JP5807824B2 - Manufacturing method of high strength centrifugal molded concrete pipe - Google Patents

Manufacturing method of high strength centrifugal molded concrete pipe Download PDF

Info

Publication number
JP5807824B2
JP5807824B2 JP2011169305A JP2011169305A JP5807824B2 JP 5807824 B2 JP5807824 B2 JP 5807824B2 JP 2011169305 A JP2011169305 A JP 2011169305A JP 2011169305 A JP2011169305 A JP 2011169305A JP 5807824 B2 JP5807824 B2 JP 5807824B2
Authority
JP
Japan
Prior art keywords
ratio
fine aggregate
fine
water
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011169305A
Other languages
Japanese (ja)
Other versions
JP2013032246A (en
Inventor
井川 秀樹
秀樹 井川
洋二 小川
洋二 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hume Corp
Original Assignee
Nippon Hume Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hume Corp filed Critical Nippon Hume Corp
Priority to JP2011169305A priority Critical patent/JP5807824B2/en
Publication of JP2013032246A publication Critical patent/JP2013032246A/en
Application granted granted Critical
Publication of JP5807824B2 publication Critical patent/JP5807824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、圧縮強度を100N/mm2以上を目標とした高強度遠心成形コンクリート管の製造方法に関する。 The present invention relates to a method for producing a high-strength centrifugal molded concrete pipe with a compressive strength of 100 N / mm 2 or more.

従来、圧縮強度が100N/mm2を超える高強度コンクリート製品が多く製造されており、多くの場合、単位粉体重量が650kg/m以上となるように、酸化ケイ素・酸化アルミニウム・酸化カルシウムなどを含み、セメントのアルカリ性下で水和反応をする粉末として、主にシリカの粉末や高炉スラグ、フライアッシュ(石炭灰)、石灰石、籾殻灰などの高強度コンクリート用混和材が添加され、かつ水粉体比が21%以下となるように配合したコンクリートが使用されている。 Conventionally, compression strength are many manufacturing high strength concrete products exceeding 100 N / mm @ 2, often, as a unit powder weight is 650 kg / m 3 or more, such as silicon oxide, aluminum oxide calcium oxide wherein, as a powder to a hydration reaction in an alkaline under cement mainly silica powder and blast furnace slag, fly ash (coal ash), limestone, high strength for concrete, such as rice hull ash is added, and water flour Concrete blended so that the body ratio is 21% or less is used.

しかし、単位粉体量が650kg/m以上、水粉体比が21%以下になるような配合のコンクリートを使用して遠心成形コンクリート管(以下、ヒューム管と記す)を製造しようとする場合には著しく遠心成形性が悪くなる。特に遠心力成形コンクリートを高強度化させるためにシリカフュームなどの微粒子が多用されているような場合にはそれが顕著となる(例えば特許文献1)。 However, when trying to manufacture centrifugally formed concrete tubes (hereinafter referred to as fume tubes) using concrete with a unit powder amount of 650 kg / m 3 or more and a water powder ratio of 21% or less. However, the centrifugal moldability is remarkably deteriorated. This is particularly noticeable when fine particles such as silica fume are frequently used to increase the strength of centrifugally formed concrete (for example, Patent Document 1).

これは、微粒子はコンクリートを高強度化させる反面、遠心成形時に円筒内面に集積し易く、これが遠心力によっても締め固まらずに脆弱層として残り、ブラシやヘラなどの内面仕上げ器具を使用しても内面が仕上がらず、遠心成形性を著しく悪化させることに起因する。   This is because fine particles increase the strength of the concrete, but easily accumulate on the inner surface of the cylinder during centrifugal molding, and this remains as a fragile layer without being compacted by centrifugal force. Even if an inner finishing tool such as a brush or spatula is used. This is because the inner surface is not finished and the centrifugal moldability is remarkably deteriorated.

この問題を解決するために、コンクリートにスラッジ低減剤を加える方法が提案されている(例えば特許文献2,3)。   In order to solve this problem, a method of adding a sludge reducing agent to concrete has been proposed (for example, Patent Documents 2 and 3).

