JP5801622B2 - Plate-like titanic acid compound and method for producing the same - Google Patents

Plate-like titanic acid compound and method for producing the same Download PDF

Info

Publication number
JP5801622B2
JP5801622B2 JP2011142421A JP2011142421A JP5801622B2 JP 5801622 B2 JP5801622 B2 JP 5801622B2 JP 2011142421 A JP2011142421 A JP 2011142421A JP 2011142421 A JP2011142421 A JP 2011142421A JP 5801622 B2 JP5801622 B2 JP 5801622B2
Authority
JP
Japan
Prior art keywords
plate
titanate
tio
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011142421A
Other languages
Japanese (ja)
Other versions
JP2013010642A (en
Inventor
旗 馮
旗 馮
山本 裕一
裕一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Kagawa University NUC
Original Assignee
Konoshima Chemical Co Ltd
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd, Kagawa University NUC filed Critical Konoshima Chemical Co Ltd
Priority to JP2011142421A priority Critical patent/JP5801622B2/en
Publication of JP2013010642A publication Critical patent/JP2013010642A/en
Application granted granted Critical
Publication of JP5801622B2 publication Critical patent/JP5801622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は板状チタン酸化合物ならびにその製造方法に関する。   The present invention relates to a plate-like titanic acid compound and a method for producing the same.

発明者らは、板状のBaTiO3(BT)の合成に成功した(特許文献1:特開2007-22857)。この合成法では、TiO2とKOH及びLiOH等をオートクレーブ中でソルボサーマル反応させることにより、K0.8Li0.27<0.01Ti1.73O4等(ここで□はTiの欠陥部位)の板状化合物を調製し、得られた板状化合物を希硝酸等の酸と反応させ、板状のチタン酸水和物とする。板状のチタン酸水和物をBa(OH)2等と、オートクレーブ中でソルボサーマル反応させることにより、板状のBaTiO3を得ることができる。得られたBaTiO3は微細なBaTiO3粒子が凝集して板状となり、(110)面の方向に配向しているが、BaTiO3の一次粒子あるいは結晶子自体が板状であるわけではない。 The inventors have succeeded in synthesizing plate-like BaTiO 3 (BT) (Patent Document 1: JP 2007-22857). In this synthesis method, a plate-like compound of K 0.8 Li 0.27<0.01 Ti 1.73 O 4 (where □ is a defect site of Ti) is obtained by solvothermal reaction of TiO 2 with KOH and LiOH in an autoclave. The prepared plate-like compound is reacted with an acid such as dilute nitric acid to obtain plate-like titanic acid hydrate. A plate-like BaTiO 3 can be obtained by subjecting the plate-like titanic acid hydrate to a solvothermal reaction with Ba (OH) 2 or the like in an autoclave. In the obtained BaTiO 3 , fine BaTiO 3 particles aggregate to form a plate and are oriented in the direction of the (110) plane, but the primary particles of BaTiO 3 or the crystallites themselves are not plate-shaped.

圧電材料あるいは誘電材料として、BaTiO3とBi0.5K0.5TiO3等との固溶体が着目されている。この固溶体の組成はBa1-x(Bi0.5K0.5)xTiO3(0<x<1)で、キュリー温度は例えば380℃付近と高い。またKはNaと任意の割合で置換でき、BaはSr,Ca,Mg等の他のアルカリ土類元素、あるいはPbで置換できるので、一般的な組成はA1-x(Bi0.5M0.5)xTiO3となる。ここにAはBa,Sr,Ca,Mg,Pbから成る群の少なくとも一員の元素を,MはKまたはNaを表し、前記のように0<x<1である。 As a piezoelectric material or dielectric material, a solid solution of BaTiO 3 and Bi 0.5 K 0.5 TiO 3 or the like has attracted attention. The composition of this solid solution is Ba 1-x (Bi 0.5 K 0.5 ) x TiO 3 (0 <x <1), and the Curie temperature is as high as around 380 ° C., for example. In addition, K can be replaced with Na in any proportion, and Ba can be replaced with other alkaline earth elements such as Sr, Ca, Mg, or Pb, so the general composition is A 1-x (Bi 0.5 M 0.5 ) x TiO 3 Here, A represents at least one member of the group consisting of Ba, Sr, Ca, Mg, and Pb, M represents K or Na, and 0 <x <1 as described above.

特許文献2(特開2001-151566)はBaCO3、Bi2O3,K2CO3,Na2CO3,及びTiO2を湿式混合し、CIP(等方静水圧プレス)を施して成形し、1050〜1250℃で例えば2時間焼成することにより、焼結体とすることを開示している。そしてBaCO3とBi2O3,K2CO3及びNa2CO3の混合比を変えることにより、焼結体の組成をBa1-x(Bi0.5(KzNa1-z)0.5)xTiO3(0<x<1,0≦z≦1)の範囲で変えることができることを示している。なお特許文献2の焼結体を構成する粒子は板状ではなく、また特定の結晶面の方向に配向しているものでもない。 Patent Document 2 (Japanese Patent Laid-Open No. 2001-151566) is a method in which BaCO 3 , Bi 2 O 3 , K 2 CO 3 , Na 2 CO 3 , and TiO 2 are wet-mixed and subjected to CIP (isotropic isostatic pressing). , A sintered body is disclosed by firing for 2 hours at 1050 to 1250 ° C., for example. The composition of the sintered body was changed to Ba 1-x (Bi 0.5 (K z Na 1-z ) 0.5 ) x by changing the mixing ratio of BaCO 3 and Bi 2 O 3 , K 2 CO 3 and Na 2 CO 3. It shows that the change can be made within the range of TiO 3 (0 <x <1, 0 ≦ z ≦ 1). The particles constituting the sintered body of Patent Document 2 are not plate-shaped and are not oriented in a specific crystal plane direction.

特許文献3(特許3975518)では、Bi2O3とTiO2をNaCl及びKClの存在下に1050℃に加熱し、板状のBi4Ti3O12を合成する。これとは別にBi2O3,Na2CO3,K2CO3,及びTiO2を850℃に加熱し、Bi0.5(Na0.85K0.15)0.5TiO3の等軸形状の粉末を合成する。Bi4Ti3O12とBi0.5(Na0.85K0.15)0.5TiO3とをボールミルで混合して、Na2CO3,K2CO3、及びTiO2を添加し、テープ状に成形した後、1200℃等で焼結することにより、(100)面の方向に配向したBi0.5(Na0.85K0.15)0.5TiO3を合成する。しかし得られるのはBi0.5(Na0.85K0.15)0.5TiO3で、Ba1-x(Bi0.5K0.5)xTiO3ではなく、また(100)面の方向に配向しているとされているものの、板状であるとは報告されていない。以上のように、板状のBa1-x(Bi0.5K0.5)xTiO3等の合成は知られていない。 In Patent Document 3 (Patent 3975518), Bi 2 O 3 and TiO 2 are heated to 1050 ° C. in the presence of NaCl and KCl to synthesize plate-like Bi 4 Ti 3 O 12 . Separately, Bi 2 O 3 , Na 2 CO 3 , K 2 CO 3 and TiO 2 are heated to 850 ° C. to synthesize Bi 0.5 (Na 0.85 K 0.15 ) 0.5 TiO 3 equiaxed powder. After mixing Bi 4 Ti 3 O 12 and Bi 0.5 (Na 0.85 K 0.15 ) 0.5 TiO 3 with a ball mill, adding Na 2 CO 3 , K 2 CO 3 , and TiO 2 and forming into a tape shape, Bi 0.5 (Na 0.85 K 0.15 ) 0.5 TiO 3 oriented in the (100) plane direction is synthesized by sintering at 1200 ° C. or the like. However, Bi 0.5 (Na 0.85 K 0.15 ) 0.5 TiO 3 is obtained, not Ba 1-x (Bi 0.5 K 0.5 ) x TiO 3 , and is said to be oriented in the (100) plane direction However, it is not reported to be plate-shaped. As described above, the synthesis of plate-like Ba 1-x (Bi 0.5 K 0.5 ) x TiO 3 or the like is not known.

特開2007-22857JP2007-22857 特開2001-151566JP2001-151566 特許3975518Patent 3975518

この発明の課題は、組成がA1-x(Bi0.5M0.5)xTiO3(ここにAはBa,Sr,Ca,Mg,Pbから成る群の少なくとも一員の元素を,MはKまたはNaを表し、0<x<1)で、板状のチタン酸化合物を提供することにある。 The subject of the present invention is that the composition is A 1-x (Bi 0.5 M 0.5 ) x TiO 3 (where A is an element of at least one member of the group consisting of Ba, Sr, Ca, Mg and Pb, and M is K or Na And 0 <x <1) to provide a plate-like titanate compound.

この発明は、組成式がA1-x(Bi0.5M0.5)xTiO3(ここにAはBa,Sr,Ca,Mg,Pbから成る群の少なくとも一員の元素を,MはKまたはNaを表し、0<x<1)であり、かつA1-x(Bi0.5M0.5)xTiO3粒子が凝集して板状となっており、結晶が(110)面方向に配向している板状チタン酸化合物にある。 In the present invention, the composition formula is A 1-x (Bi 0.5 M 0.5 ) x TiO 3 (where A is at least one element of the group consisting of Ba, Sr, Ca, Mg, and Pb, and M is K or Na. 0 <x <1), A 1-x (Bi 0.5 M 0.5 ) x TiO 3 particles are aggregated into a plate shape, and the crystal is oriented in the (110) plane direction In the titanic acid compound.

またこの発明は、Ti化合物と、Na,K,Rb,Csから成る群の少なくとも一員の元素の化合物と、Li,Mg,Co,Ni,Zn,Mn,Feから成る群の少なくとも一員の元素の化合物とを、親水性溶媒中で加熱下に反応させることにより、一般式 BwCyzTi(2-(w/4+ky/4+z)O4で表される板状チタン酸塩とするステップ(ここにBはNa,K,Rb,Csから成る群の少なくとも一員の元素を、CはLi,Mg,Co,Ni,Zn,Mn,Feから成る群の少なくとも一員の元素を、kはC元素の価数を、□はTiの欠陥部位を表し、0<w<1,0<y<w,0≦z,0<y+z<1)と、
得られた板状チタン酸塩を酸と反応させて板状チタン酸水和物とするステップと、
得られた板状チタン酸水和物を、Ba,Sr,Ca,Mg,Pbから成る群の少なくとも一員の元素をA元素として、A元素の化合物と親水性溶媒中で加熱下に反応させることにより、板状チタン酸水和物にA元素を導入するステップ、とを行う板状チタン酸化合物の製造方法において、
前記A元素を導入するステップでは、板状チタン酸水和物中のTi元素1モルに対し1モル未満の割合で、前記A元素の化合物を板状チタン酸水和物と反応させることにより、チタン酸水和物とATiO3とから成る板状の物質を得るとともに、
得られた板状の物質を、Na及びKから成る群の少なくとも一員の元素の化合物、及びBi化合物と共に、親水性溶媒中で加熱下に反応させることにより、組成式がA1-x(Bi0.5M0.5)xTiO3(ここにMはKまたはNaを表し、0<x<1)の粒子が凝集して板状となっており、結晶が(110)面方向に配向している板状チタン酸化合物を得るステップ、とを実行することを特徴とする。
The present invention also includes a compound of at least one member of the group consisting of Ti compound, Na, K, Rb, Cs and at least one element of the group consisting of Li, Mg, Co, Ni, Zn, Mn, Fe. A plate-like titanic acid represented by the general formula B w C yz Ti (2- (w / 4 + ky / 4 + z) O 4 ) by reacting with a compound in a hydrophilic solvent under heating. The step of forming a salt (where B is at least one member of the group consisting of Na, K, Rb, Cs, and C is at least one member of the group consisting of Li, Mg, Co, Ni, Zn, Mn, Fe) , K represents the valence of the C element, □ represents the defect site of Ti, 0 <w <1, 0 <y <w, 0 ≦ z, 0 <y + z <1),
Reacting the obtained plate-like titanate with an acid to form plate-like titanate hydrate,
The obtained plate-like titanic acid hydrate is reacted with a compound of element A and a hydrophilic solvent under heating, using at least one member of the group consisting of Ba, Sr, Ca, Mg, and Pb as element A. In the method for producing a plate-like titanate compound, the step of introducing an A element into the plate-like titanate hydrate,
In the step of introducing the A element, by reacting the compound of the A element with the plate-like titanate hydrate at a ratio of less than 1 mol with respect to 1 mol of the Ti element in the plate-like titanate hydrate, While obtaining a plate-like substance composed of titanic acid hydrate and ATiO 3 ,
By reacting the obtained plate-like substance with a compound of at least one member of the group consisting of Na and K, and a Bi compound in a hydrophilic solvent under heating, the composition formula is A 1-x (Bi 0.5 M 0.5 ) x TiO 3 (where M is K or Na, 0 <x <1) is agglomerated into a plate shape, and the crystal is oriented in the (110) plane direction Obtaining a titanic acid compound.

板状チタン酸化合物を得るステップでは、例えばATiO3と、ビスマスとチタンとの酸化物と、チタン酸水和物もしくは酸化チタンとを含む板状の物質が反応初期に生成し、反応後期にM元素が生成した板状の物質内に導入されて、前記A1-x(Bi0.5M0.5)xTiO3粒子となる。好ましくはAがBa,Sr,Ca,Mgから成る群の少なくとも一員の元素で、より好ましくはBaまたはSrで、特に好ましくはBaである。この明細書において、板状チタン酸化合物に関する記載はそのままその製造方法にも当てはまり、逆に板状チタン酸化合物の製造方法に関する記載はそのまま板状チタン酸化合物にも当てはまる。NaとKは板状チタン酸化合物の合成での振る舞いが等しく、Kに代えてNaを用い、あるいはKの一部をNaで置換して用いることができる。この明細書で、親水性溶媒とは水自体、エタノール、メタノール、イソプロパノール、グリセリン等の水と自由に混和する溶媒をいう。またこの明細書で、板状は2次粒子の形状が板状であることで、1次粒子あるいは結晶子自体が板状であるとの意味ではない。 In the step of obtaining the plate-like titanate compound, for example, a plate-like substance containing ATiO 3 , an oxide of bismuth and titanium, and titanic acid hydrate or titanium oxide is formed in the early stage of the reaction, and M in the late stage of the reaction. The element is introduced into the plate-like substance generated to form the A 1-x (Bi 0.5 M 0.5 ) x TiO 3 particles. A is preferably at least a member of the group consisting of Ba, Sr, Ca, and Mg, more preferably Ba or Sr, and particularly preferably Ba. In this specification, the description relating to the plate-like titanate compound also applies to the production method thereof, and the description relating to the production method of the plate-like titanate compound also applies to the plate-like titanate compound as it is. Na and K have the same behavior in the synthesis of the plate-like titanate compound, and Na can be used in place of K, or a part of K can be substituted with Na. In this specification, the hydrophilic solvent refers to a solvent that is freely miscible with water, such as water itself, ethanol, methanol, isopropanol, glycerin and the like. In this specification, the term “plate-like” does not mean that the shape of the secondary particles is plate-like, and that the primary particles or crystallites themselves are plate-like.

板状チタン酸水和物の合成までは特許文献1により公知である。Tiの欠陥部位□の数を表すzは一般に小さな数で、例えば0以上0.01以下である。B元素は安価でかつ適切なイオン半径を持つKが特に好ましく、C元素は酸により容易に除去でき、不純物残量が少ないLiが好ましい。wは例えば0.5以上で1.0未満、yは例えば0.2以上0.5未満で、w>yであり、特に好ましくは、wを0.6以上1.0未満、yを0.2以上0.4未満とする。酸によるチタン酸水和物への転換は例えば室温以上で100℃以下、特に好ましくは室温以上で60℃以下で行う。   Until the synthesis of plate-like titanic acid hydrate, it is known from Patent Document 1. Z representing the number of defect sites □ in Ti is generally a small number, for example, 0 or more and 0.01 or less. The element B is particularly preferably K which is inexpensive and has an appropriate ionic radius, and the element C is preferably Li which can be easily removed by an acid and has a small amount of impurities. w is, for example, 0.5 or more and less than 1.0, y is, for example, 0.2 or more and less than 0.5, and w> y, and particularly preferably, w is 0.6 or more and less than 1.0, and y is 0.2 or more and less than 0.4. Conversion to titanic acid hydrate with an acid is carried out, for example, at room temperature to 100 ° C., particularly preferably at room temperature to 60 ° C.

例えば板状チタン酸水和物にBa(OH)2等とBiCl3とKOHとを混合し、オートクレーブ中でソルボサーマル反応させると、Ba0.5(Bi0.5K0.50.5TiO3(BBKT)等を合成できる。しかしながら得られたBa0.5(Bi0.5K0.50.5TiO3等は板状ではなく、板状チタン酸水和物がBa0.5(Bi0.5K0.50.5TiO3等に変化する過程で、板状の形状が失われる。これに対して、板状チタン酸水和物に、ソルボサーマル反応により、Ti1モルに対し1モル未満の割合でBa等を導入すると、板状の形状を保ったままでBaTiO3等とチタン酸水和物とから成る物質を得ることができる。 For example, when Ba (OH) 2 etc., BiCl 3 and KOH are mixed in plate-like titanic acid hydrate and solvothermal reaction is carried out in an autoclave, Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 (BBKT) etc. Can be synthesized. However, the obtained Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 etc. is not plate-like, but in the process where the plate-like titanic acid hydrate changes to Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 etc. The shape of is lost. On the other hand, when Ba or the like is introduced into the plate-like titanic acid hydrate by a solvothermal reaction at a ratio of less than 1 mol with respect to 1 mol of Ti, BaTiO 3 etc. and titanic acid water remain while maintaining the plate-like shape. A substance consisting of a Japanese product can be obtained.

得られた板状物質に、ソルボサーマル反応により、BiとKまたはNaを導入すると、反応初期に板状の形状を保ったままで、チタン酸水和物の一部がBi12TiO20,Bi4Ti3O12等のチタン酸ビスマス化合物に変化する。反応を継続すると、BaTiO3と,チタン酸水和物あるいは酸化チタンと、チタン酸ビスマス化合物との集合体からなる板状の物質にKが導入されると共に、板状の物質内で組成が均一化し、板状のBa1-x(Bi0.5M0.5)xTiO3(MはNaまたはK)が得られる。得られたBa1-x(Bi0.5M0.5)xTiO3は(110)面の方向に配向しており、誘電体あるいは圧電材料に適している。なお(110)面の方向に配向していることは、本発明の他の板状チタン酸化合物でも同様である。 When Bi and K or Na are introduced into the obtained plate-like material by a solvothermal reaction, a portion of the titanic acid hydrate remains Bi 12 TiO 20 , Bi 4 while maintaining the plate-like shape at the initial stage of the reaction. It changes to bismuth titanate compounds such as Ti 3 O 12 . If the reaction is continued, K is introduced into the plate-like material composed of an aggregate of BaTiO 3 , titanic acid hydrate or titanium oxide, and bismuth titanate compound, and the composition is uniform within the plate-like material. Thus, plate-like Ba 1-x (Bi 0.5 M 0.5 ) x TiO 3 (M is Na or K) is obtained. The obtained Ba 1-x (Bi 0.5 M 0.5 ) x TiO 3 is oriented in the (110) plane direction and is suitable for a dielectric or piezoelectric material. The orientation in the direction of the (110) plane is the same for other plate-like titanate compounds of the present invention.

Ba(OH)2に代え、他のアルカリ土類の水酸化物あるいは塩、Pb(OH)2あるいはPb(NO32等を用いると、Baを他のアルカリ土類もしくはPbで置換した化合物が得られる。さらにBaTiO3等はチタン酸水和物に比べて安定で、生成したBaTiO3等とBi,K,Na等のイオンが接触しても、Ba等の元素がBi等で置き換えられることはない。従って、目標の組成に従って最初にBa等の元素を導入し、次にBiとKまたはNaを導入すると、目標の板状チタン酸化合物が得られる。
When Ba (OH) 2 is replaced with other alkaline earth hydroxides or salts, Pb (OH) 2 or Pb (NO 3 ) 2 etc., Ba is substituted with other alkaline earth or Pb Is obtained. Further, BaTiO 3 and the like are more stable than titanic acid hydrate, and even when the generated BaTiO 3 and the like come into contact with ions such as Bi, K, and Na, elements such as Ba are not replaced by Bi or the like. Therefore, when an element such as Ba is first introduced according to the target composition, and then Bi and K or Na are introduced, the target plate-like titanate compound is obtained.

