JP4750491B2 - Plate-like metal titanate compound and method for producing the same - Google Patents

Plate-like metal titanate compound and method for producing the same Download PDF

Info

Publication number
JP4750491B2
JP4750491B2 JP2005208280A JP2005208280A JP4750491B2 JP 4750491 B2 JP4750491 B2 JP 4750491B2 JP 2005208280 A JP2005208280 A JP 2005208280A JP 2005208280 A JP2005208280 A JP 2005208280A JP 4750491 B2 JP4750491 B2 JP 4750491B2
Authority
JP
Japan
Prior art keywords
plate
titanate
average particle
orientation degree
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005208280A
Other languages
Japanese (ja)
Other versions
JP2007022857A (en
Inventor
裕一 山本
正英 棚田
靖弘 松本
旗 馮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2005208280A priority Critical patent/JP4750491B2/en
Publication of JP2007022857A publication Critical patent/JP2007022857A/en
Application granted granted Critical
Publication of JP4750491B2 publication Critical patent/JP4750491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)

Description

本発明は、電子部品用の誘電体材料である板状チタン酸金属化合物ならびにその製造方法に関する。   The present invention relates to a plate-like metal titanate compound which is a dielectric material for electronic parts and a method for producing the same.

板状形状や薄片状を有するチタン酸塩の製造方法について特許文献1〜3に記載がある。
特許文献1には、フラックス原料を用い加熱溶融法により層状構造の板状チタン酸塩を調製する方法が記載されている。しかし得られた板状チタン酸塩の形状は幅2〜3mm、長さ5mm、厚さ0.1〜0.5mmの大きなものである。特許文献2ではフラックス原料や処理条件を限定することにより薄片状のチタン酸塩を調製している。得られた結晶の形状は長径が30μm、短径が15μm、厚み2μmである。特許文献3では、フラックス原料を使用せず目的組成物の原料を焼成することにより板状チタン酸塩を調製している。得られた結晶の形状は平均径4〜15μmでアスペクト比10程度である。
特開平5−221795号 特開2000−344520号 特開2003−335519号
Patent Documents 1 to 3 describe a method for producing a titanate having a plate shape or a flake shape.
Patent Document 1 describes a method for preparing a plate-like titanate having a layered structure by a heat melting method using a flux raw material. However, the obtained plate-like titanate has a large shape having a width of 2 to 3 mm, a length of 5 mm, and a thickness of 0.1 to 0.5 mm. In Patent Document 2, flaky titanate is prepared by limiting flux raw materials and processing conditions. The obtained crystal has a major axis of 30 μm, a minor axis of 15 μm, and a thickness of 2 μm. In patent document 3, plate-like titanate is prepared by baking the raw material of a target composition, without using a flux raw material. The obtained crystals have an average diameter of 4 to 15 μm and an aspect ratio of about 10.
Japanese Patent Application Laid-Open No. H5-222195 JP 2000-344520 A JP 2003-335519 A

特許文献4〜6には繊維状、燐片状、板状、球状等の特定形状を有するチタン酸金属化合物の製造方法が開示されている。方法としては繊維状、燐片状、板状、球状等の形状を有するチタン酸塩を原料にして金属硫酸塩等、ハロゲン化アルカリ金属塩を加熱反応させて特定形状を有するチタン酸金属化合物を調製している。
特開2003−81634号 特開2003−81635号 特開2003−81636号
Patent Documents 4 to 6 disclose a method for producing a metal titanate compound having a specific shape such as a fiber shape, a flake shape, a plate shape, or a spherical shape. As a method, a metal titanate compound having a specific shape is obtained by heat-reacting an alkali metal halide such as a metal sulfate using a titanate having a shape such as a fiber, flake, plate, or sphere as a raw material. It is prepared.
JP 2003-81634 A JP 2003-81635 A JP 2003-81636 A

特許文献7には、繊維状のチタン酸カリウム繊維を酸で処理し、80〜95℃で水酸化バリウムと反応させることで針状のチタン酸バリウムが得られることが書かれている。特許文献8には、バリウムとチタン原料を過剰のアルカリ濃度条件にて水熱合成することにより長さ10〜30μm、アスペクト比50〜150の繊維状チタン酸バリウムが調製できるとの記載がある。特許文献9には、フラックス法により板状チタン酸バリウムの前躯体となるチタン酸金属化合物を調製し、酸処理によりチタン酸にして水酸化バリウムと水熱反応を行うことにより10×60×100μm程度の板状チタン酸バリウムが調製できるとの記載ある。
特開平6−135720号 特開平7−172833号 特開2000−281340号
Patent Document 7 describes that acicular barium titanate can be obtained by treating fibrous potassium titanate fibers with acid and reacting them with barium hydroxide at 80 to 95 ° C. Patent Document 8 describes that fibrous barium titanate having a length of 10 to 30 μm and an aspect ratio of 50 to 150 can be prepared by hydrothermal synthesis of barium and a titanium raw material under an excessive alkali concentration condition. In Patent Document 9, a metal titanate compound that is a precursor of plate-like barium titanate is prepared by a flux method, and titanic acid is converted to titanic acid by acid treatment and hydrothermal reaction with barium hydroxide is performed at 10 × 60 × 100 μm. There is a description that a plate-like barium titanate of a certain degree can be prepared.
JP-A-6-135720 JP-A-7-172833 JP 2000-281340 A

