JP5805442B2 - Method for producing hydraulic powder - Google Patents

Method for producing hydraulic powder Download PDF

Info

Publication number
JP5805442B2
JP5805442B2 JP2011140369A JP2011140369A JP5805442B2 JP 5805442 B2 JP5805442 B2 JP 5805442B2 JP 2011140369 A JP2011140369 A JP 2011140369A JP 2011140369 A JP2011140369 A JP 2011140369A JP 5805442 B2 JP5805442 B2 JP 5805442B2
Authority
JP
Japan
Prior art keywords
compound
hydraulic
weight
glycerin
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011140369A
Other languages
Japanese (ja)
Other versions
JP2013006738A (en
Inventor
浩司 長澤
浩司 長澤
濱井 利正
利正 濱井
下田 政朗
政朗 下田
桂一郎 佐川
桂一郎 佐川
雄亮 吉浪
雄亮 吉浪
博行 川上
博行 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2011140369A priority Critical patent/JP5805442B2/en
Publication of JP2013006738A publication Critical patent/JP2013006738A/en
Application granted granted Critical
Publication of JP5805442B2 publication Critical patent/JP5805442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、粉砕助剤を用いて水硬性化合物を粉砕する工程を有する、水硬性粉体の製造方法に関する。   The present invention relates to a method for producing hydraulic powder, which includes a step of pulverizing a hydraulic compound using a pulverization aid.

水硬性化合物、例えばポルトランドセメントクリンカ、高炉スラグ等を粉砕して種々の水硬性粉体が製造されている。例えば、ポルトランドセメントは、石灰石、粘土、鉄さい等の原料を焼成して得られたクリンカに適量の石膏を加え、粉砕して製造される。その際、水硬性化合物の粉砕効率を高めるために、ジエチレングリコールやトリエタノールアミンなどの粉砕助剤が用いられている。粉砕工程においては、得られる水硬性粉体を用いた硬化体の強度を低下させることなく、水硬性化合物をできるだけ能率良く所望の粒径にすることが望ましい。   Various hydraulic powders are produced by pulverizing hydraulic compounds such as Portland cement clinker and blast furnace slag. For example, Portland cement is manufactured by adding an appropriate amount of gypsum to a clinker obtained by firing raw materials such as limestone, clay, iron slag and the like, and pulverizing them. At that time, a grinding aid such as diethylene glycol or triethanolamine is used to increase the grinding efficiency of the hydraulic compound. In the pulverization step, it is desirable that the hydraulic compound is made as efficiently as possible with the desired particle size without reducing the strength of the cured body using the obtained hydraulic powder.

水硬性化合物の粉砕助剤としてグリセリンが用いられている。例えば、特許文献1には、セメントの圧縮強さを向上させるためにセメント添加物として未処理グリセリンを使用し、未処理グリセリンが、重量%にして、1〜10%のアルカリ金属無機塩を含んでいることが記載されている。そして、その未処理グリセリンは、クリンカの粉砕処理中に添加できることが記載されている。   Glycerin is used as a grinding aid for hydraulic compounds. For example, in Patent Document 1, untreated glycerin is used as a cement additive to improve the compressive strength of cement, and the untreated glycerin contains 1 to 10% alkali metal inorganic salt in weight%. It is described that It is described that the untreated glycerin can be added during the clinker grinding treatment.

また、コンクリートの7日強度及び28日強度を向上するために、無機塩を用いる技術がある。例えば、特許文献2には、高級トリアルカノールアミンと、水溶性アルカリ金属塩よりなる強度増強性添加剤が記載されており、この添加剤はセメント粉末との混合物であってよく、仕上げミル加工中にセメントクリンカと相互磨砕してもよいことが記載されている。   In addition, there is a technique using an inorganic salt in order to improve the 7-day strength and 28-day strength of concrete. For example, Patent Document 2 describes a strength-enhancing additive composed of a higher trialkanolamine and a water-soluble alkali metal salt, and this additive may be a mixture with cement powder, and during finishing mill processing. Describes that mutual grinding with a cement clinker is also possible.

また、特許文献3には、粉砕効率や、得られる水硬性粉体から製造した水硬性組成物の強度を向上させるために、(A)多価アルコール及び多価アルコールのアルキレンオキシド付加物から選ばれる1種以上と(B)硫酸化剤とを反応させて得られる化合物(a)の存在下で、水硬性化合物を粉砕する工程を経て水硬性粉体を製造することが記載されている。   Patent Document 3 discloses that (A) a polyhydric alcohol and an alkylene oxide adduct of a polyhydric alcohol are selected in order to improve the grinding efficiency and the strength of the hydraulic composition produced from the obtained hydraulic powder. In the presence of a compound (a) obtained by reacting one or more of the above and (B) a sulfating agent, hydraulic powder is produced through a step of pulverizing the hydraulic compound.

特表2008−519752号公報Special table 2008-519752 gazette 特開平3−183647号公報Japanese Patent Laid-Open No. 3-183647 特開2010−42986号公報JP 2010-42986 A

しかしながら、水硬性粉体の生産性の向上、コンクリート二次製品の生産性向上及びコンクリート硬化体の強度向上等の理由により、水硬性粉体の製造方法では、グリセリン等の粉砕助剤の水硬性化合物の粉砕性を低下させることなく、得られる水硬性粉体を用いた水硬性組成物の硬化時の圧縮強度をさらに向上させることが望まれる。   However, due to reasons such as improving the productivity of hydraulic powder, improving the productivity of secondary concrete products, and improving the strength of the concrete hardened body, the hydraulic property of the grinding aid such as glycerin in the manufacturing method of hydraulic powder It is desired to further improve the compressive strength at the time of curing of the hydraulic composition using the obtained hydraulic powder without reducing the grindability of the compound.

