JP5806828B2 - Yield type brace with buckling suppression function - Google Patents

Yield type brace with buckling suppression function Download PDF

Info

Publication number
JP5806828B2
JP5806828B2 JP2011062213A JP2011062213A JP5806828B2 JP 5806828 B2 JP5806828 B2 JP 5806828B2 JP 2011062213 A JP2011062213 A JP 2011062213A JP 2011062213 A JP2011062213 A JP 2011062213A JP 5806828 B2 JP5806828 B2 JP 5806828B2
Authority
JP
Japan
Prior art keywords
section
cross
buckling
brace
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011062213A
Other languages
Japanese (ja)
Other versions
JP2012197591A (en
Inventor
久保田 淳
淳 久保田
福元 敏之
敏之 福元
淳 田上
淳 田上
澤本 佳和
佳和 澤本
貴司 金子
貴司 金子
貴世 清川
貴世 清川
吉貝 滋
滋 吉貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2011062213A priority Critical patent/JP5806828B2/en
Publication of JP2012197591A publication Critical patent/JP2012197591A/en
Application granted granted Critical
Publication of JP5806828B2 publication Critical patent/JP5806828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Description

本発明は柱・梁のフレーム内等に架設され、軸方向力を負担したときに降伏しながらも、軸方向圧縮力を負担したときの全体曲げ座屈を防止する機能を持つ座屈抑制機能付き降伏型ブレースに関するものである。   The present invention is a buckling suppression function that is installed in the frame of a column / beam and has the function of preventing overall bending buckling when it bears an axial compressive force while yielding when it bears an axial force. This is related to the yield type brace.

鋼材を用いたブレースは地震時等のフレームの層間変形時に繰り返して作用する軸方向力を受け、軸方向の一部に形成される塑性化区間において、軸方向引張力、あるいは軸方向圧縮力を受けて降伏することによりエネルギ吸収能力を発揮する。但し、軸方向圧縮力の負担により座屈を生じたとき以降は、耐力とエネルギ吸収能力を期待することができなくなるため、終局時にまで塑性化区間に座屈を発生させないこと、あるいは座屈が発生したときにそれを進展させないことがブレースを構成する上での課題になる。   Braces made of steel receive axial force that repeatedly acts during inter-layer deformation of the frame during earthquakes, etc., and in the plasticized section formed in a part of the axial direction, axial tensile force or axial compressive force is applied. By receiving and surrendering, it exhibits energy absorption ability. However, after buckling occurs due to the burden of axial compressive force, it will not be possible to expect proof stress and energy absorption capacity. The problem in constructing braces is that they do not progress when they occur.

フレームへの接合部分(接合区間)を除くブレース本体部の塑性化区間への座屈の発生は、塑性化区間を含む本体部を構成する鋼材の回りを例えばコンクリートや別の鋼材で包囲し、周囲から断面の中心側へ向かって変形を拘束することにより抑制することが可能である(特許文献1〜3参照)。座屈はブレース本体部の全長の内、相対的に降伏耐力の低下した区間である塑性化区間に生ずる傾向が強いから、座屈拘束材は塑性化区間に配置されることが有効である(特許文献1〜3)。   The occurrence of buckling in the plasticized section of the brace body part excluding the joint part (joining section) to the frame is surrounded by, for example, concrete or another steel material around the steel material constituting the main body part including the plasticized section, It can be suppressed by restraining deformation from the periphery toward the center of the cross section (see Patent Documents 1 to 3). Since buckling tends to occur in the plasticized section, which is a section where the yield strength is relatively reduced, in the entire length of the brace body, it is effective that the buckling restraint material is disposed in the plasticized section ( Patent Documents 1 to 3).

このように座屈は塑性化が想定される塑性化区間に生じようとするから、座屈の発生が想定される座屈想定区間は塑性化区間の少なくとも一部になる(重複する)ため、座屈拘束材は必ず塑性化区間に配置される。但し、ブレース本体部の周面(表面)と座屈拘束材の内周面との間では、ブレース本体部(塑性化区間)の塑性化を可能にする上で、ブレース本体部が材軸に直交する方向へ変形できる必要があるため、座屈拘束材はブレース本体部を周囲(外周)から包囲しながら、内周面とブレース本体部の周面(表面)との間にクリアランスが確保された状態でブレース本体部と組み合わせられる(特許文献1〜3)。   Since buckling is likely to occur in a plasticized section where plasticization is assumed in this way, the expected buckling section where occurrence of buckling is assumed is at least part of (overlapping) the plasticized section. The buckling restraint is always placed in the plasticizing section. However, between the peripheral surface (surface) of the brace body and the inner peripheral surface of the buckling restraint material, the brace body can be used as a material axis in order to enable plasticization of the brace body (plasticization section). Because it is necessary to be able to be deformed in the orthogonal direction, the buckling restraint material secures a clearance between the inner peripheral surface and the peripheral surface (surface) of the brace main body while surrounding the brace main body from the periphery (outer periphery). In combination with the brace body (patent documents 1 to 3).

このブレース本体部と座屈拘束材間の、塑性化区間の変形のためのクリアランスの存在により、その大きさの範囲内でブレース本体部(塑性化区間)の座屈も許容されているから、座屈拘束材はブレース本体部が座屈しようとするときの、許容されている変形量分の放射方向(半径方向)へのはらみ出しを拘束する役目を持つに過ぎない。   Because of the presence of clearance for deformation of the plasticizing section between the brace main body and the buckling restraint material, buckling of the brace main body (plasticizing section) is allowed within the size range. The buckling restraint member has only a role of restraining the protrusion in the radial direction (radial direction) by an allowable amount of deformation when the brace body portion is about to buckle.

特開2009−138411号公報(請求項1、段落0011〜0015、図1)JP 2009-138411 A (Claim 1, paragraphs 0011 to 0015, FIG. 1) 特開2007−186894号公報(請求項1、請求項2、段落0012〜0019、図1)JP 2007-186894 A (Claim 1, Claim 2, paragraphs 0012 to 0019, FIG. 1) 特開平8−135250公報(請求項3、段落0013〜0016、図1、図6)JP-A-8-135250 (Claim 3, paragraphs 0013 to 0016, FIGS. 1 and 6)

例えば座屈拘束材に、座屈の発生自体を抑制、あるいは防止する機能を持たせようとすれば、座屈拘束材はブレース本体部の外周面(表面)に密着した状態で、ブレース本体部を包囲せざるを得ないが、座屈拘束材がブレース本体部に密着した状態になれば、ブレース本体部を塑性化させることができなくなり、塑性化によるエネルギ吸収能力を発揮させることが不可能になる。   For example, if the buckling restraint material has a function to suppress or prevent the occurrence of buckling itself, the buckling restraint material is in close contact with the outer peripheral surface (surface) of the brace body portion. However, if the buckling restraint material comes into close contact with the brace body, the brace body cannot be plasticized, and it is impossible to exhibit the energy absorption capability by plasticization. become.

従って特許文献1〜3のようにブレース本体部の座屈想定区間が塑性化区間の一部になっている限り、座屈拘束材はブレース本体部の座屈発生後の進展を抑制することができるに過ぎず、座屈の発生自体を抑制することはできないことになる。   Therefore, as long as the expected buckling section of the brace body part is a part of the plasticizing section as in Patent Documents 1 to 3, the buckling restraining material can suppress the progress after the occurrence of buckling of the brace body part. It is only possible, and the occurrence of buckling itself cannot be suppressed.

本発明は上記背景より、ブレースの座屈の発生を抑制しながら、確実に降伏する塑性化区間を有する座屈抑制機能付き降伏型ブレースを提案するものである。   The present invention proposes a yield type brace with a buckling suppression function having a plasticized section that yields reliably while suppressing the occurrence of buckling of the brace.

請求項1に記載の発明の座屈抑制機能付き降伏型ブレースは、柱・梁のフレームに架設され、フレームの層間変形時に軸方向力を負担するブレースであり、前記フレームに接合される、軸方向両側部分の接続部と、両接続部間の中間区間に位置し、前記軸方向力を負担する本体部とに軸方向に区分され、
前記本体部が、軸方向端部寄りに位置し、前記両接続部の内の少なくともいずれか一方の接続部に接し、前記軸方向力を負担して塑性化する塑性化部を含む塑性化区間と、この塑性化区間に関して前記接続部とは反対側に位置し、前記軸方向力に対する降伏耐力が前記塑性化部より相対的に大きく、前記軸方向力に対して塑性化しない弾性部を含む、偏心を伴う圧縮力に起因する座屈が想定される軸方向中間部寄りの座屈想定区間とに軸方向に区分され、前記塑性化区間と前記座屈想定区間は軸方向に直列に配列し、
前記塑性化区間の前記接続部寄りの端部は前記座屈想定区間の前記接続部寄りの端部より前記接続部寄りに位置し、前記塑性化区間の前記接続部寄りの一部の区間は前記座屈想定区間と重複していないことを構成要件とする。
The yield type brace with buckling suppression function according to the first aspect of the present invention is a brace that is built on a column / beam frame and bears an axial force when the frame is deformed between layers, and is joined to the frame. It is divided in the axial direction into a connection part on both sides in the direction and a body part located in an intermediate section between both connection parts and bearing the axial force,
The plasticizing section includes a plasticizing section that is positioned near the end in the axial direction, is in contact with at least one of the connecting sections, and plasticizes by bearing the axial force. And an elastic portion that is located on the opposite side of the connecting portion with respect to the plasticizing section, has a yield strength with respect to the axial force that is relatively larger than the plasticized portion, and does not plasticize with respect to the axial force. The axial section is divided into the axial buckling section near the axial direction where buckling due to the compressive force accompanied by the eccentricity is assumed, and the plasticized section and the expected buckling section are arranged in series in the axial direction. And
An end portion of the plasticizing section near the connection portion is positioned closer to the connection portion than an end portion of the buckling assumption section near the connection portion, and a portion of the plasticizing section near the connection portion is It does not overlap with the said buckling assumption area .

「柱・梁のフレームに架設される」とは、ブレース4がフレーム3の構面内(フレーム3内)に配置される場合と、構面の外側(フレーム3外)に配置される(外付けされる)場合を含む趣旨である。ブレース4の両側部分の接続部41、41は主に柱1・梁2の接合部(フレーム3の隅角部)に接合されるが、ブレース4は柱1・梁2の接合部(フレーム3隅角部)間の他、図11に示すように梁2の中間部と柱1・梁2の接合部間等に架設される場合もあるため、ブレース4の接続部41はそれぞれの架設状態に応じ、フレーム3のいずれかの部分に接合され、必ずしも柱1・梁2接合部に接合されるとは限らない。   “Installed on the pillar / beam frame” means that the brace 4 is arranged within the frame 3 (inside the frame 3) and the outside of the frame (outside the frame 3) (outside It is intended to include the case. The connecting portions 41 and 41 on both side portions of the brace 4 are mainly joined to the joint portion of the column 1 and the beam 2 (corner corner portion of the frame 3), but the brace 4 is joined to the joint portion of the column 1 and the beam 2 (frame 3). In addition to the corners), the connection part 41 of the brace 4 may be installed between the intermediate part of the beam 2 and the joint part between the column 1 and the beam 2 as shown in FIG. Accordingly, it is joined to any part of the frame 3 and is not necessarily joined to the column 1 / beam 2 junction.

ブレース4は軸方向の両端部に位置する「接続部41、41」においてフレーム3の柱1、もしくは梁2、あるいは両者間の接合部にボルト接合や溶接等によって接合される。ブレース4の「本体部42」はこの両「接続部41、41」を除いた区間を指し、「本体部42」と両「接続部41、41」はブレース4の軸方向に区分されることで、図5、図6に示すように軸方向に直列に配列する。「本体部42」の区間は図6〜図10に示す、後述の請求項3〜請求項7における閉鎖断面材42aの区間(全長)でもある。   The brace 4 is joined to the column 1 or the beam 2 of the frame 3 or a joint portion between the two at “connecting portions 41, 41” located at both ends in the axial direction by bolting, welding, or the like. The “main part 42” of the brace 4 refers to the section excluding the two “connecting parts 41, 41”, and the “main part 42” and the two “connecting parts 41, 41” are divided in the axial direction of the brace 4. Thus, they are arranged in series in the axial direction as shown in FIGS. The section of the “main body portion 42” is also a section (full length) of a closed cross-section member 42a in claims 3 to 7 described later, as shown in FIGS.

請求項1に記載の発明の具体的な例を示す図1〜図4を包括するブレース4を概念的に示せば、図5のように表される。図5は図6〜図10に示す例のブレース4も包含する。図5、図6に示すようにブレース4は軸方向には大きく両端部分の「接続部41(弾性部)」と、それに挟まれ、直列に配列する「本体部42」とに区分される。「本体部42」は図5では軸方向中央部(中間部)に位置する「弾性部420」とその少なくとも片側に連続する、「塑性化部43」である「弾塑性部」を含む。図5ではブレース4の全長を弾性の区間と非弾性(弾塑性)の区間に区分し、軸方向中央部(中間部)の「弾性部420」の両側に「塑性化部43(弾塑性部)」が位置しているが、「塑性化部43(弾塑性部)」は「弾性部420」の片側にのみ位置し、図5における一方の「塑性化部43(弾塑性部)」は不在であることもある。   A brace 4 including FIGS. 1 to 4 showing a specific example of the invention described in claim 1 can be conceptually represented as shown in FIG. FIG. 5 also includes the brace 4 of the example shown in FIGS. As shown in FIGS. 5 and 6, the brace 4 is roughly divided in the axial direction into “connecting portions 41 (elastic portions)” at both end portions and “main body portions 42” sandwiched between them and arranged in series. In FIG. 5, the “main body portion 42” includes an “elastic portion 420” that is located at the central portion (intermediate portion) in the axial direction and an “elastic plastic portion” that is a “plasticizing portion 43” that is continuous on at least one side thereof. In FIG. 5, the entire length of the brace 4 is divided into an elastic section and an inelastic (elasto-plastic) section, and “plasticized portions 43 (elastic-plastic portions) are arranged on both sides of the“ elastic portion 420 ”in the central portion (intermediate portion) in the axial direction. ) ”Is positioned, but“ plasticized portion 43 (elastoplastic portion) ”is located only on one side of“ elastic portion 420 ”, and one“ plasticized portion 43 (elastoplastic portion) ”in FIG. May be absent.