特許文献10にはフラックス法による板状形状を有するチタン酸カルシウム化合物についての製法が記載されている。得られた化合物の形状は15〜25μmでアスペクト比15〜25程度である。
特開平11−92144号
Patent Document 10 describes a production method for a calcium titanate compound having a plate shape by a flux method. The resulting compound has a shape of 15 to 25 μm and an aspect ratio of about 15 to 25.
JP-A-11-92144

電子機器の小型高集積化に伴い、構成部品である積層チップコンデンサーなどに用いる誘電材料に対する要求特性が一段ときびしくなっている。これらの誘電材料は多結晶体で、誘電特性には結晶軸の方向による異方性がある。そこで誘電特性の改善のため、配向性を高めて結晶軸の向きを揃える必要がある。また積層コンデンサの容量を増すには、誘電体を薄層にする必要がある。従って配向度が高く、かつ小さなチタン酸バリウム等のチタン酸金属化合物が求められている。   With the miniaturization and high integration of electronic devices, the required characteristics for dielectric materials used for multilayer chip capacitors, which are constituent parts, have become more prominent. These dielectric materials are polycrystalline, and the dielectric properties have anisotropy depending on the direction of the crystal axis. Therefore, in order to improve the dielectric properties, it is necessary to increase the orientation and align the crystal axes. In order to increase the capacity of the multilayer capacitor, it is necessary to make the dielectric thin. Accordingly, there is a demand for a metal titanate compound such as barium titanate having a high degree of orientation and a small amount.

この発明は、配向度が高く粒子径が小さなチタン酸金属化合物を提供することを課題とする。
またこの発明は、配向度が高く粒子径が小さなチタン酸金属化合物を、フラックスを用いずかつ比較的低温で水熱合成等により調製できるチタン酸金属化合物の製造方法を提供することを課題とする。
An object of the present invention is to provide a metal titanate compound having a high degree of orientation and a small particle size.
Another object of the present invention is to provide a method for producing a metal titanate compound that can prepare a metal titanate compound having a high degree of orientation and a small particle size by hydrothermal synthesis or the like at a relatively low temperature without using a flux. .

この発明は、径方向の平均粒子径が0.5〜5μm、幅方向の平均粒子径が0.1〜3μm、厚み方向の平均粒子径が0.05〜0.5μmで、組成式がBTiO3(BはMg,Ca,Sr,Baからなる群の少なくとも一員の元素)の、板状チタン酸チタン酸バリウムにある。 In the present invention, the average particle diameter in the radial direction is 0.5 to 5 μm, the average particle diameter in the width direction is 0.1 to 3 μm, the average particle diameter in the thickness direction is 0.05 to 0.5 μm, and the composition formula is BTiO 3. (B is an element of at least one member of the group consisting of Mg, Ca, Sr, and Ba) and is in plate-like barium titanate titanate.

この発明の板状チタン酸バリウムでは、以下の式(1)で規定する配向度iが10以上、または式(2)で規定する配向度iiが4以上にする。
配向度i=I(110)/I(111) (1)
配向度ii=I(110)/(I(100)+I(111)) (2)
(ただしI(110)及びI(111)、I(100)はX線回折スペクトルにより得られるピーク強度である)
In the plate-like barium titanate of the present invention, the orientation degree i specified by the following formula (1) is 10 or more, or the orientation degree ii specified by the formula (2) is 4 or more.
Orientation degree i = I (110) / I (111) (1)
Orientation degree ii = I (110) / (I (100) + I (111)) (2)
(Where I (110), I (111), and I (100) are peak intensities obtained from X-ray diffraction spectra)

この発明では、酸化チタンとA元素の酸化物、水酸化物もしくは塩と、M元素の酸化物、水酸化物、もしくは塩とを、水性媒体中で120〜300℃の反応温度で水熱法により、
一般式 AxMy□zTi(2−(x/4+ky/4+z))O4 で表される層状チタン酸塩を調製し、
(ここでAはNa,K,Rb,Csからなる群の少なくとも一員の元素で、MはLi, Mg,Co,Ni,Zn,Mn(III),Fe(III)からなる群の少なくとも一員の元素であり、kはM元素の価数を表し、□はTiの欠陥部位を示す:
xは0<x<1.0の正の数で、yは正の数で、zは0または正の数であり、0<y+z<1.0 かつx>yである)
得られた層状チタン酸塩を酸と反応させて板状チタン酸水和物に転換し、
さらに前記板状チタン酸水和物を、Mg,Ca,Sr,Ba,Pbからなる群の少なくとも一員(ただしPbは2価)の水酸化物、酸化物、もしくは塩と、加熱下に水性媒体中で反応させることにより、
径方向の平均粒子径が0.5〜5μm、幅方向の平均粒子径が0.1〜3μm、厚み方向の平均粒子径が0.05〜0.5μmで、組成式がBTiO3(BはMg,Ca,Sr,Ba,Pbからなる群の少なくとも一員の元素)の板状チタン酸金属化合物とする。
好ましくは、前記A元素がK、前記M元素がLiである。
In the present invention, titanium oxide, an oxide, hydroxide or salt of element A and an oxide, hydroxide or salt of element M are hydrothermally treated in an aqueous medium at a reaction temperature of 120 to 300 ° C. By
A layered titanate represented by the general formula AxMy □ zTi (2- (x / 4 + ky / 4 + z)) O4 was prepared,
(Where A is an element of at least one member of the group consisting of Na, K, Rb, Cs, and M is at least one member of the group consisting of Li, Mg, Co, Ni, Zn, Mn (III), Fe (III)). Is an element, k represents the valence of the M element, and □ represents a defect site of Ti:
(x is a positive number of 0 <x <1.0, y is a positive number, z is 0 or a positive number, and 0 <y + z <1.0 and x> y)
The obtained layered titanate is reacted with an acid to convert it into plate-like titanate hydrate,
Further, the plate-like titanic acid hydrate is mixed with at least one member of the group consisting of Mg, Ca, Sr, Ba, and Pb (where Pb is divalent), an oxide, or a salt, and an aqueous medium under heating. By reacting in
The average particle diameter in the radial direction is 0.5 to 5 μm, the average particle diameter in the width direction is 0.1 to 3 μm, the average particle diameter in the thickness direction is 0.05 to 0.5 μm, and the composition formula is BTiO 3 (B is Mg , Ca, Sr, Ba, Pb), a plate-like metal titanate compound.
Preferably, the A element is K and the M element is Li.

Tiの欠陥部位の数を表すzは一般に小さな数で、例えば0以上0.01以下である。A元素としては安価でかつ適切なイオン半径を持つKが特に好ましく、M元素としては酸により容易に除去でき、不純物残量が少ないLiが特に好ましい。xの値は例えば0.5〜1.0で、yの値は例えば0.2〜0.5で x>y であり、特に好ましくは、xを0.6〜1.0、yを0.2〜0.4とする。酸によるチタン酸水和物への転換は例えば室温〜100℃、特に好ましくは室温〜60℃で行い、Ba(OH)2等の2価元素の化合物との反応は、例えば60℃〜200℃で行い、2価元素の化合物はチタン酸水和物とのモル比で、例えば1〜1.5倍程度の仕込量とする。   Z representing the number of Ti defect sites is generally a small number, for example, 0 or more and 0.01 or less. The element A is particularly preferably K which is inexpensive and has an appropriate ionic radius, and the element M is particularly preferably Li which can be easily removed by an acid and has a small amount of impurities. The value of x is, for example, 0.5 to 1.0, the value of y is, for example, 0.2 to 0.5, and x> y. Particularly preferably, x is 0.6 to 1.0, and y is 0. .2 to 0.4. Conversion to titanic acid hydrate with an acid is performed at room temperature to 100 ° C., particularly preferably at room temperature to 60 ° C., and reaction with a divalent element compound such as Ba (OH) 2 is performed at 60 ° C. to 200 ° C., for example. The divalent element compound is prepared in a molar ratio with the titanic acid hydrate, for example, about 1 to 1.5 times.

板状チタン酸金属化合物の平均粒径は、例えばチタン酸金属化合物の薄層をスピンコートにより基板上に設けて、その電子顕微鏡像から求める。チタン酸金属化合物の粒子は多角形状なので、最大長の対角線を径とし、多角形の表面で径に直角な方向での最大長を幅とする。また前記の基板と薄層とを接着剤等に埋設し基板に直角に切断し、切断面でのチタン酸金属化合物粒子の厚さを厚さとする。   The average particle diameter of the plate-like metal titanate compound is obtained from an electron microscope image obtained by providing a thin layer of the metal titanate compound on the substrate by spin coating, for example. Since the metal titanate compound particles are polygonal, the diagonal of the maximum length is the diameter, and the maximum length in the direction perpendicular to the diameter on the surface of the polygon is the width. The substrate and the thin layer are embedded in an adhesive or the like and cut at right angles to the substrate, and the thickness of the metal titanate compound particles on the cut surface is defined as the thickness.

図3に示すように、チタン酸金属化合物の板状粒子は図1の層状チタン酸塩の形状を保っており、1つの板状粒子の内部には多数のチタン酸バリウム等の粒子があり、平均粒子径と結晶子のサイズとは異なる。図3に示すように、チタン酸金属化合物粒子には板状でないものが存在し、これは当初の層状チタン酸塩でも存在した板状でない粒子に由来するものと、層状チタン酸塩の板状粒子の角などが欠けて生成したものなどと考えられる。板状でない粒子を粒状粒子と呼ぶと、粒状粒子の数は板状粒子の数の1/5〜10倍程度で、個々の粒子のサイズが小さいことから平均粒子径の算出では無視する。なお粒状粒子が体積比で板状粒子の20%以上あるものは、この発明には含めない。   As shown in FIG. 3, the plate-like particles of the metal titanate compound maintain the shape of the layered titanate of FIG. 1, and there are a number of particles such as barium titanate inside one plate-like particle, The average particle size and the crystallite size are different. As shown in FIG. 3, some metal titanate particles are not plate-like, which are derived from non-plate-like particles that existed even in the original layered titanate, and plate-like titanate. This is thought to be generated by missing the corners of the particles. If the particles that are not plate-like are called granular particles, the number of granular particles is about 1/5 to 10 times the number of plate-like particles, and the size of each particle is small, so it is ignored in calculating the average particle size. It should be noted that the granular particles having a volume ratio of 20% or more of the plate-like particles are not included in the present invention.

好ましくは、前記BがBaで、
以下の式(1)で規定する配向度iが10以上、または式(2)で規定する配向度iiが4以上にする。
配向度i=I(110)/I(111) (1)
配向度ii=I(110)/(I(100)+I(111)) (2)
(ただしI(110)及びI(111)、I(100)はX線回折スペクトルにより得られるピーク強度である)
Preferably, B is Ba,
The orientation degree i specified by the following formula (1) is 10 or more, or the orientation degree ii specified by the formula (2) is 4 or more.
Orientation degree i = I (110) / I (111) (1)
Orientation degree ii = I (110) / (I (100) + I (111)) (2)
(Where I (110), I (111), and I (100) are peak intensities obtained from X-ray diffraction spectra)

またこの発明の板状チタン酸金属化合物は、例えば積層コンデンサー材料に用いる。   The plate-like metal titanate compound of the present invention is used for, for example, a multilayer capacitor material.

この発明では、平均粒子径が小さくかつ配向度が高い、板状のチタン酸金属化合物が得られるので、薄くかつ良く配向した誘電体材料の薄層とすることができる。従って優れた特性の積層コンデンサとすることができる。   According to the present invention, a plate-like metal titanate compound having a small average particle diameter and a high degree of orientation can be obtained, so that a thin layer of a thin and well-oriented dielectric material can be obtained. Therefore, a multilayer capacitor having excellent characteristics can be obtained.

この発明では、一般式 AxMy□zTi(2−(x/4+ky/4+z))O4 で表される層状チタン酸塩を、硝酸、塩酸等の酸と反応させて板状チタン酸水和物に転換し、Mg,Ca,Sr,BaあるいはPbの水酸化物、酸化物、もしくは塩と加熱下に水性媒体中で反応させる。層状チタン酸塩をチタン酸バリウムに転換する過程で、当初の外形は形骸粒子として保たれ、1つの形骸粒子内の結晶は方向が揃っていると考えられ、配向性の高い積層コンデンサー等の材料が得られる。形骸粒子は径(多角形の最も長い対角線)と幅(径に直角な方向での最大の幅)が厚さに比べて充分大きい粒子で、径、幅、厚さがいずれも小さく、特に厚さが小さいことから薄層とするのが容易である。   In this invention, a layered titanate represented by the general formula AxMy □ zTi (2- (x / 4 + ky / 4 + z)) O4 is reacted with an acid such as nitric acid or hydrochloric acid to convert it into plate-like titanate hydrate. And reacted with Mg, Ca, Sr, Ba or Pb hydroxide, oxide, or salt in an aqueous medium under heating. In the process of converting the layered titanate to barium titanate, the initial shape is kept as a shape particle, and the crystals in one shape particle are considered to be aligned, and materials such as highly oriented multilayer capacitors Is obtained. Shape particles are particles whose diameter (the longest diagonal of the polygon) and width (the maximum width in the direction perpendicular to the diameter) are sufficiently large compared to the thickness, all of which are small in diameter, width, and thickness. Therefore, it is easy to make a thin layer.

この発明では層状チタン酸塩を水熱合成するのでフラックスによる汚染が無く、また1000℃以上で反応させる必要もない。層状チタン酸塩のA元素はM元素に比べてイオン半径の大きな元素で、イオン半径が適切で安価な元素である点からKが最適である。M元素は酸で除去するのが容易で最終のチタン酸金属化合物の不純物源とならず、かつ層状チタン酸塩の水熱合成を容易に行えるLiが最適である。   In this invention, the layered titanate is synthesized hydrothermally, so there is no contamination by flux and there is no need to react at 1000 ° C. or higher. The A element of the layered titanate is an element having an ionic radius larger than that of the M element, and K is optimal because it is an inexpensive element with an appropriate ionic radius. The element M is easy to remove with an acid, Li does not become an impurity source of the final metal titanate compound, and Li that can easily perform hydrothermal synthesis of the layered titanate is optimal.

酸による転換はA元素やM元素をH元素に置換するだけで、例えば室温で過剰量の酸を用いて容易に行うことができる。水酸化Ba等との反応では、水酸化Ba等はチタン酸水和物とのモル比で1以上必要で、例えば2倍以上加えると、生成物中に板状以外の粒子が含まれる割合が増すので、1.5倍以下が好ましい。   The conversion with an acid can be easily performed by replacing an A element or an M element with an H element, for example, using an excess amount of acid at room temperature. In the reaction with hydroxylated Ba or the like, hydroxylated Ba or the like is required in a molar ratio with titanic acid hydrate to be 1 or more. For example, when added twice or more, the product contains a ratio of particles other than plate-like particles. Since it increases, 1.5 times or less is preferable.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

実施例1
容量30MLのオートクレーブに酸化チタン、水酸化カリウム、水酸化リチウムをTi:K:Liの原子比で5:4:1となるように加え、撹拌しながら250℃で20時間水熱条件下で反応させ、K0.80Li0.27□<0.01Ti1.73O4の層状粒子を得た。なおTiの欠陥部位を示す□は一般に0.01未満の小さな正数である。層状粒子の組成は原子吸光分析で求め、チタン酸カリウムリチウムであることはX線回折で確認した。得られた層状粒子の電子顕微鏡写真を図1に示す。層状粒子を1M−HNO3水溶液(層状粒子1モル当たりHNO3 20モル)で室温で処理し、板状のH2Ti2O5・H2Oを得た。この粒子の電子顕微鏡写真を図2に示す。これを0.3M−Ba(OH)2の水溶液(チタン酸水和物1モル当たり水酸化バリウム1.1モル)中で、150℃で24時間水熱条件下で反応させた。反応後、濾過、水洗した物を105℃で5時間乾燥し、チタン酸バリウムとした。組成がBaTiO3で、Ba原子とTi原子との偏析が無いことを確認し、結晶構造はX線回折で確認した。得られたチタン酸バリウムの電子顕微鏡写真を図3に示す。
Example 1
Titanium oxide, potassium hydroxide, and lithium hydroxide were added to an autoclave with a capacity of 30 ML so that the atomic ratio of Ti: K: Li was 5: 4: 1, and the reaction was carried out at 250 ° C. for 20 hours with stirring under hydrothermal conditions. Layered particles of K0.80Li0.27 □ <0.01Ti1.73O4 were obtained. Note that □ indicating a defective portion of Ti is generally a small positive number less than 0.01. The composition of the layered particles was determined by atomic absorption analysis and confirmed to be potassium lithium titanate by X-ray diffraction. An electron micrograph of the obtained layered particles is shown in FIG. The layered particles were treated with a 1M-HNO3 aqueous solution (20 mol of HNO3 per mol of layered particles) at room temperature to obtain plate-like H2Ti2O5.H2O. An electron micrograph of the particles is shown in FIG. This was reacted in an aqueous solution of 0.3M-Ba (OH) 2 (1.1 mol of barium hydroxide per mol of titanate hydrate) at 150 ° C. for 24 hours under hydrothermal conditions. After the reaction, the filtered and washed product was dried at 105 ° C. for 5 hours to obtain barium titanate. It was confirmed that the composition was BaTiO3 and there was no segregation of Ba atoms and Ti atoms, and the crystal structure was confirmed by X-ray diffraction. An electron micrograph of the obtained barium titanate is shown in FIG.

層状チタン酸化合物の水熱合成温度は120〜300℃とし、好ましくは140〜270℃とする。媒体は水であるが、エタノールなどの水以外の媒体を少量含んでも良く、反応時間は例えば5時間〜50時間とする。A元素としてはNaでも良いが、イオン半径がKに比べて小さいため、層状チタン酸化合物の調製がやや難しく、Rb,Csは高価なので、Kが好ましい。Liに変えて、Mg,Co,Ni,Znあるいは3価のMnやFeでも良いが、Liが層状チタン酸化合物の調製が容易でかつ酸での除去が容易なので好ましい。KとLi以外の元素を用いる場合も、同様の条件で層状チタン酸化合物を調製できる。水熱合成なので、A元素やM元素は水酸化物に限らず、酸化物やハロゲン化物や硝酸塩などの塩として添加しても、同様に層状チタン酸化合物を調製できる。Ba等のアルカリ土類やPb源には、塩化物や硝酸塩などの塩でも良いが、洗浄を容易にするため酸化物や水酸化物が好ましく、反応を容易にするため特に水酸化物が好ましい。   The hydrothermal synthesis temperature of the layered titanic acid compound is 120 to 300 ° C, preferably 140 to 270 ° C. Although the medium is water, it may contain a small amount of medium other than water such as ethanol, and the reaction time is, for example, 5 hours to 50 hours. As the element A, Na may be used, but since the ionic radius is smaller than that of K, preparation of the layered titanate compound is somewhat difficult, and Rb and Cs are expensive, so K is preferable. Mg, Co, Ni, Zn, or trivalent Mn or Fe may be used instead of Li, but Li is preferable because the layered titanate compound can be easily prepared and removed with an acid. Even when elements other than K and Li are used, the layered titanate compound can be prepared under the same conditions. Since it is hydrothermal synthesis, the layered titanate compound can be prepared in the same manner even if the A element and the M element are not limited to hydroxides, but are added as oxides, halides, nitrates, and other salts. The alkaline earth such as Ba and the Pb source may be salts such as chlorides and nitrates, but oxides and hydroxides are preferable for easy cleaning, and hydroxides are particularly preferable for easy reaction. .

生成物のチタン酸バリウムを、試料0.1g当たり2mlのエタノールに加え、超音波分散機で30分間分散させ、76×26mmのガラス基板に4000rpmでスピンコートして薄層とし、走査型電子顕微鏡で観察した。板状チタン酸バリウム粒子は多角形で、その最大長の対角線を径とし、径に直角な方向の最大幅を幅とした。基板を接着剤に固定し、基板に直角に切断して、切断面を同様に走査型電子顕微鏡で観察し、チタン酸バリウム粒子の厚さの平均値を求めた。径及び幅、厚さは粒子の大小を考えない単純平均であるが、板状でない粒子は体積比で無視できるほど少ないことを考慮して、平均粒子径の算出に含めなかった。実施例1では、径方向の平均粒子径4.8μm、幅方向の平均粒子径2.8μm、厚み方向0.3μmであった。   The product, barium titanate, was added to 2 ml of ethanol per 0.1 g of sample, dispersed with an ultrasonic disperser for 30 minutes, spin-coated onto a 76 × 26 mm glass substrate at 4000 rpm to form a thin layer, and a scanning electron microscope Observed at. The plate-like barium titanate particles are polygonal, and the maximum diagonal line is the diameter, and the maximum width in the direction perpendicular to the diameter is the width. The substrate was fixed to an adhesive, cut at right angles to the substrate, and the cut surface was similarly observed with a scanning electron microscope, and the average thickness of the barium titanate particles was determined. The diameter, width, and thickness are simple averages that do not consider the size of the particles, but they are not included in the calculation of the average particle size in view of the fact that non-plate-like particles are negligibly small in volume ratio. In Example 1, the average particle diameter in the radial direction was 4.8 μm, the average particle diameter in the width direction was 2.8 μm, and the thickness direction was 0.3 μm.