本発明の課題は、水硬性組成物の硬化時の圧縮強度(水硬性粉体が水に接してから24時間後の圧縮強度、以後24時間強度という)を向上させるセメント等の水硬性粉体が得られる水硬性粉体の製造方法を提供することである。例えば、24時間強度は、コンクリート二次製品の生産サイクルに関連する脱型可能な時間の指標となる。   An object of the present invention is to provide a hydraulic powder such as cement for improving the compressive strength (the compressive strength after 24 hours after the hydraulic powder comes into contact with water, hereinafter referred to as the strength for 24 hours) when the hydraulic composition is cured. It is providing the manufacturing method of the hydraulic powder from which is obtained. For example, the 24-hour strength is an indicator of the demoldable time associated with the concrete secondary product production cycle.

本発明者は、硫酸アルカリ金属塩を、粉砕助剤であるグリセリン及び/又はグリセリンモノ酢酸エステルと共に、水硬性化合物に添加して粉砕することで、粉砕助剤の粉砕性を低下させることなく、得られた水硬性粉体を用いた水硬性組成物の硬化時の圧縮強度が大きく向上することを見出した。   The inventor added an alkali metal sulfate salt to a hydraulic compound together with glycerin and / or glycerin monoacetate as a grinding aid, without reducing the grindability of the grinding aid, It has been found that the compressive strength during curing of a hydraulic composition using the obtained hydraulic powder is greatly improved.

本発明は、グリセリン及びグリセリンモノ酢酸エステルから選ばれる1種以上の化合物A〔以下、化合物Aという〕と、硫酸アルカリ金属塩Bとを水硬性化合物に添加して粉砕する水硬性粉体の製造方法に関する。   The present invention relates to the production of a hydraulic powder that is pulverized by adding one or more compounds A selected from glycerin and glycerin monoacetate [hereinafter referred to as compound A] and alkali metal sulfate B to the hydraulic compound. Regarding the method.

本発明によれば、グリセリン及び/又はグリセリンモノ酢酸エステルと硫酸アルカリ金属塩とを添加して粉砕することで、グリセリン等の粉砕助剤の水硬性化合物の粉砕性を低下させることなく、得られる水硬性組成物の硬化時の圧縮強度を向上させるセメント等の水硬性粉体が得られる水硬性粉体の製造方法が提供される。   According to the present invention, glycerin and / or glycerin monoacetate and an alkali metal sulfate salt are added and pulverized, so that the pulverization property of the hydraulic compound of the pulverization aid such as glycerin can be reduced. There is provided a method for producing a hydraulic powder from which a hydraulic powder such as cement that improves the compressive strength during curing of the hydraulic composition is obtained.

本発明では、グリセリン及び/又はグリセリンモノ酢酸エステルと硫酸アルカリ金属塩を、水硬性化合物の粉砕時に添加することで、グリセリン及び/又はグリセリンモノ酢酸エステルと、硫酸アルカリ金属塩が、水硬性粉体の表面に偏りなく均一に付着する。水硬性粉体と水との混練時には、グリセリン及び/又はグリセリンモノ酢酸エステルと硫酸アルカリ金属塩が互いに近傍に存在するため、効率良く水硬性粉体を構成する鉱物の水和反応が促進され、効果的に強度向上効果を発現することができると推定される。そして、水硬性化合物の粉砕時に硫酸アルカリ金属塩を存在させてもグリセリンやグリセリンモノ酢酸エステルによる粉砕効率の向上を阻害しないため、本発明のように粉砕時に硫酸アルカリ金属塩を存在させることでより有利な効果が得られることになる。   In the present invention, glycerin and / or glycerin monoacetate and alkali metal sulfate are added at the time of grinding the hydraulic compound, so that glycerin and / or glycerin monoacetate and alkali metal sulfate are hydraulic powder. It adheres evenly to the surface. At the time of kneading the hydraulic powder and water, since glycerin and / or glycerin monoacetate and alkali metal sulfate salt are present in the vicinity of each other, the hydration reaction of the mineral constituting the hydraulic powder is promoted efficiently, It is estimated that the strength improvement effect can be expressed effectively. And even if an alkali metal sulfate salt is present during the pulverization of the hydraulic compound, it does not hinder the improvement of the pulverization efficiency by glycerin or glycerin monoacetic acid ester. An advantageous effect will be obtained.

一方、粉砕助剤であるグリセリン及び/又はグリセリンモノ酢酸エステルを用いて水硬性粉体を得た後に、硫酸アルカリ金属塩を混合した場合は、水硬性粉体の表面にグリセリンやグリセリンモノ酢酸エステルが付着しているが、硫酸アルカリ金属塩は、水硬性粉体の表面に局所的に付着しているものや、水硬性粉体には付着しないものが存在することになる。その結果、得られた水硬性粉体と水との混練時には、グリセリンやグリセリンモノ酢酸エステルと、硫酸アルカリ金属塩とが協調した効果を発現しにくくなるために、硬化強度の向上の程度が劣ると推定される。   On the other hand, after obtaining a hydraulic powder using glycerin and / or glycerin monoacetate, which is a grinding aid, when mixed with an alkali metal sulfate, glycerin or glycerin monoacetate is added to the surface of the hydraulic powder. However, some alkali metal sulfates are locally attached to the surface of the hydraulic powder, and some are not attached to the hydraulic powder. As a result, at the time of kneading the obtained hydraulic powder and water, glycerin or glycerin monoacetic acid ester and alkali metal sulfate sulfate are less likely to exhibit a coordinated effect, so the degree of improvement in curing strength is inferior. It is estimated to be.