a:前駆体のチタン酸水和物H1.07Ti1.73O4・xH2O(HTO)と、b:3mol/LのKOH水溶液中でHTOとBa(OH)2とBiCl3とを150℃で12時間反応させたBa0.5(Bi0.5K0.5)0.5TiO3と、c:反応温度を200℃に変えて他は同じ条件で反応させたBa0.5(Bi0.5K0.5)0.5TiO3のX線回折図a: Precursor titanate hydrate H 1.07 Ti 1.73 O 4 xH 2 O (HTO), b: HTO, Ba (OH) 2 and BiCl 3 in 150 mol / L KOH aqueous solution at 150 ° C and Ba 0.5 (Bi 0.5 K 0.5) 0.5 TiO 3 was reacted for 12 hours, c: X-ray of the other by changing the reaction temperature to 200 ° C. the Ba 0.5 was reacted under the same conditions (Bi 0.5 K 0.5) 0.5 TiO 3 Diffraction pattern a:図1aのHTOと、b:図1cのBa0.5(Bi0.5K0.5)0.5TiO3とのFE-SEM画像(Field Emission Scanning Electron Microscope Image)a: FE-SEM image (Field Emission Scanning Electron Microscope Image) of HTO in Fig. 1a and b: Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 in Fig. 1c a:前駆体のチタン酸水和物HTOと、b:HTOに部分的にBaを導入した0.5BaTiO3-0.5HTO複合体と、c:0.5BaTiO3-0.5HTO複合体を3mol/LのKOH水溶液中でBiCl3と150℃で12時間反応させたBa0.5(Bi0.5K0.5)0.5TiO3と、d:反応温度を200℃に変えて他はcと同じ条件で反応させたBa0.5(Bi0.5K0.5)0.5TiO3のX線回折図a: Precursor titanate hydrate HTO, b: 0.5BaTiO 3 -0.5HTO complex with partially introduced Ba into HTO, and c: 0.5BaTiO 3 -0.5HTO complex with 3mol / L KOH Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 reacted with BiCl 3 at 150 ° C. for 12 hours in aqueous solution, d: Ba 0.5 (reacted under the same conditions as c except that the reaction temperature was changed to 200 ° C. X-ray diffraction pattern of Bi 0.5 K 0.5 ) 0.5 TiO 3 a:板状のHTOのTEM画像(Transmission Electron Microscope Image)と、b:板状のHTOのSAEDパターン(Selected Area Electron Diffraction Pattern)、及びc:0.5BaTiO3-0.5HTO複合体のTEM画像とd:0.5BaTiO3-0.5HTO複合体のSAEDパターンを示す図a: TEM image (Transmission Electron Microscope Image) of plate-like HTO, b: SAED pattern (Selected Area Electron Diffraction Pattern) of plate-like HTO, and c: TEM image and d of 0.5BaTiO 3 -0.5HTO composite : Diagram showing SAED pattern of 0.5BaTiO 3 -0.5HTO composite 0.5BaTiO3-0.5HTO複合体とBiCl3とを200℃で12時間、KOH濃度を変えて水中で反応させた生成物のX線回折図で、aはKOH濃度が0.1mol/L,bは0.5mol/L,cは1.5mol/L、dは3mol/L、eは5mol/L、fは8mol/Lである。X-ray diffractogram of a product obtained by reacting 0.5BaTiO 3 -0.5HTO complex and BiCl 3 in water at 200 ° C for 12 hours with varying KOH concentration. A is 0.1 mol / L KOH concentration, b is 0.5 mol / L, c is 1.5 mol / L, d is 3 mol / L, e is 5 mol / L, and f is 8 mol / L. 図5の試料のFE-SEM画像で、aは0.5BaTiO3-0.5HTO複合体の画像、bはKOH濃度が0.1mol/Lで合成した生成物の画像,cは0.5mol/Lでの生成物の画像,dは1.5mol/Lでの生成物の画像、eは3mol/Lでの生成物の画像、fは8mol/Lでの生成物の画像である。In the FE-SEM image of the sample in Fig. 5, a is an image of a 0.5BaTiO 3 -0.5HTO complex, b is an image of a product synthesized with a KOH concentration of 0.1 mol / L, and c is a product generated at 0.5 mol / L. Product image, d is the product image at 1.5 mol / L, e is the product image at 3 mol / L, and f is the product image at 8 mol / L. 0.5BaTiO3-0.5HTO複合体をBiCl3と3mol/LのKOH水溶液中、200℃で所定時間反応させた生成物のX線回折図で、aは反応時間が2時間、bは4時間、cは6時間、dは12時間、eは48時間反応させた。X-ray diffraction pattern of the product obtained by reacting 0.5BaTiO 3 -0.5HTO complex with BiCl 3 in 3mol / L KOH aqueous solution at 200 ° C for a predetermined time, a is the reaction time is 2 hours, b is 4 hours, c was 6 hours, d was 12 hours, and e was 48 hours. 図7の各試料のFE-SEM画像で、aは反応時間が2時間、bは4時間、cは6時間、dは48時間である。In the FE-SEM image of each sample in FIG. 7, a is a reaction time of 2 hours, b is 4 hours, c is 6 hours, and d is 48 hours. 図7の試料b、dのTEM画像とEDS(Energy Dispersive X-ray Spectrum)で、c, dでは反応時間は4時間、e, fでは反応時間は12時間である。In the TEM images and EDS (Energy Dispersive X-ray Spectrum) of samples b and d in FIG. 7, the reaction time is 4 hours for c and d, and the reaction time is 12 hours for e and f. 図7の試料b、dのSAEDパターン(a,c)とHRTEM画像(b,d)(High Resolution Transmission Electron Microscope Image)を示し、a,bでは反応時間は4時間、c,dでは反応時間は12時間である。7 shows the SAED pattern (a, c) and HRTEM image (b, d) (High Resolution Transmission Electron Microscope Image) of samples b and d in FIG. Is 12 hours. 板状ビスマスカリウムバリウムチタン酸(Ba0.5(Bi0.5K0.5)0.5TiO3)の生成モデルを示す図Diagram showing the model of plate-like bismuth potassium barium titanate (Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 )

以下に本発明を実施するための最適実施例を示すが、本発明は実施例に制約されるものではなく、実施例を特許文献1等の公知技術と当業者に周知の事項に従って変更できる。   Although the optimal example for implementing this invention is shown below, this invention is not restrict | limited to an Example, Example can be changed according to well-known techniques, such as patent document 1, and those well-known to those skilled in the art.

容量30mLのオートクレーブに酸化チタン、水酸化カリウム、水酸化リチウムをTi:K:Liの原子比で5:4:1となるように加え、撹拌しながら250℃で20時間(より一般的には200℃以上300℃以下で、10時間以上40時間以下)水熱条件下で反応させ、K0.80Li0.27<0.01Ti1.73O4の板状粒子を得た。なおTiの欠陥部位を示す□は一般に0.01未満の小さな正数である。板状粒子の組成は原子吸光分析で求め、チタン酸カリウムリチウムであることはX線回折で確認した。板状粒子を1M−HNO3水溶液(板状粒子1モル当たりHNO3 20モル)で室温で処理し、板状のH1.07Ti1.73O4・xH2O(以下HTO)を得た。 Add titanium oxide, potassium hydroxide, and lithium hydroxide to an autoclave with a capacity of 30 mL so that the atomic ratio of Ti: K: Li is 5: 4: 1 and stir at 250 ° C. for 20 hours (more generally The reaction was carried out under hydrothermal conditions at 200 to 300 ° C. for 10 to 40 hours to obtain plate-like particles of K 0.80 Li 0.27<0.01 Ti 1.73 O 4 . Note that □ indicating a defective portion of Ti is generally a small positive number less than 0.01. The composition of the plate-like particles was determined by atomic absorption analysis, and confirmed to be potassium lithium titanate by X-ray diffraction. The plate-like particles were treated with a 1M-HNO 3 aqueous solution (20 mol of HNO 3 per mol of plate-like particles) at room temperature to obtain plate-like H 1.07 Ti 1.73 O 4 × H 2 O (hereinafter referred to as HTO).

