to the manufacture of a JBS diode in which a Schottky barrier and a pn junction are combined. 11A to 11C are cross-sectional views illustrating the manufacturing process of the JBS diode of the example. A termination region for relaxing the electric field is formed around the JBS diode, but the termination region is omitted in FIG. As shown in FIG. 11C, the JBS diode of this example is provided on the main surface of a silicon carbide single crystal substrate 111, an n-type drift layer 112 containing nitrogen and having a thickness of about 20 μm, and the surface of the drift layer 112 P-type doped layer 113 having a thickness of 1 μm containing Al and a high-concentration p-type layer 114 having a thickness of 0.1 μm provided on top of p-type doped layer 113. I have. The donor concentrations of silicon carbide single crystal substrate 111 and n-type drift layer 112 are 3 × 10 18 cm −3 and 2 × 10 15 cm −3 , respectively, and p-type doped layer 113 and high-concentration p-type layer are used. The acceptor concentrations of 114 are 2 × 10 18 cm −3 and 5 × 10 19 cm −3 , respectively.

本実施例のJBSダイオードの製造方法について説明する。まず、図11Aに示すような、炭化珪素単結晶基板111を用意する。炭化珪素単結晶基板111は、[11−20]方向に4°のオフ角を有する4H−SiC、4°オフ炭化珪素単結晶基板である。直径は最大部で76.2mmで、厚さは350μmである。表面は(0001)面である。基板111表面にはドリフト層112が形成されている。   A method of manufacturing the JBS diode of this example will be described. First, a silicon carbide single crystal substrate 111 as shown in FIG. 11A is prepared. The silicon carbide single crystal substrate 111 is a 4H—SiC, 4 ° off silicon carbide single crystal substrate having an off angle of 4 ° in the [11-20] direction. The maximum diameter is 76.2 mm and the thickness is 350 μm. The surface is a (0001) plane. A drift layer 112 is formed on the surface of the substrate 111.

次に図11Bの工程で、ドリフト層112の表面の一部にAlのイオン注入を行い、p型ドープ層113を形成する。続いて、p型ドープ層113の表面に、Alのイオン注入をさらに高ドーズで行い、高濃度p型層114を形成する。p型ドープ層113、高濃度p型層114を形成した後に、本発明の金属汚染除去工程を適用した。不純物活性化のための高温熱処理の前に、炭化珪素単結晶基板111を清浄化することが目的である。   Next, in the step of FIG. 11B, Al ions are implanted into part of the surface of the drift layer 112 to form the p-type doped layer 113. Subsequently, Al ions are implanted into the surface of the p-type doped layer 113 at a higher dose to form a high-concentration p-type layer 114. After forming the p-type doped layer 113 and the high-concentration p-type layer 114, the metal contamination removal process of the present invention was applied. The purpose is to clean silicon carbide single crystal substrate 111 before high-temperature heat treatment for impurity activation.

まず、炭化珪素単結晶基板111の表裏に、酸素プラズマ処理を施した。酸素プラズマ処理にはアッシャ装置を用いて行った。処理の条件は、酸素流量100sccm、反応室内圧力10Pa、RF電力50Wで時間は表面、裏面共に30秒である。単位面積当りのRF電力は、0.1W/cmとした。炭化珪素単結晶基板に損傷が導入されないように、RF電力は十分に低く設定している。まず、炭化珪素単結晶基板の表面を上向きにして表面側の処理を施し、次に、炭化珪素単結晶基板111の裏面を上向きにして裏面側の処理を施した。この酸素ブラズマ処理によって、炭化珪素単結晶基板111の表面、裏面には二酸化シリコンを主成分とする膜が形成される。二酸化シリコンを主成分とする膜の厚さは、シリコン面からなる表面では2nm未満であった。 First, oxygen plasma treatment was performed on the front and back of the silicon carbide single crystal substrate 111. The oxygen plasma treatment was performed using an asher device. The processing conditions are an oxygen flow rate of 100 sccm, a pressure in the reaction chamber of 10 Pa, an RF power of 50 W, and the time is 30 seconds for both the front and back surfaces. The RF power per unit area was 0.1 W / cm 2 . The RF power is set sufficiently low so that damage is not introduced into the silicon carbide single crystal substrate. First, the surface side treatment was performed with the surface of the silicon carbide single crystal substrate facing up, and then the back surface treatment was performed with the back surface of the silicon carbide single crystal substrate 111 facing up. By this oxygen plasma treatment, a film mainly composed of silicon dioxide is formed on the front and back surfaces of the silicon carbide single crystal substrate 111. The thickness of the film mainly composed of silicon dioxide was less than 2 nm on the surface composed of the silicon surface.

しかる後、王水、硫酸・過酸化水素水混合液、フッ酸水溶液、アンモニア・過酸化水素水混合液による薬液洗浄を基板に施した。用いた薬液の成分や洗浄の条件は、本実施例1の本発明による炭化珪素単結晶基板に対する洗浄と同様である。次に、炭化珪素単結晶基板111の表面、裏面が、高温で変質するのを防止するため、図11Cに示すように、基板111の表面、裏面に厚さ100nmのカーボン膜115、116を形成した。カーボン膜の形成には、スパッタ法を用いたが、メタンを原料とするプラズマCVD法等、他の成膜方法で形成してもよい。基板の裏面にもカーボン膜116を形成するのは、裏面のコンタクト抵抗を低減する効果があるためと、裏面電極の基板111に対する接着力を強化するのに有効だからである。この状態で、次に、真空中で、1800℃で活性化アニールを行った。1,800℃に保った時間は1分である。その後、カーボン膜を酸素を用いたドライエッチングにより除去したところ、図11Dのようになった。処理の条件は、酸素流量100sccm、反応室内圧力10Pa、RF電力50Wで時間は表面、裏面共に90秒である。単位面積当りのRF電力は、0.1W/cmとした。炭化珪素単結晶基板に損傷が導入されないように、RF電力は十分に低く設定している。カーボン膜が除去された後に、炭化珪素単結晶基板111の表面は、酸素プラズマに晒される。炭化珪素単結晶基板111の表面に形成された二酸化シリコンを主成分とする膜の厚さは、シリコン面からなる表面では2nm未満であった。しかる後、フッ酸水溶液、アンモニア・過酸化水素水混合液による薬液洗浄を基板に施した。用いた薬液の成分や洗浄の条件は、本実施例1の本発明による炭化珪素単結晶基板に対する洗浄と同様である。 Thereafter, the substrate was subjected to chemical cleaning with aqua regia, sulfuric acid / hydrogen peroxide mixture, hydrofluoric acid aqueous solution, and ammonia / hydrogen peroxide mixture. The components of the chemical solution used and the cleaning conditions were the same as those for cleaning the silicon carbide single crystal substrate according to the present invention in Example 1. Next, in order to prevent the front and back surfaces of the silicon carbide single crystal substrate 111 from being deteriorated at high temperatures, carbon films 115 and 116 having a thickness of 100 nm are formed on the front and back surfaces of the substrate 111 as shown in FIG. 11C. did. The carbon film is formed by sputtering, but may be formed by other film forming methods such as plasma CVD using methane as a raw material. The reason why the carbon film 116 is formed on the back surface of the substrate is that it has the effect of reducing the contact resistance of the back surface and is effective in enhancing the adhesive force of the back electrode to the substrate 111. In this state, activation annealing was then performed at 1800 ° C. in vacuum. The time kept at 1,800 ° C. is 1 minute. Thereafter, the carbon film was removed by dry etching using oxygen, and the result was as shown in FIG. 11D. The treatment conditions are an oxygen flow rate of 100 sccm, a pressure in the reaction chamber of 10 Pa, an RF power of 50 W, and the time is 90 seconds for both the front and back surfaces. The RF power per unit area was 0.1 W / cm 2 . The RF power is set sufficiently low so that damage is not introduced into the silicon carbide single crystal substrate. After the carbon film is removed, the surface of silicon carbide single crystal substrate 111 is exposed to oxygen plasma. The thickness of the film mainly composed of silicon dioxide formed on the surface of silicon carbide single crystal substrate 111 was less than 2 nm on the surface composed of the silicon surface. Thereafter, chemical cleaning with a hydrofluoric acid aqueous solution and a mixed solution of ammonia and hydrogen peroxide was performed on the substrate. The components of the chemical solution used and the cleaning conditions were the same as those for cleaning the silicon carbide single crystal substrate according to the present invention in Example 1.

