JP5801210B2 - Microbubble generator - Google Patents

Microbubble generator Download PDF

Info

Publication number
JP5801210B2
JP5801210B2 JP2012009064A JP2012009064A JP5801210B2 JP 5801210 B2 JP5801210 B2 JP 5801210B2 JP 2012009064 A JP2012009064 A JP 2012009064A JP 2012009064 A JP2012009064 A JP 2012009064A JP 5801210 B2 JP5801210 B2 JP 5801210B2
Authority
JP
Japan
Prior art keywords
spiral
gas
nozzle
forming body
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012009064A
Other languages
Japanese (ja)
Other versions
JP2013146683A (en
Inventor
島田 晴示
晴示 島田
浅里 信之
信之 浅里
亘 森崎
亘 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2012009064A priority Critical patent/JP5801210B2/en
Priority to CN201280065910.7A priority patent/CN104039432B/en
Priority to KR1020147007192A priority patent/KR20140112469A/en
Priority to PCT/JP2012/083283 priority patent/WO2013108548A1/en
Priority to TW101150436A priority patent/TWI579039B/en
Publication of JP2013146683A publication Critical patent/JP2013146683A/en
Application granted granted Critical
Publication of JP5801210B2 publication Critical patent/JP5801210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31241Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the circumferential area of the venturi, creating an aspiration in the central part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3125Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characteristics of the Venturi parts
    • B01F25/31251Throats
    • B01F25/312512Profiled, grooved, ribbed throat, or being provided with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/913Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction

Description

本発明は、旋回流を利用して気液混合を行い液中に微細気泡を発生させる微細気泡発生装置に関する。   The present invention relates to a fine bubble generator that performs gas-liquid mixing using a swirl flow to generate fine bubbles in a liquid.

マイクロバブルなどの微細気泡を液中に発生させる方式として気液二相高速旋回方式が知られている。気液二相高速旋回方式では、ノズル内の円筒面に沿って液体を高速旋回させてノズル中心(軸心に沿って)に負圧を発生させる。そして、この負圧によりノズル内に気体を導入し高速旋回する気液二相旋回流を形成する。この旋回流を軸心に沿って縮流し、ノズル出口から開放することにより気液二相流体をせん断し微細気泡を発生させる(例えば特許文献1、2参照)。   A gas-liquid two-phase high-speed swirling method is known as a method for generating fine bubbles such as microbubbles in a liquid. In the gas-liquid two-phase high-speed swirling method, the liquid is swung at high speed along the cylindrical surface in the nozzle to generate a negative pressure at the center of the nozzle (along the axis). Then, gas is introduced into the nozzle by this negative pressure to form a gas-liquid two-phase swirl flow that swirls at high speed. This swirling flow is contracted along the axis and released from the nozzle outlet to shear the gas-liquid two-phase fluid and generate fine bubbles (see, for example, Patent Documents 1 and 2).

特許文献1の微細気泡発生装置では、高圧の液体を、螺旋流路を通してノズル内の気液混合空間に導き、これにより気液混合空間の円筒内周面に沿う螺旋状の高速旋回流を形成する。螺旋流路は、その外周に螺旋状の羽根が設けられた円柱部を、羽根の外径に略等しい内径を有するノズル本体に設けられた円筒に嵌合することで形成される。   In the fine bubble generator of Patent Document 1, high-pressure liquid is guided to the gas-liquid mixing space in the nozzle through the spiral flow path, thereby forming a spiral high-speed swirling flow along the cylindrical inner peripheral surface of the gas-liquid mixing space. To do. The spiral flow path is formed by fitting a cylindrical portion provided with spiral blades on the outer periphery thereof to a cylinder provided in a nozzle body having an inner diameter substantially equal to the outer diameter of the blades.

特開2006−142251号公報JP 2006-142251 A 特許第4376888号公報Japanese Patent No. 4376888

しかし、螺旋状の羽根は液体の極めて高い圧力に曝されるため特許文献1、2の構成では耐久性に問題がある。   However, since the spiral blade is exposed to an extremely high pressure of the liquid, the configurations of Patent Documents 1 and 2 have a problem with durability.

本発明は、気液二相高速旋回方式を用いた微細気泡発生装置において、螺旋流路の高圧流体に対する耐久性を向上することを課題としている。   This invention makes it a subject to improve the durability with respect to the high pressure fluid of a spiral flow path in the microbubble generator using a gas-liquid two-phase high-speed turning system.