また、スラッジ低減剤を用いずに、遠心成形方法を加減して高速遠心Gを低下させてスラッジを発生させない方法も提案されている(例えば特許文献4)。   In addition, there has been proposed a method in which sludge is not generated by adjusting the centrifugal molding method to reduce high-speed centrifugation G without using a sludge reducing agent (for example, Patent Document 4).

更に一般的に、遠心成形コンクリート管(以下ヒューム管)において内面の仕上げを良好とするためには、硬練りのコンクリートを用いて強い振動をかける方法も提案されている(例えば特許文献5)。   Furthermore, in general, a method of applying strong vibration using hard concrete has been proposed in order to improve the finish of the inner surface of a centrifugally formed concrete pipe (hereinafter referred to as a fume pipe) (for example, Patent Document 5).

この他非特許文献1〜4に、高強度コンクリート杭、現場打ち高強度コンクリートに関する論文がある。   Other non-patent documents 1 to 4 have papers on high-strength concrete piles and on-site high-strength concrete.

特開2010−100505号公報JP 2010-1000050 A 特開2002−60258号公報Japanese Patent Laid-Open No. 2002-60258 特開平10−217228号公報Japanese Patent Laid-Open No. 10-217228 特開2005−169814号公報JP 2005-169814 A 特開平06−254831号公報Japanese Patent Laid-Open No. 06-254831

コンクリート工学年次論文集 Vol.28 No.1,2006 「論文 遠心成形高強度コンクリートの長期物性に及ぼす養生方法の影響」Annual report of concrete engineering Vol. No. 28 1,2006 "The effect of curing method on long-term physical properties of centrifugally formed high-strength concrete" コンクリート工学年次論文集 Vol.31 No.2,2009 「論文 超高強度コンクリートを用いたRC柱の繰り返し圧縮性状」Annual report of concrete engineering Vol. 31 No. 2,2009 "Repeated compression property of RC column using super high strength concrete" コンクリート工学年次論文集 Vol.32 No.1,2010 「論文 超高強度コンクリートの基礎的性状」Annual report of concrete engineering Vol. 32 No. 1,2010 "Basic properties of ultra-high-strength concrete" コンクリート工学年次論文集 Vol.31 No.1,2009 「論文 シリカフューム置換率を変えた超高強度コンクリートの強度発現」Annual report of concrete engineering Vol. 31 No. 1,2009 “Paper: Strength development of ultra-high-strength concrete with different silica fume substitution rates”

上述のスラッジ低減剤や高速遠心Gを低下させる従来の遠心成形による高強度コンクリート製品の製造は、主に内面の仕上げを行わない杭にしか用いられず、内面仕上げが必要なヒューム管には使用されていない。   The production of high-strength concrete products by conventional centrifugal molding that lowers the sludge reducing agent and high-speed centrifugal G described above is mainly used only for piles that do not finish the inner surface, and is used for fume pipes that require an inner surface finish. It has not been.

その理由は、上記方法による場合は、遠心成形後に、管内面に指を差し込むことができるような締固められていない軟弱層が形成されるため、内面仕上げとして刷毛やヘラ等の仕上げが必要となるヒューム管では、内面仕上げができず、平滑面形成が極めて悪い状態となる為であった。   The reason is that, in the case of the above method, a soft layer that is not compacted so that a finger can be inserted into the inner surface of the tube after centrifugal molding is formed, so that finishing such as a brush or a spatula is required as an inner surface finish. This is because the inner surface of the fume tube cannot be finished and the formation of the smooth surface is extremely poor.

このため、内面仕上げの必要の無いコンクリート杭のみにしか用いられず、圧縮強度130N/mm2を超える高強度コンクリート杭が実現化出来ても、ヒューム管では圧縮強度90N/mm2程度の製品しか製造できないという問題があった。   For this reason, it can be used only for concrete piles that do not require an inner surface finish, and even if a high-strength concrete pile with a compressive strength exceeding 130 N / mm 2 can be realized, only a product with a compressive strength of about 90 N / mm 2 can be produced with a fume pipe. There was a problem.