グリセリンやグリセリンモノ酢酸エステルと、硫酸アルカリ金属塩の作用に関しては、グリセリン及び/又はグリセリンモノ酢酸エステルが、水硬性粉体のカルシウムイオンの溶出を促進し、水硬性粉体の水和反応速度及び水和反応率の両者を向上し、硫酸アルカリ金属塩から生じる硫酸イオンが適度に存在することで硫酸イオンを構成要素とする水和結晶鉱物の生成が促進され、硬化強度が向上すると推定される。   Regarding the action of glycerin or glycerin monoacetate and alkali metal sulfate, glycerin and / or glycerin monoacetate promotes the elution of calcium ions in hydraulic powder, and the hydration rate of hydraulic powder and It is presumed that both the hydration reaction rate is improved, and the generation of hydrated crystal minerals containing sulfate ions is promoted and the hardening strength is improved by the moderate presence of sulfate ions generated from alkali metal sulfates. .

さらに、硫酸アルカリ金属塩から生じるアルカリ金属イオンは、水硬性粉体と水との混練時には、水和反応により生じる水硬性粉体の表面に生じるゲル層等を破壊することで水和反応率が高められ硬化強度を向上する推定される。   Furthermore, alkali metal ions generated from alkali metal sulfates have a hydration reaction rate by breaking the gel layer generated on the surface of the hydraulic powder generated by the hydration reaction when kneading the hydraulic powder and water. It is estimated that the cured strength is improved.

化合物Aのグリセリン及びグリセリンモノ酢酸エステルは市販品を用いることができる。グリセリンとしては、市販品の精製グリセリン、例えば、ヤシ由来の油脂のエステル交換で得られたグリセリンを用いることができる。また、牛脂や植物油脂の加水分解によって得られた粗かん水、粗かん水から不純物を除去した精製かん水等を用いることができる。24時間強度及び7日強度を向上する観点から、粗かん水、精製グリセリンが好ましく、精製グリセリンがより好ましい。   Commercially available glycerin and glycerin monoacetate of Compound A can be used. As glycerin, commercially available refined glycerin, for example, glycerin obtained by transesterification of oil derived from palm can be used. In addition, rough brine obtained by hydrolysis of beef tallow and vegetable oil, purified brine obtained by removing impurities from coarse brine, and the like can be used. From the viewpoint of improving the 24-hour strength and the 7-day strength, rough brine and purified glycerin are preferable, and purified glycerin is more preferable.

硫酸アルカリ金属塩Bは市販品を用いることができる。硫酸アルカリ金属塩Bとしては、硫酸ナトリウム、硫酸カリウム及び硫酸リチウムが挙げられる。中でも24時間強度及び7日強度を向上する観点から硫酸ナトリウムを用いることが好ましい。   As the alkali metal sulfate B, a commercially available product can be used. Examples of the alkali metal sulfate B include sodium sulfate, potassium sulfate and lithium sulfate. Among these, sodium sulfate is preferably used from the viewpoint of improving the strength for 24 hours and the strength for 7 days.

化合物Aの添加量は、粉砕性の向上と24時間強度及び7日強度の向上の観点から、粉砕に用いられる原料の水硬性化合物、例えばセメントクリンカ100重量部に対して、0.01〜1.50重量部、更に0.02〜1.50重量部用いることが好ましく、0.04〜1.00重量部用いることがより好ましく、0.11〜0.70重量部となるように用いることが更に好ましい。また、化合物Aは、粉砕性の向上の観点から、粉砕に用いられる原料の水硬性化合物、例えばセメントクリンカ100重量部に対して、0.04重量部以上、更に0.11重量部以上用いることが好ましく、また、1.20重量部以下が好ましく、0.60重量部以下がより好ましく、更に0.50重量部以下が更に好ましく、0.25重量部以下用いることがより更に好ましい。また、化合物Aは、24時間強度及び7日強度を向上する観点から、粉砕に用いられる原料の水硬性化合物、例えばセメントクリンカ100重量部に対して、0.12重量部以上が好ましく、0.15重量部以上がより好ましく、0.35重量部以上が更に好ましい。また、1.80重量部以下が好ましく、1.40重量部以下がより好ましく、1.20重量部以下が更に好ましい。   Compound A is added in an amount of 0.01 to 1 with respect to 100 parts by weight of a raw material hydraulic compound used for pulverization, for example, cement clinker, from the viewpoint of improvement of pulverization and improvement of 24 hour strength and 7 day strength. .50 parts by weight, more preferably 0.02 to 1.50 parts by weight, more preferably 0.04 to 1.00 parts by weight, and more preferably 0.11 to 0.70 parts by weight. Is more preferable. In addition, from the viewpoint of improving grindability, Compound A is used in an amount of 0.04 parts by weight or more, and further 0.11 parts by weight or more with respect to 100 parts by weight of a hydraulic compound as a raw material used for grinding. It is preferably 1.20 parts by weight or less, more preferably 0.60 parts by weight or less, still more preferably 0.50 parts by weight or less, and even more preferably 0.25 parts by weight or less. Further, from the viewpoint of improving the strength for 24 hours and 7 days, the compound A is preferably 0.12 parts by weight or more with respect to 100 parts by weight of a hydraulic compound as a raw material used for pulverization, for example, cement clinker. 15 parts by weight or more is more preferable, and 0.35 parts by weight or more is still more preferable. Moreover, 1.80 weight part or less is preferable, 1.40 weight part or less is more preferable, 1.20 weight part or less is still more preferable.

また、硫酸アルカリ金属塩Bの添加量は、24時間強度及び7日強度を向上する観点から、粉砕に用いられる原料の水硬性化合物、例えばセメントクリンカ100重量部に対して、0.02〜2.0重量部が好ましく、0.12〜1.7重量部がより好ましく、0.25〜0.95重量部がより更に好ましく、0.35〜0.80重量部がより更に好ましい。   Moreover, the addition amount of the alkali metal sulfate B is 0.02 to 2 with respect to 100 parts by weight of a raw material hydraulic compound used for pulverization, for example, cement clinker, from the viewpoint of improving the strength for 24 hours and 7 days. 0.0 part by weight is preferable, 0.12 to 1.7 part by weight is more preferable, 0.25 to 0.95 part by weight is still more preferable, and 0.35 to 0.80 part by weight is still more preferable.