本発明の旋回通路形成体は、螺旋通路を通して加圧された液体をノズル内に供給しノズル内に旋回流を発生させ、旋回流により発生する負圧を用いて気体をノズル内に導き入れ気液二相旋回流を形成し、気液二相旋回流をノズル出口から噴出することにより気液二相流体をせん断し微細気泡を発生する微細気泡発生装置に装着される旋回通路形成体であって、円柱部と円錐台部とから構成され、中心軸に沿って気体を導くための気体導入孔が形成された本体と、円柱部の外周面に沿って形成された螺旋状の羽根と、羽根の外周縁に形成される外側円筒部とを備えたことを特徴としている。   The swirling passage forming body of the present invention supplies a pressurized liquid through a spiral passage into a nozzle to generate a swirling flow in the nozzle, and introduces gas into the nozzle using negative pressure generated by the swirling flow. It is a swirl passage forming body that is attached to a microbubble generator that forms a liquid two-phase swirl flow and generates gas bubbles by shearing the gas-liquid two-phase fluid by ejecting the gas-liquid two-phase swirl flow from the nozzle outlet. A main body in which a gas introduction hole for guiding gas along the central axis is formed, a spiral blade formed along the outer peripheral surface of the cylindrical part, An outer cylindrical portion formed on the outer peripheral edge of the blade is provided.

羽根の入口部は立ち上げられていることが好ましい。これにより供給される液体の圧力損失を下げ、噴出される液体の流速を高めることで強い旋回流を発生させることができる。羽根は複数設けられ、複数の羽根同士が中心軸方向に重ならないことが好ましい。これにより、螺旋通路形成体を鋳型で一体成形することができる。また、複数の羽根は180°ずらして配置された2枚の羽根からなることが好ましく、各羽根は外周面の半周に亘って形成される。更に本体、羽根、外側円筒部は鋳型成形により一体的に形成されることが好ましい。例えば、旋回通路形成体はポリフェニレンサルファイド(PPS)樹脂から形成される。   It is preferable that the inlet part of the blade is raised. Thereby, a strong swirling flow can be generated by lowering the pressure loss of the supplied liquid and increasing the flow velocity of the ejected liquid. It is preferable that a plurality of blades are provided and the plurality of blades do not overlap in the central axis direction. Thereby, a spiral channel | path formation body can be integrally molded with a casting_mold | template. Further, the plurality of blades are preferably composed of two blades arranged 180 ° apart, and each blade is formed over a half circumference of the outer peripheral surface. Furthermore, it is preferable that the main body, the blades, and the outer cylindrical portion are integrally formed by molding. For example, the swirl passage forming body is made of polyphenylene sulfide (PPS) resin.

本発明の微細気泡発生装置は、上記螺旋通路形成体を用いる上記何れかの微細気泡発生装置であって、ノズルに装着される液体供給部と、液体供給部に設けられる気体供給部とを更に備え、螺旋通路形成体がノズル内に形成された円筒形の収容部に嵌挿され、収容部には螺旋通路形成体の外側円筒部を受ける段部が設けられたことを特徴としている。   The fine bubble generation device of the present invention is any one of the fine bubble generation devices using the spiral passage forming body, further comprising: a liquid supply unit attached to the nozzle; and a gas supply unit provided in the liquid supply unit. The spiral passage forming body is fitted into a cylindrical accommodating portion formed in the nozzle, and the accommodating portion is provided with a step portion for receiving the outer cylindrical portion of the spiral passage forming body.

液体供給部はノズルに嵌挿されてノズルに固定され、ノズルに嵌挿される液体供給部の先端部は螺旋通路形成体の外側円筒部に当接し、螺旋通路形成体は段部と先端部の間に保持される。液体供給部の液体通路内に沿って、気体供給部からの気体導入管が配置され、気体導入管は、螺旋通路形成体の気体導入孔に連結される。   The liquid supply part is inserted into the nozzle and fixed to the nozzle, the tip of the liquid supply part inserted into the nozzle is in contact with the outer cylindrical part of the spiral path forming body, and the spiral path forming body is formed between the stepped part and the tip part. Held in between. A gas introduction pipe from the gas supply section is arranged along the liquid passage of the liquid supply section, and the gas introduction pipe is connected to the gas introduction hole of the spiral passage formation body.

本発明によれば、気液二相高速旋回方式を用いた微細気泡発生装置において、螺旋流路の高圧流体に対する耐久性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, durability with respect to the high pressure fluid of a spiral flow path can be improved in the microbubble generator using a gas-liquid two-phase high-speed turning system.

本実施形態の微細気泡発生装置の側断面図である。It is a sectional side view of the microbubble generator of this embodiment. 螺旋通路形成体の頂面図、側面図、底面図である。It is the top view of a spiral channel | path formation body, a side view, and a bottom view. 螺旋通路形成体の断面図、矢視図である。It is sectional drawing and an arrow view of a spiral channel | path formation body. 螺旋通路形成体の変形例の断面図である。It is sectional drawing of the modification of a spiral channel | path formation body.

以下、本発明の実施の形態を、図面を参照して説明する。図1は、本発明の一実施形態である微細気泡発生装置の構成を示す断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a fine bubble generating apparatus according to an embodiment of the present invention.