また、ヒューム管において内面の仕上げを良好とするための硬練りのコンクリートを用いて強い振動をかける方法は、水粉体比が30%以上あるような通常のヒューム管に有効な方法であって、水粉体比が小さくて総粉体量が多い場合には,まず均質なコンクリートとして練り混ぜることが困難であり,練り混ぜに長時間を要することのほか,前述のように仕上げ直後に内面に脆弱層が残ること、強い振動は騒音の問題があるばかりでなく遠心成形設備が痛みやすいこと、硬練りのコンクリートのコントロールが難しいことなどの問題点がある。   In addition, the method of applying strong vibration using hard concrete for improving the inner surface finish of the fume tube is an effective method for a normal fume tube having a water powder ratio of 30% or more. When the water powder ratio is small and the total amount of powder is large, it is difficult to knead as homogeneous concrete, and it takes a long time to knead. In addition, there is a problem that a weak layer remains, strong vibration not only causes noise problems, but the centrifugal molding equipment is easily painful, and it is difficult to control the hardened concrete.

本発明は、上述の如き従来の問題に鑑み、スラッジ低減剤の使用や高速遠心Gを下げることなしに、圧縮強度が100N/mm2以上の高強度ヒューム管の製造を目的としてなされたものである。   The present invention has been made for the purpose of producing a high-strength fume tube having a compressive strength of 100 N / mm 2 or more without using a sludge reducing agent or lowering the high-speed centrifugation G in view of the conventional problems as described above. .

上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、粗骨材、細骨材、高強度化用微粒状混和材、減水剤及びセメントに水を加えて混練し、遠心成形することによりコンクリート管を成形する高強度遠心成形コンクリート管の製造方法であって、前記微粒状混和材にシリカフュームを50kg/m 以上を含み、且つ前記セメント又は、セメントと微粒状混和材からなる総粉体重量が650kg/m以上であり、該総粉体重量に対する水の比率(水粉体比)が21%(重量%、以下同じ)以下、総骨材容積に対する細骨材容積の比率(細骨材率s/a)が45%以下、セメントペーストの細骨材空隙に対する充填率を示すペースト細骨材比αが2.0<α<3.0、モルタルの粗骨材空隙に対する充填率を示すモルタル粗骨材比βが2.5<β<3.6であり、前記減水剤の添加量を調整することによりスランプフロー値を400mm〜800mm、50cmスランプフロー時間を15秒以上、とすることにある。 The feature of the invention described in claim 1 for solving the conventional problems as described above is that the coarse aggregate, the fine aggregate, the fine granular admixture for strengthening, the water reducing agent and the cement are mixed with water. A method for producing a high-strength centrifugal molded concrete pipe, in which a concrete pipe is formed by centrifugal molding, wherein the fine particulate admixture contains 50 kg / m 3 or more of silica fume , and the cement or the fine particulate admixture with cement the total powder weight consisting of wood is at 650 kg / m 3 or more, the ratio of water to said total powder weight (water powder ratio) is 21% (wt%, hereinafter the same) or less, fine bone to the total aggregate volume The ratio of aggregate volume (fine aggregate ratio s / a) is 45% or less, the paste fine aggregate ratio α indicating the filling ratio of the cement paste to the fine aggregate voids is 2.0 <α <3.0, and the coarse mortar Mortar coarse aggregate ratio showing the filling rate to the aggregate gap There is a 2.5 <β <3.6, there slump flow value by adjusting the amount of the water reducing agent 400Mm~800mm, to 50cm slump flow time of 15 seconds or more, to.

請求項2に記載の発明の特徴は、請求項1の構成に加え、前記水粉体比が16%〜21%であることにある。 The feature of the invention described in claim 2 is that, in addition to the structure of claim 1, the water powder ratio is 16% to 21%.

請求項3に記載の発明の特徴は、請求項1又は2の構成に加え、前記細骨材率が35%〜45%であることにある。   The feature of the invention described in claim 3 is that, in addition to the configuration of claim 1 or 2, the fine aggregate ratio is 35% to 45%.