次に、図11Eに図示するように、プラズマCVD法により二酸化シリコン膜117を形成し、さらに裏面ニッケル膜を形成し、RTA装置を用いて、アルゴン中で1000℃、1分の熱処理を施した。裏面にはニッケル珪化物を主成分とする層118が形成された。次に、二酸化シリコン膜117に開口部を形成すると図11Fのようになった。二酸化シリコン膜117のエッチングには、ウェットエッチング技術を用いた。次に、図11Gに示すように表面側には厚さ50nmのニッケル膜119と厚さ3μmのアルミニウム膜119の積層膜からなる電極を形成した。ニッケル膜、アルミニウム膜の形成にはスパッタ装置を用い、公知のリソグラフィ工程とウェットエッチング技術によりパターニングを施した。裏面には、スパッタ装置を用いて、厚さ100nmのニッケル膜121を形成し、裏面電極とした。最後に、ポリイミド樹脂からなる保護膜を形成したが、図9Fには図示していない。以上のように、本発明の製造方法により、本実施例のJBSダイオードを作製した。   Next, as shown in FIG. 11E, a silicon dioxide film 117 is formed by a plasma CVD method, a back nickel film is further formed, and heat treatment is performed at 1000 ° C. for 1 minute in argon using an RTA apparatus. . A layer 118 mainly composed of nickel silicide was formed on the back surface. Next, when an opening is formed in the silicon dioxide film 117, the result is as shown in FIG. 11F. A wet etching technique was used for etching the silicon dioxide film 117. Next, as shown in FIG. 11G, an electrode composed of a laminated film of a nickel film 119 having a thickness of 50 nm and an aluminum film 119 having a thickness of 3 μm was formed on the surface side. A nickel film and an aluminum film were formed using a sputtering apparatus and patterned by a known lithography process and a wet etching technique. On the back surface, a nickel film 121 having a thickness of 100 nm was formed using a sputtering apparatus to form a back electrode. Finally, a protective film made of polyimide resin was formed, which is not shown in FIG. 9F. As described above, the JBS diode of this example was manufactured by the manufacturing method of the present invention.

本発明の製造方法によるJBSダイオードの初期特性を評価した。評価したJBSダイオードの個数は100個である。耐圧3.5kV以上(電流<0.1mAで定義)を良品とすると、良品率は63%であった。従来の製造方法による場合には45%であったので大幅に向上した。ダイオードの逆方向リーク電流を2kVで測定すると、100個のダイオードの平均値が、従来の製造方法による場合よりの約40%にまで低減した。リーク電流は主にショットキー障壁ダイオード部分を流れていると考えられる。本発明の製造方法では、活性化熱処理前後等に、炭化珪素単結晶基板表面の金属汚染を除去することにより、従来の製造方法による場合よりも清浄な電極/炭化珪素単結晶基板界面を実現している。これが、リーク電流の低減に寄与した可能性が高い。   The initial characteristics of the JBS diode by the manufacturing method of the present invention were evaluated. The number of evaluated JBS diodes is 100. Assuming that a withstand voltage of 3.5 kV or more (defined as current <0.1 mA) was a non-defective product, the non-defective product rate was 63%. In the case of the conventional manufacturing method, it was 45%, so it was greatly improved. When the reverse leakage current of the diode was measured at 2 kV, the average value of 100 diodes was reduced to about 40% of that obtained by the conventional manufacturing method. It is considered that the leakage current mainly flows through the Schottky barrier diode portion. In the manufacturing method of the present invention, by removing metal contamination on the surface of the silicon carbide single crystal substrate before and after the activation heat treatment, etc., a cleaner electrode / silicon carbide single crystal substrate interface is realized than in the case of the conventional manufacturing method. ing. This is likely to have contributed to the reduction of leakage current.

次にJBS接合ダイオードに、70A/cmの電流を通電し、そのままで10時間保持して、オン電圧の増大を調べた。従来の製造方法で作製したJBSダイオードを25個測定した時には、14個で約1Vのオン電圧の増加が観測されたが、本発明の製造方法を用いたJBSダイオードでは、25個全てが0.3V以下の増加に抑制された。機構の詳細は不明であるが、本発明の製造方法を適用することにより、従来の製造方法を用いた場合よりJBSダイオードの良品率が向上し、逆方向のリーク電流が低減し、通電時の特性変動も大幅に抑制された。なお、本実施例で用いた(0001)面の他、(000−1)面や(11−20)面の基板を用いてもよい。また、オフ角は4°に限らず、0〜8°程度であれば他の角度でも構わない。また、基板の直径や厚さは他の寸法でも構わない。これらの基板を用いても、本発明と同様の効果がもたらされる。 Next, a current of 70 A / cm 2 was applied to the JBS junction diode and held for 10 hours, and the increase in the on-voltage was examined. When 25 JBS diodes manufactured by the conventional manufacturing method were measured, an increase in on-voltage of about 1 V was observed with 14 of them. However, in the JBS diode using the manufacturing method of the present invention, all 25 were 0. It was suppressed to an increase of 3 V or less. Details of the mechanism are unknown, but by applying the manufacturing method of the present invention, the yield rate of JBS diodes is improved compared to the case of using the conventional manufacturing method, the reverse leakage current is reduced, The characteristic fluctuation was also greatly suppressed. In addition to the (0001) plane used in this embodiment, a (000-1) plane or (11-20) plane substrate may be used. Further, the off angle is not limited to 4 °, and may be any other angle as long as it is about 0 to 8 °. Also, other dimensions may be used for the diameter and thickness of the substrate. Even if these substrates are used, the same effects as those of the present invention are brought about.