得られたHTOをBa(OH)2及びBiCl3と共に3mol/L KOHの水溶液において、150℃及び200℃でそれぞれ12時間ずつ反応させた。なおBaとTiはモル比で、0.5:1の割合で混合し、BiとTiも同様にモル比で0.25:1の割合で混合した。原材料のHTO(板状チタン酸水和物)と生成物のBa0.5(Bi0.5K0.5)0.5TiO3のX線回折図を図1に示す。反応温度を150℃と200℃のいずれにしても、HTOはBa0.5(Bi0.5K0.5)0.5TiO3に変化している。原材料のHTOと200℃で反応させた生成物のFE-SEM画像を図2に示す。原材料のHTOは板状の化合物であるが、生成物はもはや板状ではない。 The obtained HTO was reacted with Ba (OH) 2 and BiCl 3 in a 3 mol / L KOH aqueous solution at 150 ° C. and 200 ° C. for 12 hours, respectively. Ba and Ti were mixed at a molar ratio of 0.5: 1, and Bi and Ti were similarly mixed at a molar ratio of 0.25: 1. The X-ray diffraction pattern of the raw material HTO (plate-like titanate hydrate) and the product Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 is shown in FIG. HTO is changed to Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 regardless of whether the reaction temperature is 150 ° C. or 200 ° C. FIG. 2 shows an FE-SEM image of the product reacted at 200 ° C. with the raw material HTO. The raw material HTO is a plate-like compound, but the product is no longer plate-like.

HTOに1ステップでBaとBiを導入すると、板状の化合物が得られなかった。そこでHTOに最初にBaのみを導入し、次にBiとKを導入することを検討した。最終目標として、Ba0.5(Bi0.5K0.5)0.5TiO3を合成することとし、最初にHTO 1モルに対して0.5モルの割合でBa(OH)2を加え、ソルボサーマル反応により反応させた。BaをHTO中に穏やかに導入するため、溶媒には体積比で28:2のエタノール-水混合溶媒を用いたが、溶媒の種類は任意である。150℃及び200℃では、Ba(OH)2中のBaは化学量論的に全量HTO中に導入された。得られた0.5BaTiO3-0.5HTO複合体に対し、3mol/LのKOH水溶液中で、BiCl3と150℃あるいは200℃の反応温度で各12時間反応させた。なお生成物をBa0.5(Bi0.5K0.5)0.5TiO3とすると、3mol/LのKOH水溶液は化学量論的に必要な量の50倍のK原子を含んでいる。また各実施例では化学量論的に必要な量のBi化合物を用いたが、化学量論的に必要な量以上でその1.05倍以下のBi化合物を用いることが好ましい。板状HTOのX線回折図を図3aに、0.5BaTiO3-0.5HTO複合体のX線回折図をbに、150℃での生成物のX線回折図をcに、200℃での生成物のX線回折図をdに示す。150℃でも200℃でもBa0.5(Bi0.5K0.5)0.5TiO3(BBKT)が生成し、150℃ではTiO2とBi12TiO20が検出される。このことからソルボサーマル反応の温度は好ましくは150℃以上であることが分かり、上限は例えば250℃であり、反応温度は好ましくは160℃以上250℃以下、特に好ましくは180℃以上250℃以下である。 When Ba and Bi were introduced into HTO in one step, a plate-like compound could not be obtained. Therefore, we first introduced Ba into HTO and then introduced Bi and K. As a final goal, Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 was synthesized. First, Ba (OH) 2 was added at a ratio of 0.5 mole to 1 mole of HTO and reacted by a solvothermal reaction. In order to gently introduce Ba into HTO, a 28: 2 ethanol-water mixed solvent in a volume ratio was used as a solvent, but the type of the solvent is arbitrary. At 150 ° C. and 200 ° C., Ba in Ba (OH) 2 was introduced stoichiometrically into HTO. The obtained 0.5BaTiO 3 -0.5HTO complex, in KOH aqueous solution 3 mol / L, and allowed to react each 12 hours at a reaction temperature of BiCl 3 and 0.99 ° C. or 200 ° C.. If the product is Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 , the 3 mol / L KOH aqueous solution contains 50 times the amount of K atoms stoichiometrically required. In each example, a stoichiometrically required amount of Bi compound was used, but it is preferable to use a Bi compound that is not less than the stoichiometrically required amount and not more than 1.05 times. Fig. 3a shows the X-ray diffraction pattern of the plate-like HTO, b shows the X-ray diffraction pattern of the 0.5BaTiO 3 -0.5HTO composite, c shows the X-ray diffraction pattern of the product at 150 ° C, and 200 ° C. The X-ray diffraction pattern of the product is shown in d. Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 (BBKT) is produced at 150 ° C. and 200 ° C., and TiO 2 and Bi 12 TiO 20 are detected at 150 ° C. From this, it can be seen that the temperature of the solvothermal reaction is preferably 150 ° C or higher, the upper limit is, for example, 250 ° C, the reaction temperature is preferably 160 ° C or higher and 250 ° C or lower, particularly preferably 180 ° C or higher and 250 ° C or lower. is there.

図4は、板状HTOと0.5BaTiO3-0.5HTO複合体のTEM画像並びにSAEDパターンを示す。図4cは0.5BaTiO3-0.5HTO複合体のTEM画像で、HTOのTEM画像aと比較すると、板状の2次粒子の中に、BaTiO3ナノ粒子が分布していることが分かる。また板状HTOのSAEDパターンから、試料はHTOの単相であることが分かる。これに対して0.5BaTiO3-0.5HTO複合体のSAEDパターンでは、HTOのパターンとBaTiO3のパターンとが併存していることが分かる。 FIG. 4 shows a TEM image and a SAED pattern of a plate-like HTO and a 0.5BaTiO 3 -0.5HTO composite. FIG. 4c is a TEM image of the 0.5BaTiO 3 -0.5HTO composite. Compared with the HTO TEM image a, it can be seen that BaTiO 3 nanoparticles are distributed in the plate-like secondary particles. Moreover, it can be seen from the SAED pattern of the plate-like HTO that the sample is a single phase of HTO. In contrast, in the SAED pattern of the 0.5BaTiO 3 -0.5HTO composite, it can be seen that the HTO pattern and the BaTiO 3 pattern coexist.

図5は0.5BaTiO3-0.5HTO複合体をBiCl3と250℃で12時間、各種の濃度のKOH水溶液中で反応させた生成物のX線回折図を示している。aではKOH濃度は0.1mol/L、bでは0.5mol/L、cでは1.5mol/L、dでは3mol/L、eでは5mol/L、fでは8mol/Lで、aではBi4Ti3O12が見られ、bではBi4Ti3O12とBa0.5(Bi0.5K0.5)0.5TiO3とが併存し、c〜fではBa0.5(Bi0.5K0.5)0.5TiO3のみが見られる。 FIG. 5 shows X-ray diffraction patterns of products obtained by reacting 0.5BaTiO 3 -0.5HTO complex with BiCl 3 at 250 ° C. for 12 hours in various concentrations of aqueous KOH. The KOH concentration is 0.1 mol / L for a, 0.5 mol / L for b, 1.5 mol / L for c, 3 mol / L for d, 5 mol / L for e, 8 mol / L for f, Bi 4 Ti 3 O for a 12 , Bi 4 Ti 3 O 12 and Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 coexist in b, and only Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 is seen in c to f.

図6は、図5の生成物に対するFE-SEM画像を示し、aは原材料の0.5BaTiO3-0.5HTO複合体を、bは0.1mol/Lで、cは0.5mol/L、dは1.5mol/L、eは3mol/L、fは8mol/Lである。b〜fでは板状の構造が保たれている。図5でKOH濃度が0.5mol/Lでは、Bi4Ti3O12が残存していたことから、KOH濃度は1mol/L以上8mol/L以下が好ましい。 FIG. 6 shows the FE-SEM image for the product of FIG. 5, where a is the raw material 0.5BaTiO 3 -0.5HTO composite, b is 0.1 mol / L, c is 0.5 mol / L, and d is 1.5 mol. / L, e is 3 mol / L, and f is 8 mol / L. In b to f, a plate-like structure is maintained. In FIG. 5, Bi 4 Ti 3 O 12 remained when the KOH concentration was 0.5 mol / L. Therefore, the KOH concentration is preferably 1 mol / L or more and 8 mol / L or less.

図7は、0.5BaTiO3-0.5HTO複合体をBiCl3と3mol/LのKOH水溶液中で200℃において、反応時間を変えて水熱反応させた生成物のX線回折図を示す。aでは反応時間は2時間、bでは4時間、cでは6時間、dでは12時間、eでは48時間である。2時間及び4時間ではBi12TiO20のピークが見られ、6時間以上でほぼ完全にBa0.5(Bi0.5K0.5)0.5TiO3が生成する。 FIG. 7 shows an X-ray diffraction pattern of a product obtained by hydrothermal reaction of 0.5BaTiO 3 -0.5HTO complex in BiCl 3 and 3 mol / L KOH aqueous solution at 200 ° C. with varying reaction time. The reaction time is 2 hours for a, 4 hours for b, 6 hours for c, 12 hours for d, and 48 hours for e. The peak of Bi 12 TiO 20 is observed at 2 hours and 4 hours, and Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 is almost completely generated after 6 hours or more.

図8は図7の試料のFE-SEM画像であり、aでは反応時間は2時間、bでは4時間、cでは6時間、dでは48時間である。dのように反応時間を48時間とすると、板状の形状が崩れる。図6で12時間の反応時間により板状の形状を保つことができたことなどを踏まえると、反応時間は5時間以上20時間以下が好ましい。   FIG. 8 is an FE-SEM image of the sample of FIG. 7, where the reaction time is 2 hours for a, 4 hours for b, 6 hours for c, and 48 hours for d. When the reaction time is 48 hours as in d, the plate-like shape collapses. In view of the fact that the plate-like shape can be maintained by the reaction time of 12 hours in FIG. 6, the reaction time is preferably 5 hours or more and 20 hours or less.

図9は図7の試料のTEM画像とEDSスペクトルとを示し、c及びdでは反応時間は4時間、e及びfでは反応時間は12時間である。EDS分析を、c, eの各試料に対し、A,B,Cの3個所ずつ行うと、図9のd及びfのようになり、反応時間4時間の試料では場所により組成が不均一で、反応時間12時間の試料では場所によらず組成は均一である。   FIG. 9 shows a TEM image and an EDS spectrum of the sample of FIG. 7, where c and d have a reaction time of 4 hours, and e and f have a reaction time of 12 hours. When EDS analysis is performed on each of the c and e samples at three locations A, B, and C, the results are as shown in d and f in FIG. In a sample with a reaction time of 12 hours, the composition is uniform regardless of the location.

図10は図7の試料b,dのSAEDパターンとHRTEM画像を示し、aのSAEDパターンとbのHRTEM画像では反応時間は4時間、cのSAEDパターンとdのHRTEM画像では反応時間は12時間である。反応時間が4時間では、Bi12TiO20の回折パターンと結晶格子とが観察され、反応時間が12時間では、Ba0.5(Bi0.5K0.5)0.5TiO3の回折パターンと結晶格子のみが観察された。 FIG. 10 shows the SAED pattern and HRTEM image of samples b and d in FIG. 7. The reaction time is 4 hours for the SAED pattern and b HRTEM image of a, and the reaction time is 12 hours for the c SAED pattern and d HRTEM image. It is. When the reaction time is 4 hours, the diffraction pattern and crystal lattice of Bi 12 TiO 20 are observed, and when the reaction time is 12 hours, only the diffraction pattern and crystal lattice of Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 are observed. It was.

以上のことから、ソルボサーマル反応の温度は150℃以上250℃以下が好ましく、160℃以上250℃以下がより好ましく、特に好ましくは180℃以上250℃以下である。反応時間は5以上20時間以下が好ましく、KOH濃度は1mol/L以上8mol/L以下が好ましいことが分かる。反応時間が長い、反応温度が高い、あるいははKOH濃度が高い場合、板状の形状が崩れやすい。逆に反応温度が低い、反応時間が短い、あるいはKOH濃度が低い場合、Ba0.5(Bi0.5K0.5)0.5TiO3以外の中間生成物が残存しやすい。上記の条件は最も好ましい条件で、例えば130℃でも反応時間を48時間とし、KOH濃度を8mol/Lとすれば、Ba0.5(Bi0.5K0.5)0.5TiO3を得ることができる。また反応時間が2時間でも、KOH濃度を8mol/Lとし、反応温度を250℃とすれば、同様にBa0.5(Bi0.5K0.5)0.5TiO3を得ることができる。さらにKを導入する場合とNaを導入する場合とで、反応条件は同じで良い。 From the above, the temperature of the solvothermal reaction is preferably 150 ° C. or higher and 250 ° C. or lower, more preferably 160 ° C. or higher and 250 ° C. or lower, and particularly preferably 180 ° C. or higher and 250 ° C. or lower. It can be seen that the reaction time is preferably 5 or more and 20 hours or less, and the KOH concentration is preferably 1 mol / L or more and 8 mol / L or less. When the reaction time is long, the reaction temperature is high, or the KOH concentration is high, the plate-like shape tends to collapse. Conversely, when the reaction temperature is low, the reaction time is short, or the KOH concentration is low, intermediate products other than Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 tend to remain. The above conditions are the most preferable conditions. For example, if the reaction time is 48 hours even at 130 ° C. and the KOH concentration is 8 mol / L, Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 can be obtained. Even when the reaction time is 2 hours, Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 can be obtained in the same manner if the KOH concentration is 8 mol / L and the reaction temperature is 250 ° C. Furthermore, the reaction conditions may be the same when K is introduced and when Na is introduced.

Ba0.5(Bi0.5K0.5)0.5TiO3の生成モデルを図11に示す。板状のHTOに対し、例えばBa-Tiを0.5/1としてBa(OH)2と反応させると、トポタクティックな水熱反応により、プレート状の0.5HTO-0.5BaTiO3(BT-HTO)のナノ複合体が得られる。この生成物では、図4cに示すように、板状の2次粒子の内部にBaTiO3の粒子が分布している。生成物をさらにBi3+とK+とOH-と水熱反応させることにより、最初にBiがHTO中に導入され、BaTiO3とBi12TiO20などのビスマスチタン酸化合物を含む板状の物質が生成するが、化学両論比の点から、HTOもしくはTiO2も含まれていることが分かる。さらに反応を継続すると、K+が粒子の内部に導入されると共に組成が均一化し、この時ヘテロエピタキシャルな結晶成長により、板状のBa0.5(Bi0.5K0.5)0.5TiO3 が生成する。生成したBa0.5(Bi0.5K0.5)0.5TiO3は全て(110)面方向に強く配向していた。 A production model of Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 is shown in FIG. For example, when a plate-like HTO is reacted with Ba (OH) 2 with 0.5 / 1 Ba-Ti, the topological 0.5HTO-0.5BaTiO 3 (BT-HTO) A nanocomposite is obtained. In this product, BaTiO 3 particles are distributed inside the plate-like secondary particles as shown in FIG. 4c. The product was further Bi 3+ and K + and OH - and by hydrothermal reaction, initially Bi is introduced into the HTO, plate-like material containing a bismuth titanate compounds such as BaTiO 3 and Bi 12 TiO 20 From the point of chemical stoichiometry, it can be seen that HTO or TiO 2 is also included. When the reaction is further continued, K + is introduced into the particles and the composition becomes uniform. At this time, plate-like Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 is generated by heteroepitaxial crystal growth. All of the produced Ba 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 was strongly oriented in the (110) plane direction.

実施例ではK元素を用いたが、Na元素を用いても全く同様にBa0.5(Bi0.5Na0.5)0.5TiO3を合成することができた。当然であるが、KとNaとの比は任意の値とすることができる。HTOをBa(OH)2と反応させる代わりに、Sr(OH)2,Ca(OH)2,Mg(OH)2,Pb(OH)2と反応させることにより、全く同様にしてSr0.5(Bi0.5K0.5)0.5TiO3,Ca0.5(Bi0.5K0.5)0.5TiO3,Mg0.5(Bi0.5K0.5)0.5TiO3,Pb0.5(Bi0.5K0.5)0.5TiO3などを合成することができた。実施例ではBi源としてBiCl3を用いたが、BiI3等の200℃程度の温度でアルカリ性の水に可溶なBi化合物であればよい。またKOHの一部をKClあるいはK2Oなどとしても良い。Ba(OH)2に代えて、BaCl2等によりBa2+イオンを導入しても良い。実施例ではBaX(Bi0.5K0.5)1-xTiO3として x=0.5の例を検討した。x=0.05,0.1,0.3,0.7,0.9,0.94の各例について、KOH濃度を3mol/L、反応温度を200℃で反応時間を6時間として実施例と同様の合成を試み、いずれも合成に成功した。従って0<x<1、好ましくは0.1≦x≦0.95、特に好ましくは0.1≦x≦0.94とする。 Although K element was used in the examples, Ba 0.5 (Bi 0.5 Na 0.5 ) 0.5 TiO 3 could be synthesized in the same manner even when Na element was used. Of course, the ratio of K and Na can be any value. Instead of reacting HTO with Ba (OH) 2 , reacting Sr (OH) 2 , Ca (OH) 2 , Mg (OH) 2 , Pb (OH) 2 with Sr 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 , Ca 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 , Mg 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 , Pb 0.5 (Bi 0.5 K 0.5 ) 0.5 TiO 3 etc. can be synthesized It was. It was used BiCl 3 as Bi source in the embodiment, may be a soluble Bi compound in an alkaline water at 200 ° C. temperature of about such BiI 3. A part of KOH may be KCl or K 2 O. Instead of Ba (OH) 2 , Ba 2+ ions may be introduced by BaCl 2 or the like. In the examples, an example of x = 0.5 was studied as Ba X (Bi 0.5 K 0.5 ) 1-x TiO 3 . For each example of x = 0.05, 0.1, 0.3, 0.7, 0.9, 0.94, the same synthesis as in the example was attempted with a KOH concentration of 3 mol / L, a reaction temperature of 200 ° C., and a reaction time of 6 hours. Successful. Therefore, 0 <x <1, preferably 0.1 ≦ x ≦ 0.95, and particularly preferably 0.1 ≦ x ≦ 0.94.

Claims (7)