前記と同様にして、ガラス基板上にチタン酸バリウムの薄層を作成し、X線回折による測定を行った結果、式1による配向度iは31であり、式2による配向度iiは10.1であった。なお以下でのチタン酸バリウム粒子の平均粒子径や配向度は、上記に準じて測定した値である。径、幅、厚さ共に小さく、特に厚さが小さく、かつ(110)面に強く配向した板状のチタン酸バリウムが得られた。   In the same manner as described above, a thin layer of barium titanate was prepared on a glass substrate and measured by X-ray diffraction. As a result, the degree of orientation i according to Equation 1 was 31, and the degree of orientation ii according to Equation 2 was 10. 1 In addition, the average particle diameter and orientation degree of the barium titanate particles in the following are values measured according to the above. A plate-like barium titanate having a small diameter, width and thickness, particularly a small thickness and strongly oriented in the (110) plane was obtained.

実施例2
容量30MLのオートクレーブに酸化チタン、水酸化カリウム、水酸化リチウムをTi:K:Li比で5:4:1となるように加え、撹拌しながら150℃で20時間水熱条件下で反応させKxLiyTi(2-0.25(x+y))O4を得た。なおTiの欠陥部位の量を示すzは0.01以下で、xは0.8程度、yは約0.3であった。得られた層状チタン酸塩を過剰量の1M−HNO3水溶液で室温処理し、板状のH2Ti2O5・H2Oを得、さらに0.3M−Ba(OH)2の水溶液中(1.3当量)で、100℃で24時間水熱条件下で反応させた。反応後、濾過、水洗した物を105℃で5時間乾燥した。
Example 2
Titanium oxide, potassium hydroxide, and lithium hydroxide were added to a 30 ML autoclave so that the ratio of Ti: K: Li was 5: 4: 1, and the mixture was reacted at 150 ° C. for 20 hours under hydrothermal conditions with stirring. (2-0.25 (x + y)) O4 was obtained. Note that z indicating the amount of Ti defect sites was 0.01 or less, x was about 0.8, and y was about 0.3. The obtained layered titanate was treated with an excess amount of 1M-HNO3 aqueous solution at room temperature to obtain plate-like H2Ti2O5.H2O, and further in an aqueous solution of 0.3M-Ba (OH) 2 (1.3 equivalents). The reaction was carried out at 100 ° C. for 24 hours under hydrothermal conditions. After the reaction, the filtered and washed product was dried at 105 ° C. for 5 hours.

得られた生成物のX線回折の結果、生成物はチタン酸バリウムのみであることが判明し、径方向の平均粒子径3.0μm、幅方向の平均粒子径1.0μm、厚み方向0.2μmの板状粒子であった。また式1による配向度iは20であり、式2による配向度iiは5.67であった。層状チタン酸塩の水熱合成温度を下げることで、平均粒子径を小さくすることができた。なおオートクレーブでの水熱反応温度を250℃から110℃に低下させ、反応時間を60時間とすると(他は実施例1と同様)、層状チタン酸塩は合成出来なかった。   As a result of X-ray diffraction of the obtained product, it was found that the product was only barium titanate, the average particle size in the radial direction was 3.0 μm, the average particle size in the width direction was 1.0 μm, and the thickness direction was 0.0 μm. The plate-like particles were 2 μm. Further, the degree of orientation i according to the formula 1 was 20, and the degree of orientation ii according to the formula 2 was 5.67. The average particle diameter could be reduced by lowering the hydrothermal synthesis temperature of the layered titanate. When the hydrothermal reaction temperature in the autoclave was lowered from 250 ° C. to 110 ° C. and the reaction time was 60 hours (others were the same as in Example 1), the layered titanate could not be synthesized.

以上により、積層コンデンサー材料に適した小形の板状で、特に厚さが小さく、高度に配向したチタン酸バリウム等が得られた。   As described above, barium titanate or the like having a small plate shape suitable for a multilayer capacitor material, a particularly small thickness, and highly oriented was obtained.

比較例
市販の試薬BaTiO3−粉末−ナノサイズ(和光純薬工業社株式会社製)を実施例1と同条件でガラス基板上に薄く塗付して薄膜とし、X線回折による測定を行った結果、式1による配向度iは5であり、式2による配向度iiは2.03であった。また市販の試薬BaTiO3(和光純薬工業社株式会社製)では、式1による配向度iは4であり、式2による配向度iiは1.86であった。
Comparative Example: A commercially available reagent BaTiO 3 -powder-nanosize (manufactured by Wako Pure Chemical Industries, Ltd.) was applied thinly on a glass substrate under the same conditions as in Example 1 to form a thin film, and the result of measurement by X-ray diffraction The degree of orientation i according to formula 1 was 5, and the degree of orientation ii according to formula 2 was 2.03. In addition, in the commercially available reagent BaTiO3 (manufactured by Wako Pure Chemical Industries, Ltd.), the degree of orientation i according to formula 1 was 4, and the degree of orientation ii according to formula 2 was 1.86.