化合物A及び硫酸アルカリ金属塩Bの添加量の合計量は、24時間強度及び7日強度を向上する観点から、粉砕に用いられる原料の水硬性化合物、例えばセメントクリンカ100重量部に対して合計の固形分で0.04〜3.5重量部が好ましく、0.14〜3.2重量部がより好ましく、0.30〜2.00重量部が更に好ましく、0.40〜1.80重量部がより更に好ましく、0.65〜1.30重量部がより更に好ましい。   From the viewpoint of improving the strength for 24 hours and the strength for 7 days, the total amount of the compound A and the alkali metal sulfate B added is the sum of the amount of the raw material hydraulic compound used for grinding, for example, 100 parts by weight of cement clinker. The solid content is preferably 0.04 to 3.5 parts by weight, more preferably 0.14 to 3.2 parts by weight, still more preferably 0.30 to 2.00 parts by weight, and 0.40 to 1.80 parts by weight. Is more preferable, and 0.65 to 1.30 parts by weight is even more preferable.

本発明では、水硬性化合物の粉砕性の向上の観点から、化合物Aと硫酸アルカリ金属塩Bとの重量比は、化合物A/硫酸アルカリ金属塩Bで、0.1以上が好ましく、0.2以上がより好ましく、1.0以上が更に好ましい。また、24時間強度及び7日強度を向上する観点から、化合物Aと硫酸アルカリ金属塩Bとの重量比は、化合物A/硫酸アルカリ金属塩Bで、10以下が好ましく、8.0以下がより好ましく、2.0以下がより好ましく、1.0以下がより好ましく、0.3以下が更に好ましく、0.2以下がより更に好ましい。以上2つの観点から、グリセリン及びグリセリンモノ酢酸エステルから選ばれる化合物Aと、硫酸アルカリ金属塩Bとの重量比は、化合物A/硫酸アルカリ金属塩Bで、0.1〜8.0が好ましく、0.1〜2.0がより好ましく、0.2〜1.0が更に好ましく、0.2〜0.3がより更に好ましい。   In the present invention, from the viewpoint of improving the grindability of the hydraulic compound, the weight ratio of compound A to alkali metal sulfate B is preferably compound A / alkali metal sulfate B, preferably 0.1 or more, 0.2 The above is more preferable, and 1.0 or more is still more preferable. Further, from the viewpoint of improving the strength for 24 hours and the strength for 7 days, the weight ratio of the compound A and the alkali metal sulfate B is preferably 10 or less, more preferably 8.0 or less in the compound A / alkali metal sulfate B. Preferably, it is 2.0 or less, more preferably 1.0 or less, still more preferably 0.3 or less, and even more preferably 0.2 or less. From the above two viewpoints, the weight ratio between the compound A selected from glycerin and glycerin monoacetate and the alkali metal sulfate B is compound A / alkali metal sulfate B, preferably 0.1 to 8.0, 0.1-2.0 are more preferable, 0.2-1.0 are still more preferable, and 0.2-0.3 are still more preferable.

本発明に係る化合物Aは、通常、その混合物が常温、例えば20℃において、液状であるので、水硬性化合物を粉砕に用いる際の秤量や添加操作等の作業性に優れるものである。化合物Aは、濃度100重量%の液状として用いることができるが、更に取扱いを容易にする観点から、水溶液として用いても良い。その場合の化合物Aの水溶液中の合計の濃度は30〜99重量%が好ましく、40〜99重量%がより好ましく、50〜99重量%が更に好ましい。   The compound A according to the present invention is usually excellent in workability such as weighing and addition operation when the hydraulic compound is used for pulverization because the mixture is liquid at normal temperature, for example, 20 ° C. Compound A can be used as a liquid having a concentration of 100% by weight, but may be used as an aqueous solution from the viewpoint of facilitating handling. In this case, the total concentration of Compound A in the aqueous solution is preferably 30 to 99% by weight, more preferably 40 to 99% by weight, and still more preferably 50 to 99% by weight.

化合物Aを含有する水溶液を用いる場合は、水硬性化合物の粉砕性の向上と硬性化合物の粉砕に用いる際の秤量や添加操作等の作業性の観点から、水硬性化合物100重量部に対して当該水溶液の水の量が0.001〜2.0重量部であること好ましく、0.005〜1.0重量部であることがより好ましく、0.001〜0.50重量部であることが更に好ましい。   In the case of using an aqueous solution containing Compound A, from the viewpoint of workability such as weighing and addition operation, etc. when used for pulverization of the hydraulic compound and pulverization of the hard compound, the said relative to 100 parts by weight of the hydraulic compound The amount of water in the aqueous solution is preferably 0.001 to 2.0 parts by weight, more preferably 0.005 to 1.0 parts by weight, and further 0.001 to 0.50 parts by weight. preferable.

本発明に係る硫酸アルカリ金属塩Bは、通常、粉末状である。水硬性化合物を粉砕に用いる際に、添加される石膏と同様に、粉末で添加することができる。   The alkali metal sulfate B according to the present invention is usually in a powder form. When using a hydraulic compound for grinding | pulverization, it can add with a powder similarly to the gypsum added.

本発明では、粉砕時に、別々に用意した化合物Aと硫酸アルカリ金属塩Bを添加できるため、水硬性組化合物への添加量の調整や、化合物Aと硫酸アルカリ金属塩Bの重量比の調整などが容易となる。   In the present invention, since compound A and alkali metal sulfate B prepared separately can be added at the time of pulverization, adjustment of the amount added to the hydraulic group compound, adjustment of the weight ratio of compound A and alkali metal sulfate B, etc. Becomes easy.

本発明の水硬性粉体の製造方法では水硬性化合物を粉砕し水硬性粉体を得る。水硬性化合物とは、水と反応して硬化する性質をもつ物質、及び単一物質では硬化性を有しないが2種以上を組み合わせると水を介して相互作用により水和物を形成し硬化する化合物をいう。一般に、水硬性化合物はアルカリ土類金属の酸化物とSiO2、Al23、Fe23、TiO2、P25、ZnOなどの酸化物が常温又は水熱条件下で水和物を形成する。水硬性化合物としては、例えば、セメントに含有される鉱物(C3S、C2S、C3A、C4AF)、スラグ、フライアッシュ、石灰石、鉄さい、アルミナ、焼却灰等が挙げられ、水硬性粉体の原料として用いることができる。 In the method for producing hydraulic powder of the present invention, a hydraulic compound is pulverized to obtain hydraulic powder. A hydraulic compound is a substance that has the property of curing by reacting with water, and a single substance does not have curability, but when two or more are combined, a hydrate is formed by interaction through water and cured. Refers to a compound. In general, hydraulic compounds include alkaline earth metal oxides and oxides such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , P 2 O 5 , and ZnO hydrate at room temperature or hydrothermal conditions. Form things. Examples of the hydraulic compound include minerals contained in cement (C 3 S, C 2 S, C 3 A, C 4 AF), slag, fly ash, limestone, iron slag, alumina, incineration ash, and the like. It can be used as a raw material for hydraulic powder.

水硬性粉体としてポルトランドセメントを得る場合、例えば、ポルトランドセメントは、石灰石、粘土、鉄さい等の原料を焼成して得られた水硬性化合物であるクリンカを予備粉砕し、必要に応じて石膏を加え、仕上粉砕して、ブレーン値2500cm2/g以上の比表面積を有する粉体として製造される。 When obtaining Portland cement as a hydraulic powder, for example, Portland cement preliminarily grinds a clinker, which is a hydraulic compound obtained by firing raw materials such as limestone, clay, iron slag, etc. In addition, it is finely pulverized to produce a powder having a specific surface area of a brain value of 2500 cm 2 / g or more.

本発明に係る化合物A及び硫酸アルカリ金属塩Bは、前記水硬性化合物、好ましくはクリンカ粉砕の際の粉砕助剤として用いることが好ましい。また、本発明に係る化合物A及び硫酸アルカリ金属塩Bは、仕上粉砕での粉砕助剤として用いることが好ましい。   The compound A and the alkali metal sulfate B according to the present invention are preferably used as a grinding aid for the hydraulic compound, preferably clinker grinding. Moreover, it is preferable to use the compound A and the alkali metal sulfate B according to the present invention as a grinding aid in finish grinding.

化合物A及び硫酸アルカリ金属塩Bを添加して粉砕する方法として、水硬性化合物、例えばクリンカを含む原料に化合物A(好ましくは水溶液として)と、硫酸アルカリ金属塩B(好ましくは粉末状)を添加して行う。なお、この水溶液には、硫酸アルカリ金属塩Bを配合することができるが、硫酸アルカリ金属塩Bの水への溶解性の観点から、水溶液に配合せず別添することが好ましい。   As a method of adding compound A and alkali metal sulfate B to pulverize, compound A (preferably as an aqueous solution) and alkali metal sulfate B (preferably in powder form) are added to a raw material containing a hydraulic compound, for example, clinker. And do it. In addition, although the alkali metal sulfate salt B can be mix | blended with this aqueous solution, it is preferable to attach separately from the aqueous solution from a viewpoint of the solubility to the water of the alkali metal sulfate B salt.

他の成分としては、消泡剤、水、化合物A以外の公知の粉砕助剤等を添加しても良い。   As other components, antifoaming agents, water, known grinding aids other than Compound A, and the like may be added.

本発明の水硬性粉体の製造方法では、原料、用途等により、適当な粒径の粉体が得られるよう、粉砕の条件を調整すればよい。得られる水硬性粉体の硬化時の圧縮強度、及び製造コストの観点から、比表面積、ブレーン値が2000〜5000cm2/gが好ましく、2500〜5000cm2/gがより好ましく、3000〜4000cm2/gが更に好ましい。比表面積が前記範囲を満たす粉体となるまで、水硬性化合物、例えばクリンカの粉砕を行うことが好ましい。目的のブレーン値は、例えば粉砕時間を調整することにより得ることができる。粉砕時間を長くするとブレーン値が大きくなり、短くするとブレーン値が小さくなる傾向がある。 In the method for producing hydraulic powder according to the present invention, the pulverization conditions may be adjusted so that a powder having an appropriate particle size can be obtained depending on the raw material, use, and the like. Compressive strength upon curing of the resultant hydraulic powder, and from the viewpoint of production cost, the specific surface area, Blaine value is preferably 2000~5000cm 2 / g, more preferably 2500~5000cm 2 / g, 3000~4000cm 2 / g is more preferable. It is preferable to grind a hydraulic compound such as a clinker until the specific surface area becomes a powder satisfying the above range. The target brain value can be obtained, for example, by adjusting the grinding time. When the pulverization time is lengthened, the brane value tends to increase, and when shortened, the brane value tends to decrease.

本発明において、水硬性化合物の粉砕に使用される粉砕装置は、特に限定されないが、例えばセメントなどの粉砕で汎用されているボールミルを挙げることができる。該装置の粉砕媒体(粉砕ボール)の材質は、被粉砕物(例えばセメントクリンカの場合、カルシウムアルミネート)と同等又はそれ以上の硬度を有するものが望ましく、一般に入用可能な市販品では、例えば鋼、ステンレス、アルミナ、ジルコニア、チタニア、タングステンカーバイド等を挙げることができる。   In the present invention, the pulverizing apparatus used for pulverizing the hydraulic compound is not particularly limited, and examples thereof include a ball mill which is widely used for pulverizing cement and the like. The material of the grinding media (grinding balls) of the apparatus is preferably one having a hardness equal to or higher than that of the material to be ground (for example, calcium aluminate in the case of cement clinker). Steel, stainless steel, alumina, zirconia, titania, tungsten carbide and the like can be mentioned.