本発明においては、微粒状混和材にシリカフュームを50kg/m 以上を含み、セメント又は、セメントと微粒状混和材からなる総粉体重量が650kg/m以上であり、該総粉体重量に対する水の比率(水粉体比)が21%(重量%、以下同じ)以下、総骨材容積に対する細骨材容積の比率(細骨材率s/a)が45%以下、セメントペーストの細骨材空隙に対する充填率を示すペースト細骨材比αが2.0<α<3.0、モルタルの粗骨材空隙に対する充填率を示すモルタル粗骨材比βが2.5<β<3.6であり、前記減水剤の添加量を調整することによりスランプフロー値を400mm〜800mm、50cmスランプフロー時間を15秒以上、とすることにより、スラッジ低減剤の使用や高速遠心Gを下げることなしに、圧縮強度が100N/mm2以上で、内面に脆弱層が残らずに平滑に仕上げることができる成形性が良好な高強度ヒューム管が製造できた。 In the present invention, the silica fume to the particulate admixture comprises 50 kg / m 3 or more, cement or is in total powder weight consisting of cement and fine particulate admixture is 650 kg / m 3 or more, with respect to said total powder weight The ratio of water (water powder ratio) is 21% (weight%, the same shall apply hereinafter) or less, and the ratio of fine aggregate volume to the total aggregate volume (fine aggregate ratio s / a) is 45% or less. The paste fine aggregate ratio α indicating the filling ratio with respect to the aggregate gap is 2.0 <α <3.0, and the mortar coarse aggregate ratio β indicating the filling ratio with respect to the coarse aggregate gap of the mortar is 2.5 <β <3. The slump flow value is set to 400 mm to 800 mm and the 50 cm slump flow time is set to 15 seconds or longer by adjusting the amount of the water reducing agent added, thereby reducing the use of the sludge reducing agent and the high speed centrifugation G. Without compression strength of 10 A high-strength fume tube having a good moldability that can be finished smoothly without leaving a fragile layer on the inner surface at 0 N / mm 2 or more could be produced.

第2表の配合例について、ペースト細骨材比(α)及びモルタル粗骨材比(β)と成形性の良否の関係のグラフGraph of the relationship between paste fine aggregate ratio (α) and mortar coarse aggregate ratio (β) and moldability for the formulation examples in Table 2

次に本発明の実施の態様について説明する。
実施例
使用材料
セメント(C): 普通ポルトランドセメント
粗骨材(a):砕石2005
細骨材(S):砕砂
混和材(Add):高強度化用微粒状混和材(製品名:セラパワーCPS 株式会社デイ・シイ製)
減水剤(PX):高性能AE減水剤(製品名:レオビルド8000S BASFポゾリス株式
会社製)
Next, embodiments of the present invention will be described.
Examples Materials used Cement (C): Ordinary Portland cement Coarse aggregate (a): Crushed stone 2005
Fine aggregate (S): Crushed sand Admixture (Add): Fine granular admixture for strengthening (Product name: Cerapower CPS, manufactured by D Shi Co., Ltd.)
Water reducing agent (PX): High performance AE water reducing agent (Product name: Leo Build 8000S BASF Pozzolith Co., Ltd.)

配合例を、第1表に示す。Formulation examples are shown in Table 1.

第1表

Figure 0005807824
Table 1
Figure 0005807824

混練条件:空練り(粗骨材+細骨材+セメント+混和材)30秒の後注水(水+減水剤)360秒混練
遠心力(G):低速(5G)1分、中速(15G)1分、高速(35G)7分
養生条件:蒸気養生、前置き4時間−昇温(20℃/時間)−最高温度70℃−6時間保持−自然冷却、脱型後 気中養生
Kneading condition: empty kneading (coarse aggregate + fine aggregate + cement + admixture) 30 seconds after water injection (water + water reducing agent) 360 seconds kneading Centrifugal force (G): low speed (5G) 1 minute, medium speed (15G ) 1 minute, high-speed (35G) 7-minute curing conditions: steam curing, preliminarily 4 hours-temperature rise (20 ° C / hour)-maximum temperature 70 ° C-6 hours hold-natural cooling, after mold removal, air curing

上記条件に従ってヒューム管を製造した結果、内面ブラシ仕上げが良好な成形ができ、圧縮強度が100N/mm2以上の高強度ヒューム管が製造できた。   As a result of manufacturing the fume tube in accordance with the above conditions, it was possible to form an internal brush finish with a good shape and to manufacture a high-strength fume tube having a compressive strength of 100 N / mm 2 or more.

尚、上記実施例において、フロー値とはJIS A 1150「コンクリートのスランプフロー試験方法」に準拠したものである。
比較試験例
In addition, in the said Example, a flow value is based on JIS A1150 "the slump flow test method of concrete."
Comparative test example

第2表に示すように、水粉体比、細骨材率、混和材添加量、及びフロー値を違えた配合No.1〜30について成形性と圧縮強度の試験を比較するとともに、参考例として前記非特許文献1〜4の論文に示された遠心成形高強度コンクリート杭及現場打ちコンクリートの配合例について試験した。尚、第1表の実施例の配合は、第2表中の試験例No.13を示している。2表中に示す成形性とは内面に脆弱層が残らずに平滑に仕上げることができることをいい、○は良好、△はやや不良、×は不良を表している。 As shown in Table 2, blending Nos. With different water powder ratio, fine aggregate ratio, admixture addition amount, and flow value were different. While comparing the tests of formability and compressive strength for 1-30, the blended examples of centrifugally formed high-strength concrete piles and cast-in-place concrete shown in the papers of Non-Patent Documents 1 to 4 were tested as reference examples. In addition, the compounding of the Example of Table 1 is test example No. 2 in Table 2. 13 is shown. The moldability shown in Table 2 means that the fragile layer can be finished smoothly without leaving the inner surface, ◯ indicates good, Δ indicates slightly poor, and x indicates poor.

参考例1は、非特許文献1に示されている遠心高強度コンクリート杭の配合であり、参考例2は、非特許文献2に示されている超高強度コンクリートRC柱の配合、参考例3は、非特許文献3に示されている超高強度コンクリートの配合、参考例4〜6は、非特許文献4に示されたシリカフューム使用の超高強度コンクリートの配合である。   Reference Example 1 is a combination of centrifugal high-strength concrete piles shown in Non-Patent Document 1, Reference Example 2 is a combination of ultra-high-strength concrete RC columns shown in Non-Patent Document 2, Reference Example 3 Is a blend of ultra-high strength concrete shown in Non-Patent Document 3, and Reference Examples 4 to 6 are blends of ultra-high-strength concrete using silica fume shown in Non-Patent Document 4.

第2表

Figure 0005807824
Table 2
Figure 0005807824

第2表中のペースト細骨材比(α)及びモルタル粗骨材比(β)の算出は次式による。

Figure 0005807824

ここに,
α:ペースト細骨材比
β:モルタル粗骨材比
W:単位水量 kg/m3
C:単位セメント(粉体)量 kg/m3
S:単位細骨材量 kg/m3
G:単位粗骨材量 kg/m3
WS,WG:表乾状態の細骨材,粗骨材の単位容積質量
VS,VG:表乾状態の細骨材,粗骨材の空隙率
ρc,ρs:セメント,細骨材の密度 The calculation of the paste fine aggregate ratio (α) and the mortar coarse aggregate ratio (β) in Table 2 is based on the following formula.
Figure 0005807824

here,
α: Paste fine aggregate ratio β: Mortar coarse aggregate ratio W: Unit amount of water kg / m 3
C: Unit cement (powder) amount kg / m3
S: Unit fine aggregate amount kg / m3
G: Unit coarse aggregate kg / m3
WS, WG: Unit volume mass of fine and coarse aggregates in the dry state
VS, VG: Porosity of fine aggregate and coarse aggregate ρc, ρs: Density of cement and fine aggregate

この第2表の配合例及び参考例について、ペースト細骨材比(α)及びモルタル粗骨材比(β)と成形性の良否の関係をグラフに示すと図1に示す如くである。   FIG. 1 is a graph showing the relationship between the paste fine aggregate ratio (α) and the mortar coarse aggregate ratio (β) and the formability of the blending examples and reference examples in Table 2.

この結果から、ペースト細骨材比αが2.0<α<3.0、モルタル粗骨材比βが2.5<β<3.6の範囲である場合に、成形性が良好であることが判明した。   From this result, when the paste fine aggregate ratio α is in the range of 2.0 <α <3.0 and the mortar coarse aggregate ratio β is in the range of 2.5 <β <3.6, the moldability is good. It has been found.