微細気泡発生装置10は、液中にマイクロバブルなどの微細気泡を発生させるノズル11と、ノズル11に加圧された液体を供給する液体供給部12と、ノズル11に気体を供給する気体供給部13を備える。ノズル11は、例えば液体Lを貯留したタンクの壁面14に固定され、その先端は液体L内に配置される。   The microbubble generator 10 includes a nozzle 11 that generates microbubbles such as microbubbles in a liquid, a liquid supply unit 12 that supplies liquid pressurized to the nozzle 11, and a gas supply unit that supplies gas to the nozzle 11. 13 is provided. The nozzle 11 is fixed to the wall surface 14 of the tank that stores the liquid L, for example, and the tip thereof is disposed in the liquid L.

本実施形態では、ノズル11は肩部15を備え、ノズル11はその先端が壁面14に形成された孔に挿入され、ノズル11の先端にナット16を螺装し、肩部15とナット16の間に壁面14を把持することでノズル11がタンク壁面14に固定される。   In the present embodiment, the nozzle 11 includes a shoulder portion 15, and the tip of the nozzle 11 is inserted into a hole formed in the wall surface 14, and a nut 16 is screwed to the tip of the nozzle 11. The nozzle 11 is fixed to the tank wall surface 14 by holding the wall surface 14 therebetween.

ノズル11の基部側には、液体供給部12の一端(先端部12A)が気密的に嵌挿される。また、液体供給部12の他端には気体供給部13が設けられる。液体供給部12は、例えばL字形の液体通路17を備え、その外形もL字形に沿った外形を呈する。図1において側方に延びる開口端には管継手部18が設けられ、管継手部18には加圧ポンプ等に接続された管(図示せず)が接続される。すなわち加圧ポンプから加圧された液体が液体通路17へと供給される。   One end (tip portion 12 </ b> A) of the liquid supply unit 12 is airtightly inserted into the base side of the nozzle 11. A gas supply unit 13 is provided at the other end of the liquid supply unit 12. The liquid supply unit 12 includes, for example, an L-shaped liquid passage 17, and the outer shape thereof also has an outer shape along the L-shape. In FIG. 1, a pipe joint portion 18 is provided at an open end extending sideways, and a pipe (not shown) connected to a pressure pump or the like is connected to the pipe joint portion 18. That is, the pressurized liquid is supplied from the pressurizing pump to the liquid passage 17.

また、液体通路17の他方の開口端は、ノズル11内に形成された回転対称な空間へと接続される。この回転対称な空間には、後述する螺旋通路形成体19を収容する大径の円筒空間(収容部)20が設けられ、その先には、円錐状に縮径する縮径部21が設けられる。また縮径部21の先には、気液二相旋回流を生成する小径の円筒空間(気液混合部)22が設けられる。気液混合部22は、その先端において一端縮径された後ノズル外部に開口される。   The other open end of the liquid passage 17 is connected to a rotationally symmetric space formed in the nozzle 11. In this rotationally symmetric space, a large-diameter cylindrical space (accommodating portion) 20 that accommodates a spiral passage forming body 19 to be described later is provided, and a reduced diameter portion 21 that is reduced in a conical shape is provided at the tip. . In addition, a small-diameter cylindrical space (gas-liquid mixing unit) 22 that generates a gas-liquid two-phase swirl flow is provided at the tip of the reduced diameter unit 21. The gas-liquid mixing part 22 is opened to the outside of the nozzle after being reduced in diameter at the tip.

ノズル11に接続された液体通路17の開口の反対側(L字に曲がる根元部)には、小孔23が形成され、気体供給部13からの気体導入管24が気密的に相通される。液体通路17内へと延出する気体導入管24は、液体通路17の略中央に沿って延在し、その先端部は収容部20に装置された螺旋通路形成体19の気体導入孔25に装着される。   A small hole 23 is formed on the opposite side of the opening of the liquid passage 17 connected to the nozzle 11 (the root portion bent in an L shape), and the gas introduction pipe 24 from the gas supply unit 13 communicates in an airtight manner. The gas introduction pipe 24 extending into the liquid passage 17 extends substantially along the center of the liquid passage 17, and the tip portion thereof extends into the gas introduction hole 25 of the spiral passage formation body 19 installed in the housing portion 20. Installed.

気体供給部13には、気体を流通するL字形の気体通路26が形成されており、側方に延出する開口端には、管継手27が設けられる。すなわち、管継手27に接続される管(図示せず)から所望の気体が気体通路26へと供給される。また、気体通路26の例えばL字曲がり部には、ニードルスクリュウ等の流量調整弁28が設けられ、気体導入管24へと供給される気体流量の調整が行われる。   An L-shaped gas passage 26 through which gas flows is formed in the gas supply unit 13, and a pipe joint 27 is provided at an open end that extends sideways. That is, a desired gas is supplied to the gas passage 26 from a pipe (not shown) connected to the pipe joint 27. Further, a flow rate adjusting valve 28 such as a needle screw is provided at, for example, an L-shaped bent portion of the gas passage 26, and the flow rate of the gas supplied to the gas introduction pipe 24 is adjusted.