「本体部42」は軸方向には、軸方向の中央部に位置する「弾性部420」と、その少なくとも一方の端部側に位置し、「接続部41(弾性部)」に隣接する「塑性化部43(弾塑性部)」とに区分され、「塑性化部43」と「弾性部420」は軸方向に直列に配列する。「弾性部420」は「塑性化部43(弾塑性部)」に関して「接続部41(弾性部)」とは反対側に位置する。   In the axial direction, the “main body portion 42” is positioned at the “elastic portion 420” located at the central portion in the axial direction and at least one end thereof, and is adjacent to the “connecting portion 41 (elastic portion)”. It is divided into “plasticized portion 43 (elastic-plastic portion)”, and “plasticized portion 43” and “elastic portion 420” are arranged in series in the axial direction. The “elastic portion 420” is located on the opposite side of the “connecting portion 41 (elastic portion)” with respect to the “plasticizing portion 43 (elastic-plastic portion)”.

図5ではブレース4の軸方向両端部分の「接続部41」と中央部の「弾性部420」が軸方向力では降伏しない意味で「弾性部」と表示している。「接続部41」は柱1、梁2等のフレーム3に接合される部分であることで降伏が想定されず、中央部の「弾性部420」は同じ「本体部42」の両「塑性化部43」より相対的に軸方向力に対する降伏耐力が大きいことで、軸方向力に対して塑性化(降伏)しない「弾性部420」になる。   In FIG. 5, the “connecting portion 41” at both end portions in the axial direction of the brace 4 and the “elastic portion 420” at the central portion are indicated as “elastic portions” in the sense that they do not yield by axial force. Since the “connecting portion 41” is a portion joined to the frame 3 such as the column 1 and the beam 2, no yield is assumed, and the “elastic portion 420” in the central portion is both “plasticized” of the same “main body portion 42”. Since the yield strength with respect to the axial force is relatively larger than the portion 43 ”, the“ elastic portion 420 ”that does not plasticize (yield) with respect to the axial force is obtained.

ブレース4の全長の内、両端部の「接続部41」と中間部の「弾性部420」に挟まれた「塑性化部43(弾塑性部)」は「弾性部420」と直列に配列するため、「本体部42」に着目すれば、純粋な軸方向力に対しては「弾性部420」と同じ大きさの荷重を負担する。   Of the entire length of the brace 4, the “plasticized portion 43 (elastic-plastic portion)” sandwiched between the “connecting portion 41” at both ends and the “elastic portion 420” at the intermediate portion is arranged in series with the “elastic portion 420”. Therefore, when paying attention to the “main body portion 42”, a load having the same magnitude as that of the “elastic portion 420” is borne for a pure axial force.

但し、「塑性化部43(弾塑性部)」は軸方向両端部の内の少なくともいずれかの「接続部41」寄りに位置することで、偏心を伴う圧縮力の作用による曲げモーメントは、偏心距離が最大になる「本体部42」の軸方向中央部で最大になり、端部に寄る程、小さくなるから、「本体部42」の全長の内、軸方向端部の「接続部41」寄りの位置に形成(配置)されている「塑性化部43」に生ずる偏心による曲げモーメントは小さくなる。すなわち、「塑性化部43」が「弾性部420」と軸方向に直列に配列することには、「塑性化部43」を「弾性部420」の軸方向の中央部から遠い位置の「接続部41」寄りに位置させ、偏心による曲げモーメントの影響を低下させる意味がある。   However, since the “plasticizing portion 43 (elastic-plastic portion)” is positioned closer to at least one of the “connecting portions 41” at both ends in the axial direction, the bending moment due to the action of the compressive force accompanied by the eccentricity is eccentric. Since the distance becomes maximum at the central portion in the axial direction of the “main body portion 42” and becomes smaller toward the end portion, the “connecting portion 41” at the axial end portion of the entire length of the “main body portion 42”. The bending moment due to the eccentricity generated in the “plasticizing portion 43” formed (arranged) at the position closer to the side becomes smaller. That is, in order to arrange the “plasticizing portion 43” in series with the “elastic portion 420” in the axial direction, the “plasticizing portion 43” is connected to the “connecting portion at a position far from the axial central portion of the“ elastic portion 420 ”. It is positioned closer to the portion 41 "and has the meaning of reducing the influence of the bending moment due to eccentricity.

この結果、「塑性化部43(弾塑性部)」での曲げ座屈の発生の可能性が低下し、「塑性化部43」は純粋に軸方向力によって降伏し易い状態に置かれることになる。すなわち、「塑性化部43」が軸方向両端部の「接続部41」と中間部の「弾性部420」に挟まれ、「弾性部420」とは軸方向に直列に配列しながらも、「本体部42」の軸方向両端側の「接続部41」寄りに位置することで、圧縮力の負担による曲げ座屈が発生しにくいため、「塑性化部43」は純粋な圧縮力と引張力によって降伏することが可能になる。   As a result, the possibility of occurrence of bending buckling in the “plasticized portion 43 (elastic-plastic portion)” is reduced, and the “plasticized portion 43” is placed in a state in which it is easily yielded by an axial force. Become. That is, the “plasticized portion 43” is sandwiched between the “connecting portion 41” at both ends in the axial direction and the “elastic portion 420” at the intermediate portion, and the “elastic portion 420” is arranged in series in the axial direction, Since the bending portion buckling due to the compressive force is less likely to occur due to the positioning near the “connecting portion 41” on both ends in the axial direction of the “main body portion 42”, the “plasticizing portion 43” has pure compressive force and tensile force. It is possible to surrender.

結局、「塑性化部43(弾塑性部)」は図5、図6に示すように「本体部42」中、「弾性部420」と軸方向に直列に配列しながらも、曲げ座屈が発生しにくい区間に位置することで、座屈の発生が想定される「座屈想定区間(座屈長さ)」から除外されるため、「塑性化部43(弾塑性部)」と「座屈想定区間(座屈長さ)」は図5、図6に示すように一部区間で重複し得るものの、完全には重複せず、少なくとも座屈想定区間が塑性化区間の一部区間に該当することはない。   After all, the “plasticized portion 43 (elastic-plastic portion)” is arranged in series with the “elastic portion 420” in the “main body portion 42” in the axial direction as shown in FIG. 5 and FIG. Since it is excluded from the “buckling assumption section (buckling length)” where the occurrence of buckling is assumed by being located in a section where it is difficult to occur, “plasticization part 43 (elastoplastic part)” and “seat As shown in FIG. 5 and FIG. 6, the “bending assumed section (buckling length)” may overlap in some sections, but does not overlap completely, and at least the buckling assumed section is a part of the plasticizing section. Not applicable.

座屈想定区間が塑性化区間の一部区間に該当しないことで、仮に座屈想定区間に対する拘束の必要があるとしても、その拘束手段が塑性化区間にまで跨って配置される必要がない。ここで、「塑性化部43(弾塑性部)」は「弾性部420」と直列に配列しながらも、曲げ座屈しにくい区間に位置するため、「塑性化部43(弾塑性部)」に対してそもそも座屈を拘束するための拘束手段を重ねて配置する必要がないことになる。   Since the buckling assumption section does not correspond to a partial section of the plasticization section, even if it is necessary to restrain the buckling assumption section, it is not necessary that the restraining means be disposed across the plasticization section. Here, the “plasticized portion 43 (elastic-plastic portion)” is arranged in series with the “elastic portion 420”, but is located in a section where bending buckling is difficult to occur. Therefore, the “plasticized portion 43 (elastic-plastic portion)” On the other hand, it is not necessary to arrange the restraining means for restraining buckling in the first place.

従ってブレース4に対してはいずれの区間にも拘束手段自体を付加する必要が生じないため、従来の拘束手段を不在にすることができる。この結果、「塑性化部43(弾塑性部)」が変形に対して拘束を受けることがなく、拘束を受けることの結果として塑性化の進行を妨げられる(阻止される)こともないため、「塑性化部43」に塑性変形能力によるエネルギ吸収能力を有効に発揮させることが可能になる。   Therefore, since it is not necessary to add the restraining means itself to any section of the brace 4, the conventional restraining means can be omitted. As a result, the “plasticized portion 43 (elastoplastic portion)” is not constrained by deformation, and as a result of being constrained, the progress of plasticization is not prevented (blocked). It becomes possible to make the “plasticizing part 43” to effectively exhibit the energy absorption ability by the plastic deformation ability.

「塑性化部43」は具体的には塑性化43と弾性部420を合わせた「本体部42」が連続した同一材料で形成されている場合で言えば、例えば塑性化部43の軸方向に垂直な断面の断面積が「弾性部420」の軸方向に垂直な断面の断面積より小さいことで(請求項2)、軸方向力(圧縮力と引張力)によって相対的に「弾性部420」に先行して塑性化(降伏)する。「塑性化部43の断面積が弾性部420の断面積より小さいこと」には、塑性化部43と弾性部420の断面形状が相似形である場合、図1、図3、図4に示すように断面形状が相違する場合、または図2に示すように部材断面の肉厚が相違する場合の他、断面の一部に溝や孔が形成されることで断面積が縮小されることも含まれる。   Specifically, the “plasticizing portion 43” is a case where the “main body portion 42” including the plasticizing 43 and the elastic portion 420 is formed of the same continuous material. For example, in the axial direction of the plasticizing portion 43, Since the cross-sectional area of the vertical cross section is smaller than the cross-sectional area of the cross section perpendicular to the axial direction of the “elastic portion 420” (Claim 2), the “elastic portion 420” is relatively caused by the axial force (compression force and tensile force). To plasticize (yield). “The cross-sectional area of the plasticized portion 43 is smaller than the cross-sectional area of the elastic portion 420” is shown in FIGS. 1, 3, and 4 when the cross-sectional shapes of the plasticized portion 43 and the elastic portion 420 are similar. In addition to the case where the cross-sectional shapes are different, or when the thickness of the cross-section of the member is different as shown in FIG. 2, the cross-sectional area may be reduced by forming grooves or holes in a part of the cross-section. included.

「接続部41」と「塑性化部43」及び「弾性部420」からなるブレース4は例えば鋼材のような、連続した1本の材料で構成される場合と、図1〜図4に示すように断面積、もしくは断面形状の相違する複数本の材料の組み合わせから構成される場合がある。連続した材料の場合は、「塑性化部43」の断面を他の部分より絞る等により、断面積が縮小させられることが考えられる。   The brace 4 including the “connecting portion 41”, the “plasticizing portion 43”, and the “elastic portion 420” is composed of one continuous material such as a steel material, as shown in FIGS. May be composed of a combination of a plurality of materials having different cross-sectional areas or cross-sectional shapes. In the case of a continuous material, it is conceivable that the cross-sectional area can be reduced by narrowing the cross section of the “plasticizing part 43” from other parts.

図6〜図10は「本体部42」が図1〜図3に示す鋼管等の閉鎖断面材42aの内部にコンクリート等の圧縮材42bを充填して構成されたブレース4(請求項5〜請求項8)の例を示している。「本体部42」を構成する閉鎖断面材42aの内部にコンクリート等の圧縮材42bが充填されたブレース4は請求項5に記載の発明に該当するが、閉鎖断面材42aの内部には圧縮材42bが充填されない場合(請求項3、4)もある。以下では図6〜図10に示す、請求項3〜請求項8に記載のブレース4の説明をする。   FIGS. 6 to 10 show a brace 4 in which a “main body portion 42” is formed by filling a compression material 42b such as concrete into a closed cross-section material 42a such as a steel pipe shown in FIGS. An example of item 8) is shown. The brace 4 in which the inside of the closed cross-section member 42a constituting the “main body portion 42” is filled with the compression material 42b such as concrete corresponds to the invention according to claim 5; 42b may not be filled (claims 3 and 4). The brace 4 according to claims 3 to 8 shown in FIGS. 6 to 10 will be described below.

請求項3に記載の発明の座屈抑制機能付き降伏型ブレースは、請求項1、もしくは請求項2において、「本体部42」が鋼管、角形鋼管等の閉鎖断面材42aであり、「塑性化部43」が閉鎖断面材42aの「接続部41」寄りの部分に、軸方向に垂直な断面の断面積が他の部分の軸方向に垂直な断面の断面積より小さい形で形成されていることを構成要件とする。「塑性化部43」の軸方向に垂直な断面の断面積が、「本体部42」である閉鎖断面材42aの他の部分の軸方向に垂直な断面の断面積より小さい形で形成されていること」は請求項2の要件と同じである。請求項3及びこれを引用する後述の請求項4において、「本体部42」を構成する閉鎖断面材の内部にコンクリート、モルタル等の圧縮材42bが充填されたブレース4が請求項5に記載の発明に該当する。   The yield type brace with a buckling suppression function according to a third aspect of the present invention is the yield type brace according to the first or second aspect, wherein the “main body portion 42” is a closed cross-section member 42a such as a steel pipe or a square steel pipe. The portion 43 "is formed in a portion of the closed cross-section member 42a near the" connecting portion 41 "so that the cross-sectional area of the cross section perpendicular to the axial direction is smaller than the cross-sectional area of the cross section perpendicular to the axial direction of the other portions. This is a component requirement. The cross-sectional area of the cross section perpendicular to the axial direction of the “plasticizing portion 43” is smaller than the cross-sectional area of the cross section perpendicular to the axial direction of the other part of the closed cross-section material 42a that is the “main body portion 42”. "Is the same as the requirement of claim 2." In Claim 3 and Claim 4 mentioned later which quotes this, the brace 4 by which the inside of the closed cross-section material which comprises "the main-body part 42" was filled with compression materials 42b, such as concrete and mortar, is described in Claim 5. Corresponds to the invention.

請求項3における「本体部42」は閉鎖断面材42aから、あるいは閉鎖断面材42aとその内部に充填される圧縮材42bからなるが(請求項5)、いずれの場合も「塑性化部43」は実質的に圧縮材42bを除いた閉鎖断面材42aから構成される。請求項1における「弾性部420」は請求項3では閉鎖断面材42aから、または閉鎖断面材42aと圧縮材42bから構成され、軸方向両端部の「塑性化部43」を除いた部分に相当する。   The “main body portion 42” in claim 3 is composed of the closed cross-section material 42a or the closed cross-section material 42a and the compression material 42b filled therein (claim 5). Is substantially composed of a closed cross-section material 42a excluding the compression material 42b. The “elastic portion 420” in claim 1 is composed of the closed cross-section material 42a or the closed cross-section material 42a and the compression material 42b in claim 3, and corresponds to a portion excluding the “plasticizing portion 43” at both axial end portions. To do.