尚、図1では、ペースト細骨材比α及びモルタル粗骨材比βと成形性の良否の関係を示しており、水粉体比22%以上のものを白抜き丸で示した、また、水粉体比21%以下の実施例について、成形性が良いものを黒塗り丸、悪いものを黒塗り三角で示した。参考例である高強度コンクリートの現場打ちの事例と高強度杭の配合を黒塗り菱形で示した。   In addition, in FIG. 1, the paste fine aggregate ratio α and the mortar coarse aggregate ratio β and the relationship between the quality of the moldability and the water powder ratio of 22% or more are indicated by white circles. In Examples with a water powder ratio of 21% or less, those with good moldability are indicated by black circles, and those with poor moldability are indicated by black triangles. The examples of high-strength concrete on-site casting and the composition of high-strength piles are shown in black diamonds.

これを見ると、成形性が良好なものはペースト細骨材比αが2.0<α<3.0、モルタル粗骨材比βが2.5<β<3.6の範囲にあることが分かる。範囲内にあるが成形性の悪いものはスランプフロー値が400未満のものである。参考例は、いずれも遠心性形性は悪く、上記のα及びβの範囲外であった。   As seen from this, those having good moldability have a paste fine aggregate ratio α of 2.0 <α <3.0 and a mortar coarse aggregate ratio β of 2.5 <β <3.6. I understand. Those within the range but having poor moldability have a slump flow value of less than 400. All of the reference examples were poor in centrifugal formability, and were outside the above ranges of α and β.

粉体比が21%以下の場合で、細骨材率が35〜45%の範囲でフロー値が400以上あった場合には成形性が良好であったが、細骨材率が50%以上の場合(配合No.18)には成形性が好ましくなかった。 When the water powder ratio was 21% or less and the fine aggregate ratio was 35 to 45% and the flow value was 400 or more, the moldability was good, but the fine aggregate ratio was 50%. In the above case (Formulation No. 18), the moldability was not preferable.

一方、水粉体比が30%以上有るような場合では、骨材を十分に覆うだけのセメントペースト量が無いため、フロー値が大きくなると骨材とセメントペーストが分離し、遠心成形した場合に内面に骨材が露出してしまい、成形性が悪くなる。(配合No.3及び6)この場合、50cmスランプフロー時間は15秒以下であった。50cmスランプフロー時間とはスランプフローが50cmに到達するまでの時間であり、この時間が短いほど、骨材とセメントペーストの分離が著しい。   On the other hand, in the case where the water powder ratio is 30% or more, there is not enough cement paste to sufficiently cover the aggregate, so when the flow value increases, the aggregate and cement paste are separated and centrifuged. Aggregate is exposed on the inner surface, and the moldability deteriorates. (Formulation Nos. 3 and 6) In this case, the 50 cm slump flow time was 15 seconds or less. The 50 cm slump flow time is the time until the slump flow reaches 50 cm, and the shorter this time is, the more the separation of the aggregate and the cement paste is.

圧縮強度100N/mm2以上を目標強度とする水粉体比が21%以下で、総粉体量が650kg/m以上有るような場合では、実施例配合No.13、15〜17、19〜23、26〜30に示すように、フロー値を大きくすることによって遠心成形性は良くなる。 In the case where the water powder ratio having a target strength of a compressive strength of 100 N / mm 2 or more is 21% or less and the total powder amount is 650 kg / m 3 or more, the formulation number of Example As shown in 13, 15-17, 19-23, and 26-30, the centrifugal moldability is improved by increasing the flow value.

即ち、このフロー値が実現可能なコンクリートには、高強度化させるためのシリカフュームが50kg/m以上添加されていて、分離抵抗性の大きなもの、例えば太平洋セメント株式会社製のシリカフュームプレミックスセメント(商品名:SFPC)や、混和材として高強度混和材(商品名:セラパワーCPS、株式会社デイ・シイ製)を混和とすることが好ましい。 That is, the concrete in which this flow value can be realized is added with 50 kg / m 3 or more of silica fume for increasing the strength and has a high separation resistance, for example, a silica fume premix cement manufactured by Taiheiyo Cement Co., Ltd. It is preferable to use a high-strength admixture (trade name: Cerapower CPS, manufactured by Daishi Co., Ltd.) as an admixture.

また、減水剤には少量で分散効果が高く,長期間の分散安定性に優れるポリカルボン酸系の分散剤を用い、好ましくはBASFポゾリス株式会社製のレオビルド8000Sを使用することが好ましい。   Further, as the water reducing agent, a polycarboxylic acid-based dispersant having a high dispersion effect in a small amount and excellent in long-term dispersion stability is used, and preferably Leo Build 8000S manufactured by BASF Pozzolith Co., Ltd. is preferably used.

第2表に示すペースト細骨材比αおよびモルタル粗骨材比βと遠心成形性の関係では、水粉体比が21%以下の範囲において、配合No.17ではペースト細骨材比αが2.06でモルタル粗骨材比βが3.16であって遠心成形性が良く、配合No.18はペースト細骨材比αが2.23、モルタル粗骨材比βが4.03であって遠心成形性が良くなかった。   In the relationship between the paste fine aggregate ratio α and the mortar coarse aggregate ratio β and the centrifugal moldability shown in Table 2, when the water powder ratio is 21% or less, No. 17 has a paste fine aggregate ratio α of 2.06 and a mortar coarse aggregate ratio β of 3.16. No. 18 had a paste fine aggregate ratio α of 2.23 and a mortar coarse aggregate ratio β of 4.03, and the centrifugal moldability was not good.

また、配合No.23ではペースト細骨材比αが2.87、モルタル粗骨材比βが3.13であって遠心成形性が良く、配合No.24はペースト細骨材比αが3.43、モルタル粗骨材比βが2.84で遠心成形性が良くなかった。   In addition, blending No. In No. 23, the paste fine aggregate ratio α is 2.87, the mortar coarse aggregate ratio β is 3.13, and the centrifugal moldability is good. No. 24 had a paste fine aggregate ratio α of 3.43 and a mortar coarse aggregate ratio β of 2.84, and the centrifugal moldability was not good.

この理由としては、遠心成形によって粗骨材の空隙中にモルタルが入り込み、モルタル中にはセメントペーストが入り込むのであるが、配合No.18では細骨材率が大きくなりすぎてモルタル粗骨材比βが4.03と粗骨材の空隙に対して余剰のモルタルが大きくなりすぎ、また、配合No.24はペースト細骨材比αが3.43と細骨材の空隙に対して余剰のペーストが大きくなりすぎるため成形できなくなったと考えられる。   The reason for this is that mortar enters the voids of the coarse aggregate by centrifugal molding, and cement paste enters the mortar. In No. 18, the fine aggregate ratio was too high, and the mortar coarse aggregate ratio β was 4.03, and the excess mortar was too large with respect to the voids in the coarse aggregate. No. 24 is considered to be unable to be molded because the paste fine aggregate ratio α is 3.43 and the excess paste is too large for the fine aggregate gap.

これらの結果から、ペースト細骨材比αが2.0<α<3.0、モルタル粗骨材比βが2.5<β<3.6の範囲が適切であることが判明した。
From these results, it was found that the paste fine aggregate ratio α is appropriate in the range of 2.0 <α <3.0 and the mortar coarse aggregate ratio β is in the range of 2.5 <β <3.6.

Claims (3)