水硬性組成物中の空気量増大現象による強度低下を抑制する観点から、更に消泡剤を併用することができる。また、消泡剤を、水硬性化合物の粉砕時に存在させることで、得られる水硬性粉体の表面に消泡剤を均一に分布させ、前記抑制効果をより効果的に発現させることもできる。   An antifoaming agent can be used in combination from the viewpoint of suppressing strength reduction due to an increase in the amount of air in the hydraulic composition. Moreover, by making an antifoamer exist at the time of the grinding | pulverization of a hydraulic compound, an antifoamer can be uniformly distributed on the surface of the hydraulic powder obtained, and the said inhibitory effect can also be expressed more effectively.

消泡剤としては、シリコーン系消泡剤、脂肪酸エステル系消泡剤及びエーテル系消泡剤が好ましく、シリコーン系消泡剤ではジメチルポリシロキサンがより好ましく、脂肪酸エステル系消泡剤ではポリアルキレングリコール脂肪酸エステルがより好ましく、エーテル系消泡剤ではポリアルキレングリコールエーテルがより好ましい。   As the antifoaming agent, a silicone-based antifoaming agent, a fatty acid ester-based antifoaming agent, and an ether-based antifoaming agent are preferable. In the silicone-based antifoaming agent, dimethylpolysiloxane is more preferable, and in the fatty acid ester-based antifoaming agent, polyalkylene glycol. Fatty acid esters are more preferred, and polyalkylene glycol ethers are more preferred for ether-based antifoaming agents.

本発明の製造方法により得られた水硬性粉体を用いた水硬性組成物は圧縮強度が向上されたものとなる。水硬性粉体としては、ポルトランドセメント、高炉スラグ、アルミナセメント等のセメント、フライアッシュ、石灰石、石膏等が挙げられる。   The hydraulic composition using the hydraulic powder obtained by the production method of the present invention has improved compressive strength. Examples of the hydraulic powder include Portland cement, blast furnace slag, alumina cement and other cements, fly ash, limestone, and gypsum.

本発明の製造方法により得られた水硬性粉体は、コンクリート構造物やコンクリート製品の材料として用いることができる。本発明の製造方法により得られた水硬性粉体を用いたコンクリートは、接水から24時間強度及び7日強度が向上するので、例えば、本発明の製造方法により得られた水硬性粉体に、接水後の初期材齢強度が低い水硬性粉体(高炉スラグ、フライアッシュ、石灰石等)を配合・置換しても、本発明未実施の水硬性粉体を用いた場合と比較して、同等以上の、24時間強度及び7日強度を得ることが出来る、等の利点を有する。   The hydraulic powder obtained by the production method of the present invention can be used as a material for concrete structures and concrete products. The concrete using the hydraulic powder obtained by the production method of the present invention is improved in strength for 24 hours and 7 days from water contact. For example, the hydraulic powder obtained by the production method of the present invention Even when blending and replacing hydraulic powders (blast furnace slag, fly ash, limestone, etc.) with low initial age strength after contact with water, compared to the case of using hydraulic powders not yet implemented in the present invention It has advantages such as being able to obtain the strength of 24 hours and 7 days, which is equivalent or better.

(実施例1−1)
成分が、CaO:約68%、SiO2:約25%、Al23:約4%、Fe23:約3%、MgO他:約3%(重量基準)となるように、石灰石、粘土、けい石、酸化鉄原料等を組み合わせて焼成したものを、クラッシャー及びグラインダーにより一次粉砕し、3.5mmふるい通過により普通ポルトランドセメント用クリンカを得た。
(Example 1-1)
Component, CaO: about 68%, SiO 2: about 25%, Al 2 O 3: about 4%, Fe 2 O 3: about 3%, MgO other: to be about 3% (by weight), limestone The clay, silica, iron oxide raw materials and the like fired in combination were primarily pulverized by a crusher and grinder, and a normal Portland cement clinker was obtained by passing through a 3.5 mm sieve.

このクリンカ1000gと、SO3量45.93重量%の二水石膏30.3g(クリンカ100重量部に対してSO3量1.4重量部)と、グリセリン(花王(株)製、精製グリセリン)の50%水溶液3.2g(固形分1.6g)と、硫酸ナトリウム(和光純薬工業(株)製、試薬)8.0gとを使用材料として用い、これらをボールミル(AXB−15、(株)セイワ技研製)に一括仕込みし、ボールミルにより粉砕を行った。ボールミルでの粉砕は、容量は18リットル(外径300mm)のステンレスポット、30mmφ(呼び1・1/4)30個と20mmφ(呼び3/4)70個(合計100個)のステンレスボールを使用し、ボールミルの回転数35rpmにて行った。 1000 g of this clinker, 30.3 g of dihydrate gypsum having an SO 3 amount of 45.93 wt% (1.4 parts by weight of SO 3 with respect to 100 parts by weight of clinker), and glycerin (purified glycerin manufactured by Kao Corporation) A ball mill (AXB-15, Co., Ltd.) was used as a material to use 3.2 g of a 50% aqueous solution (solid content 1.6 g) and 8.0 g of sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., reagent). ), Manufactured by Seiwa Giken Co., Ltd.) and pulverized by a ball mill. For grinding with a ball mill, stainless steel pots with a capacity of 18 liters (outer diameter 300 mm), 30 pieces of 30 mmφ (nominal 1/4) and 70 20 mmφ (nominal 3/4) 70 (total of 100) stainless balls are used. The ball mill was rotated at 35 rpm.