請求項3ではブレース「本体部42」の塑性化(降伏)区間、もしくはその軸方向の一部である「塑性化部43」の軸方向に垂直な断面の断面積が他の部分(「塑性化部43」以外の部分)の軸方向に垂直な断面の断面積より小さい形で形成されていることで、「本体部42」に作用する軸方向引張力と圧縮力に対する強度(耐力)が他の部分より相対的に低下し、引張力、もしくは圧縮力によって他の部分より先行して降伏し易い状態になっている。   In the third aspect, the cross-sectional area of the cross section perpendicular to the axial direction of the plasticizing (yield) section of the brace “main body portion 42” or the “plasticizing portion 43” which is a part of the axial direction thereof is the other portion (“plasticity”). In other words, the strength (proof strength) against the axial tensile force and compressive force acting on the “main body portion 42” is reduced. It is relatively lower than the other part, and is in a state where it tends to yield prior to the other part by a tensile force or a compressive force.

「塑性化部43」が「本体部42」全長の内の他の部分より先行して降伏し易い状態にありながらも、前記のように「本体部42」内で相対的に曲げ座屈が生じにくい区間である、軸方向両端側の内の少なくともいずれかの「接続部41」寄りに位置することで、「塑性化部43」は曲げ座屈を起こすことなく降伏しようとするため、塑性変形能力によるエネルギ吸収能力を発揮することが可能である。   Although the “plasticized portion 43” is in a state where it tends to yield ahead of other portions of the entire length of the “main body portion 42”, the bending buckling is relatively caused in the “main body portion 42” as described above. Since the “plasticized portion 43” attempts to yield without causing bending buckling by being positioned near at least one of the “connecting portions 41” on both ends in the axial direction, which is a hardly generated section, plasticity It is possible to exhibit energy absorption ability due to deformation ability.

図6−(a)に示すようにブレース「本体部42」の内、「閉鎖断面材42aの接続部41寄りの部分」は「本体部42(閉鎖断面材42a)」の全長の内、曲げ座屈が想定される軸方向中間部の区間(座屈想定区間)を除く端部寄りの区間を指し、この端部寄りの区間が塑性化(降伏)を想定する「塑性化部43」が形成される塑性化区間になる。「塑性化部43」は塑性化区間の軸方向の一部に形成される場合と塑性化区間の全長に亘って形成される場合がある。「塑性化部43(塑性化区間)」は「本体部42」の一部であるが、同じ「本体部42」の一部である「弾性部420(弾性区間)」とは軸方向に直列に配列する。   As shown in FIG. 6 (a), among the braces “main body portion 42”, “the portion of the closed cross-section member 42a near the connecting portion 41” is bent within the entire length of the “main body portion 42 (closed cross-section member 42a)”. “Plasticization part 43” indicates a section near the end excluding the section in the axial direction where buckling is assumed (predicted buckling section), and the section near the end assumes plasticity (yield). It becomes the plasticized section to be formed. The “plasticizing portion 43” may be formed in a part of the plasticizing section in the axial direction or may be formed over the entire length of the plasticizing section. “Plasticization part 43 (plasticization section)” is a part of “main part 42”, but “elastic part 420 (elastic section)” which is a part of the same “main part 42” is connected in series in the axial direction. Array.

「本体部42」の「他の部分」は軸方向の「接続部41寄りの部分(軸方向の端部)」を除く、曲げ座屈が想定される部分(座屈想定区間)を指す。この「他の部分」の軸方向に垂直な断面の断面積より、「塑性化部43」の軸方向に垂直な断面の断面積が小さく、「塑性化部43」は「他の部分」より相対的に塑性化(降伏)し易い。   The “other part” of the “main body part 42” refers to a part (buckling assumed section) in which bending buckling is assumed, excluding the “part close to the connection part 41 (end part in the axial direction)” in the axial direction. The cross-sectional area of the cross section perpendicular to the axial direction of the “plasticized part 43” is smaller than the cross-sectional area of the cross section perpendicular to the axial direction of the “other part”, and the “plasticizing part 43” is smaller than the “other part”. Relatively easy to plasticize (yield).

ブレース4が軸方向圧縮力を受けるときに、偏心による曲げモーメントの影響を受け易い曲げ座屈は「接続部41」と「本体部42」を合わせたブレース4の全長の内、両端部の「接続部41、41」を除いた、偏心が生じ易い中間部の区間(座屈想定区間)に発生し易く、一旦、発生すれば、進展する傾向がある。   When the brace 4 receives an axial compressive force, the bending buckling that is easily influenced by the bending moment due to the eccentricity is “of the brace 4 including the“ connecting portion 41 ”and the“ main body portion 42 ”. Except for the connecting portions 41, 41 ", it tends to occur in an intermediate section (buckling assumption section) where eccentricity easily occurs, and once it occurs, it tends to progress.

従ってブレース「本体部42(閉鎖断面材42a)」の全長を塑性化区間と座屈想定区間とに明確に区分する上では、特許文献1〜3のように座屈想定区間を塑性化区間の少なくとも一部に重複させるのではなく、上記のように座屈想定区間と塑性化区間をブレース「本体部42」の軸方向に直列に配置することが合理的である。   Therefore, in order to clearly divide the entire length of the brace “main body portion 42 (closed cross-section member 42a) into the plasticized section and the expected buckling section, the expected buckling section of the plasticized section is disclosed in Patent Documents 1 to 3. Rather than at least partially overlapping, it is reasonable to arrange the expected buckling section and the plasticizing section in series in the axial direction of the brace “main body portion 42” as described above.

この結果、ブレース「本体部42」は軸方向には両側の塑性化区間(塑性化部43、43)と、両塑性化区間に挟まれた中間部の座屈想定区間に区分される。また「本体部42」の軸方向両側に位置する塑性化区間は曲げ座屈が生じにくい区間であるから、塑性化区間への座屈拘束手段の付加が解消される。座屈想定区間の「座屈」はブレース4の全体的な曲げ座屈を指し、座屈想定区間の長さは「座屈長さ」に相当する。   As a result, the brace “main body portion 42” is divided in the axial direction into plasticized sections (plasticized sections 43 and 43) on both sides and an intermediate buckling expected section sandwiched between both plasticized sections. Further, since the plasticizing sections located on both sides in the axial direction of the “main body portion 42” are sections where bending buckling is unlikely to occur, the addition of the buckling restraining means to the plasticizing section is eliminated. The “buckling” in the assumed buckling section refers to the overall bending buckling of the brace 4, and the length of the assumed buckling section corresponds to the “buckling length”.

ブレース「本体部42」の全長が軸方向中間部の座屈想定区間とその軸方向両側寄りの塑性化区間とに区分されることで、降伏が生ずる区間と座屈が生じ得る区間とに軸方向に明確に区分される。このため、座屈が生じ得る区間に対しては、座屈の発生を抑制するために「塑性化部43」より断面積を大きくする、あるいは補強を施す等により、塑性化を想定する区間に対しては、塑性化(降伏)を誘発する部分(塑性化部43)を形成することで、座屈(曲げ座屈)の発生を抑制しながら、同時に塑性化区間に降伏を生じさせ、エネルギ吸収能力を発揮させることが可能になる。   The overall length of the brace “main body portion 42” is divided into a buckling assumption section at an axially intermediate portion and a plasticized section closer to both sides in the axial direction, so that a section where yield occurs and a section where buckling can occur Clearly divided into directions. For this reason, with respect to the section where buckling can occur, the section is assumed to be plasticized by increasing the cross-sectional area or reinforcing the section so as to suppress the occurrence of buckling. On the other hand, by forming a portion (plasticization portion 43) that induces plasticization (yielding), while suppressing the occurrence of buckling (bending buckling), yield is generated in the plasticizing section at the same time. It is possible to demonstrate the absorption capacity.

ここで、前記のように偏心による曲げモーメントは偏心距離が最大になる「本体部42」の軸方向中央部で最大になり、端部に寄る程、小さくなるから、「塑性化部43」(塑性化区間)が「本体部42」の全長の内、軸方向端部の「接続部41」寄りの位置に形成(配置)されることで、「塑性化部43」での曲げ座屈の発生の可能性が低いため、「塑性化部43」は純粋に軸方向力によって降伏することが可能になる。   Here, as described above, the bending moment due to the eccentricity becomes maximum at the central portion in the axial direction of the “main body portion 42” where the eccentric distance becomes maximum, and becomes smaller toward the end portion. (Plasticization section) is formed (arranged) near the “connecting portion 41” at the end in the axial direction within the entire length of the “main body portion 42”, so that bending buckling at the “plasticizing portion 43” can be prevented. Since the possibility of occurrence is low, the “plasticized portion 43” can be yielded purely by the axial force.

またブレース4の「接続部41、41」を除く「本体部42」の構成材料として鋼管、角形鋼管等の閉鎖断面材42aを使用することで、ブレース4の「本体部42」自体が軸方向力を受けたときの座屈による変形に対する方向性をなくすことができる。加えて「本体部42」が閉鎖断面材42aであることで、「本体部42」を構成する閉鎖断面材42aの内部にコンクリート、モルタル等の、「本体部42」の座屈を抑制するための圧縮材42bを充填することが可能であり(請求項5)、圧縮材42bの充填により「本体部42」の曲げ座屈を抑制、あるいは防止することが可能になる。閉鎖断面材42aは多角形状の鋼材、強化繊維プラスチック等を含む。   Further, by using a closed cross-section material 42a such as a steel pipe or a square steel pipe as a constituent material of the “main body portion 42” excluding the “connecting portions 41 and 41” of the brace 4, the “main body portion 42” itself of the brace 4 is axially The directionality against deformation due to buckling when subjected to force can be eliminated. In addition, since the “main body portion 42” is the closed cross-section material 42a, the buckling of the “main body portion 42” such as concrete or mortar is suppressed inside the closed cross-section material 42a constituting the “main body portion 42”. The compression material 42b can be filled (Claim 5), and the bending buckling of the "main body portion 42" can be suppressed or prevented by filling the compression material 42b. The closed cross-section member 42a includes polygonal steel, reinforced fiber plastic, and the like.

閉鎖断面材42aとして全長に亘って同一材料が使用されている場合に、「塑性化部43」の軸方向に垂直な断面の断面積が「塑性化部43」以外の部分(区間)の軸方向に垂直な断面の断面積より小さい形をした塑性化部43は、例えば閉鎖断面材42aの周方向に間隔を置き、複数個の孔42cが配列することにより形成される(請求項4)。この他、周方向に環状の溝が連続して、もしくは断続的に配列することにより、あるいは軸方向を向く溝が周方向に間隔を置いて配列する等によっても塑性化部43は形成可能である。   When the same material is used over the entire length as the closed cross-section member 42a, the cross-sectional area of the cross section perpendicular to the axial direction of the “plasticizing portion 43” is the axis of the portion (section) other than the “plasticizing portion 43” The plasticizing portion 43 having a shape smaller than the cross-sectional area of the cross section perpendicular to the direction is formed, for example, by arranging a plurality of holes 42c at intervals in the circumferential direction of the closed cross-section material 42a. . In addition, the plasticized portion 43 can be formed by continuously or intermittently arranging annular grooves in the circumferential direction, or by arranging axially oriented grooves at intervals in the circumferential direction. is there.

いずれにしても、「塑性化部43」と「本体部42」が同一材料で構成されている場合には、軸方向に垂直な断面の断面積が「塑性化部43」以外の部分(区間)の断面積より小さくなっていればよく、断面積が小さいことで、軸方向力に対する応力度が増大するため、他の部分より先行して降伏することになる。「塑性化部43」と「本体部42」が連続しながら、異なる材料で構成されている場合には、「塑性化部43」に「本体部42」の材料強度より小さい強度の材料を使用することで、「塑性化部43」の塑性化を促す状態を得ることが可能である。   In any case, when the “plasticizing portion 43” and the “main body portion 42” are made of the same material, the cross-sectional area of the cross section perpendicular to the axial direction is a portion other than the “plasticizing portion 43” (section The cross-sectional area may be smaller than the cross-sectional area.) Since the cross-sectional area is small, the degree of stress with respect to the axial force increases, and therefore yields ahead of other parts. When the “plasticizing part 43” and the “main part 42” are made of different materials while being continuous, a material having a strength smaller than that of the “main part 42” is used for the “plasticizing part 43”. By doing so, it is possible to obtain a state of promoting the plasticization of the “plasticizing portion 43”.

このように「塑性化部43」の形成方法は任意であるが、閉鎖断面材42aの周方向に間隔を置いて複数個の孔42cを配列させることにより「塑性化部43」を形成する場合(請求項4)には、閉鎖断面材42aへの周方向への孔42cの穿設のみで「塑性化部43」を形成することができるため、周方向、もしくは軸方向に溝を形成するような場合との対比では「塑性化部43」の形成作業性がよい利点がある。   As described above, the method of forming the “plasticized portion 43” is arbitrary, but the “plasticized portion 43” is formed by arranging a plurality of holes 42c at intervals in the circumferential direction of the closed cross-section member 42a. In (Claim 4), since the “plasticizing portion 43” can be formed only by drilling the hole 42c in the circumferential direction in the closed cross-section member 42a, a groove is formed in the circumferential direction or the axial direction. In contrast to such a case, there is an advantage that the forming workability of the “plasticized portion 43” is good.

本体部42を構成する閉鎖断面材42aの内部に圧縮材42bが充填される場合(請求項5)において、閉鎖断面材42aにおける座屈想定区間の座屈の発生を抑制する圧縮材42bは図6に示すように閉鎖断面材42a(本体部42)の全長に亘って充填されることもあるが、圧縮材42bが軸方向圧縮力を受けることによるブレース4の圧縮耐力への寄与により、圧縮側と引張側の耐力の差が大きくなり、耐力の小さい引張側でブレースを設計せざるを得なくなり、ブレースの合理的な設計ができなくなることもある。   When the compression material 42b is filled in the closed cross-section material 42a constituting the main body 42 (Claim 5), the compression material 42b that suppresses the occurrence of buckling in the assumed buckling section of the closed cross-section material 42a is illustrated in FIG. 6 may be filled over the entire length of the closed cross-section material 42a (main body portion 42), but the compression material 42b is compressed by the contribution to the compression strength of the brace 4 due to the axial compression force. The difference in the yield strength between the side and the tension side becomes large, and the brace must be designed on the tension side where the yield strength is small, which makes it impossible to rationally design the brace.