組成式がA1-x(Bi0.5M0.5)xTiO3(ここにAはBa,Sr,Ca,Mg,Pbから成る群の少なくとも一員の元素を,MはKまたはNaを表し、0<x<1)であり、かつA1-x(Bi0.5M0.5)xTiO3粒子が凝集して板状となっており、結晶が(110)面方向に配向している板状チタン酸化合物。 The composition formula is A 1-x (Bi 0.5 M 0.5 ) x TiO 3 (where A is an element of at least one member of the group consisting of Ba, Sr, Ca, Mg, and Pb, M is K or Na, and 0 < A plate-like titanate compound in which x <1), A 1-x (Bi 0.5 M 0.5 ) x TiO 3 particles are aggregated into a plate shape, and crystals are oriented in the (110) plane direction . 前記AがBa,Sr,Ca,Mgから成る群の少なくとも一員の元素であることを特徴とする、請求項1の板状チタン酸化合物。   The plate-like titanic acid compound according to claim 1, wherein A is an element of at least one member of the group consisting of Ba, Sr, Ca, and Mg. 前記AがBaであることを特徴とする、請求項2の板状チタン酸化合物。   The plate-like titanate compound according to claim 2, wherein A is Ba. Ti化合物と、Na,K,Rb,Csから成る群の少なくとも一員の元素の化合物と、Li,Mg,Co,Ni,Zn,Mn,Feから成る群の少なくとも一員の元素の化合物とを、親水性溶媒中で加熱下に反応させることにより、一般式 BwCyzTi(2-(w/4+ky/4+z)O4で表される板状チタン酸塩とするステップ(ここにBはNa,K,Rb,Csから成る群の少なくとも一員の元素を、CはLi,Mg,Co,Ni,Zn,Mn,Feから成る群の少なくとも一員の元素を、kはC元素の価数を、□はTiの欠陥部位を表し、0<w<1,0<y<w,0≦z,0<y+z<1)と、
得られた板状チタン酸塩を酸と反応させて板状チタン酸水和物とするステップと、
得られた板状チタン酸水和物を、Ba,Sr,Ca,Mg,Pbから成る群の少なくとも一員の元素をA元素として、A元素の化合物と親水性溶媒中で加熱下に反応させることにより、板状チタン酸水和物にA元素を導入するステップ、とを行う 板状チタン酸化合物の製造方法において、
前記A元素を導入するステップでは、板状チタン酸水和物中のTi元素1モルに対し1モル未満の割合で、前記A元素の化合物を板状チタン酸水和物と反応させることにより、チタン酸水和物とATiO3とから成る板状の物質を得るとともに、
得られた板状の物質を、Na及びKから成る群の少なくとも一員の元素の化合物、及びBi化合物と共に、親水性溶媒中で加熱下に反応させることにより、組成式がA1-x(Bi0.5M0.5)xTiO3(ここにMはKまたはNaを表し、0<x<1)の粒子が凝集して板状となっており、結晶が(110)面方向に配向している板状チタン酸化合物を得るステップ、とを実行することを特徴とする板状チタン酸化合物の製造方法。
Hydrophilic compounds of Ti compounds, compounds of at least one member of the group consisting of Na, K, Rb, Cs and compounds of at least one member of the group consisting of Li, Mg, Co, Ni, Zn, Mn, Fe A plate titanate represented by the general formula B w C yz Ti (2- (w / 4 + ky / 4 + z) O 4 ( Where B is at least one element of the group consisting of Na, K, Rb, Cs, C is at least one element of the group consisting of Li, Mg, Co, Ni, Zn, Mn, Fe, and k is the C element □ represents a defect site of Ti, 0 <w <1, 0 <y <w, 0 ≦ z, 0 <y + z <1),
Reacting the obtained plate-like titanate with an acid to form plate-like titanate hydrate,
The obtained plate-like titanic acid hydrate is reacted with a compound of element A and a hydrophilic solvent under heating, using at least one member of the group consisting of Ba, Sr, Ca, Mg, and Pb as element A. In the method for producing a plate-like titanate compound, the step of introducing an A element into the plate-like titanate hydrate is performed.
In the step of introducing the A element, by reacting the compound of the A element with the plate-like titanate hydrate at a ratio of less than 1 mol with respect to 1 mol of the Ti element in the plate-like titanate hydrate, While obtaining a plate-like substance composed of titanic acid hydrate and ATiO 3 ,
By reacting the obtained plate-like substance with a compound of at least one member of the group consisting of Na and K, and a Bi compound in a hydrophilic solvent under heating, the composition formula is A 1-x (Bi 0.5 M 0.5 ) x TiO 3 (where M is K or Na, 0 <x <1) is agglomerated into a plate shape, and the crystal is oriented in the (110) plane direction Obtaining a plate-like titanate compound, and a method for producing a plate-like titanate compound.
前記板状チタン酸化合物を得るステップでは、ATiO3と、ビスマスとチタンとの酸化物と、チタン酸水和物もしくは酸化チタンとを含む板状の物質が反応初期に生成し、反応後期にM元素が生成した板状の物質内に導入されて、前記A1-x(Bi0.5M0.5)xTiO3粒子となることを特徴とする、請求項4の板状チタン酸化合物の製造方法。 In the step of obtaining the plate-like titanate compound, a plate-like substance containing ATiO 3 , an oxide of bismuth and titanium, and titanate hydrate or titanium oxide is formed in the early stage of the reaction, and M in the late stage of the reaction. The method for producing a plate-like titanic acid compound according to claim 4, wherein the element is introduced into the plate-like substance formed to form the A 1-x (Bi 0.5 M 0.5 ) x TiO 3 particles. 前記AがBa,Sr,Ca,Mgから成る群の少なくとも一員の元素であることを特徴とする、請求項4または5の板状チタン酸化合物の製造方法。   The method for producing a plate-like titanate compound according to claim 4 or 5, wherein A is an element of at least one member of the group consisting of Ba, Sr, Ca, and Mg. 前記AがBaであることを特徴とする、請求項6の板状チタン酸化合物の製造方法。   The method for producing a plate-like titanate compound according to claim 6, wherein A is Ba.
JP2011142421A 2011-06-28 2011-06-28 Plate-like titanic acid compound and method for producing the same Active JP5801622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142421A JP5801622B2 (en) 2011-06-28 2011-06-28 Plate-like titanic acid compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142421A JP5801622B2 (en) 2011-06-28 2011-06-28 Plate-like titanic acid compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013010642A JP2013010642A (en) 2013-01-17
JP5801622B2 true JP5801622B2 (en) 2015-10-28

Family

ID=47684886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142421A Active JP5801622B2 (en) 2011-06-28 2011-06-28 Plate-like titanic acid compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP5801622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591496B1 (en) * 2014-08-12 2016-02-03 한국전기연구원 Barium titanate flat particle and method for manufacturing the same
JP7091608B2 (en) * 2017-03-22 2022-06-28 株式会社村田製作所 Positive electrodes, batteries and their manufacturing methods, battery packs, electronic devices, electric vehicles, power storage devices and power systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529219B2 (en) * 2000-03-17 2010-08-25 株式会社豊田中央研究所 Piezoelectric ceramics and manufacturing method thereof
JP2011251866A (en) * 2010-06-01 2011-12-15 Ngk Insulators Ltd Piezoelectricity/electrostriction ceramic sintered compact, and piezoelectricity/electrostrictive element

Also Published As

Publication number Publication date
JP2013010642A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP6351523B2 (en) Method for producing vanadium dioxide
CN104797531B (en) Cladding Barium metatitanate. fine grained and manufacture method thereof
JP5028616B2 (en) Method for producing metal sulfide
TWI576312B (en) Manganese-bearing metal phosphates and process for the production thereof
JP4750491B2 (en) Plate-like metal titanate compound and method for producing the same
KR20070051935A (en) Fine-particle alkaline-earth titanates and method for the production thereof using titanium oxide particles
DE112011103672T5 (en) Lithium-silicate-based compound and manufacturing method therefor
JP2016155700A (en) Nanocomposite oxide and method for producing the same
JP6194618B2 (en) Trimanganese tetraoxide and method for producing the same
JP5801622B2 (en) Plate-like titanic acid compound and method for producing the same
JP5410124B2 (en) Method for manufacturing dielectric material
JP2005162594A (en) Perovskite type titanium-containing multiple oxide particle, method for manufacturing the same, and application
TW200844052A (en) Cubic magnesium oxide powder and method for producing the same
JP2014129202A (en) Method for manufacturing layered double hydroxide
Srisombat et al. Chemical synthesis of magnesium niobate powders
KR101049749B1 (en) Manganese Dioxide Nanostructure Manufacturing Method
JP2013253002A (en) Li-CONTAINING PIEZOELECTRIC CERAMIC POWDER MATERIAL AND METHOD FOR PRODUCING THE SAME
JP6186814B2 (en) Metal-substituted manganese trioxide, method for producing the same, and method for producing lithium manganese composite oxide using the same
Pei et al. Polyvinyl pyrrolidone-assisted synthesis of crystalline manganese vanadate microtubes
JPH0873219A (en) Production of powdery ceramic
RU2788981C1 (en) Method for obtaining nanoscale oxides of rare earth elements using dimethylformamide
JP7410249B2 (en) Negative thermal expansion material, its manufacturing method and composite material
KR101751070B1 (en) Method of preparing barium titanate using acid-base reaction
US11384450B2 (en) Method of making thin films
WO2023181781A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250