粗骨材、細骨材、高強度化用微粒状混和材、減水剤及びセメントに水を加えて混練し、
遠心成形することによりコンクリート管を成形する高強度遠心成形コンクリート管の製造
方法であって、
前記微粒状混和材にシリカフュームを50kg/m 以上を含み、且つ前記セメント又は、セメントと微粒状混和材からなる総粉体重量が650kg/m以上であり、該総粉体重量に対する水の比率(水粉体比)が21%(重量%、以下同じ)以下、総骨材容積に対する細骨材容積の比率(細骨材率s/a)が45%以下、セメントペーストの細骨材空隙に対する充填率を示すペースト細骨材比αが2.0<α<3.0、モルタルの粗骨材空隙に対する充填率を示すモルタル粗骨材比βが2.5<β<3.6であり、前記減水剤の添加量を調整することによりスランプフロー値を400mm〜800mm、50cmスランプフロー時間を15秒以上、とすることを特徴としてなる高強度遠心成形コンクリート管の製造方法。
Coarse aggregate, fine aggregate, fine granular admixture for strengthening, water reducing agent and cement, add water and knead,
A method for producing a high-strength centrifugal molded concrete pipe that forms a concrete pipe by centrifugal molding,
Wherein comprises a silica fume to particulate admixture 50 kg / m 3 or more, and the cement or is in total powder weight consisting of cement and fine particulate admixture is 650 kg / m 3 or more, of water to the said total powder weight The ratio (water powder ratio) is 21% (weight%, the same shall apply hereinafter) or less, the ratio of the fine aggregate volume to the total aggregate volume (fine aggregate ratio s / a) is 45% or less, and the fine aggregate of cement paste The paste fine aggregate ratio α indicating the filling ratio with respect to the gap is 2.0 <α <3.0, and the mortar coarse aggregate ratio β indicating the filling ratio with respect to the coarse aggregate gap of the mortar is 2.5 <β <3.6. And a slump flow value of 400 mm to 800 mm and a 50 cm slump flow time of 15 seconds or more by adjusting the amount of the water reducing agent added.
前記水粉体比が16%〜21%である請求項1に記載の発明の高強度遠心成形コンクリート管の製造方法。 The method for producing a high-strength centrifugal molded concrete pipe according to claim 1, wherein the water powder ratio is 16% to 21%. 前記細骨材率が35%〜45%である請求項1又は2に記載の高強度遠心成形コンクリート管の製造方法。   The method for producing a high-strength centrifugal molded concrete pipe according to claim 1 or 2, wherein the fine aggregate ratio is 35% to 45%.
JP2011169305A 2011-08-02 2011-08-02 Manufacturing method of high strength centrifugal molded concrete pipe Active JP5807824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011169305A JP5807824B2 (en) 2011-08-02 2011-08-02 Manufacturing method of high strength centrifugal molded concrete pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169305A JP5807824B2 (en) 2011-08-02 2011-08-02 Manufacturing method of high strength centrifugal molded concrete pipe

Publications (2)

Publication Number Publication Date
JP2013032246A JP2013032246A (en) 2013-02-14
JP5807824B2 true JP5807824B2 (en) 2015-11-10

Family

ID=47788466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169305A Active JP5807824B2 (en) 2011-08-02 2011-08-02 Manufacturing method of high strength centrifugal molded concrete pipe

Country Status (1)

Country Link
JP (1) JP5807824B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078478A (en) * 2007-09-27 2009-04-16 Sumitomo Osaka Cement Co Ltd Centrifugal casting method of concrete, and centrifugally casted concrete

Also Published As

Publication number Publication date
JP2013032246A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5101355B2 (en) Cement composition
JP2011084458A (en) Cement composition
JP2010228953A (en) Cement composition
JP6813339B2 (en) Cement composition
JP2009149475A (en) Method for producing cement premix composition
JP4056696B2 (en) Cement slurry
JP2011157242A (en) Method for producing cement hardened body
JP2004115315A (en) High-flow concrete
JP4039801B2 (en) Hydraulic composition
JP2008162843A (en) High-strength admixture and concrete composition for centrifugal molding
JP5807824B2 (en) Manufacturing method of high strength centrifugal molded concrete pipe
JP2014189437A (en) Cracking-reduced type blast furnace cement composition and production method thereof
JP4376409B2 (en) Joint joint material for post tension prestressed concrete plate
JP4165992B2 (en) Hydraulic composition
JP4745480B2 (en) Steel pipe concrete pile
JP5863296B2 (en) Method for producing ultra-high-strength cement-based hardened body
JP5190187B2 (en) Method for manufacturing concrete pipe and concrete pipe
JP2007063103A (en) Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same
JP2014076917A (en) Refractory cement composition
JP2004224639A (en) Slab member
JP5605235B2 (en) Concrete composition and concrete molded article using the composition
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
JP5107072B2 (en) Method for producing hardened cementitious body
JP2007269591A (en) Method of producing concrete product, and concrete product
JP2018192703A (en) Method for producing extrusion-molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150828

R150 Certificate of patent or registration of utility model

Ref document number: 5807824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250