また圧縮材42bが軸方向圧縮力を受けることによる圧壊が起こり得、圧壊が起こったとき以降は閉鎖断面材42a内に充填されている圧縮材42bが圧縮材として機能しなくなることが想定される。このことから、図9に示すように閉鎖断面材42a(本体部42)の内部において、「接続部41」寄りの端部と圧縮材42bの端面との間にクリアランス42dを確保すること(請求項6)が適切な場合もある。   Further, the compression material 42b may be crushed by receiving an axial compression force, and it is assumed that the compression material 42b filled in the closed cross-sectional material 42a does not function as the compression material after the crushing occurs. . Therefore, as shown in FIG. 9, a clearance 42d is secured between the end near the “connecting portion 41” and the end surface of the compression member 42b in the closed cross-section member 42a (main body portion 42) (claim). Item 6) may be appropriate.

請求項6では閉鎖断面材42a(本体部42)の内部において、「接続部41」寄りの端部と圧縮材42bの端面との間にクリアランス42dが確保されることで、ブレースの圧縮側と引張側の耐力を同等に設定することができ、圧縮側に余力が生まれるような無駄のない、合理的なブレースの設計が可能になる。また「接続部41」端部と圧縮材42bの端面との間のクリアランス42dの存在により、「塑性化部43」には圧縮材42bが存在しない状態になるため、圧縮材42bの圧壊が生じることはない。   In claim 6, the clearance 42 d is secured between the end near the “connecting portion 41” and the end surface of the compression member 42 b inside the closed cross-section member 42 a (main body portion 42), so that the compression side of the brace The tensile strength on the tension side can be set to be equal, and a rational brace design can be made without waste that creates a surplus force on the compression side. Further, the presence of the clearance 42d between the end portion of the “connecting portion 41” and the end face of the compressed material 42b causes the “plasticized portion 43” to be in a state where the compressed material 42b does not exist, and thus the compressed material 42b is crushed. There is nothing.

更に図9に示す例の場合、「本体部42」の全体に圧縮力作用時の座屈による曲げモーメントが作用するときに、曲げ座屈が想定される軸方向中間部の圧縮材42bに対し、「接続部41」と「本体部42」を仕切るエンドプレート44と閉鎖断面材42a内を仕切る仕切り板42eからの支圧力と、閉鎖断面材42a内面における付着により圧縮力が伝わることで、圧縮材42bが閉鎖断面材42aと共に曲げモーメントを負担し、これに抵抗することができる。   Further, in the case of the example shown in FIG. 9, when a bending moment due to buckling at the time of compressive force acts on the entire “main body portion 42”, the compression material 42 b in the axial intermediate portion where bending buckling is assumed is applied. The compression force is transmitted by the support pressure from the end plate 44 that partitions the “connecting portion 41” and the “main body portion 42” and the partition plate 42e that partitions the inside of the closed cross-section material 42a, and the adhesion on the inner surface of the closed cross-section material 42a. The material 42b bears a bending moment together with the closed cross-section material 42a and can resist this.

請求項6では閉鎖断面材42aの内部に充填される圧縮材42bが「接続部41」寄りの端部にまで完全に充填されないことで、「本体部42」の「塑性化部43」の区間から、あるいは「塑性化部43」を含む塑性化区間から圧縮材42bが不在になれば、「塑性化部43」が圧縮力によって降伏し易い状態に置かれる。このため、「塑性化部43」に降伏を確実に生じさせる上では、図9−(a)に示すように圧縮材42bが閉鎖断面材42aの内部に充填されない区間が、少なくとも「塑性化部43」と一致していることが合理的である。   In claim 6, the compression material 42 b filled in the closed cross-section material 42 a is not completely filled up to the end portion near the “connecting portion 41”, so that the section of the “plasticizing portion 43” of the “main body portion 42”. Or if the compressed material 42b is absent from the plasticizing section including the “plasticized portion 43”, the “plasticized portion 43” is easily put into a state of yielding by the compressive force. For this reason, in order to surely yield the “plasticized portion 43”, as shown in FIG. 9- (a), at least the section where the compressed material 42b is not filled in the closed cross-sectional material 42a is at least the “plasticized portion 43”. It is reasonable to agree with “43”.

圧縮材42bが閉鎖断面材42aの内部に充填されない区間に「塑性化部43」が位置していれば、「本体部42」の「塑性化部43」の範囲内では圧縮力に対する抵抗要素が閉鎖断面材42aのみになるため、「塑性化部43」を圧縮力によって降伏させ易くなる。「塑性化部43」を引張力によって降伏させることを前提とする場合には、「塑性化部43」に圧縮材42bが不在である必要はなく、圧縮材42bは閉鎖断面材42a内で「接続部41」寄りの端部にまで充填されていてもよいことになる。   If the “plasticizing portion 43” is located in a section where the compressed material 42b is not filled in the closed cross-section member 42a, the resistance element against the compressive force is within the range of the “plasticizing portion 43” of the “main body portion 42”. Since only the closed cross-section member 42a is provided, the “plasticizing portion 43” is easily yielded by the compressive force. When it is assumed that the “plasticized portion 43” is yielded by a tensile force, the “plasticized portion 43” does not need to be free of the compression material 42b, and the compression material 42b is “ Even the end near the connecting portion 41 "may be filled.

閉鎖断面材42a内部の「接続部41」寄りの端部と圧縮材42bの端面との間にクリアランスが確保されている場合(請求項6)に、圧縮材42bの外周面と閉鎖断面材42aの内周面とが付着し、両者間で付着力の伝達が行われる状態にある場合、圧縮材42bには閉鎖断面材42aとの間の付着力を通じて伝達される圧縮力が作用し、付着力を通じて軸方向引張力も作用する。この付着力の影響によりブレース4(本体部42)の引張側と圧縮側の耐力に差が生じ得る他、引張力によって圧縮材42bにひび割れが生ずる可能性も想定される。   When a clearance is secured between the end near the “connecting portion 41” inside the closed cross-section member 42a and the end face of the compression material 42b (Claim 6), the outer peripheral surface of the compression material 42b and the closed cross-section material 42a When the adhesive force is transmitted between the two inner peripheral surfaces and the adhesive force is transmitted between them, the compressive force transmitted through the adhesive force with the closed cross-section member 42a acts on the compressive member 42b. Axial tensile force also acts through the applied force. In addition to the difference in the yield strength between the tension side and the compression side of the brace 4 (main body portion 42) due to the influence of the adhesive force, there is a possibility that the compression material 42b may crack due to the tensile force.

そこで、図10に示すように圧縮材42bと閉鎖断面材42aとの間の付着を切ること(請求項7)が付着力による閉鎖断面材42aから圧縮材42bへの軸方向力の伝達を低減し、ブレース4(本体部42)の引張耐力と圧縮耐力の差を低減し、また圧縮材42bのひび割れを防止する上では有効になる。図10−(a)では圧縮材42bと閉鎖断面材42aとの間の付着を切った区間を太線の破線で示している。   Therefore, as shown in FIG. 10, cutting the adhesion between the compression member 42b and the closed cross-section member 42a (Claim 7) reduces the transmission of the axial force from the closed cross-section member 42a to the compression member 42b due to the adhesion force. In addition, it is effective in reducing the difference between the tensile strength and the compression strength of the brace 4 (main body portion 42) and preventing the compression material 42b from cracking. In FIG. 10- (a), the section where the adhesion between the compression member 42b and the closed cross-section member 42a is cut is indicated by a thick broken line.

圧縮材42bと閉鎖断面材42aとの間の付着が切れることで、圧縮材42bに圧縮力及び引張力が伝わらなくなり、ブレース4(本体部42)の初期剛性が正側(引張側)と負側(圧縮側)とで同じ値になるため、請求項6の場合と同様にブレースの圧縮側と引張側の耐力を同等に設定することができ、ブレース4の合理的な設計が可能になる。   When the adhesion between the compression material 42b and the closed cross-section material 42a is cut, the compression force and the tensile force are not transmitted to the compression material 42b, and the initial rigidity of the brace 4 (main body portion 42) is negative with respect to the positive side (tensile side). Since the same value is obtained on the side (compression side), the proof stress on the compression side and the tension side of the brace can be set equal to each other as in the case of claim 6, and a rational design of the brace 4 becomes possible. .

圧縮材42bの外周面と閉鎖断面材42aの内周面とが付着し、両者間で付着力の伝達が行われる状態にある場合にはまた、ブレース4の「本体部42」が軸方向引張力と圧縮力を受け、全体曲げ座屈による曲げモーメントを受けるときに、圧縮材42bの軸方向に垂直な断面の中立軸に関する片側には圧縮力が作用する。同時に他の片側には引張力が作用するため、圧縮材42bが引張力を受けたときに、圧縮材42bに引張破壊が発生することが想定され得る。この引張破壊の可能性に対し、圧縮材42bと閉鎖断面材42aとの付着が切れていることで(請求項7)、圧縮材42bに引張破壊が生じ得る程の引張力を作用させることは回避される。   When the outer peripheral surface of the compression member 42b and the inner peripheral surface of the closed cross-section member 42a are attached and the adhesive force is transmitted between them, the “main body portion 42” of the brace 4 is also pulled in the axial direction. When receiving a force and a compressive force, and receiving a bending moment due to the overall bending buckling, the compressive force acts on one side of the cross section perpendicular to the axial direction of the compressed material 42b. At the same time, since a tensile force acts on the other side, it can be assumed that when the compressed material 42b receives the tensile force, a tensile failure occurs in the compressed material 42b. With respect to the possibility of this tensile failure, the compression material 42b and the closed cross-section material 42a are not attached to each other (Claim 7). Avoided.

更に圧縮材42bと閉鎖断面材42aとの間の付着が切れ(請求項7)、圧縮材42bに圧縮力及び引張力が伝わらない状態では(図10)、全体曲げ座屈による曲げモーメントに対しては圧縮材42bの曲げ耐力が期待できず、曲げモーメントに対する抵抗要素が閉鎖断面材42aのみになるため、閉鎖断面材42a内に圧縮材42bを充填した(請求項5)意味が失われる可能性がある。圧縮材42b自身が曲げモーメントによる引張力(引張応力)に対する抵抗力を持たず、付着がないことで、閉鎖断面材42aが圧縮材42bに代わって引張力を負担することもないことによる。   Furthermore, the adhesion between the compression member 42b and the closed cross-section member 42a is cut (Claim 7), and in a state where the compression force and the tensile force are not transmitted to the compression member 42b (FIG. 10), the bending moment due to the overall bending buckling is not affected. In this case, the bending strength of the compression material 42b cannot be expected, and the resistance element against the bending moment is only the closed cross-section material 42a. Therefore, the meaning of the compression material 42b filled in the closed cross-section material 42a can be lost (Claim 5). There is sex. This is because the compressed material 42b itself does not have resistance to the tensile force (tensile stress) caused by the bending moment and does not adhere, so that the closed cross-section material 42a does not bear the tensile force in place of the compressed material 42b.

そこで、圧縮材42b中の軸方向に補強筋42fを配筋することで(請求項8)、閉鎖断面材42aとの付着が切れ、閉鎖断面材42aとは独立して外力に抵抗する圧縮材42b自体に引張力に対する抵抗力を持たせることができるため、圧縮材42bに全体曲げ座屈による曲げモーメントに抵抗力を与えることができる。結果としてブレース4(「本体部42」)に、全体曲げ座屈による曲げモーメントに抵抗する能力が与えられる。因みに、圧縮材42bが閉鎖断面材42aと付着している場合には(図9)、前記の通り、仕切り板42eからの支圧力と、閉鎖断面材42a内面における付着により圧縮力を負担できることから、圧縮材42bが閉鎖断面材42aと共に曲げモーメントを負担し、これに抵抗することができる。   Therefore, by arranging reinforcing bars 42f in the axial direction in the compression member 42b (Claim 8), the adhesion to the closed cross-section member 42a is broken, and the compression material resists external force independently of the closed cross-section member 42a. Since the resistance force to the tensile force can be given to 42b itself, the resistance force can be given to the bending moment caused by the overall bending buckling of the compression material 42b. As a result, the brace 4 (“main body portion 42”) is given the ability to resist bending moments due to overall bending buckling. Incidentally, when the compression member 42b adheres to the closed cross-section member 42a (FIG. 9), as described above, the compressive force can be borne by the support pressure from the partition plate 42e and the adhesion on the inner surface of the closed cross-section member 42a. The compression member 42b bears a bending moment together with the closed cross-section member 42a and can resist it.

また圧縮材42b中に引張力に対する抵抗要素である補強筋42fが軸方向に配筋されていれば(請求項8)、付着力により圧縮材42bに曲げモーメントが伝達されたとしても、圧縮材42b自身が引張力に対する抵抗力を持つため、圧縮材42bに引張破壊を生じさせる事態を回避することが可能になる。補強筋42fは本体部42、特に座屈想定区間に偏心による曲げモーメントが作用したときに、引張側になるときの引張力に対する抵抗要素になる。   Further, if the reinforcing bar 42f which is a resistance element against the tensile force is arranged in the axial direction in the compressed material 42b (Claim 8), even if a bending moment is transmitted to the compressed material 42b by the adhesive force, the compressed material Since 42b itself has resistance to the tensile force, it is possible to avoid a situation in which the compressive material 42b causes a tensile failure. The reinforcing bar 42f becomes a resistance element against the tensile force when it becomes the tension side when a bending moment due to eccentricity acts on the main body portion 42, in particular, the expected buckling section.

結局のところ、圧縮材42b中に補強筋42fが軸方向に配筋されることには、閉鎖断面材42aとの付着があり、閉鎖断面材42aから引張力が伝達される場合の軸方向力に対する耐力増大に寄与し、閉鎖断面材42aとの付着が切れ、閉鎖断面材42aが引張力を負担しない場合の全体曲げ座屈による曲げモーメント作用時の引張応力に対する耐力増大に寄与する意味がある。   After all, the reinforcement bars 42f are arranged in the compression material 42b in the axial direction, and there is adhesion to the closed cross-section material 42a, and the axial force when the tensile force is transmitted from the closed cross-section material 42a. This contributes to an increase in the yield strength against the tensile stress due to the bending moment acting by the overall bending buckling when the adhesion to the closed cross-section material 42a is broken and the closed cross-section material 42a bears no tensile force. .