次に図2、図3を参照して本実施形態における螺旋通路形成体19の構造について説明する。なお図2(a)〜図2(c)は、本実施形態の螺旋通路形成体19の頂面図、側面図、底面図であり、図3(a)は図2(b)におけるA−A’断面図、図3(b)、(c)は、図2(c)のB方向、C方向からの矢視図(外周円筒部を取り除いた)である。   Next, the structure of the spiral passage forming body 19 in this embodiment will be described with reference to FIGS. 2A to 2C are a top view, a side view, and a bottom view of the spiral passage forming body 19 of the present embodiment, and FIG. 3A is an A- in FIG. FIGS. 3B and 3C are cross-sectional views taken along the line A ′ in FIG. 2C, and are arrow views from the B direction and the C direction in FIG. 2C (with the outer peripheral cylindrical portion removed).

図2、3に示されるように、螺旋通路形成体19の本体29は、円柱状の円柱部29Aと、円柱部29Aの下端から円錐台形状に突出する円錐台部29Bとから構成され、円柱部29Aの外周面には一対の螺旋状の羽根30A、30Bが設けられる。また、螺旋状の羽根30A、30Bの外周縁には、円筒状の外側円筒部31が設けられる。本実施形態において、外側円筒部31の高さは、例えば円柱部29Aの高さに等しく、円錐台部29Bの底面の外径は円柱部29Aの外径に等しい。なお、本体29の中心には、気体導入孔25が円柱軸(円錐軸)に沿って形成される。   As shown in FIGS. 2 and 3, the main body 29 of the spiral passage forming body 19 is composed of a cylindrical columnar portion 29A and a truncated cone portion 29B protruding in a truncated cone shape from the lower end of the cylindrical portion 29A. A pair of spiral blades 30A and 30B are provided on the outer peripheral surface of the portion 29A. A cylindrical outer cylindrical portion 31 is provided on the outer peripheral edge of the spiral blades 30A and 30B. In the present embodiment, the height of the outer cylindrical portion 31 is, for example, equal to the height of the columnar portion 29A, and the outer diameter of the bottom surface of the truncated cone portion 29B is equal to the outer diameter of the columnar portion 29A. In addition, the gas introduction hole 25 is formed in the center of the main body 29 along a cylindrical axis (conical axis).

本実施形態において、螺旋状の羽根30A、30Bは、本体29の中心軸を中心として180°隔てた位置から始まり、各々、円柱部29Aの外周面に沿って半周(180°)に亘り設けられる。すなわち、本実施形態では、2重螺旋のように羽根同士が軸方向に重なることがない。   In the present embodiment, the spiral blades 30A and 30B start from a position separated from the central axis of the main body 29 by 180 °, and are respectively provided over a half circumference (180 °) along the outer peripheral surface of the cylindrical portion 29A. . In other words, in the present embodiment, the blades do not overlap in the axial direction like a double helix.

また、螺旋通路を形成する羽根30A、30Bは、頂面近くにおいて立ち上げられ、螺旋通路入口部32A、32Bを形成する(特に図3(c)参照)。螺旋通路入口部32A、32Bは、図2(a)に示されるように本体29の軸を中心とする角θ1の範囲に設けられ、残りの角θ2の範囲は、リード角が一定な羽根30A、30Bの本体部として形成される。角度θ1、θ2は、例えば公差±10°として、それぞれ約30°、150°に設定され、羽根30A、30Bの本体部分(角度θ2の範囲)のリード角は、例えば5°〜10°に設定される。また、螺旋通路入口部32A、32Bの立ち上がり部分の最端部(上流側)は略90°とされる。   Further, the blades 30A and 30B forming the spiral passage are raised near the top surface to form spiral passage inlet portions 32A and 32B (see particularly FIG. 3C). As shown in FIG. 2A, the spiral passage inlet portions 32A and 32B are provided in a range of an angle θ1 centering on the axis of the main body 29, and the remaining range of the angle θ2 is a blade 30A having a constant lead angle. , 30B. The angles θ1 and θ2 are set to about 30 ° and 150 °, for example, with a tolerance of ± 10 °, and the lead angle of the main body portions (range of the angle θ2) of the blades 30A and 30B is set to 5 ° to 10 °, for example. Is done. Further, the extreme end portions (upstream side) of the rising portions of the spiral passage inlet portions 32A and 32B are approximately 90 °.

次に図1、図3を参照して、螺旋通路形成体19の収容部20への固定方法について説明する。   Next, with reference to FIG. 1 and FIG. 3, the fixing method to the accommodating part 20 of the helical channel | path formation body 19 is demonstrated.

ノズル11の収容部20と縮径部21の接続部には、外側円筒部31の厚さと略同一寸法幅を有する段部20Aが形成される。螺旋通路形成体19を収容部20に装着すると、外側円筒部31の外周面は、収容部20の内周面に密接し、外側円筒部31の下端部は、段部20Aに当接する。   A step portion 20 </ b> A having substantially the same width as the thickness of the outer cylindrical portion 31 is formed at the connection portion between the accommodating portion 20 and the reduced diameter portion 21 of the nozzle 11. When the spiral passage forming body 19 is attached to the accommodating portion 20, the outer peripheral surface of the outer cylindrical portion 31 is in close contact with the inner peripheral surface of the accommodating portion 20, and the lower end portion of the outer cylindrical portion 31 is in contact with the step portion 20A.

一方、液体供給部12の先端部12Aは、外側円筒部31と略同一径、略同一厚さの円筒形状を呈し、螺旋通路形成体19を収容部20に装着後、液体供給部12がノズル11に装着されると、先端部12Aが外側円筒部31の上端部に当接する。これにより、螺旋通路形成体19の位置は、収容部20内において固定される。なお本実施形態では、このとき螺旋通路形成体19の円錐部29Bの先端が、気液混合部22の入り口高さに位置する。   On the other hand, the front end portion 12A of the liquid supply unit 12 has a cylindrical shape having substantially the same diameter and thickness as the outer cylindrical portion 31, and the liquid supply unit 12 is connected to the nozzle 20 after the helical passage forming body 19 is mounted on the storage unit 20. 11 is attached to the upper end portion of the outer cylindrical portion 31. Thereby, the position of the spiral passage forming body 19 is fixed in the accommodating portion 20. In this embodiment, the tip of the conical portion 29B of the spiral passage forming body 19 is positioned at the entrance height of the gas-liquid mixing portion 22 at this time.

次に、以上の構成を用いた気液二相旋回流体生成過程と、微細気泡生成過程の概略について図1を参照して説明する。   Next, an outline of a gas-liquid two-phase swirling fluid generation process and a fine bubble generation process using the above configuration will be described with reference to FIG.

液体通路17に供給される加圧流体は、螺旋通路形成体19の入口部(32A、32B)から螺旋状の羽根(30A、30B)に沿っての縮径部21へ導かれ、周方向下向きに噴出される。液体は縮径部21の円錐面に沿って螺旋状に気液混合部22へと導かれ、更に増速されて気液混合部22の円筒内周面に沿って高速旋回を行いながらノズル先端部の開口に向けて流れる。これにより気液混合部22の中心には負圧が発生し、気体導入管24から気液混合部22に円筒軸に沿って気体が吸引され、気液二相旋回流体が形成される。この気液二相旋回流体が縮径された気液混合部22の先端開口部からノズル外部へと噴出・開放され、この過程で気液二相流体がせん断され微細気泡が発生する。   The pressurized fluid supplied to the liquid passage 17 is guided from the inlet portion (32A, 32B) of the spiral passage forming body 19 to the reduced diameter portion 21 along the spiral blades (30A, 30B), and is directed downward in the circumferential direction. Is erupted. The liquid is guided spirally along the conical surface of the diameter-reduced portion 21 to the gas-liquid mixing portion 22, further increased in speed, and rotated at a high speed along the cylindrical inner peripheral surface of the gas-liquid mixing portion 22. It flows toward the opening of the part. As a result, a negative pressure is generated at the center of the gas-liquid mixing unit 22, and gas is sucked from the gas introduction pipe 24 into the gas-liquid mixing unit 22 along the cylindrical axis to form a gas-liquid two-phase swirling fluid. This gas-liquid two-phase swirling fluid is ejected and opened from the front end opening of the gas-liquid mixing section 22 having a reduced diameter to the outside of the nozzle, and in this process, the gas-liquid two-phase fluid is sheared to generate fine bubbles.

以上のように、本実施形態によれば、微細気泡発生装置に用いられる螺旋通路形成体に設けられた螺旋状の羽根の周縁が円筒部によって補強されているため、高い圧力の液体に対しても羽根に十分な強度を与えることができる。   As described above, according to the present embodiment, the peripheral edge of the spiral blade provided in the spiral passage forming body used in the fine bubble generating device is reinforced by the cylindrical portion. Can give the blades sufficient strength.