実施例で調製した層状チタン酸塩のセラミック粒子構造を示す走査型電子顕微鏡写真Scanning electron micrograph showing the ceramic particle structure of the layered titanate prepared in the examples 図1の層状チタン酸塩を酸との反応で生成させたチタン酸水和物のセラミック粒子構造を示す走査型電子顕微鏡写真Scanning electron micrograph showing the ceramic particle structure of titanic acid hydrate produced by reaction of the layered titanate of FIG. 1 with an acid 図2のチタン酸水和物を水酸化バリウムと反応させた板状チタン酸バリウムのセラミック粒子構造を示す走査型電子顕微鏡写真Scanning electron micrograph showing the ceramic particle structure of plate-like barium titanate obtained by reacting the titanate hydrate of FIG. 2 with barium hydroxide

Claims (5)

径方向の平均粒子径が0.5〜5μm、幅方向の平均粒子径が0.1〜3μm、厚み方向の平均粒子径が0.05〜0.5μmで、組成式がBaTiO3であり、以下の式(1)で規定する配向度iが10以上、または式(2)で規定する配向度iiが4以上である板状チタン酸バリウム。The average particle diameter in the radial direction is 0.5 to 5 μm, the average particle diameter in the width direction is 0.1 to 3 μm, the average particle diameter in the thickness direction is 0.05 to 0.5 μm, and the composition formula is BaTiO 3. A plate-like barium titanate having an orientation degree i defined by the formula (1) of 10 or more or an orientation degree ii defined by the formula (2) of 4 or more.
配向度i=I(110)/I(111) (1)Orientation degree i = I (110) / I (111) (1)
配向度ii=I(110)/(I(100)+I(111)) (2)Orientation degree ii = I (110) / (I (100) + I (111)) (2)
(ただしI(110)及びI(111)、I(100)はX線回折スペクトルにより得られるピーク強度である)(Where I (110), I (111), and I (100) are peak intensities obtained from X-ray diffraction spectra)
酸化チタンとA元素の酸化物、水酸化物もしくは塩と、M元素の酸化物、水酸化物、もしくは塩とを、水性媒体中で120〜300℃の反応温度で水熱法により、
一般式 AxMy□zTi(2−(x/4+ky/4+z))O4 で表される層状チタン酸塩を調製し、
(ここでAはNa,K,Rb,Csからなる群の少なくとも一員の元素で、MはLi, Mg,Co,Ni,Zn,Mn(III),Fe(III)からなる群の少なくとも一員の元素であり、kはM元素の価数を表し、□はTiの欠陥部位を示す:
xは0<x<1.0の正の数で、yは正の数で、zは0または正の数であり、0<y+z<1.0 かつx>yである)
得られた層状チタン酸塩を酸と反応させて板状チタン酸水和物に転換し、
さらに前記板状チタン酸水和物を、Mg,Ca,Sr,Ba,Pbからなる群の少なくとも一員(ただしPbは2価)の水酸化物、酸化物、もしくは塩と、加熱下に水性媒体中で反応させることにより、
径方向の平均粒子径が0.5〜5μm、幅方向の平均粒子径が0.1〜3μm、厚み方向の平均粒子径が0.05〜0.5μmで、組成式がBTiO3(BはMg,Ca,Sr,Ba,Pbからなる群の少なくとも一員の元素)の板状チタン酸金属化合物とする、板状チタン酸金属化合物の製造方法。
Titanium oxide and oxides, hydroxides or salts of element A and oxides, hydroxides or salts of element M are hydrothermally treated in an aqueous medium at a reaction temperature of 120 to 300 ° C.
A layered titanate represented by the general formula AxMy □ zTi (2- (x / 4 + ky / 4 + z)) O4 was prepared,
(Where A is an element of at least one member of the group consisting of Na, K, Rb, Cs, and M is at least one member of the group consisting of Li, Mg, Co, Ni, Zn, Mn (III), Fe (III)). Is an element, k represents the valence of the M element, and □ represents a defect site of Ti:
(x is a positive number of 0 <x <1.0, y is a positive number, z is 0 or a positive number, and 0 <y + z <1.0 and x> y)
The obtained layered titanate is reacted with an acid to convert it into plate-like titanate hydrate,
Further, the plate-like titanic acid hydrate is mixed with at least one member of the group consisting of Mg, Ca, Sr, Ba, and Pb (where Pb is divalent), an oxide, or a salt, and an aqueous medium under heating. By reacting in
The average particle diameter in the radial direction is 0.5 to 5 μm, the average particle diameter in the width direction is 0.1 to 3 μm, the average particle diameter in the thickness direction is 0.05 to 0.5 μm, and the composition formula is BTiO 3 (B is Mg , Ca, Sr, Ba, Pb), a plate-like metal titanate compound.
前記BがBaで、
以下の式(1)で規定する配向度iが10以上、または式(2)で規定する配向度iiが4以上であることを特徴とする、請求項2の板状チタン酸金属化合物の製造方法。
配向度i=I(110)/I(111) (1)
配向度ii=I(110)/(I(100)+I(111)) (2)
(ただしI(110)及びI(111)、I(100)はX線回折スペクトルにより得られるピーク強度である)
B is Ba,
3. The plate-like metal titanate compound according to claim 2 , wherein the orientation degree i defined by the following formula (1) is 10 or more, or the orientation degree ii defined by the formula (2) is 4 or more. Method.
Orientation degree i = I (110) / I (111) (1)
Orientation degree ii = I (110) / (I (100) + I (111)) (2)
(Where I (110), I (111), and I (100) are peak intensities obtained from X-ray diffraction spectra)
前記A元素がK、前記M元素がLiであることを特徴とする、請求項2または3の板状チタン酸金属化合物の製造方法。 4. The method for producing a plate-like metal titanate compound according to claim 2 , wherein the A element is K and the M element is Li. 積層コンデンサー用の請求項1に記載の板状チタン酸金属化合物。
The plate-like metal titanate compound according to claim 1 for a multilayer capacitor.
JP2005208280A 2005-07-19 2005-07-19 Plate-like metal titanate compound and method for producing the same Active JP4750491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208280A JP4750491B2 (en) 2005-07-19 2005-07-19 Plate-like metal titanate compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208280A JP4750491B2 (en) 2005-07-19 2005-07-19 Plate-like metal titanate compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007022857A JP2007022857A (en) 2007-02-01
JP4750491B2 true JP4750491B2 (en) 2011-08-17