閉鎖断面材42a内部の「接続部41」寄りの端部と圧縮材42bの端面との間にクリアランスが確保される場合(請求項6〜8)、「塑性化部43」は必ずしも圧縮材42bの不在区間(クリアランス)の範囲内に位置する必要はない。但し、「本体部42」における圧縮材42bの不在区間は圧縮力に対する抵抗要素が閉鎖断面材42aのみになる区間であるから、圧縮力によって降伏し易い状態になる。このため、図9、図10に示すようにこの圧縮材42bの不在区間(クリアランス)に「塑性化部43」が位置すれば、「塑性化部43」の圧縮力による降伏を生じさせ易くすることができるため、「塑性化部43」での塑性化(降伏)を誘発することが可能になる。   When a clearance is secured between the end near the “connecting portion 41” inside the closed cross-section member 42a and the end surface of the compression member 42b (Claims 6 to 8), the “plasticizing portion 43” is not necessarily the compression member 42b. It is not necessary to be within the range of the absence section (clearance). However, the absence section of the compression member 42b in the “main body portion 42” is a section in which the resistance element against the compression force is only the closed cross-section member 42a, and therefore, it is easily yielded by the compression force. For this reason, as shown in FIGS. 9 and 10, if the “plasticizing portion 43” is positioned in the absence section (clearance) of the compressed material 42 b, it is easy to cause yield due to the compressive force of the “plasticizing portion 43”. Therefore, it is possible to induce plasticization (yield) at the “plasticizing portion 43”.

ブレースの全長を軸方向両側部分の接続部と、両接続部間の、軸方向力の負担により塑性化する塑性化部を有する本体部とに区分し、「本体部」の全長を軸方向中間部の座屈想定区間と、その軸方向の少なくとも片側寄りの塑性化区間である「塑性化部」を軸方向に直列に配置しているため、ブレースの本体部を降伏が生ずる区間と座屈が生じ得る区間とに軸方向に明確に区分することができる。   The entire length of the brace is divided into a connecting portion on both sides in the axial direction and a main body portion having a plasticizing portion that plasticizes due to the load of the axial force between both connecting portions. The buckling assumed section and the plasticizing section that is at least one side in the axial direction are arranged in series in the axial direction. It can be clearly divided in the axial direction into sections in which can occur.

ブレースの軸方向両端部の「接続部」と中間部の「弾性部」に挟まれた「塑性化部(弾塑性部)」は「弾性部」と直列に配列するものの、「接続部」寄りに位置することで、偏心を伴う圧縮力の作用による曲げモーメントが小さく、「塑性化部(弾塑性部)」での曲げ座屈の発生の可能性が低下するため、拘束手段自体を付加する必要が生じない。   The “plasticized part (elasto-plastic part)” sandwiched between the “connecting part” at both ends in the axial direction of the brace and the “elastic part” in the middle is arranged in series with the “elastic part”, but it is closer to the “connecting part”. Since the bending moment due to the action of the compressive force with eccentricity is small and the possibility of occurrence of bending buckling in the “plasticized part (elastoplastic part)” is reduced, the restraining means itself is added. There is no need.

この結果、「塑性化部(弾塑性部)」が変形に対して拘束を受けることがなく、拘束を受けることの結果として塑性化の進行を妨げられる(阻止される)こともないため、「塑性化部」に塑性変形能力によるエネルギ吸収能力を有効に発揮させることが可能である。   As a result, the “plasticized part (elastoplastic part)” is not constrained against deformation, and as a result of being constrained, the progress of plasticization is not prevented (blocked). It is possible to make the “plasticizing part” exhibit its energy absorption ability by the plastic deformation ability effectively.

(a)は接続部と本体部が鋼材(鉄骨部材)からなり、本体部が特に鋼管である場合のブレースの基本的な製作例を示した側面図、(b)は(a)のx−x線断面図、(c)は(a)のy−y線断面図、(d)は(a)のz−z線断面図である。(A) is a side view showing a basic production example of a brace when the connecting portion and the main body portion are made of steel (steel member) and the main body portion is a steel pipe, and (b) is an x- FIG. 4C is an x-ray cross-sectional view, FIG. 4C is a cross-sectional view along the y-y line in FIG. 4A, and FIG. (a)は接続部と本体部が鋼材(鉄骨部材)からなり、本体部が特に鋼管である場合の他のブレースの基本的な製作例を示した側面図、(b)は(a)のx−x線断面図、(c)は(a)のy−y線断面図、(d)は(a)のz−z線断面図である。(A) is a side view showing a basic manufacturing example of another brace when the connecting portion and the main body portion are made of steel (steel member) and the main body portion is a steel pipe, and (b) is a side view of (a). FIG. 6 is a cross-sectional view taken along line xx, (c) is a cross-sectional view taken along line yy of (a), and (d) is a cross-sectional view taken along line zz of (a). (a)は接続部と本体部が鋼材(鉄骨部材)からなり、本体部が特に角形鋼管である場合のブレースの基本的な製作例を示した側面図、(b)は(a)のx−x線断面図、(c)は(a)のy−y線断面図、(d)は(a)のz−z線断面図である。(A) is a side view showing a basic manufacturing example of a brace when the connecting portion and the main body portion are made of steel (steel member) and the main body portion is a square steel pipe, and (b) is an x of (a). -X sectional view, (c) is a yy sectional view of (a), (d) is a zz sectional view of (a). (a)は接続部と本体部が鋼材(鉄骨部材)からなり、本体部が特に十字形の組み立て材である場合のブレースの基本的な製作例を示した側面図、(b)は(a)のx−x線断面図、(c)は(a)のy−y線断面図、(d)は(a)のz−z線断面図である。(A) is a side view showing a basic manufacturing example of a brace when the connecting portion and the main body portion are made of steel (steel member) and the main body portion is a cross-shaped assembly material, and (b) is (a) ) Is a cross-sectional view taken along line xx, (c) is a cross-sectional view taken along line yy of (a), and (d) is a cross-sectional view taken along line zz of (a). ブレースの各部の配列を示した概念図である。It is the conceptual diagram which showed the arrangement | sequence of each part of a brace. (a)は請求項3、もしくは請求項5に対応するブレースの基本的な製作例としてブレース本体部(閉鎖断面材)の全長に圧縮材を充填した場合の例を示した側面図、(b)は(a)の接続部側の端面図、(c)は(a)のx−x線断面図、(d)は(a)のy−y線断面図である。(A) is the side view which showed the example at the time of filling the compression material in the full length of a brace main-body part (closed cross-section material) as a basic manufacture example of the brace corresponding to Claim 3 or Claim 5, (b) ) Is an end view of the connecting portion side of (a), (c) is a sectional view taken along line xx of (a), and (d) is a sectional view taken along line yy of (a). (a)は図6の塑性化部の区間における閉鎖断面材の外周に局部座屈を防止するための環状の補剛材を被せた場合の様子を示した側面図、(b)はブレースを軸方向に見たときの(a)の断面図である。6A is a side view showing a state where an annular stiffener for preventing local buckling is placed on the outer periphery of the closed cross-section material in the section of the plasticized portion in FIG. 6, and FIG. It is sectional drawing of (a) when it sees to an axial direction. 図6の塑性化部の区間における閉鎖断面材の外周に局部座屈を防止するためのリブ状の補剛材を突設した場合の様子を示したブレースの軸方向断面図である。FIG. 7 is an axial cross-sectional view of a brace showing a state in which a rib-shaped stiffener for preventing local buckling is protruded from the outer periphery of a closed cross-sectional material in the plasticized section of FIG. 6. (a)はブレース本体部(閉鎖断面材)の塑性化部を含む接続部寄りの一部区間にクリアランスを確保した場合の製作例を示した立面図、(b)は(a)のx−x線断面図、(c)は(a)のy−y線断面図である。(A) is an elevation view showing a manufacturing example in the case where a clearance is secured in a partial section near the connecting portion including the plasticized portion of the brace main body (closed cross-section material), and (b) is an x of (a). -X sectional view, (c) is a yy sectional view of (a). (a)はブレース本体部(閉鎖断面材)の塑性化部を含む接続部寄りの一部区間にクリアランスを確保した上で、圧縮材中に補強筋を配筋し、圧縮材と閉鎖断面材との間の付着を切った場合の製作例を示した立面図、(b)は(a)のx−x線断面図、(c)は(a)のy−y線断面図である。(A) After securing clearance in a part of the brace body (closed cross-section material) near the connecting portion including the plasticized portion, reinforcing bars are arranged in the compressed material, and the compressed material and the closed cross-section material The elevation view which showed the manufacture example at the time of cut | disconnecting attachment between these, (b) is the xx sectional view taken on the line of (a), (c) is the sectional view on the yy line of (a). . 図6〜図10に示すブレースのフレーム内への架設状態を示した立面図である。It is the elevation which showed the erection state in the flame | frame of the brace shown in FIGS. 接続部の端面が十字形をした図1等に示すブレースのフレームの隅角部への接合状態を示した立面図である。It is the elevation which showed the joining state to the corner part of the flame | frame of the brace shown in FIG. 1 etc. in which the end surface of the connection part was cross-shaped.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1−(a)は図11に示すように柱1と梁2からなるフレーム3に架設され、フレーム3のいずれかの部分に接合される、軸方向両側部分の接続部41と、両接続部41、41間の区間に位置し、フレーム3の層間変形時に軸方向力を負担し、塑性化する塑性化部43を有する本体部42とに区分され、フレーム3の層間変形時に軸方向力を負担する座屈抑制機能付き降伏型ブレース(以下、ブレース)4の製作例を示す。   FIG. 1- (a) is constructed on a frame 3 consisting of a pillar 1 and a beam 2 as shown in FIG. It is located in a section between the portions 41 and 41 and is divided into a main body portion 42 having a plasticizing portion 43 that bears an axial force during the interlayer deformation of the frame 3 and plasticizes, and an axial force during the interlayer deformation of the frame 3 A production example of a yield type brace (hereinafter referred to as “brace”) 4 with a buckling suppression function that bears the load is shown.

本体部42は図1−(a)、図5に示すように両接続部41、41の内の少なくともいずれか一方の接続部41に接して位置し、軸方向力を負担して塑性化する塑性化部43と、この塑性化部43に関して前記接続部41とは反対側に位置し、軸方向力に対する降伏耐力が塑性化部43より相対的に大きく、軸方向力に対して塑性化しない弾性部420とに軸方向に区分され、塑性化部43と弾性部420は軸方向に直列に配列し、互いに重複しない。   As shown in FIGS. 1A and 5, the main body 42 is positioned in contact with at least one of the connection portions 41, 41 and plasticizes by bearing an axial force. The plasticizing portion 43 is located on the opposite side of the plasticizing portion 43 from the connecting portion 41. The yield strength with respect to the axial force is relatively larger than that of the plasticizing portion 43, and the plasticizing portion 43 is not plasticized with respect to the axial force. The plasticizing portion 43 and the elastic portion 420 are arranged in series in the axial direction and do not overlap each other.

図1、図2はブレース4の本体部42を、降伏を想定しない弾性部420と降伏を予定する塑性化部43とで不連続にし、それぞれを互いに異なる形状(形態)の材料で構成した場合の例を示している。図1は特に弾性部420に(円形)鋼管を使用し、塑性化部43に十字形に組み立てた鉄骨部材を使用した場合、図2は弾性部420に(円形)鋼管を使用し、塑性化部43に弾性部420の鋼管より小さい径の鋼管を使用した場合の例を示している。   1 and 2 show a case where the main body portion 42 of the brace 4 is discontinuous between an elastic portion 420 that does not assume yield and a plasticizing portion 43 that is expected to yield, and each is made of a material having a different shape (form). An example is shown. In particular, FIG. 1 uses a (circular) steel pipe for the elastic part 420 and a steel member assembled in a cross shape for the plasticizing part 43, and FIG. 2 uses a (circular) steel pipe for the elastic part 420 to plasticize. The example at the time of using the steel pipe of the diameter smaller than the steel pipe of the elastic part 420 for the part 43 is shown.

塑性化部43は弾性部420との対比で軸方向力に対する降伏耐力が低ければよいため、それぞれの部位に使用される材料と形状は一切、問われない。塑性化部43の降伏耐力が弾性部420の降伏耐力より小さく設定することは、例えば塑性化部43の軸方向に垂直な断面の断面積を弾性部420の軸方向に垂直な断面の断面積より何らかの形で小さくすることにより得られるが、その他、塑性化部43と弾性部420とで材料自体を相違させる(強度の相違する材料を使用する)ことによっても得られる。塑性化部43と弾性部420とで断面積を相違させる場合は、それぞれの断面形状を有する鋼材の組み合わせは任意である。   Since the plasticizing portion 43 is only required to have a low yield strength against the axial force in comparison with the elastic portion 420, any material and shape may be used for each portion. Setting the yield strength of the plasticized portion 43 to be smaller than the yield strength of the elastic portion 420 is, for example, that the cross-sectional area of the cross section perpendicular to the axial direction of the plasticized portion 43 is changed to the cross sectional area of the cross section perpendicular to the axial direction of the elastic portion 420. It can be obtained by making it smaller in some form, but it can also be obtained by making the material itself different between the plasticized portion 43 and the elastic portion 420 (using materials having different strengths). When making the cross-sectional areas different between the plasticized portion 43 and the elastic portion 420, the combination of steel materials having respective cross-sectional shapes is arbitrary.

図1、図2ではブレース4の軸方向に直交する二方向からの外力に対し、同等の接合状態を得るために、ブレース4の軸方向に直交する二方向に接合のための片を有する十字形に接続部41の断面形状を形成している。この場合、接続部41は図1−(a)、(b)に示すように2枚のプレート41a、41b直交させた状態で互いに溶接等により接合することにより形成される。   In FIG. 1 and FIG. 2, in order to obtain an equivalent joint state with respect to an external force from two directions orthogonal to the axial direction of the brace 4, a joint piece is provided in two directions orthogonal to the axial direction of the brace 4. The cross-sectional shape of the connecting portion 41 is formed in a letter shape. In this case, the connecting portion 41 is formed by joining the two plates 41a and 41b perpendicularly to each other by welding or the like as shown in FIGS. 1- (a) and (b).