目標ブレーン値を3300±100cm2/gとし、粉砕開始から60分、75分、90分後に粉砕物を一部排出しサンプリングし、サンプルについてブレーン値を測定し、目標ブレーン値3300cm2/gに達する時間をマイクロソフト社製マイクロソフトエクセル2003の二次回帰式により求めた。その時間は最終到達時間(粉砕到達時間)として粉砕を終了し、セメントを得た。最終到達時間は108分であった。なお、グリセリン及び硫酸ナトリウムを添加しない場合の最終到達時間は120分であった。また、ブレーン値の測定は、セメントの物理試験方法(JIS R 5201)に定められるブレーン空気透過装置を使用した。 The target brane value is set to 3300 ± 100 cm 2 / g, and after 60 minutes, 75 minutes, and 90 minutes from the start of grinding, a part of the ground product is discharged and sampled, and the brain value of the sample is measured to obtain the target brain value of 3300 cm 2 / g. The reaching time was determined by a quadratic regression equation of Microsoft Excel 2003 manufactured by Microsoft Corporation. The time was the final arrival time (crush arrival time), and the pulverization was finished to obtain cement. The final arrival time was 108 minutes. The final arrival time when glycerin and sodium sulfate were not added was 120 minutes. Moreover, the measurement of a brane value used the brane air permeation | transmission apparatus prescribed | regulated to the physical test method (JISR5201) of a cement.

次いで、得られたセメントをセメントの物理試験方法(JIS R 5201)附属書2(セメントの試験方法−強さの測定)に従ってモルタルを調製し、24時間強度と7日強度を測定した。コンクリート製品や構造物の製造の観点から、24時間強度と7日強度は大きいほど望ましい。   Next, mortar was prepared from the obtained cement according to Cement Physical Test Method (JIS R 5201), Annex 2 (Cement Test Method—Measurement of Strength), and the strength was measured for 24 hours and 7 days. From the viewpoint of manufacturing concrete products and structures, it is desirable that the 24-hour strength and the 7-day strength are larger.

(比較例1−1)
粉砕の使用材料として、硫酸ナトリウムを添加しないこと以外は、実施例1−1と同様にしてセメントを得た。最終到達時間は108分であった。得られたセメントに硫酸ナトリウム8.0g(クリンカ100重量部に対して0.80重量部)を添加混合して実施例1−1と同様にモルタルを調製し、24時間強度と7日強度を測定した。
(Comparative Example 1-1)
A cement was obtained in the same manner as in Example 1-1 except that sodium sulfate was not added as a material used for grinding. The final arrival time was 108 minutes. To the obtained cement, 8.0 g of sodium sulfate (0.80 parts by weight with respect to 100 parts by weight of clinker) was added and mixed to prepare a mortar in the same manner as in Example 1-1. It was measured.

(比較例1−2)
粉砕の使用材料として、グリセリンを添加しないこと以外は、実施例1−1と同様にしてセメントを得た。最終到達時間は120分であった。得られたセメントにグリセリンの50%水溶液3.2g(固形分1.6g)(クリンカ100重量部に対して0.16重量部)を添加混合し、実施例1−1と同様にモルタルを調製し、24時間強度と7日強度を測定した。
(Comparative Example 1-2)
A cement was obtained in the same manner as in Example 1-1 except that glycerin was not added as a material used for grinding. The final arrival time was 120 minutes. A mortar was prepared in the same manner as in Example 1-1 by adding and mixing 3.2 g of a 50% aqueous solution of glycerin (solid content: 1.6 g) (0.16 parts by weight with respect to 100 parts by weight of clinker) to the obtained cement. Then, the strength for 24 hours and the strength for 7 days were measured.

実施例1−1、比較例1−1及び比較例1−2の結果を表1に示した。   The results of Example 1-1, Comparative Example 1-1, and Comparative Example 1-2 are shown in Table 1.

Figure 0005805442
Figure 0005805442

(実施例2−1及び比較例2−1)
グリセリンの代わりにモノアセチン(グリセリンモノ酢酸エステル、和光純薬工業(株)製、試薬)を用いたこと以外は、実施例1−1及び比較例1−1と同様にしてモルタルを調製し、24時間強度と7日強度を測定した。結果を表2に示した。なお、実施例2−1及び比較例2−1の最終到達時間はいずれも100分であった。
(Example 2-1 and Comparative Example 2-1)
Mortar was prepared in the same manner as in Example 1-1 and Comparative Example 1-1 except that monoacetin (glycerin monoacetate ester, manufactured by Wako Pure Chemical Industries, Ltd., reagent) was used instead of glycerin. Time intensity and 7-day intensity were measured. The results are shown in Table 2. Note that the final arrival times of Example 2-1 and Comparative Example 2-1 were both 100 minutes.

Figure 0005805442
Figure 0005805442

(実施例3−1及び比較例3−1)
硫酸ナトリウムの添加量を16gとしたこと以外は、実施例1−1及び比較例1−1と同様にしてモルタルを調製し、24時間強度と7日強度を測定した。結果を表3に示した。なお、実施例3−1及び比較例3−1の最終到達時間はそれぞれ109分及び108分であった。
(Example 3-1 and Comparative example 3-1)
Mortar was prepared in the same manner as in Example 1-1 and Comparative Example 1-1 except that the amount of sodium sulfate added was 16 g, and the strength for 24 hours and the strength for 7 days were measured. The results are shown in Table 3. The final arrival times of Example 3-1 and Comparative Example 3-1 were 109 minutes and 108 minutes, respectively.

Figure 0005805442
Figure 0005805442

(実施例4−1及び比較例4−1)
グリセリンの添加量を0.4g、硫酸ナトリウムの添加量を2.0gとしたこと以外は、実施例1−1及び比較例1−1と同様にしてモルタルを調製し、24時間強度と7日強度を測定した。結果を表4に示した。なお、実施例4−1及び比較例4−1の最終到達時間はそれぞれ102分及び101分であった。
(Example 4-1 and Comparative example 4-1)
Mortar was prepared in the same manner as in Example 1-1 and Comparative Example 1-1 except that the amount of glycerin added was 0.4 g and the amount of sodium sulfate added was 2.0 g. The strength was measured. The results are shown in Table 4. The final arrival times of Example 4-1 and Comparative Example 4-1 were 102 minutes and 101 minutes, respectively.