Family

ID=37784116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208280A Active JP4750491B2 (en) 2005-07-19 2005-07-19 Plate-like metal titanate compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP4750491B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158255B2 (en) 2007-02-26 2012-04-17 Ngk Insulators, Ltd. Plate-like polycrystalline particle, method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
EP2351720A3 (en) 2007-02-26 2011-08-10 NGK Insulators, Ltd. Ceramic sheet, method for producing the same, and method for producing crystallographically-oriented ceramic
JP5309356B2 (en) * 2007-03-15 2013-10-09 国立大学法人山梨大学 Manufacturing method of ceramics
JP5208696B2 (en) 2008-03-21 2013-06-12 日本碍子株式会社 Plate-like polycrystalline particles
JP5267940B2 (en) * 2009-03-03 2013-08-21 公益財団法人かがわ産業支援財団 Method for producing plate-like potassium lithium titanate
JP5827002B2 (en) 2009-11-26 2015-12-02 富山県 Anisotropic shaped powder and method for producing the same
JP5581472B2 (en) * 2009-12-09 2014-09-03 公益財団法人かがわ産業支援財団 Method for producing barium titanate with controlled crystal grain shape
JP6559419B2 (en) * 2014-12-19 2019-08-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramics and method for manufacturing the same
JP6414818B2 (en) * 2015-02-24 2018-10-31 神島化学工業株式会社 Nano composite oxide and method for producing the same
CN106861669B (en) * 2017-02-27 2019-06-04 陕西科技大学 A kind of porous laminated structure metatitanic acid particle and preparation method thereof
CN110451953A (en) * 2019-09-02 2019-11-15 宝鸡文理学院 A kind of controllable method for preparing of orientation barium strontium nano-multicrystal
WO2023236151A1 (en) * 2022-06-09 2023-12-14 苏州大学 Barium strontium titanate solid solution nano cubic crystal, method for preparing same, and use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218512A (en) * 1987-03-05 1988-09-12 Sekisui Plastics Co Ltd Production of tabular particle of metal titanate
JPH01176224A (en) * 1987-12-28 1989-07-12 Tohoku Kaihatsu Kk Production of crystalline fine powder of lead titanate
JPH1095617A (en) * 1996-04-26 1998-04-14 Ishihara Sangyo Kaisha Ltd Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
JP4674927B2 (en) * 1999-03-26 2011-04-20 神島化学工業株式会社 Plate-like BaTiO3 particles and synthesis method thereof
JP3361091B2 (en) * 2000-06-20 2003-01-07 ティーディーケイ株式会社 Dielectric porcelain and electronic components
JP3638889B2 (en) * 2000-07-27 2005-04-13 大塚化学ホールディングス株式会社 Dielectric resin foam and radio wave lens using the same

Also Published As

Publication number Publication date
JP2007022857A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4750491B2 (en) Plate-like metal titanate compound and method for producing the same
TWI290539B (en) Barium titanate and capacitor
JP6368246B2 (en) Method for producing coated barium titanate fine particles
KR20070051935A (en) Fine-particle alkaline-earth titanates and method for the production thereof using titanium oxide particles
JP5445412B2 (en) Method for producing composite oxide powder
JP5270528B2 (en) Amorphous fine particle powder, method for producing the same, and perovskite-type barium titanate powder using the same
JP6414818B2 (en) Nano composite oxide and method for producing the same
JP5353728B2 (en) Method for producing the composition
US7871595B2 (en) Fine barium titanate particles
JP2002211926A (en) Spherical barium titanate particulate powder and method for producing the same
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
KR101375601B1 (en) Method for manufacturing perovskite-typed composite oxide powder
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP4702515B2 (en) Tetragonal barium titanate fine particle powder and production method thereof
US8431109B2 (en) Process for production of composition
JP3751304B2 (en) Barium titanate and electronic components using the same
JP2005075700A (en) Method for manufacturing composition
JP2005162594A (en) Perovskite type titanium-containing multiple oxide particle, method for manufacturing the same, and application
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
GB2608725A (en) Method for producing perovskite compound, and perovskite compound
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JP6394324B2 (en) Barium titanate powder and method for producing the same
KR101761923B1 (en) Methods of coating the surface of barium titanic oxide and barium titanic oxide prepared by the same
JP4247812B2 (en) Plate-like titanic acid composite oxide particles and method for producing the same
JP2716197B2 (en) Method for producing barium titanate powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100525

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Ref document number: 4750491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250