十字形の断面形状に形成された接続部41はフレーム3の柱・梁の隅角部である接合部には例えば図12に示すように接合部に突設されている十字形断面のガセットプレート5にブレース4の軸方向に突き合わせられた状態で、ガセットプレート5と接続部41の各プレート41a、41bとに跨る継手プレート6が渡され、双方を貫通するボルトによって接合される。十字形断面のガセットプレート5は接続部41と同じく、ブレース4の軸方向に直交する二方向に接合のためのプレート5a、5bを有し、接続部41と同一の断面形状を持ち、接続部41に突き合わせられることで、双方のプレート41a(41b)、5a(5b)が連続する。   The connecting portion 41 formed in a cross-shaped cross section is a gusset plate having a cross-shaped cross section projecting from the joint as shown in FIG. 5, the joint plate 6 straddling the gusset plate 5 and the plates 41 a and 41 b of the connecting portion 41 in a state of being butted in the axial direction of the brace 4 is passed and joined by bolts penetrating both. The gusset plate 5 having a cross-shaped cross section has plates 5 a and 5 b for joining in two directions orthogonal to the axial direction of the brace 4, like the connection portion 41, and has the same cross-sectional shape as the connection portion 41. By being abutted against 41, both plates 41a (41b) and 5a (5b) are continuous.

図1は塑性化部43を十字形断面の接続部41に同一断面形状のまま連続させ、断面積のみを縮小させて(絞って)形成した場合、図2は塑性化部43を円形断面の弾性部420に同一断面形状のまま連続させ、断面積のみを縮小させて(絞って)形成した場合である。   1 shows a case where the plasticized portion 43 is formed continuously with the cross-section connecting portion 41 while maintaining the same cross-sectional shape and only the cross-sectional area is reduced (squeezed). FIG. This is a case where the elastic part 420 is continuously formed with the same cross-sectional shape and only the cross-sectional area is reduced (squeezed).

図1では塑性化部43が直交する二方向のプレート43a、43bからなるのに対し、塑性化部43に連続する弾性部420が円形断面であることから、弾性部420に塑性化部43の断面形状に対応した切り込みを入れ、切り込みにプレート43a、43bを差し込み、溶接等により接合している。   In FIG. 1, the plasticized portion 43 is composed of two orthogonal plates 43 a and 43 b, whereas the elastic portion 420 continuous with the plasticized portion 43 has a circular cross section. Cuts corresponding to the cross-sectional shape are made, plates 43a and 43b are inserted into the cuts, and joined by welding or the like.

図2では塑性化部43と弾性部420が共に円形断面でありながら、断面積が相違することから、塑性化部43と弾性部420の境界に端部プレート43cを介在させ、端部プレート43aに塑性化部43と弾性部420を溶接等により接合している。塑性化部43と接続部41とは、図1における塑性化部43と弾性部420との接合と同様に、塑性化部43の接続部41側に形成された切り込みに接続部41のプレート41a、41bbを差し込み、溶接等により接合している。   In FIG. 2, both the plasticized portion 43 and the elastic portion 420 have a circular cross section, but the cross-sectional areas are different. Therefore, an end plate 43 c is interposed at the boundary between the plasticized portion 43 and the elastic portion 420, and the end plate 43 a. The plasticized portion 43 and the elastic portion 420 are joined together by welding or the like. The plasticizing portion 43 and the connecting portion 41 are similar to the joining of the plasticizing portion 43 and the elastic portion 420 in FIG. 1, and the plate 41 a of the connecting portion 41 is formed in the notch formed on the connecting portion 41 side of the plasticizing portion 43. , 41bb are inserted and joined by welding or the like.

図3は接続部41と塑性化部43が同一成のH形断面(H形鋼)で、弾性部420が同一成の閉鎖断面(角形鋼管)である場合のブレース4の製作例を示す。接続部41から塑性化部43への移行部分では同一成のまま、幅を縮小させることにより塑性化部43が形成される。H形断面の塑性化部43と閉鎖断面の弾性部420とは、直接、あるいは端部プレート43cを介して溶接されることにより接合される。   FIG. 3 shows an example of manufacturing the brace 4 when the connecting portion 41 and the plasticizing portion 43 have the same H-shaped cross section (H-shaped steel) and the elastic portion 420 has the same closed cross-section (square steel pipe). In the transition part from the connection part 41 to the plasticizing part 43, the plasticizing part 43 is formed by reducing the width while maintaining the same composition. The plasticized portion 43 having the H-shaped cross section and the elastic portion 420 having the closed cross section are joined directly or by welding via the end plate 43c.

図4は弾性部420と塑性化部43を含む本体部42と接続部41からなるブレース4の本体として、同一形状で、同一断面積で連続するH形鋼を使用した場合のブレース4の製作例を示す。この例では相対的に塑性化部43の降伏耐力(断面積)を減少させるために、塑性化部43以外の弾性部420と接続部41の区間の側面にT形断面の鋼材(T形鋼)を溶接することにより弾性部420と接続部41を十字形断面に形成している。   FIG. 4 shows the production of the brace 4 when H-shaped steel having the same shape and the same cross-sectional area is used as the main body of the brace 4 composed of the main body 42 including the elastic part 420 and the plasticizing part 43 and the connecting part 41. An example is shown. In this example, in order to relatively reduce the yield strength (cross-sectional area) of the plasticized portion 43, a steel material having a T-shaped cross section (T-shaped steel) is formed on the side surface of the elastic portion 420 and the connecting portion 41 other than the plasticized portion 43. ) To form the elastic portion 420 and the connecting portion 41 in a cross-shaped cross section.

図6〜図10は図5に示す概念に包含されるブレース4の図1〜図4以外の具体例として、本体部42が鋼管、もしくは角形鋼管等の閉鎖断面材42aと、その内部に充填されるコンクリート、モルタル等の圧縮材42bを備えるブレース4の製作例を示す。この例では塑性化部43は閉鎖断面材42aの接続部41寄りの部分に、軸方向に垂直な断面の断面積が他の部分の軸方向に垂直な断面の断面積より小さい形で形成される。   6 to 10 are specific examples of the brace 4 included in the concept shown in FIG. 5 other than FIGS. 1 to 4, the main body 42 is a steel pipe or a closed cross-section material 42 a such as a square steel pipe, and the inside thereof is filled. An example of manufacturing a brace 4 including a compressed material 42b such as concrete or mortar is shown. In this example, the plasticizing portion 43 is formed in a portion near the connecting portion 41 of the closed cross-section member 42a so that the cross-sectional area of the cross section perpendicular to the axial direction is smaller than the cross-sectional area of the cross section perpendicular to the axial direction of the other portions. The

閉鎖断面材42aには円形や角形以外の断面形状の部材も使用され、圧縮材42bには接着剤等も含まれる。圧縮材42bは閉鎖断面材42aの内部へは、例えば閉鎖断面材42aの軸方向の一方側の端部に充填孔を、他方側の端部に排出孔を形成しておき、充填孔から注入されることにより図6−(a)に示すように閉鎖断面材42aの全長に亘って、もしくは図9−(a)、図10−(a)に示すように軸方向の両端部を除く区間に充填される。   A member having a cross-sectional shape other than a circle or a square is also used for the closed cross-section member 42a, and an adhesive or the like is also included in the compression material 42b. The compression material 42b is formed by filling the closed cross-section material 42a with, for example, a filling hole at one end in the axial direction of the closed cross-section material 42a and a discharge hole at the other end. As shown in FIG. 6 (a), the entire section of the closed cross-section member 42a is covered, or a section excluding both axial ends as shown in FIGS. 9- (a) and 10- (a). Filled.

図6〜図10ではブレース4を受けるフレーム3側に突設されるガセットプレート5との接合の便宜より、図1等と同様に接続部41を図6−(b)に示すように直交する二方向のプレート41a、41bから十字形の断面形状に形成している。十字形断面の接続部41を受けるガセットプレート5も直交する二方向のプレート5a、5bから接続部41と同一の断面形状をし、前記のように接続部41とガセットプレート5は図12に示すように互いに突き合わせられ、双方のプレート41a(41b)、5a(5b)に継手プレート6が渡されることにより接合される。   6 to 10, for the convenience of joining with the gusset plate 5 projecting on the frame 3 side that receives the brace 4, the connecting portion 41 is orthogonal as shown in FIG. It is formed in a cross-shaped cross section from the two-way plates 41a and 41b. The gusset plate 5 that receives the connecting portion 41 having a cross-shaped cross section also has the same cross-sectional shape as the connecting portion 41 from the two orthogonal plates 5a and 5b. As described above, the connecting portion 41 and the gusset plate 5 are shown in FIG. The joint plate 6 is passed to both the plates 41a (41b) and 5a (5b) and joined together.

接続部41の断面形状、あるいは形態はこの他、接続部41が接合される柱1、もしくは梁2、または柱・梁の接合部の形態、あるいは各接合部に突設されるガセットプレート5やブラケットの形状に応じて任意に形成され、平板状、もしくは図3に示すようにH形状等に形成されることもある。   In addition to the cross-sectional shape or form of the connection part 41, the form of the column 1 or the beam 2 to which the connection part 41 is joined, or the connection part of the pillar / beam, or the gusset plate 5 protruding from each joint, It is arbitrarily formed according to the shape of the bracket, and may be formed in a flat plate shape or an H shape as shown in FIG.

例えば接続部41がフレーム3の内周側に突設された1枚のガセットプレート5を挟み込んだ状態でガセットプレート5にボルトや溶接等により接合されるよう、側面間に互いに間隔を置いて並列する2枚のプレート41a、41aから接続部41を構成することもできる。その場合、接続部41は並列するプレート41a、41aがガセットプレート5を挟み込んだ状態で、両プレート41a、41a間にボルトを挿通させる等によりガセットプレート5に接合される。   For example, the connection portions 41 are parallel to each other with a gap between the side surfaces so that the connection portions 41 are joined to the gusset plates 5 by bolts, welding, or the like while sandwiching one gusset plate 5 protruding from the inner peripheral side of the frame 3. The connection part 41 can also be comprised from the two plates 41a and 41a to perform. In that case, the connecting portion 41 is joined to the gusset plate 5 by inserting a bolt between the plates 41a and 41a in a state where the parallel plates 41a and 41a sandwich the gusset plate 5 therebetween.

図6〜図10に示す例の場合、ブレース4の本体部42と接続部41の形状(断面形状)、あるいは材料が相違することと、本体部42を構成する閉鎖断面材42aの内部に圧縮材42bが充填されることから、図面では本体部42と接続部41との境界に、両者を仕切る、あるいは閉鎖断面材42aと接続部41を仕切るエンドプレート44を配置している。エンドプレート44は図6に示すように閉鎖断面材42aの内部の全長に圧縮材42bが充填される場合には、圧縮材42bの充填区間を区切るせき板の役目を果たす。   In the case of the examples shown in FIGS. 6 to 10, the shape (cross-sectional shape) of the main body portion 42 and the connection portion 41 of the brace 4, or the difference in material, and compression inside the closed cross-section material 42 a constituting the main body portion 42. Since the material 42b is filled, in the drawing, an end plate 44 is disposed at the boundary between the main body portion 42 and the connection portion 41, or the partition plate 42a and the connection portion 41 are partitioned. As shown in FIG. 6, when the compression material 42b is filled in the entire length of the closed cross-section member 42a, the end plate 44 serves as a swash plate that delimits the filling section of the compression material 42b.

図1に示す例のように閉鎖断面材42aの内部に圧縮材42bが充填されない場合は、エンドプレート44を使用する必要はないが、閉鎖断面材42aの内部に圧縮材42bが充填される場合にも、圧縮材42bにプレキャストコンクリート等、予め硬化している材料が使用されるような場合には、エンドプレート44を介在させる必要はない。   When the compressed material 42b is not filled in the closed cross-section material 42a as in the example shown in FIG. 1, it is not necessary to use the end plate 44, but the closed cross-section material 42a is filled with the compressed material 42b. In addition, when a precured material such as precast concrete is used for the compression material 42b, the end plate 44 does not need to be interposed.

本体部42は軸方向には図6−(a)に示すように全体的な曲げ座屈を想定する区間である中心部側の座屈想定区間とその両側の塑性化区間とに区分され、塑性化区間の少なくとも一部の区間に塑性化部43が形成される。塑性化部43は塑性化区間の全長であることもある。座屈想定区間と塑性化区間とは明確に区分される場合と、図示するように一部で重複する場合があるが、従来のように座屈想定区間が塑性化区間の一部になることはない。   As shown in FIG. 6- (a), the main body 42 is divided into a buckling assumption section on the center side, which is a section assuming overall bending buckling, and plasticization sections on both sides thereof, as shown in FIG. The plasticized portion 43 is formed in at least a part of the plasticizing section. The plasticizing portion 43 may be the entire length of the plasticizing section. The buckling assumption section and the plasticization section may be clearly divided, and there may be some overlap as shown in the figure, but the buckling assumption section becomes a part of the plasticization section as in the past There is no.

塑性化部43は前記のように閉鎖断面材42aの軸方向に垂直な断面の断面積が他の部分(座屈想定区間)の軸方向に垂直な断面の断面積より小さい形で形成されるが、図面では閉鎖断面材42aへの加工のし易さから、図6−(a)、(c)に示すように閉鎖断面材42aの塑性化区間の一部に、周方向に間隔を置いて配列する複数個の孔42cを穿設することにより塑性化部43を形成している。塑性化部43はこの他、閉鎖断面材42aの表面(外周面)に切り込み溝を周方向に連続的、もしくは断続的に、あるいは軸方向に入れること等によっても形成される。   As described above, the plasticized portion 43 is formed so that the cross-sectional area of the cross-section perpendicular to the axial direction of the closed cross-section member 42a is smaller than the cross-sectional area of the cross-section perpendicular to the axial direction of the other part (assuming buckling section). However, in the drawing, because of the ease of processing into the closed cross-section member 42a, as shown in FIGS. 6 (a) and 6 (c), a part of the plasticized section of the closed cross-section material 42a is spaced in the circumferential direction. The plasticized portion 43 is formed by drilling a plurality of holes 42c arranged in a row. In addition to this, the plasticizing portion 43 is also formed by inserting cut grooves in the surface (outer peripheral surface) of the closed cross-section member 42a continuously, intermittently, or in the axial direction.