図12A−H、13A−Gを用いて説明する。本実施例は、本発明をMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の製造に適用した実施例である。nチャネルのプレー型MOSFETである。図12A−H、13A−Gは、実施例のMOSFETの製造工程を示す断面図である。図12Bに示すような炭化珪素単結晶基板131を用意する。本発明の効果を確認するために、2枚の基板131を用いた。炭化珪素単結晶基板131は、[11−20]方向に4°のオフ角を有する4H−SiC、4°オフ炭化珪素単結晶基板である。直径は最大部で100.0mmで、厚さは380μmである。表面は(0001)面である。基板131表面には厚さ10μmのドリフト層132が形成されている。基板131はn基板であり、ドリフト層132はn層である。図12Bの工程で、ドリフト層132の表面の一部に硼素のイオン注入を行い、p型のベース層133を形成した。注入は二酸化シリコンをマスクとして用いて、基板温度を500℃に保った状態で行った。ドーズ量は1.5×1016cm−2であり、濃度は約1.5×1017cm−3となる。ドーパントとしては、硼素の他にアルミニウムを用いることも可能である。注入後、マスクの二酸化シリコンは、基板をフッ酸水溶液に浸漬することにより除去した。次に2枚の基板131のうちの1枚に対して、本発明の金属汚染除去工程を適用し、まず酸素プラズマ処理を行った。酸素プラズマ処理は、実施例2と同様に、マイクロ波を用いたドライエッチング装置を用いて行った。処理の条件は、酸素流量200sccm、反応室内圧力5Pa、マイクロ波のソース電力800W、RFバイアス電力7Wで時間は表面60秒である。装置の電極形状はほぼ直径200mmの円形である。 This will be described with reference to FIGS. 12A-H and 13A-G. This embodiment is an embodiment in which the present invention is applied to manufacture of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). This is an n-channel play type MOSFET. 12A-H and 13A-G are cross-sectional views showing manufacturing steps of the MOSFET of the embodiment. A silicon carbide single crystal substrate 131 as shown in FIG. 12B is prepared. In order to confirm the effect of the present invention, two substrates 131 were used. The silicon carbide single crystal substrate 131 is a 4H—SiC, 4 ° off silicon carbide single crystal substrate having an off angle of 4 ° in the [11-20] direction. The maximum diameter is 100.0 mm and the thickness is 380 μm. The surface is a (0001) plane. A drift layer 132 having a thickness of 10 μm is formed on the surface of the substrate 131. Substrate 131 is a n + substrate, the drift layer 132 the n - a layer. In the step of FIG. 12B, boron ions are implanted into part of the surface of the drift layer 132 to form the p-type base layer 133. The implantation was performed with silicon dioxide as a mask and the substrate temperature kept at 500 ° C. The dose amount is 1.5 × 10 16 cm −2 and the concentration is about 1.5 × 10 17 cm −3 . As a dopant, aluminum can be used in addition to boron. After implantation, the silicon dioxide in the mask was removed by immersing the substrate in an aqueous hydrofluoric acid solution. Next, the metal contamination removal process of the present invention was applied to one of the two substrates 131, and oxygen plasma treatment was first performed. The oxygen plasma treatment was performed using a dry etching apparatus using microwaves as in Example 2. The treatment conditions were an oxygen flow rate of 200 sccm, a reaction chamber pressure of 5 Pa, a microwave source power of 800 W, an RF bias power of 7 W, and a time of 60 seconds on the surface. The electrode shape of the device is a circle with a diameter of approximately 200 mm.

従って、単位面積当りのRFバイアス電力は、0.022W/cmということになる。この酸素ブラズマ処理によって、炭化珪素単結晶基板131の表面には二酸化シリコンを主成分とする膜が形成される。二酸化シリコンを主成分とする膜の厚さは、シリコン面からなる表面では3nm未満であった。炭化珪素単結晶基板に対する酸素プラズマ処理に用いたドライエッチング装置は、処理の後に塩素、酸素混合ガスを用いてクリーニングした。これは、炭化珪素単結晶基板131に対する処理によって、ドライエッチングの内部が汚染され、その汚染が後に処理を施す他の基板に付着するのを防ぐための処置である。しかる後、王水、硫酸・過酸化水素水混合液、フッ酸水溶液、アンモニア・過酸化水素水混合液による薬液洗浄を再び基板に施した。用いた薬液の成分や洗浄の条件は、実施例2中の本発明による炭化珪素単結晶基板に対する洗浄と同様である。この一連の薬液洗浄は、酸素プラズマ処理を施していないもう1枚の基板131についても行った。次に、洗浄後の基板131に対して活性化熱処理を施した。1850℃3分間、100sccmのArを流しながら、約1Paの減圧下で行った。熱処理の際には、実施例3と同様に、厚さ100nmのカーボン膜を保護膜として用いた。実施例3とは異なり、保護膜は基板131の表面側のみに形成し、熱処理後に実施例3と同様の方法、条件で除去した。 Therefore, the RF bias power per unit area is 0.022 W / cm 2 . By this oxygen plasma treatment, a film containing silicon dioxide as a main component is formed on the surface of the silicon carbide single crystal substrate 131. The thickness of the film mainly composed of silicon dioxide was less than 3 nm on the surface composed of the silicon surface. The dry etching apparatus used for the oxygen plasma treatment on the silicon carbide single crystal substrate was cleaned using chlorine and oxygen mixed gas after the treatment. This is a treatment for preventing the inside of the dry etching from being contaminated by the treatment on the silicon carbide single crystal substrate 131 and the contamination from adhering to another substrate to be treated later. Thereafter, chemical cleaning with aqua regia, sulfuric acid / hydrogen peroxide mixture, hydrofluoric acid aqueous solution, and ammonia / hydrogen peroxide mixture was performed on the substrate again. The components of the chemical solution used and the cleaning conditions were the same as those for the silicon carbide single crystal substrate according to the present invention in Example 2. This series of chemical cleaning was performed on another substrate 131 that was not subjected to oxygen plasma treatment. Next, activation heat treatment was performed on the cleaned substrate 131. It was performed under reduced pressure of about 1 Pa while flowing 100 sccm of Ar at 1850 ° C. for 3 minutes. During the heat treatment, a carbon film having a thickness of 100 nm was used as a protective film as in Example 3. Unlike Example 3, the protective film was formed only on the surface side of the substrate 131 and was removed by the same method and conditions as in Example 3 after the heat treatment.

続いて、2枚の基板131の表面に、図12Cに示すように、nエピタキシャル層134をエピタキシャル成長により形成した。このnエピタキシャル層134にMOSFETのチャネル層が形成される。エピタキシャル成長の条件は、2枚の基板131に共通である。エピタキシャル成長層には窒素がドーパントとして含まれ、その濃度は1×1016cm−3である。エピタキシャル成長の後、図12Dに示すように、一部の領域に窒素のイオン注入によってnソース層135を形成した。この注入も基板温度を500℃に保って行われ、ドーズ量は1×1015cmとした。次に図12Eに示すように、エピタキシャル層134の一部136を反応性イオンエッチングによりエッチング除去した。この際、エッチングのマスクには二酸化シリコン膜を用いた。しかる後、再びイオン注入により、深いベース層137を形成すると図12Fのようになった。エッチングマスクをフッ酸水溶液で除去した後、再び2枚の基板131のうちの1枚に対して、本発明の金属汚染除去工程を適用した。適用した基板は、エピタキシャル成長前に本発明の金属汚染除去工程を適用した基板と同じ基板である。酸素プラズマ処理に用いた装置や、処理の条件は、エピタキシャル成長前と同様である。プラズマ処理後の装置のクリーニングも同様とした。酸素プラズマ処理後に行った一連の薬液洗浄は、酸素プラズマ処理を施した基板131だけではなく、酸素プラズマ処理を施していないもう1枚の基板131に対しても行った。 Subsequently, as shown in FIG. 12C, an n epitaxial layer 134 was formed on the surfaces of the two substrates 131 by epitaxial growth. A MOSFET channel layer is formed in the n epitaxial layer 134. Epitaxial growth conditions are common to the two substrates 131. The epitaxial growth layer contains nitrogen as a dopant, and its concentration is 1 × 10 16 cm −3 . After the epitaxial growth, as shown in FIG. 12D, an n + source layer 135 was formed in a partial region by nitrogen ion implantation. This implantation was also performed while maintaining the substrate temperature at 500 ° C., and the dose amount was 1 × 10 15 cm 2 . Next, as shown in FIG. 12E, a part 136 of the epitaxial layer 134 was removed by reactive ion etching. At this time, a silicon dioxide film was used as an etching mask. Thereafter, when the deep base layer 137 is formed again by ion implantation, the result is as shown in FIG. 12F. After removing the etching mask with an aqueous hydrofluoric acid solution, the metal contamination removal process of the present invention was applied to one of the two substrates 131 again. The applied substrate is the same substrate as the substrate to which the metal contamination removal process of the present invention is applied before epitaxial growth. The apparatus used for the oxygen plasma treatment and the treatment conditions are the same as before the epitaxial growth. The cleaning of the apparatus after the plasma treatment was the same. The series of chemical cleaning performed after the oxygen plasma treatment was performed not only on the substrate 131 that was subjected to the oxygen plasma treatment, but also on another substrate 131 that was not subjected to the oxygen plasma treatment.

次に、図12Gに示すように、ゲート酸化膜138を形成した。酸化方法はドライ酸化であり、酸化温度は1250℃である。ゲート酸化膜138の厚さは50nmとした。ゲート酸化の後、基板131に対して一酸化窒素雰囲気中で1150℃、10分の熱処理を施した。この熱処理によって界面準位密度が低減され、チャネル移動度が向上することが分かっている。次に図12Hに示す多結晶シリコン膜139を形成し、通常の反応性ドライエッチング法により加工し、図13Aのようにゲート電極140を形成した。ゲート電極を囲むパターンでゲート酸化膜の不要部分をエッチング除去すると図13Bのように、MOSFETのゲート酸化膜141が残った。図13Cのように、プラズマCVD法による二酸化シリコン膜142を形成し、ゲート電極上の膜143以外をエッチング除去すると図13Dのようになった。引き続き、図13Eのように基板の表裏面にスパッタ法でニッケル膜144、145を形成した。この状態で、900℃3分のアルゴン中熱処理を施し、炭化珪素単結晶基板131や炭化珪素エピタキシャル層134とニッケル膜144、145が接触した部分にニッケル珪化物を主成分とする膜146、147を形成し、未反応のニッケル膜144、145を除去すると図13Fのようになった。未反応のニッケル膜144、145は、硫酸、過酸化水素水溶液の混合液を用いて選択的に除去した。しかる後に、表面側にアルミニウムからなるソース電極148、裏面側にニッケルからなるドレイン電極149を形成すると図13Gのようになった。なお、図示されていないが、ゲート電極140上にはコンタクト孔が開口され、アルミニウムからなるゲート電極パッドと接続されている。   Next, as shown in FIG. 12G, a gate oxide film 138 was formed. The oxidation method is dry oxidation, and the oxidation temperature is 1250 ° C. The thickness of the gate oxide film 138 was 50 nm. After gate oxidation, the substrate 131 was heat-treated at 1150 ° C. for 10 minutes in a nitrogen monoxide atmosphere. It has been found that this heat treatment reduces interface state density and improves channel mobility. Next, a polycrystalline silicon film 139 shown in FIG. 12H was formed and processed by an ordinary reactive dry etching method to form a gate electrode 140 as shown in FIG. 13A. When unnecessary portions of the gate oxide film were removed by etching in a pattern surrounding the gate electrode, the gate oxide film 141 of the MOSFET remained as shown in FIG. 13B. When a silicon dioxide film 142 is formed by plasma CVD as shown in FIG. 13C and the portions other than the film 143 on the gate electrode are removed by etching, the result is as shown in FIG. 13D. Subsequently, nickel films 144 and 145 were formed on the front and back surfaces of the substrate by sputtering as shown in FIG. 13E. In this state, a heat treatment in argon at 900 ° C. for 3 minutes is performed, and the films 146 and 147 mainly composed of nickel silicide are in contact with the silicon carbide single crystal substrate 131 or the silicon carbide epitaxial layer 134 and the nickel films 144 and 145. After removing the unreacted nickel films 144 and 145, the result is as shown in FIG. 13F. Unreacted nickel films 144 and 145 were selectively removed using a mixed solution of sulfuric acid and hydrogen peroxide aqueous solution. Thereafter, when a source electrode 148 made of aluminum is formed on the front surface side and a drain electrode 149 made of nickel is formed on the back surface side, the result is as shown in FIG. 13G. Although not shown, a contact hole is opened on the gate electrode 140 and connected to a gate electrode pad made of aluminum.

上記のように作製したMOSFETの特性と信頼性を評価した。本発明の金属汚染除去工程を適用した基板上と、従来の方法による基板上のMOSFETを比較した。MOSFETのチップ寸法は5.2mm×5.2mmで、アクティブ領域は5.0mm×5.0mmである。まず、耐圧を調べた。耐圧>1200Vを良品とすると、本発明の方法によるMOSFETの良品率は77%、従来の方法によるMOSFETの良品率は39%であった。エピタキシャル成長前に本発明の金属汚染除去工程を適用したことにより、エピタキシャル層に含まれる致命欠陥の密度が減少し、耐圧の良品率が向上したと考えられる。チャネル移動度は、本発明によるMOSFETも、従来の方法によるMOSFETも同等で、最大60cm/Vs程度であった。次にゲート絶縁膜の信頼性を評価するために、本発明によるMOSFET、従来の方法によるMOSFETそれぞれ30チップについて、TZDB(Time Zero Dielectric Breakdown)と、TDDB(Time Dipendent Dielectric Breakdown)の測定を行った。結果をそれぞれ図14、15に示す。TZDBについては、本発明によるMOSFETは全て10.0MV/cm以上の高い絶縁破壊強度を示した。これに対して、従来の方法によるMOSFETでは、9.0MV/cm以下の低めの値となるチップも相当数含まれていた。またストレス電界9.5MV/cmで行ったTDDBの結果を、累積絶縁破壊率が63%となる絶縁破壊電荷総量で比較すると、本発明のMOSFETは従来の方法によるMOSFETの約4倍の0.6C/cmという結果であった。 The characteristics and reliability of the MOSFET fabricated as described above were evaluated. The MOSFET on the substrate to which the metal contamination removing process of the present invention was applied and the MOSFET on the substrate by the conventional method were compared. The chip size of the MOSFET is 5.2 mm × 5.2 mm and the active area is 5.0 mm × 5.0 mm. First, the breakdown voltage was examined. Assuming that the withstand voltage> 1200 V is a non-defective product, the yield rate of the MOSFET according to the method of the present invention is 77%, and the yield rate of the MOSFET according to the conventional method is 39%. By applying the metal contamination removal process of the present invention before the epitaxial growth, it is considered that the density of critical defects contained in the epitaxial layer is reduced, and the yield rate is improved. The channel mobility was equal to the MOSFET according to the present invention and the MOSFET according to the conventional method, and was about 60 cm 2 / Vs at the maximum. Next, in order to evaluate the reliability of the gate insulating film, TZDB (Time Zero Dielectric Breakdown) and TDDB (Time Dependent Dielectric Breakdown) were measured for each of the 30 chips of the MOSFET according to the present invention and the MOSFET according to the conventional method. . The results are shown in FIGS. As for TZDB, all the MOSFETs according to the present invention showed high dielectric breakdown strength of 10.0 MV / cm or more. On the other hand, in the MOSFET by the conventional method, a considerable number of chips having a lower value of 9.0 MV / cm or less were included. Further, when comparing the result of TDDB performed at a stress electric field of 9.5 MV / cm with the total amount of dielectric breakdown charges at which the cumulative dielectric breakdown rate is 63%, the MOSFET of the present invention is about 4 times as large as the MOSFET by the conventional method. The result was 6 C / cm 2 .

これは、従来の方法によるMOSFETの多くが比較的短時間のストレスで絶縁破壊に至ったことを反映している。ゲート酸化前に本発明の本発明の金属汚染除去工程を適用したことにより、ゲート酸化膜の信頼性が向上し、TZDBの絶縁破壊強度や、TDDBの寿命の向上がもたらされたと考えられる。
なお、本実施例で用いた(0001)面の他、(000−1)面や(11−20)面の基板を用いてもよい。また、オフ角は4°に限らず、0〜8°程度であれば他の角度でも構わない。また、基板の直径や厚さは他の寸法でも構わない。これらの基板を用いても、本発明と同様の効果がもたらされる。
This reflects that many of the MOSFETs according to the conventional method have reached dielectric breakdown with a relatively short time stress. By applying the metal contamination removal process of the present invention before the gate oxidation, it is considered that the reliability of the gate oxide film is improved, and the dielectric breakdown strength of TZDB and the lifetime of TDDB are improved.
In addition to the (0001) plane used in this embodiment, a (000-1) plane or (11-20) plane substrate may be used. Further, the off angle is not limited to 4 °, and may be any other angle as long as it is about 0 to 8 °. Also, other dimensions may be used for the diameter and thickness of the substrate. Even if these substrates are used, the same effects as those of the present invention are brought about.

図16A−G、17A−Eを用いて説明する。本実施例は、本発明をトレンチ型MOSFETの製造に適用した実施例である。図16A−G、図17A−Eは、実施例のMOSFETの製造工程を示す断面図である。図16Aに示すような炭化珪素単結晶基板171を用意する。炭化珪素単結晶基板171は、[11−20]方向に4°のオフ角を有する4H−SiC、4°オフ炭化珪素単結晶基板である。直径は最大部で100.0mmで、厚さは380μmである。表面は(0001)面である。基板171表面には、厚さ7μmのドリフト層172が形成されている。基板171はn基板であり、ドリフト層172は不純物濃度1×1016cm−3のn層である。ドリフト層172の上には、厚さ1μm、不純物濃度1×1017cm−3のp型ベース層173、厚さ0.5μm、不純物濃度1×1019cm−3のn型ソース層174が形成されている。これらの層はいずれもエピタキシャル成長で形成したが、少なくとも一部の層をイオン注入で作ることも可能である。その場合には、イオン注入後に、基板171に実施例3、4と同様の活性化熱処理を施す。続いて、図16Bに示すようなトレンチ175を形成する。トレンチ175の形成はドライエッチング法によった。エッチングに用いた装置は、ICP(Inductively Coupled Plasma)を用いた高密度プラズマエッチング装置である。エッチングガスは六フッ化硫黄とし、マスクには二酸化シリコンを用いたが、六フッ化硫黄に酸素を加えた混合ガスや、塩素と酸素の混合ガスを用いても同様な加工が可能である。マスクの二酸化シリコンをフッ酸水溶液で除去した後に、基板171に本発明の金属汚染除去工程を適用した。最初に、オゾンによる酸化処理を行った。処理に用いたのは酸化炉である。700℃に保った基板171上に、高濃度のオゾン発生器から体積濃度約50%のオゾンを供給し、基板171表面を酸化した。本実施例ではオゾンによる酸化を適用したが、実施例2と同様の酸素プラズマ処理でも同様の効果が得られる。また、ドライ酸化、ウェット酸化、ISSG(In−situ Steam Generation)酸化等の熱酸化や、陽極酸化等の他の方法によって酸化膜を形成してもよい。それぞれの方法に応じて、酸化温度や酸化時間を調整して、炭化珪素単結晶基板171表面に形成される二酸化シリコンを主成分とする膜の厚さが5nm未満とすることが望ましい。しかる後、王水、硫酸・過酸化水素水混合液、フッ酸水溶液、アンモニア・過酸化水素水混合液による薬液洗浄を再び基板に施した。用いた薬液の成分や洗浄の条件は、実施例2中の本発明による炭化珪素単結晶基板に対する洗浄と同様である。次に、図16Cに示すように第1のゲート絶縁膜176を形成した。第1のゲート絶縁膜176は厚さ7nmの薄い熱酸化膜であり、図16Dに示すように、その上に第2のゲート絶縁膜となる厚いCVD膜177を積層した。本実施例の熱酸化膜176は1300℃、ドライ酸化で形成した。CVD膜177はTEOS(Tetra Ethyl Ortho Silicate)と酸素を原料とする減圧CVD法で形成した。CVD膜形成時の基板171の温度は700℃である。積層したゲート絶縁膜176、177を形成後に、一酸化窒素中で1200℃、5分の熱処理を施した。熱処理後のゲート絶縁膜176、177の厚さ合計は55nmである。本実施例のゲート絶縁膜176、177は上記の方法で作成したが、ゲート絶縁膜176、177の形成方法はこれに限らない。例えば、熱酸化膜の代りに予め形成した非晶質シリコン膜や多結晶シリコン膜の酸化による膜を用いて、その上に本実施例と同様のCVD膜を積層する等、他の方法により形成することも可能である。非晶質シリコン膜や多結晶シリコン膜を用いる場合には、非晶質シリコン膜や多結晶シリコン膜の形成前に、本実施例と同様の本発明の金属汚染除去工程を適用する。 This will be described with reference to FIGS. 16A-G and 17A-E. In this embodiment, the present invention is applied to the manufacture of a trench MOSFET. 16A to 16G and FIGS. 17A to 17E are cross-sectional views illustrating manufacturing steps of the MOSFET of the example. A silicon carbide single crystal substrate 171 as shown in FIG. 16A is prepared. The silicon carbide single crystal substrate 171 is a 4H—SiC, 4 ° off silicon carbide single crystal substrate having an off angle of 4 ° in the [11-20] direction. The maximum diameter is 100.0 mm and the thickness is 380 μm. The surface is a (0001) plane. A drift layer 172 having a thickness of 7 μm is formed on the surface of the substrate 171. The substrate 171 is an n + substrate, and the drift layer 172 is an n layer having an impurity concentration of 1 × 10 16 cm −3 . On the drift layer 172 has a thickness of 1 [mu] m, the impurity concentration of 1 × 10 17 cm p-type base layer 173 -3, thickness 0.5 [mu] m, the impurity concentration of 1 × 10 19 cm -3 of n + -type source layer 174 Is formed. All of these layers are formed by epitaxial growth, but at least a part of the layers can be formed by ion implantation. In that case, after the ion implantation, the substrate 171 is subjected to the activation heat treatment similar to that in Examples 3 and 4. Subsequently, a trench 175 as shown in FIG. 16B is formed. The trench 175 was formed by a dry etching method. The apparatus used for the etching is a high-density plasma etching apparatus using ICP (Inductively Coupled Plasma). Although the etching gas is sulfur hexafluoride and silicon dioxide is used for the mask, the same processing can be performed using a mixed gas obtained by adding oxygen to sulfur hexafluoride or a mixed gas of chlorine and oxygen. After the silicon dioxide of the mask was removed with a hydrofluoric acid aqueous solution, the metal contamination removal process of the present invention was applied to the substrate 171. First, oxidation treatment with ozone was performed. An oxidation furnace was used for the treatment. On the substrate 171 kept at 700 ° C., ozone having a volume concentration of about 50% was supplied from a high concentration ozone generator to oxidize the surface of the substrate 171. In this embodiment, oxidation by ozone is applied, but the same effect can be obtained by the oxygen plasma treatment similar to that of the second embodiment. Further, the oxide film may be formed by thermal oxidation such as dry oxidation, wet oxidation, ISSG (In-situ Steam Generation) oxidation, or other methods such as anodic oxidation. It is desirable that the thickness of the film mainly composed of silicon dioxide formed on the surface of the silicon carbide single crystal substrate 171 is less than 5 nm by adjusting the oxidation temperature and the oxidation time according to each method. Thereafter, chemical cleaning with aqua regia, sulfuric acid / hydrogen peroxide mixture, hydrofluoric acid aqueous solution, and ammonia / hydrogen peroxide mixture was performed on the substrate again. The components of the chemical solution used and the cleaning conditions were the same as those for the silicon carbide single crystal substrate according to the present invention in Example 2. Next, as shown in FIG. 16C, a first gate insulating film 176 was formed. The first gate insulating film 176 is a thin thermal oxide film having a thickness of 7 nm, and as shown in FIG. 16D, a thick CVD film 177 serving as a second gate insulating film is stacked thereon. The thermal oxide film 176 of this example was formed by dry oxidation at 1300 ° C. The CVD film 177 was formed by a low pressure CVD method using TEOS (Tetra Ethyl Ortho Silicate) and oxygen as raw materials. The temperature of the substrate 171 at the time of forming the CVD film is 700 ° C. After the stacked gate insulating films 176 and 177 were formed, heat treatment was performed at 1200 ° C. for 5 minutes in nitrogen monoxide. The total thickness of the gate insulating films 176 and 177 after the heat treatment is 55 nm. Although the gate insulating films 176 and 177 of this embodiment are formed by the above method, the method for forming the gate insulating films 176 and 177 is not limited thereto. For example, instead of a thermal oxide film, an amorphous silicon film formed in advance or a film formed by oxidation of a polycrystalline silicon film is used, and a CVD film similar to that of this embodiment is laminated thereon. It is also possible to do. In the case of using an amorphous silicon film or a polycrystalline silicon film, the metal contamination removal process of the present invention similar to this embodiment is applied before the formation of the amorphous silicon film or the polycrystalline silicon film.

次に、図16Eのように、ホウ素をドーピングした多結晶シリコン膜178を形成し、パターニングを施すと、図16Fに示すようなゲート電極179となる。さらに、層間絶縁膜となる二酸化シリコン膜180をTEOSと酸素を原料とするプラズマCVD法で形成すると図16Gのようになった。トレンチの両側の部分181を炭化珪素単結晶基板171表面のp型ベース層173が露出するまでエッチングすると図17Aのようになった。二酸化シリコンのエッチングと炭化珪素のエッチングは、共にドライエッチング法により行った。引続き基板171の表裏面にニッケル膜182、183をスパッタ法で形成し、RTA装置を用いて、アルゴン中で1000℃、1分の熱処理を施した。未反応のニッケルを硫酸、過酸化水素水混合液で除去すると図17Cのようになった。表面のp型ベース層が露出した部分と、裏面にはニッケル珪化物を主成分とする層184、185が形成された。裏面にドレイン電極となるニッケル膜186をスパッタ法で追加して形成した後、図17Eに示すように、ソース電極となるアルミニウム膜187をスパッタ法で形成した。なお、図示されていないが、ゲート電極179上にはコンタクト孔が開口され、アルミニウムからなるゲート電極パッドと接続されている。   Next, when a polycrystalline silicon film 178 doped with boron is formed and patterned as shown in FIG. 16E, a gate electrode 179 as shown in FIG. 16F is formed. Further, when a silicon dioxide film 180 serving as an interlayer insulating film is formed by a plasma CVD method using TEOS and oxygen as raw materials, the result is as shown in FIG. 16G. When portions 181 on both sides of the trench are etched until the p-type base layer 173 on the surface of the silicon carbide single crystal substrate 171 is exposed, the result is as shown in FIG. 17A. Both silicon dioxide etching and silicon carbide etching were performed by dry etching. Subsequently, nickel films 182 and 183 were formed on the front and back surfaces of the substrate 171 by sputtering, and heat treatment was performed at 1000 ° C. for 1 minute in argon using an RTA apparatus. When unreacted nickel was removed with a mixed solution of sulfuric acid and hydrogen peroxide, the result was as shown in FIG. 17C. Layers 184 and 185 mainly composed of nickel silicide were formed on the exposed surface of the p-type base layer and on the back surface. After a nickel film 186 to be a drain electrode was additionally formed on the back surface by sputtering, an aluminum film 187 to be a source electrode was formed by sputtering as shown in FIG. 17E. Although not shown, a contact hole is opened on the gate electrode 179 and connected to a gate electrode pad made of aluminum.

上記のように作製したトレンチ型MOSFETの電流−電圧特性を評価した。本発明の金属汚染除去工程を適用した基板上と、従来の方法による基板上のMOSFETを比較した。MOSFETのチップ寸法は4.2mm×4.2mmで、アクティブ領域は4.0mm×4.0mmである。本発明の方法によるMOSFETの良品率は63%で、従来の方法によるMOSFETの良品率は35%よりも大幅に向上した。トレンチ加工後、ゲート酸化膜の形成前に金属汚染除去工程を適用したことにより、ゲート酸化膜に含まれる致命欠陥の密度が減少し、MOSFETの良品率が向上したと考えられる。実施例4と同様に、本発明によるMOSFETと、従来の方法によるMOSFETについて、TZDBとTDDBの測定も行った。その結果、実施例4と同様に、本発明のMOSFETの方が従来のMOSFETよりも高い絶縁破壊強度を示した。また、本発明のMOSFETの累積絶縁破壊率が63%となる絶縁破壊電荷総量は、従来の方法によるMOSFETの約5倍であった。トレンチ加工後、ゲート酸化前に本発明の本発明の金属汚染除去工程を適用したことにより、ゲート酸化膜の信頼性が向上し、TZDBの絶縁破壊強度や、TDDBの寿命の向上がもたらされたと考えられる。   The current-voltage characteristics of the trench MOSFET manufactured as described above were evaluated. The MOSFET on the substrate to which the metal contamination removing process of the present invention was applied and the MOSFET on the substrate by the conventional method were compared. The chip size of the MOSFET is 4.2 mm × 4.2 mm, and the active area is 4.0 mm × 4.0 mm. The yield rate of MOSFETs by the method of the present invention was 63%, and the yield rate of MOSFETs by the conventional method was significantly improved from 35%. By applying the metal contamination removal process after the trench processing and before the formation of the gate oxide film, it is considered that the density of critical defects contained in the gate oxide film is reduced and the yield rate of MOSFETs is improved. Similarly to Example 4, TZDB and TDDB were also measured for the MOSFET according to the present invention and the MOSFET according to the conventional method. As a result, as in Example 4, the MOSFET of the present invention showed higher dielectric breakdown strength than the conventional MOSFET. In addition, the total amount of breakdown charge at which the cumulative breakdown rate of the MOSFET of the present invention is 63% was about five times that of the MOSFET according to the conventional method. By applying the metal contamination removal process of the present invention after trench processing and before gate oxidation, the reliability of the gate oxide film is improved, and the dielectric breakdown strength of TZDB and the life of TDDB are improved. It is thought.

一般にドライエッチング装置は反応性ガスのプラズマを用いるために、晴浄度を保つのが困難である。従って、エッチング中にドライエッチング装置から基板に移る金属汚染を皆無とすることは難しい。このため、トレンチ加工後の基板表面には、金属汚染が存在する可能性が高い。本発明の金属汚染除去工程が、トレンチ型MOSFETの良品率や信頼性の向上に有効であったのは、この段階で金属汚染を除去出来たためと考えられる。   In general, since a dry etching apparatus uses a plasma of a reactive gas, it is difficult to maintain a cleanness. Therefore, it is difficult to eliminate any metal contamination transferred from the dry etching apparatus to the substrate during etching. For this reason, there is a high possibility that metal contamination exists on the substrate surface after the trench processing. The reason that the metal contamination removal process of the present invention was effective in improving the yield rate and reliability of the trench type MOSFET is considered to be because metal contamination was removed at this stage.

本実施例ではトレンチ型MOSFETについて記したが、MOSFETと同様にトレンチ型の接合FETでも良品率向上や高信頼化の効果がもたらされる。
なお、本実施例で用いた(0001)面の他、(000−1)面や(11−20)面の基板を用いてもよい。また、オフ角は4°に限らず、0〜8°程度であれば他の角度でも構わない。また、基板の直径や厚さは他の寸法でも構わない。これらの基板を用いても、本発明と同様の効果がもたらされる。
In this embodiment, the trench type MOSFET is described. However, the trench type junction FET as well as the MOSFET brings about the effect of improving the yield rate and increasing the reliability.
In addition to the (0001) plane used in this embodiment, a (000-1) plane or (11-20) plane substrate may be used. Further, the off angle is not limited to 4 °, and may be any other angle as long as it is about 0 to 8 °. Also, other dimensions may be used for the diameter and thickness of the substrate. Even if these substrates are used, the same effects as those of the present invention are brought about.