Figure 0005805442
Figure 0005805442

表1〜4より、グリセリン及びグリセリンモノ酢酸エステルから選ばれる1種以上の化合物(A)と硫酸アルカリ金属塩(B)の両方を水硬性粉体の粉砕時に添加して粉砕することで、24時間強度と7日強度が大きく向上することがわかる。   From Tables 1 to 4, by adding and pulverizing both the one or more compounds (A) selected from glycerin and glycerin monoacetate and the alkali metal sulfate sulfate (B) during pulverization of the hydraulic powder, 24 It can be seen that the time intensity and the 7-day intensity are greatly improved.

Claims (2)

グリセリン及びグリセリンモノ酢酸エステルから選ばれる1種以上の化合物A〔以下、化合物Aという〕と、硫酸アルカリ金属塩Bとを水硬性化合物に添加して粉砕する水硬性粉体の製造方法であって、
化合物Aの添加量が水硬性化合物100重量部に対して0.01〜1.50重量部であり、
硫酸アルカリ金属塩Bの添加量が水硬性化合物100重量部に対して0.02〜2.0重量部であり、
化合物Aと硫酸アルカリ金属塩Bとの重量比〔化合物A/硫酸アルカリ金属塩B〕が0.1〜2.0である、
水硬性粉体の製造方法。
A method for producing a hydraulic powder comprising adding one or more compounds A selected from glycerin and glycerin monoacetate (hereinafter referred to as compound A) and an alkali metal sulfate B to a hydraulic compound and pulverizing them. ,
Compound A is added in an amount of 0.01 to 1.50 parts by weight with respect to 100 parts by weight of the hydraulic compound,
The addition amount of the alkali metal sulfate B is 0.02 to 2.0 parts by weight with respect to 100 parts by weight of the hydraulic compound,
The weight ratio of compound A and alkali metal sulfate salt B [compound A / alkali metal sulfate B] is 0.1 to 2.0.
A method for producing hydraulic powder.
化合物Aがグリセリンモノ酢酸エステルである、請求項1記載の水硬性粉体の製造方法。The manufacturing method of the hydraulic powder of Claim 1 whose compound A is glycerol monoacetic acid ester.
JP2011140369A 2011-06-24 2011-06-24 Method for producing hydraulic powder Active JP5805442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140369A JP5805442B2 (en) 2011-06-24 2011-06-24 Method for producing hydraulic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140369A JP5805442B2 (en) 2011-06-24 2011-06-24 Method for producing hydraulic powder

Publications (2)

Publication Number Publication Date
JP2013006738A JP2013006738A (en) 2013-01-10
JP5805442B2 true JP5805442B2 (en) 2015-11-04

Family

ID=47674430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140369A Active JP5805442B2 (en) 2011-06-24 2011-06-24 Method for producing hydraulic powder

Country Status (1)

Country Link
JP (1) JP5805442B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6039476B2 (en) * 2013-03-22 2016-12-07 花王株式会社 Method for producing hydraulic powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089696A (en) * 1976-10-08 1978-05-16 Martin Marietta Corporation Hydraulic cement mixes and process for improving hydraulic cement mixes
IT1357260B (en) * 2004-11-12 2009-03-10 Univ Degli Studi Milano CEMENTS WITH INCREASED COMPRESSION RESISTANCE
WO2006132762A2 (en) * 2005-06-02 2006-12-14 W.R. Grace & Co.-Conn. Biomass-derived grinding aids
CN102099311B (en) * 2008-07-18 2013-12-04 花王株式会社 Method for producing hydraulic powder
GB201010306D0 (en) * 2010-06-21 2010-08-04 Fosroc International Ltd Grinding aid
JP5798395B2 (en) * 2010-07-16 2015-10-21 花王株式会社 Method for producing hydraulic powder
JP5666281B2 (en) * 2010-12-17 2015-02-12 花王株式会社 Method for producing hydraulic powder
JP5883243B2 (en) * 2011-01-24 2016-03-09 花王株式会社 Method for producing hydraulic powder

Also Published As

Publication number Publication date
JP2013006738A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5798395B2 (en) Method for producing hydraulic powder
CN113698117B (en) Solid waste based high-iron sulphoaluminate marine gelled material and preparation method and application thereof
JP6371701B2 (en) Additive for hydraulic composition
JP6021753B2 (en) Mixed cement
JP2008179504A (en) Blast furnace slag cement
JP5883242B2 (en) Method for producing hydraulic powder
JP5759801B2 (en) Method for producing hydraulic powder
JP2009227549A (en) Cement additive and cement composition
JP5883243B2 (en) Method for producing hydraulic powder
JP6022340B2 (en) Method for producing hydraulic powder
JP5802815B2 (en) Method for producing hydraulic powder
JP5805442B2 (en) Method for producing hydraulic powder
JP5666281B2 (en) Method for producing hydraulic powder
CN111138101A (en) Method for producing cement by utilizing slag waste
JP5818623B2 (en) Low hydration heat cement clinker and low hydration heat cement composition
JP6022339B2 (en) Method for producing hydraulic powder
JP6039476B2 (en) Method for producing hydraulic powder
JP2014185042A (en) Cement composition
JP6278478B2 (en) Cement composition and concrete
JP2013227172A (en) Concrete
KR20130026223A (en) Composition for grinding of mineral containing sodium silicate hydrate
JP2009234905A (en) Cement additive and cement composition
JP5940807B2 (en) Intumescent composition and concrete
JP2019048729A (en) Bonding material composition and stimulating agent thereof
JP2018020938A (en) Cement admixture for salt damage countermeasure and concrete using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R151 Written notification of patent or utility model registration

Ref document number: 5805442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250