図7は本体部42(閉鎖断面材42a)が鋼管等である図6に示すブレース4における本体部42の、塑性化部43を含む塑性化区間に発生する可能性がある局部座屈に備え、局部座屈を防止するための、筒状(環状)の補剛材45を本体部42の回りに装着した(被せた)場合の状況を示している。本体部42(閉鎖断面材42a)が角形鋼管であれば、補剛材45もその形状に応じ、本体部42に外接し得る角形鋼管等の形状に形成される。補剛材45は図7−(a)に示すように少なくとも塑性化部43、あるいは塑性化区間を含む区間に亘る長さと、(b)に示すように本体部42の外周に重なって本体部42を包囲する断面積を持ち、塑性化部43を本体部42の外周側から覆うように本体部42に被せられ、孔42c等からなる塑性化部43が外周側から被覆される。   FIG. 7 shows a preparation for local buckling that may occur in the plasticizing section including the plasticized portion 43 of the main body 42 in the brace 4 shown in FIG. 6 in which the main body 42 (closed cross-section material 42a) is a steel pipe or the like. The situation in which a cylindrical (annular) stiffener 45 for preventing local buckling is mounted (covered) around the main body 42 is shown. If the main body 42 (closed cross-section member 42a) is a square steel pipe, the stiffener 45 is also formed in a shape such as a square steel pipe that can circumscribe the main body 42 according to its shape. As shown in FIG. 7- (a), the stiffener 45 overlaps at least the length of the plasticized portion 43 or the section including the plasticized section, and overlaps the outer periphery of the main body 42 as shown in (b). The main body 42 is covered so as to cover the plasticizing portion 43 from the outer peripheral side of the main body portion 42, and the plasticizing portion 43 including the holes 42c and the like is covered from the outer peripheral side.

塑性化部43を含む本体部42が閉鎖断面材42aでない、図1に示す十字形断面形状、あるいは図3、図4に示すH形断面形状である場合には、図7に示す鋼管状(円筒状)ではなく、それぞれの本体部42の断面形状に添う断面形状の補剛材45、あるいは本体部42(塑性化部43)の周方向に間隔を置き、部分的に板状、もしくは棒状等のリブを本体部42の表面に重ねて接合(溶接)することにより塑性化部43の局部的な座屈防止が図られる。   When the main body portion 42 including the plasticizing portion 43 is not the closed cross-section member 42a, but has the cross-sectional shape shown in FIG. 1 or the H-shaped cross-sectional shape shown in FIGS. The cylindrical stiffener 45 has a cross-sectional shape that follows the cross-sectional shape of each main body portion 42, or is spaced apart in the circumferential direction of the main body portion 42 (plasticizing portion 43), and is partially plate-shaped or rod-shaped. By overlapping (welding), for example, ribs such as these on the surface of the main body portion 42, local buckling of the plasticized portion 43 can be prevented.

図8は図7に示す筒状(環状)の補剛材45に代え、本体部42の外周面に、その表面に垂直な板状(リブ状)の補剛材45を本体部42(閉鎖断面材42a)の軸方向に向け、直接、溶接等により接合した場合の例を示している。板状(リブ状)の補剛材45は基本的にブレース4の軸方向には図7に示す筒状の補剛材45の(軸方向)長さ程度の長さを持ち、筒状の補剛材45が装着される区間(塑性化区間(塑性化部43))に亘って突設される。図8の場合に、塑性化部43が周方向に配列する複数個の孔42cから形成されている場合、孔42cの形成による塑性化部43の降伏を阻害しないよう、板状の補剛材45はこの孔42cを外した位置に突設される。   8 replaces the cylindrical (annular) stiffener 45 shown in FIG. 7 with a plate-shaped (rib-shaped) stiffener 45 perpendicular to the main body 42 on the outer peripheral surface of the main body 42 (closed). An example is shown in which the cross-section material 42a) is joined directly by welding or the like in the axial direction. The plate-shaped (rib-shaped) stiffener 45 basically has a length about the (axial direction) length of the cylindrical stiffener 45 shown in FIG. 7 in the axial direction of the brace 4. It protrudes over the section (plasticization section (plasticization section 43)) where the stiffener 45 is mounted. In the case of FIG. 8, when the plasticizing part 43 is formed of a plurality of holes 42c arranged in the circumferential direction, a plate-shaped stiffener is provided so as not to hinder the yielding of the plasticizing part 43 due to the formation of the holes 42c. 45 projects from the position where the hole 42c is removed.

図9−(a)は本体部42を構成する閉鎖断面材42aの内部において、接続部41寄りの端部と圧縮材42bの端面との間に、圧縮材42bが存在しないクリアランス(空隙)42dを確保した場合の例を示している。本体部42と接続部41はエンドプレート44によって区画されているため、クリアランス42dはエンドプレート44と閉鎖断面材42a内を仕切る仕切り板42eとの間に確保される。この場合、閉鎖断面材42aの内部に圧縮材42bを充填するための充填孔と排出孔は両側の仕切り板42e、42e間に形成される。図9−(b)、(c)は(a)のそれぞれx−x線、y−y線の断面を示している。   9A shows a clearance (gap) 42d in which the compressed material 42b does not exist between the end near the connecting portion 41 and the end surface of the compressed material 42b in the closed cross-sectional material 42a constituting the main body 42. FIG. An example in the case of securing is shown. Since the main body portion 42 and the connection portion 41 are partitioned by the end plate 44, the clearance 42d is secured between the end plate 44 and the partition plate 42e that partitions the closed cross-sectional material 42a. In this case, a filling hole and a discharge hole for filling the inside of the closed cross-section material 42a with the compression material 42b are formed between the partition plates 42e and 42e on both sides. FIGS. 9B and 9C show cross sections taken along line xx and line y, respectively, of FIG.

閉鎖断面材42a内のエンドプレート44との間にクリアランス42dが確保された場合、クリアランス42dの区間が本体部42の内、圧縮力に対する耐力が低下した区間になるため、塑性化区間を圧縮力によって降伏させる場合にはクリアランス42dの区間が本体部42の「塑性化区間」になり、圧縮材42bの充填区間が本体部42の内の圧縮力負担時の全体曲げに対する抵抗区間になる。この場合、塑性化部43は「塑性化区間」の軸方向の一部に形成される形になる。   When the clearance 42d is secured between the end plate 44 in the closed cross-section member 42a, the section of the clearance 42d is a section of the main body 42 in which the resistance to compressive force is reduced. In the case of yielding, the section of the clearance 42d becomes a “plasticization section” of the main body portion 42, and the filling section of the compression material 42b becomes a resistance section with respect to the entire bending when the compression force is loaded in the main body portion 42. In this case, the plasticizing portion 43 is formed in a part of the “plasticizing section” in the axial direction.

図10−(a)は圧縮材42bと閉鎖断面材42aの内周面との間の付着が切れている場合と、圧縮材42b中の軸方向に、引張力に対する抵抗要素である補強筋42fが配筋されている場合の例を示している。前記の通り、図10−(a)では圧縮材42bと閉鎖断面材42a間の付着が切れている区間を太線の破線で示している。図10−(b)、(c)は(a)のそれぞれx−x線、y−y線の断面を示している。   10A shows a case where the adhesion between the compression member 42b and the inner peripheral surface of the closed cross-section member 42a is broken, and a reinforcing bar 42f which is a resistance element against a tensile force in the axial direction in the compression member 42b. Shows an example in which the bar is arranged. As described above, in FIG. 10A, the section where the adhesion between the compression member 42b and the closed cross-section member 42a is broken is indicated by a thick broken line. FIGS. 10B and 10C show cross sections along line xx and line yy of FIG. 10A, respectively.

図10−(a)における圧縮材42bと閉鎖断面材42aとの付着を切ることと、圧縮材42b中の軸方向に補強筋42fを配筋することの要件は独立するが、併用されることもある。いずれの要件も、付着力による閉鎖断面材42aから圧縮材42bへの軸方向力の伝達を低減し、圧縮材42bの引張破壊を防止するための手段になる。   The requirements of cutting the adhesion between the compression member 42b and the closed cross-section member 42a in FIG. 10- (a) and arranging the reinforcing bars 42f in the axial direction in the compression member 42b are independent, but are used together. There is also. Either requirement is a means for reducing the transmission of the axial force from the closed cross-section material 42a to the compression material 42b due to the adhesive force and preventing the tensile failure of the compression material 42b.

付着を切る場合は、閉鎖断面材42aから圧縮材42bへの付着による圧縮力と引張力の伝達が行われない状態になるため、圧縮材42bが圧縮力と引張力の負担から解放される。圧縮材42b中の軸方向に補強筋42fを配筋する場合は、仮に付着があり、圧縮材42bが引張力を負担することがあっても引張力に対して補強筋42fが抵抗可能であるため、引張力による圧縮材42bの破壊を回避することが可能になる。   When cutting off the adhesion, since the compression force and the tensile force due to the adhesion from the closed cross-section material 42a to the compression material 42b are not transmitted, the compression material 42b is released from the burden of the compression force and the tension force. When reinforcing bars 42f are arranged in the axial direction in the compressed material 42b, the reinforcing bars 42f can resist the tensile force even if there is adhesion and the compressed material 42b may bear a tensile force. Therefore, it is possible to avoid the destruction of the compressed material 42b due to the tensile force.

以上の図1〜図4、図6、図9、図10は本発明のブレース4の基本的な構成例を示しているが、以下の表1にそれぞれの機能的な特徴を比較しながら整理している。表1ではブレース4が鉄骨部材からなる図1〜図4の例と、本体部42が閉鎖断面材42aと圧縮材42bからなる図6、図9、図10の例の特徴を説明している。

Figure 0005806828









FIGS. 1 to 4, 6, 9, and 10 show examples of the basic configuration of the brace 4 according to the present invention. doing. Table 1 describes the features of the examples of FIGS. 1 to 4 in which the brace 4 is made of a steel member and the examples of FIGS. 6, 9, and 10 in which the main body portion 42 is made of a closed cross-section material 42a and a compression material 42b. .
Figure 0005806828









表1中、構成の欄における「中央部」は図5に示す「座屈長さ」、図6に示す「座屈想定区間」を指し、「弾性部420」と、「弾性部420」寄りの「塑性化部43(弾塑性部)」の一部までの連続した区間を指す。   In Table 1, “central part” in the column of the configuration refers to “buckling length” shown in FIG. 5 and “buckling expected section” shown in FIG. 6, and is close to “elastic part 420” and “elastic part 420”. The continuous section up to a part of the “plasticized portion 43 (elastic-plastic portion)” of FIG.

図6〜図10の「CFT」はConcrete-filled Steel Tube(コンクリート充填鋼管:鋼管コンクリート)の略であり、鋼管(閉鎖断面材42a)とコンクリート(圧縮材42b)とが一体となった一体構造としてブレース4に作用する外力に抵抗することを意味する。鋼管(S)とコンクリート(C)の付着が切れた図10では鋼管とコンクリートは独立して外力に抵抗する。「S」は図1〜図4の例における「弾性部420」を構成する鋼管、角形鋼管、H形鋼、組立十字形鋼等を含む鋼材(鉄骨部材)と、図6〜図10の例における閉鎖断面材42aを指す。   “CFT” in FIGS. 6 to 10 is an abbreviation for Concrete-filled Steel Tube (concrete-filled steel tube: steel pipe concrete), and an integrated structure in which a steel pipe (closed cross-section material 42a) and concrete (compressed material 42b) are integrated. It means to resist the external force acting on the brace 4. In FIG. 10 where the adhesion between the steel pipe (S) and the concrete (C) is broken, the steel pipe and the concrete independently resist external force. “S” is a steel material (steel member) including the steel pipe, the square steel pipe, the H-shaped steel, the assembled cross-shaped steel, etc. constituting the “elastic portion 420” in the examples of FIGS. 1 to 4 and the examples of FIGS. The closed cross-section material 42a in FIG.

表1に示すように図1〜図4の例ではブレース4の「本体部42」は「断面低減部」(塑性化部43(塑性化区間))を含め、全長に亘って「S」であるため、ブレース4の圧縮時の剛性と耐力、及び引張時の剛性と耐力は「S」で決まる。   As shown in Table 1, in the example of FIGS. 1 to 4, the “main body portion 42” of the brace 4 is “S” over the entire length including the “cross-section reduced portion” (plasticizing portion 43 (plasticizing section)). Therefore, the rigidity and proof strength of the brace 4 during compression and the rigidity and proof strength during tension are determined by “S”.

図6のブレース4「本体部42」は全長に亘って「CFT」であり、その内、鋼管(閉鎖断面材42a)の端部に「断面低減部」(塑性化部43(塑性化区間))が形成されている。このブレース4の圧縮時の剛性と耐力は「CFT」で決まり、引張時のひび割れ後の剛性と耐力は鋼管(閉鎖断面材42a)のみで決まる。   The brace 4 “main body portion 42” of FIG. 6 is “CFT” over the entire length, and among them, a “cross-section reduced portion” (plasticization portion 43 (plasticization section)) is formed at the end of the steel pipe (closed cross-section material 42a). ) Is formed. The rigidity and proof strength of the brace 4 during compression are determined by “CFT”, and the rigidity and proof strength after cracking during tension are determined only by the steel pipe (closed cross-section material 42a).

図9ではブレース4「本体部42」の全長の内、軸方向中間部分が「CFT」であり、端部寄りの部分が鋼管(閉鎖断面材42a)になっている。このブレース4では「本体部42」の接続部41寄りにクリアランス42dが存在していることから、圧縮時の剛性は「CFT」で決まるものの、圧縮時の耐力は鋼管(閉鎖断面材42a)で決まる。引張時のひび割れ後の剛性と耐力は図6の例と同様に鋼管(閉鎖断面材42a)のみで決まる。   In FIG. 9, the axially intermediate portion of the entire length of the brace 4 “main body portion 42” is “CFT”, and the portion near the end portion is a steel pipe (closed cross-section member 42a). In this brace 4, there is a clearance 42d near the connection part 41 of the "main body part 42", so the rigidity at the time of compression is determined by "CFT", but the proof stress at the time of compression is a steel pipe (closed cross-section material 42a). Determined. The rigidity and yield strength after cracking during tension are determined only by the steel pipe (closed cross-section member 42a) as in the example of FIG.