また、本実施形態では、螺旋状の羽根を複数設けるとともに、それらが軸方向に重ならないようにしたため、螺旋通路形成体を鋳型成形により一体的に成形できる。しかし、このように軸方向に重ならないようにすると、先行例のように二重螺旋構造を採用することができず、螺旋通路の長さが短くなる。このため、螺旋流の助走距離が短くなって旋回流の効率が低下する。これを供給される流体圧力を増大させることで補うことが考えられるが、圧力を上げ、螺旋通路の流速を増大させると、螺旋通路入口部分での圧力損失が増大する。   Further, in the present embodiment, since a plurality of spiral blades are provided and they do not overlap in the axial direction, the spiral passage forming body can be integrally formed by molding. However, if it does not overlap in the axial direction in this way, the double spiral structure cannot be adopted as in the preceding example, and the length of the spiral passage is shortened. For this reason, the run-up distance of the spiral flow is shortened, and the efficiency of the swirl flow is reduced. It is conceivable to compensate for this by increasing the supplied fluid pressure, but increasing the pressure and increasing the flow velocity of the spiral passage increases the pressure loss at the inlet portion of the spiral passage.

このため、本実施形態では、螺旋通路の入口部分を立ち上げることで、流れの方向が急激に変化することを防止し、損失の発生を低減している。これにより、本実施形態では、鋳型成形を用いるために、螺旋通路の長さを短くしながらも、強い旋回流を発生させることができる。   For this reason, in this embodiment, by raising the inlet portion of the spiral passage, the flow direction is prevented from changing suddenly, and the generation of loss is reduced. Thereby, in this embodiment, since mold forming is used, a strong swirl flow can be generated while shortening the length of the spiral passage.

なお、本実施形態では、螺旋ピッチが入口部で不連続に変更されているが、螺旋通路全体あるいは入口部において、入り口に向けて連続的にピッチを大きくする構成とすることもできる。   In the present embodiment, the helical pitch is discontinuously changed at the entrance, but the pitch can be continuously increased toward the entrance in the entire spiral passage or in the entrance.

例えば、螺旋通路形成体はポリフェニレンサルファイド(PPS)樹脂から形成される。   For example, the helical path former is formed from polyphenylene sulfide (PPS) resin.

なお、図4に螺旋通路形成体の変形例を示す。図4に示される変形例では、外側側壁31と羽根30A、30B、円柱部29Aが接続される角部がRが設けられ(円弧などの湾曲した形に形成)、これらの壁面で形成される通路内を流れる流体の角部での渦の発生を抑制し、抵抗を低減している。   FIG. 4 shows a modification of the spiral passage forming body. In the modification shown in FIG. 4, corners where the outer side wall 31 and the blades 30A and 30B and the cylindrical portion 29A are connected are provided with R (formed in a curved shape such as an arc), and are formed by these wall surfaces. The generation of vortices at the corners of the fluid flowing in the passage is suppressed, and the resistance is reduced.

10 微細気泡発生装置
11 ノズル
12 液体供給部
13 気体供給部
14 タンク壁面
19 螺旋通路形成体
20 収容部
20A 段部
22 気液混合部
29 螺旋通路形成体本体
29A 円柱部
29B 円錐台部
30A、30B 螺旋状の羽根
31 外側円筒部
32A、32B 螺旋通路入口部
DESCRIPTION OF SYMBOLS 10 Fine bubble generating apparatus 11 Nozzle 12 Liquid supply part 13 Gas supply part 14 Tank wall surface 19 Spiral passage formation body 20 Storage part 20A Step part 22 Gas-liquid mixing part 29 Spiral passage formation body main body 29A Cylindrical part 29B Frustum part 30A, 30B Spiral blade 31 Outer cylindrical part 32A, 32B Spiral passage inlet part

Claims (9)

螺旋通路を通して加圧された液体をノズル内に供給し前記ノズル内に旋回流を発生させ、前記旋回流により発生する負圧を用いて気体を前記ノズル内に導き入れ気液二相旋回流を形成し、前記気液二相旋回流をノズル出口から噴出することにより気液二相流体をせん断し微細気泡を発生する微細気泡発生装置の収容部に嵌装され前記螺旋通路を形成す螺旋通路形成体であって、
円柱部と円錐台部とから構成され、中心軸に沿って前記気体を導くための気体導入孔が形成された本体と、
前記円柱部の外周面に沿って形成された螺旋状の羽根と、
前記羽根の外周縁に形成される外側円筒部と
を備えることを特徴とする螺旋通路形成体。
A liquid pressurized through a spiral passage is supplied into the nozzle to generate a swirling flow in the nozzle, and a gas is introduced into the nozzle using the negative pressure generated by the swirling flow to generate a gas-liquid two-phase swirling flow. formed, that to form the spiral passage is fitted in the housing portion of the fine bubble generating apparatus to shear the gas-liquid two-phase fluid to generate fine bubbles by ejecting the gas-liquid two-phase swirl flow from the nozzle exit spiral A passage forming body,
A main body formed of a cylindrical part and a truncated cone part, and having a gas introduction hole for guiding the gas along the central axis;
A spiral blade formed along the outer peripheral surface of the cylindrical portion;
A spiral passage forming body comprising an outer cylindrical portion formed on an outer peripheral edge of the blade.
前記羽根の入口部が立ち上げられていることを特徴とする請求項1に記載の螺旋通路形成体。 The spiral passage forming body according to claim 1, wherein an inlet portion of the blade is raised. 前記羽根が複数設けられ、前記複数の羽根同士が前記中心軸方向に重ならないことを特徴とする請求項2に記載の螺旋通路形成体。 The spiral passage forming body according to claim 2, wherein a plurality of the blades are provided, and the plurality of blades do not overlap in the central axis direction. 前記複数の羽根が180°ずらして配置された2枚の羽根からなり、各羽根が前記外周面の半周に亘って形成されることを特徴とする請求項3に記載の螺旋通路形成体。 The spiral passage forming body according to claim 3, wherein the plurality of blades are composed of two blades arranged so as to be shifted by 180 °, and each blade is formed over a half circumference of the outer peripheral surface. 前記本体、羽根、外側円筒部が射出成形により一体的に形成されることを特徴とする請求項3または4に記載の螺旋通路形成体。 It said body blade, the spiral passageway formed body according to claim 3 or 4 outer cylindrical portion and wherein the benzalkonium be integrally formed by injection molding. ポリフェニレンサルファイド(PPS)樹脂から形成されたことを特徴とする請求項1〜5の何れか一項に記載の螺旋通路形成体。 The helical passage forming body according to any one of claims 1 to 5, wherein the helical passage forming body is formed from a polyphenylene sulfide (PPS) resin. 請求項1〜6の何れか一項に記載の螺旋通路形成体が装着される微細気泡発生装置であって、前記ノズルに装着される液体供給部と、前記液体供給部に設けられる気体供給部とを更に備え、前記螺旋通路形成体が前記ノズル内に形成された円筒形の収容部に嵌挿され、前記収容部には前記螺旋通路形成体の外側円筒部を受ける段部が設けられことを特徴とする微細気泡発生装置。 A fine bubble generating device to which the spiral passage forming body according to any one of claims 1 to 6 is mounted , wherein a liquid supply unit mounted on the nozzle and a gas supply unit provided on the liquid supply unit further comprising the door, the helical passage forming member is inserted into the housing portion of the cylindrical formed in the nozzle, stepped portion for receiving the outer cylindrical portion of the helical passage forming body that is provided in the housing part A fine bubble generator characterized by the above. 前記液体供給部は前記ノズルに嵌挿されて前記ノズルに固定され、前記ノズルに嵌挿される前記液体供給部の先端部が前記螺旋通路形成体の外側円筒部に当接し、前記螺旋通路形成体が前記段部と前記先端部の間に保持されることを特徴とする請求項7に記載の微細気泡発生装置。   The liquid supply part is fitted into the nozzle and fixed to the nozzle, and a tip of the liquid supply part fitted into the nozzle comes into contact with an outer cylindrical part of the spiral path forming body, and the spiral path forming body Is held between the stepped portion and the tip end portion, the fine bubble generating device according to claim 7. 前記液体供給部の液体通路内に沿って、前記気体供給部からの気体導入管が配置され、前記気体導入管が前記螺旋通路形成体の気体導入孔に連結されることを特徴とする請求項8に記載の微細気泡発生装置。   The gas introduction pipe from the gas supply part is disposed along the liquid passage of the liquid supply part, and the gas introduction pipe is connected to a gas introduction hole of the spiral passage forming body. The fine bubble generating device according to 8.
JP2012009064A 2012-01-19 2012-01-19 Microbubble generator Active JP5801210B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012009064A JP5801210B2 (en) 2012-01-19 2012-01-19 Microbubble generator
CN201280065910.7A CN104039432B (en) 2012-01-19 2012-12-21 Micro bubble generation device
KR1020147007192A KR20140112469A (en) 2012-01-19 2012-12-21 Microbubble generator device
PCT/JP2012/083283 WO2013108548A1 (en) 2012-01-19 2012-12-21 Microbubble generator device
TW101150436A TWI579039B (en) 2012-01-19 2012-12-27 Fine bubble generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009064A JP5801210B2 (en) 2012-01-19 2012-01-19 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2013146683A JP2013146683A (en) 2013-08-01
JP5801210B2 true JP5801210B2 (en) 2015-10-28

Family

ID=48798984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009064A Active JP5801210B2 (en) 2012-01-19 2012-01-19 Microbubble generator

Country Status (5)

Country Link
JP (1) JP5801210B2 (en)
KR (1) KR20140112469A (en)
CN (1) CN104039432B (en)
TW (1) TWI579039B (en)
WO (1) WO2013108548A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11918963B2 (en) * 2016-09-28 2024-03-05 Quartus Paulus Botha Nano-bubble generator and method of generating nano-bubbles using interfering magnetic flux fields
US11345635B2 (en) * 2016-10-21 2022-05-31 Tech Corporation Co., Ltd. Surface treatment method for sand aggregate and method for producing ready-mixed concrete
JP6889594B2 (en) * 2017-04-13 2021-06-18 東芝ライフスタイル株式会社 Dishwasher
CN107261875B (en) * 2017-07-03 2020-06-12 贺生源健康生技股份有限公司 Micro and ultra-micro bubble generation module and application device thereof
TWI629247B (en) * 2017-08-22 2018-07-11 阮慶源 Microbubble generator
CN109954475A (en) * 2017-12-25 2019-07-02 中核建中核燃料元件有限公司 A kind of dry process UO2Nozzle during powder technology
KR102132815B1 (en) * 2018-09-19 2020-07-21 공성욱 Micro bubble generating device
TWI768813B (en) * 2021-04-07 2022-06-21 蘇玟足 bubble generator
DE102021001986A1 (en) * 2021-04-15 2022-10-20 Messer Austria Gmbh Device and method for dispersing gases in liquids

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1367769A (en) * 1919-08-11 1921-02-08 Cooling Tower Company Inc Spray-nozzle
JPS59115424U (en) * 1983-01-20 1984-08-04 小嶋 久夫 fluid mixing heater
US4522504A (en) * 1983-12-08 1985-06-11 Pyles Division Linear in-line mixing system
JPS6287232A (en) * 1985-10-14 1987-04-21 Hisao Kojima Stationary mixer
JPH0331388Y2 (en) * 1987-11-25 1991-07-03
JPH04322731A (en) * 1991-03-12 1992-11-12 Kimitoshi Mato Method and device for dissolution of gas
JPH07284642A (en) * 1994-04-19 1995-10-31 Hisao Kojima Mixing element and production therefor
JP2004042027A (en) * 2002-05-22 2004-02-12 Kao Corp Attachment for mixing
WO2005103447A1 (en) * 2004-04-26 2005-11-03 Axsia Serck Baker Limited Improvements in and relating to well head separators
JP4545564B2 (en) * 2004-11-24 2010-09-15 ニッタ・ムアー株式会社 Microbubble generator
JP2007021343A (en) * 2005-07-14 2007-02-01 Kansai Automation Kiki Kk Microbubble generator
JP2007211679A (en) * 2006-02-09 2007-08-23 Mitsubishi Electric Corp Periphery pump
KR101257137B1 (en) * 2006-04-24 2013-04-22 니타 가부시키가이샤 Microbubble generator
JP4376888B2 (en) * 2006-11-08 2009-12-02 ニッタ・ムアー株式会社 Microbubble generator
JP5269493B2 (en) * 2008-06-18 2013-08-21 佐藤工業株式会社 Micro bubble generator
JP5028637B2 (en) * 2009-01-28 2012-09-19 中村物産有限会社 Microbubble generator
JP2010234242A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Fine bubble generator
JP2010253396A (en) * 2009-04-24 2010-11-11 Nitta Moore Co Apparatus and method of generating microbubbles
JP5441746B2 (en) * 2010-02-05 2014-03-12 旭有機材工業株式会社 Fluid mixer and device using fluid mixer

Also Published As

Publication number Publication date
TWI579039B (en) 2017-04-21
CN104039432B (en) 2017-07-21
WO2013108548A1 (en) 2013-07-25
TW201345606A (en) 2013-11-16
KR20140112469A (en) 2014-09-23
CN104039432A (en) 2014-09-10
JP2013146683A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5801210B2 (en) Microbubble generator
JP6169749B1 (en) Microbubble generator
CN106660842B (en) Micro-bubble nozzle
CN108348933B (en) Nozzle and method of mixing fluid streams
WO2019116642A1 (en) Ultra-fine bubble generation device
JP5807783B2 (en) Fine bubble generator and swirl flow forming body
JP2021058847A (en) Fine bubble generation nozzle
JP2019166493A (en) Fine bubble generation nozzle
RU2482925C1 (en) Kochetov&#39;s radial-flow vortex nozzle
US20200238309A1 (en) High velocity fluid nozzle
JP2018008223A (en) Fine bubble generator
JP2012239953A (en) Revolving type fine air bubble generator
WO2018131714A1 (en) Fluid mixing device, and method for producing mixed fluid using this mixing device
JP2010012454A (en) Rotary microbubble generator
RU145896U1 (en) CENTRIFUGAL JET NOZZLE
RU2342597C1 (en) Acoustic nozzle for spraying of liquids
JP2012045537A (en) Jet nozzle
JP2013081880A (en) Gas dissolving apparatus
JP5938794B2 (en) Microbubble generator
JP2018047409A (en) Fine bubble generator
RU2631284C1 (en) Combined atomizer
JP2022014190A (en) Spray nozzle
RU2636888C1 (en) Kochetov composite injector for liquid atomization
JP2007237155A (en) Microbubble generator
RU2019144616A (en) DEAERATOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5801210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150