41…炭化珪素単結晶基板、42…ドリフト層、43…p型ドープ層、44…高濃度p型層、45…二酸化シリコン膜、46、47…ニッケル珪化物を主成分とする層、48…アルミニウム膜、49…ニッケル膜、50…ポリイミド樹脂からなる保護膜、111…炭化珪素単結晶基板、112…ドリフト層、113…p型ドープ層、114…高濃度p型層、114、115…カーボン膜、116‥二酸化シリコン膜、117…ニッケル珪化物を主成分とする層、118…ニッケル膜、119…アルミニウム膜、120…ニッケル膜、131…炭化珪素単結晶基板、132…ドリフト層、133…p型ベース層、134…チャネル層、135…nソース層、138…ゲート酸化膜、140…ゲート電極、148…ソース電極、149…ドレイン電極、171…炭化珪素単結晶基板、172…ドリフト層、173…p型ベース層、174…nソース層、176、177…ゲート酸化膜、179…ゲート電極、186…ドレイン電極、188…ソース電極。 DESCRIPTION OF SYMBOLS 41 ... Silicon carbide single crystal substrate, 42 ... Drift layer, 43 ... P-type doped layer, 44 ... High concentration p-type layer, 45 ... Silicon dioxide film, 46, 47 ... Layer mainly composed of nickel silicide, 48 ... Aluminum film, 49 ... Nickel film, 50 ... Protective film made of polyimide resin, 111 ... Silicon carbide single crystal substrate, 112 ... Drift layer, 113 ... P-type doped layer, 114 ... High concentration p-type layer, 114, 115 ... Carbon 116, silicon dioxide film, 117 ... layer containing nickel silicide as a main component, 118 ... nickel film, 119 ... aluminum film, 120 ... nickel film, 131 ... silicon carbide single crystal substrate, 132 ... drift layer, 133 ... p-type base layer, 134 ... channel layer, 135 ... n + source layer, 138 ... gate oxide film, 140 ... gate electrode, 148 ... source electrode, 149 ... drain 171 ... Silicon carbide single crystal substrate, 172 ... Drift layer, 173 ... P-type base layer, 174 ... n + source layer, 176, 177 ... Gate oxide film, 179 ... Gate electrode, 186 ... Drain electrode, 188 ... Source electrode.

Claims (8)

イオン注入が施されているエピタキシャル層を表面側に有する炭化珪素基板を準備する工程と、
前記炭化珪素基板の表面および裏面にカーボン膜を設けた状態で活性化アニールを行う工程と、
前記炭化珪素基板の表面と裏面とを酸化して、酸化膜を形成する酸化工程と、
フッ酸を含むエッチング液に浸漬することによって前記酸化工程で形成された酸化膜を除去する工程と、を有する半導体装置の製造方法。
Preparing a silicon carbide substrate having an epitaxial layer on which ion implantation is performed on the surface side ;
Performing activation annealing in a state where a carbon film is provided on the front and back surfaces of the silicon carbide substrate ;
An oxidation step of oxidizing the front and back surfaces of the silicon carbide substrate to form an oxide film;
And a step of removing the oxide film formed in the oxidation step by immersing in an etching solution containing hydrofluoric acid .
前記表面及び裏面に設けたカーボン膜は、それぞれ約100nmの膜厚を有する請求項に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1 , wherein the carbon films provided on the front surface and the back surface each have a film thickness of about 100 nm. 前記活性化アニールは、真空中で1800°Cに保持し、約1分間行う請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the activation annealing is performed at a temperature of 1800 ° C. in a vacuum for about 1 minute. 前記基板は、0〜8°の範囲のオフ角を有する請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the substrate has an off angle in a range of 0 to 8 °. 前記基板は、4°のオフ角を有する請求項に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 4 , wherein the substrate has an off angle of 4 °. 前記基板の主表面は、(0001)面、(000−1)面、または(11−20)面のいずれかである請求項に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1 , wherein a main surface of the substrate is any one of a (0001) plane, a (000-1) plane, and a (11-20) plane. 前記エピタキシャル層の一部にAlをイオン注入することによりp型ドープ層を形成し、
前記p型ドープ層の一部にAlをイオン注入することにより高濃度p型層を形成する請求項1に記載の半導体装置の製造方法。
Forming a p-type doped layer by ion-implanting Al into part of the epitaxial layer;
The method of manufacturing a semiconductor device according to claim 1, wherein a high concentration p-type layer is formed by ion-implanting Al into a part of the p-type doped layer.
前記p型ドープ層の厚さは約1μmで、前記高濃度p型層の厚さは0.1μmである請求項に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 7 , wherein the p-type doped layer has a thickness of about 1 μm, and the high-concentration p-type layer has a thickness of 0.1 μm.
JP2014084416A 2014-04-16 2014-04-16 Manufacturing method of semiconductor device Active JP5809317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084416A JP5809317B2 (en) 2014-04-16 2014-04-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084416A JP5809317B2 (en) 2014-04-16 2014-04-16 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012158519A Division JP5529217B2 (en) 2012-07-17 2012-07-17 Manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015178154A Division JP6199354B2 (en) 2015-09-10 2015-09-10 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2014168083A JP2014168083A (en) 2014-09-11
JP5809317B2 true JP5809317B2 (en) 2015-11-10

Family

ID=51617593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084416A Active JP5809317B2 (en) 2014-04-16 2014-04-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5809317B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059850A (en) * 2001-08-09 2003-02-28 Seiko Epson Corp Heat treatment method, heat treatment apparatus, semiconductor device and manufacturing method therefor
JP2007115875A (en) * 2005-10-20 2007-05-10 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and manufacturing method thereof
JP4412411B2 (en) * 2007-08-10 2010-02-10 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP2014168083A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
US9449814B2 (en) Manufacturing method of semiconductor device
Kimoto et al. Fundamentals of silicon carbide technology: growth, characterization, devices and applications
EP1981076B1 (en) Method for manufacturing silicon carbide semiconductor device
JP4348408B2 (en) Manufacturing method of semiconductor device
JP5529217B2 (en) Manufacturing method of semiconductor device
EP2584594A1 (en) Method for manufacturing silicon carbide semiconductor device and apparatus for manufacturing silicon carbide semiconductor device
JPWO2014155651A1 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6036732B2 (en) Manufacturing method of bonded wafer
WO1998005063A1 (en) Silicon epitaxial wafer and method for manufacturing the same
TW200926303A (en) Semiconductor device manufacturing method and semiconductor device
JP2008205296A (en) Silicon carbide semiconductor element and its manufacturing method
TW201203385A (en) Silicon carbide semiconductor device manufacturing method
JP3733792B2 (en) Method for manufacturing silicon carbide semiconductor element
US8217398B2 (en) Method for the formation of a gate oxide on a SiC substrate and SiC substrates and devices prepared thereby
US20110309376A1 (en) Method of cleaning silicon carbide semiconductor, silicon carbide semiconductor, and silicon carbide semiconductor device
CN110112055B (en) Method for removing protective carbon film on surface of wafer
JPH09321323A (en) Silicon carbide substrate, manufacture thereof and silicon carbide semiconductor device using the same substrate
JP3963154B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP2006253521A (en) Semiconductor diode and its fabrication process
JP2008004726A (en) Semiconductor device and manufacturing method therefor
JP6199354B2 (en) Manufacturing method of semiconductor device
JP5809317B2 (en) Manufacturing method of semiconductor device
JP5988299B2 (en) Semiconductor device manufacturing method
Salemi et al. Device Processing Chain and Processing SiC in a Foundry Environment
JP5360011B2 (en) Method for manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150910

R150 Certificate of patent or registration of utility model

Ref document number: 5809317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350