図10でも図9の例と同様、ブレース4「本体部42」の全長の内、軸方向中間部分が「CFT」であり、端部寄りの部分が鋼管(閉鎖断面材42a)になっているが、軸方向中間部分の鋼管(閉鎖断面材42a)とコンクリート(圧縮材42b)の付着は切れているため、圧縮時と引張時の剛性と耐力はいずれも、鋼管(閉鎖断面材42a)のみで決まる。   Also in FIG. 10, as in the example of FIG. 9, in the entire length of the brace 4 “main body portion 42”, the intermediate portion in the axial direction is “CFT”, and the portion near the end is a steel pipe (closed cross-section material 42 a). However, since the steel pipe (closed cross-section material 42a) and the concrete (compressed material 42b) in the axial middle portion are cut off, both the rigidity and proof stress during compression and tension are only the steel pipe (closed cross-section material 42a). Determined by.

只、中間部分での鋼管とコンクリートの付着が切れていることで、それのみでは「本体部42」に作用する曲げモーメントに対し、コンクリート(圧縮材42b)が抵抗しない構造になることから、図10ではコンクリート中に曲げモーメント(引張力)に対する抵抗要素としての補強筋42fを配筋し、「本体部42」の全体曲げ座屈に対する抵抗力を確保している。図6、図9、図10の対比から分かるように鋼管(閉鎖断面材42a)とコンクリート(圧縮材42b)が一体であるか(付着しているか)否かの相違は全体座屈に対する抵抗要素の差として表れる。   只 Because the steel pipe and concrete adherence at the middle part, the concrete (compressed material 42b) does not resist the bending moment acting on the "main body part 42" alone. 10, reinforcing bars 42f are arranged in the concrete as resistance elements against bending moments (tensile forces) to ensure resistance to the overall bending buckling of the “main body portion 42”. 6, 9, and 10, the difference between whether the steel pipe (closed cross-section material 42 a) and concrete (compressed material 42 b) are integrated (attached) is a resistance element against overall buckling. Appears as a difference.

構成の欄における「塑性化部」が図6では「CFT」であるのに対し、図9、図10では「鋼管」である理由は、図6の例ではコンクリート(圧縮材42b)が鋼管(閉鎖断面材42a)の全長に亘って充填され、付着もしているのに対し、図9、図10の例ではコンクリート(圧縮材42b)が鋼管(閉鎖断面材42a)の全長に亘って充填されていないことに基づく。コンクリート(圧縮材42b)が鋼管(閉鎖断面材42a)の全長に亘って充填されているか否かの相違は終局耐力時の抵抗要素の差として表れる。   In FIG. 6, the “plasticization part” in the column of the configuration is “CFT” in FIG. 6, whereas in FIG. 9 and FIG. 10, the reason is “steel pipe”. In the example of FIG. In the example shown in FIGS. 9 and 10, concrete (compressed material 42b) is filled over the entire length of the steel pipe (closed cross-section material 42a), while it is filled and adhered over the entire length of the closed cross-section material 42a). Not based on that. The difference in whether concrete (compressed material 42b) is filled over the entire length of the steel pipe (closed cross-section material 42a) appears as a difference in resistance element at the ultimate strength.

「繰り返しによる耐力低下」はいずれの例においても、ブレース4が引張力を受けるときには生じないのに対し、圧縮力を受けるときに生じ、局部座屈を伴う結果になっている。特に図6の例ではコンクリート(圧縮材42b)が圧縮力を受けることで、圧壊等により劣化に至ることがあり得ることが分かる。   In any of the examples, “decrease in yield strength” does not occur when the brace 4 receives a tensile force, but occurs when receiving a compressive force, resulting in local buckling. In particular, in the example of FIG. 6, it can be seen that the concrete (compressed material 42 b) may be deteriorated due to crushing or the like by receiving the compressive force.

またいずれの例においても、終局時には塑性化部43(塑性化区間)に降伏を生じさせながら、「座屈想定区間」に全体曲げ座屈が発生する事態が回避されていることが分かる。   In any of the examples, it can be seen that a situation in which a total bending buckling occurs in the “buckling assumption section” is avoided while yielding is generated in the plasticized portion 43 (plasticization section) at the end.

1……柱、2……梁、3……フレーム、
4……座屈抑制機能付き降伏型ブレース、
41……接続部、41a……プレート、41b……プレート、
42……本体部、420……弾性部、
42a……閉鎖断面材、42b……圧縮材、42c……孔、42d……クリアランス(空隙)、42e……仕切り板、42f……補強筋、
43……塑性化部、43a、43b……プレート、43c……端部プレート、
44……エンドプレート、45……補剛材、
5……ガセットプレート、5a、5b……プレート、6……継手プレート。
1 …… Column, 2 …… Beam, 3 …… Frame,
4 ... Yield type brace with buckling suppression function,
41... Connection part, 41 a... Plate, 41 b.
42 …… Body part, 420 …… Elastic part,
42a: closed cross-section material, 42b: compression material, 42c: hole, 42d: clearance (gap), 42e: partition plate, 42f: reinforcing bar,
43 …… Plasticizing part, 43a, 43b …… Plate, 43c …… End plate,
44 …… End plate, 45 …… Stiffener,
5 ... Gusset plate, 5a, 5b ... Plate, 6 ... Joint plate.

Claims (8)

柱・梁のフレームに架設され、フレームの層間変形時に軸方向力を負担するブレースであり、前記フレームに接合される、軸方向両側部分の接続部と、両接続部間の中間区間に位置し、前記軸方向力を負担する本体部とに軸方向に区分され、
前記本体部は、軸方向端部寄りに位置し、前記両接続部の内の少なくともいずれか一方の接続部に接し、前記軸方向力を負担して塑性化する塑性化部を含む塑性化区間と、この塑性化区間に関して前記接続部とは反対側に位置し、前記軸方向力に対する降伏耐力が前記塑性化部より相対的に大きく、前記軸方向力に対して塑性化しない弾性部を含む、偏心を伴う圧縮力に起因する座屈が想定される軸方向中間部寄りの座屈想定区間とに軸方向に区分され、前記塑性化区間と前記座屈想定区間は軸方向に直列に配列し、
前記塑性化区間の前記接続部寄りの端部は前記座屈想定区間の前記接続部寄りの端部より前記接続部寄りに位置し、前記塑性化区間の前記接続部寄りの一部の区間は前記座屈想定区間と重複していないことを特徴とする座屈抑制機能付き降伏型ブレース。
Braces are installed on the pillar / beam frame and bear the axial force when the frame is deformed between layers. The braces are joined to the frame and located in the middle section between the connecting parts on both sides in the axial direction. , And axially divided into a main body portion that bears the axial force,
The main body portion is positioned near the end portion in the axial direction, is in contact with at least one of the two connection portions, and includes a plasticizing section including a plasticizing portion that plasticizes by bearing the axial force. And an elastic portion that is located on the opposite side of the connecting portion with respect to the plasticizing section, has a yield strength with respect to the axial force that is relatively larger than the plasticized portion, and does not plasticize with respect to the axial force. The axial section is divided into the axial buckling section near the axial direction where buckling due to the compressive force accompanied by the eccentricity is assumed, and the plasticized section and the expected buckling section are arranged in series in the axial direction. And
An end portion of the plasticizing section near the connection portion is positioned closer to the connection portion than an end portion of the buckling assumption section near the connection portion, and a portion of the plasticizing section near the connection portion is A yield-type brace with a buckling suppression function, characterized in that it does not overlap with the expected buckling section .
前記塑性化部の軸方向に垂直な断面の断面積は前記弾性部の軸方向に垂直な断面の断面積より小さいことを特徴とする請求項1に記載の座屈抑制機能付き降伏型ブレース。   The yield type brace with a buckling suppression function according to claim 1, wherein a cross-sectional area of a cross section perpendicular to the axial direction of the plasticized portion is smaller than a cross-sectional area of a cross section perpendicular to the axial direction of the elastic portion. 前記本体部は閉鎖断面材であり、前記塑性化部は前記閉鎖断面材の前記接続部寄りの部分に、軸方向に垂直な断面の断面積が他の部分の軸方向に垂直な断面の断面積より小さい形で形成されていることを特徴とする請求項1、もしくは請求項2に記載の座屈抑制機能付き降伏型ブレース。   The main body portion is a closed cross-section material, and the plasticized portion is a section of the closed cross-section material near the connecting portion, and a cross-sectional area of a cross section perpendicular to the axial direction is a cross section perpendicular to the axial direction of other portions. The yield-type brace with a buckling suppression function according to claim 1, wherein the yield-type brace is formed in a shape smaller than an area. 前記塑性化部は前記閉鎖断面材の周方向に間隔を置き、複数個の孔が配列して形成されていることを特徴とする請求項3に記載の座屈抑制機能付き降伏型ブレース。   The yield type brace with a buckling suppression function according to claim 3, wherein the plasticizing portion is formed by arranging a plurality of holes at intervals in the circumferential direction of the closed cross-section material. 前記本体部を構成する閉鎖断面材の内部に圧縮材が充填されていることを特徴とする請求項3、もしくは請求項4に記載の座屈抑制機能付き降伏型ブレース。   The yield type brace with a buckling suppression function according to claim 3 or 4, wherein a compression material is filled in a closed cross-sectional material constituting the main body. 前記閉鎖断面材の内部において、前記接続部寄りの端部と前記圧縮材の端面との間にクリアランスが確保されていることを特徴とする請求項5に記載の座屈抑制機能付き降伏型ブレース。   6. A yield-type brace with a buckling suppression function according to claim 5, wherein a clearance is secured between an end near the connecting portion and an end surface of the compression material inside the closed cross-section material. . 前記圧縮材と前記閉鎖断面材との間の付着が切れていることを特徴とする請求項5、もしくは請求項6に記載の座屈抑制機能付き降伏型ブレース。   The yielding brace with a buckling suppression function according to claim 5 or 6, wherein adhesion between the compressed material and the closed cross-section material is broken. 前記圧縮材中の軸方向に補強筋が配筋されていることを特徴とする請求項5乃至請求項7のいずれかに記載の座屈抑制機能付き降伏型ブレース。
The yield type brace with a buckling suppression function according to any one of claims 5 to 7, wherein reinforcing bars are arranged in an axial direction in the compressed material.
JP2011062213A 2011-03-22 2011-03-22 Yield type brace with buckling suppression function Expired - Fee Related JP5806828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062213A JP5806828B2 (en) 2011-03-22 2011-03-22 Yield type brace with buckling suppression function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062213A JP5806828B2 (en) 2011-03-22 2011-03-22 Yield type brace with buckling suppression function

Publications (2)

Publication Number Publication Date
JP2012197591A JP2012197591A (en) 2012-10-18
JP5806828B2 true JP5806828B2 (en) 2015-11-10

Family

ID=47180083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062213A Expired - Fee Related JP5806828B2 (en) 2011-03-22 2011-03-22 Yield type brace with buckling suppression function

Country Status (1)

Country Link
JP (1) JP5806828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696719A (en) * 2016-01-26 2016-06-22 大连理工大学 Buckling restrained energy-consuming support structure restrained by adopting GFRP angle steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437085B1 (en) * 2012-12-13 2014-09-11 (주)대우건설 Modular pier bracing apparatus for improving earthquake-proof function
JP6976653B2 (en) * 2017-09-29 2021-12-08 株式会社横河Nsエンジニアリング Axial force member
CN112849418B (en) * 2019-11-27 2022-12-16 中国航发商用航空发动机有限责任公司 Aircraft engine mounting system and aircraft
JP7384679B2 (en) 2020-01-29 2023-11-21 大和ハウス工業株式会社 Damping joints and building frames

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833026B2 (en) * 1989-12-28 1996-03-29 川鉄建材工業株式会社 Steel material for steel structure
JP3250040B2 (en) * 1991-12-27 2002-01-28 清水建設株式会社 Unbond brace
JPH06257220A (en) * 1993-03-05 1994-09-13 Tokyu Constr Co Ltd Rc-brace
JP2000081085A (en) * 1998-09-04 2000-03-21 Mitsubishi Heavy Ind Ltd Structural member with hysteresis damper
JP2001115599A (en) * 1999-10-20 2001-04-24 Sumitomo Metal Ind Ltd Steel structural member and frame member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696719A (en) * 2016-01-26 2016-06-22 大连理工大学 Buckling restrained energy-consuming support structure restrained by adopting GFRP angle steel
CN105696719B (en) * 2016-01-26 2018-06-08 大连理工大学 A kind of flexion-proof energy consumption supporting structure constrained using GFRP angle steel

Also Published As

Publication number Publication date
JP2012197591A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5806828B2 (en) Yield type brace with buckling suppression function
JP4414834B2 (en) Construction method of earthquake-resistant wall
JP2004278293A (en) Beam joint structure and buckling restraining member used therefor
JP2005330802A (en) Frame with buckling-restrained brace
WO2014167624A1 (en) Buckling-restrained brace, and load-bearing structure provided therewith
CA2649585A1 (en) Cast structural connectors
WO2017037833A1 (en) Buckling-restrained brace and manufacturing method for buckling-restrained braces
JP6394239B2 (en) Connecting pillar
JP6192302B2 (en) Joint structure of steel girder and concrete slab
EP2882640B1 (en) Cardboard-based structure
JP5785724B2 (en) Steel frame joint structure
JP6719199B2 (en) Buckling stiffening brace
JP2002364081A (en) Beam-column connecting structure and steel column for use therein
JP2018178466A (en) Damper and method for manufacturing damper
KR101549088B1 (en) Steel-Concrete Composite Pipe and the Connection Structure
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP6169486B2 (en) Buckling restraint brace
JP6125793B2 (en) Buckling-restrained brace
JP7175694B2 (en) buckling restraint brace
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP7034361B1 (en) Buckling restraint braces and load-bearing structures
KR101294289B1 (en) Buckling restrained brace of dry type, and manufacturing method for the same
JP2002138583A (en) Anti-buckling brace
JP2017082904A (en) Rod-like vibration isolation member
WO2022070601A1 (en) Reinforcing structure for column/beam framing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5806828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees