JP5796782B2 - High strength spring steel wire rod and high strength spring with excellent skin machinability - Google Patents

High strength spring steel wire rod and high strength spring with excellent skin machinability Download PDF

Info

Publication number
JP5796782B2
JP5796782B2 JP2012083005A JP2012083005A JP5796782B2 JP 5796782 B2 JP5796782 B2 JP 5796782B2 JP 2012083005 A JP2012083005 A JP 2012083005A JP 2012083005 A JP2012083005 A JP 2012083005A JP 5796782 B2 JP5796782 B2 JP 5796782B2
Authority
JP
Japan
Prior art keywords
less
steel wire
strength
pearlite
strength spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012083005A
Other languages
Japanese (ja)
Other versions
JP2013213238A (en
Inventor
宏之 大浦
宏之 大浦
吉原 直
直 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012083005A priority Critical patent/JP5796782B2/en
Priority to CN201380015707.3A priority patent/CN104169453B/en
Priority to PCT/JP2013/058564 priority patent/WO2013146675A1/en
Priority to MX2014011610A priority patent/MX2014011610A/en
Priority to KR1020147026596A priority patent/KR101601582B1/en
Priority to EP13768751.3A priority patent/EP2832891B1/en
Publication of JP2013213238A publication Critical patent/JP2013213238A/en
Application granted granted Critical
Publication of JP5796782B2 publication Critical patent/JP5796782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Springs (AREA)

Description

本発明は、自動車のクラッチ、エンジン、燃料噴射装置、懸架機構等に使用される高強度ばね(特に弁ばね)の素材として有用な高強度ばね用鋼線材、および高強度ばねに関するものであり、特に皮削り工程において良好な皮削り性を発揮することができる高強度ばね用鋼線材、およびこの高強度ばね用鋼線材から得られる高強度ばねに関するものである。   The present invention relates to a high-strength spring steel wire useful as a material for a high-strength spring (particularly a valve spring) used in automobile clutches, engines, fuel injection devices, suspension mechanisms, and the like, and a high-strength spring. In particular, the present invention relates to a steel wire for high-strength springs that can exhibit good shaving properties in a skin-cutting process, and a high-strength spring obtained from the steel wires for high-strength springs.

上記のような環境下で使用されるばねは、長期間に亘り高応力で使用されるため、高レベルの耐疲労特性が要求される。耐疲労特性を改善するには、優れた表面性状や優れた介在物制御が要求される。このうち表面性状については、ばね成形後にショットピーニングや窒化処理等で平坦化および硬化処理が行われるが、わずか数十ミクロン程度の疵が残存若しくは発生した場合は、ばねの使用中に表面疵を起点とした折損が生じる。   Since the spring used in the above environment is used with a high stress for a long period of time, a high level of fatigue resistance is required. In order to improve fatigue resistance, excellent surface properties and excellent inclusion control are required. Of these, the surface texture is flattened and cured by shot peening or nitriding after the spring is formed.If wrinkles of only a few tens of microns remain or occur, Breakage occurs as a starting point.

そこで、圧延後の線材表層の脱炭部、および線材表層の微細疵を除去する皮削り処理(以下、「SV処理」と呼ぶことがある)が実施される。このSV処理は、チッパーダイスを用いて線材の表層全周を深さ方向に数百ミクロン程度削り取る処理であるが、SV処理性(皮削り処理性)が悪い線材では、SV処理中に断線が生じる他、チッパーダイスの欠け、線材表面の乱れ、工具寿命が短くなる等の問題がある。また、SV処理性の悪い線材では、削り屑を細かく分断し、削り屑排出性を高めるためのブレーカに削り屑が絡み、ブレーカを駆動するためのモータ負荷が過大となり、装置が停止することで歩留まりが低下するという問題も生じる。   Therefore, a decarburized portion of the wire surface layer after rolling and a skin removal process (hereinafter, also referred to as “SV process”) for removing fine wrinkles on the wire surface layer are performed. This SV process is a process that uses a chipper die to scrape the entire surface of the wire layer by several hundred microns in the depth direction. However, when the SV processability (skinning processability) is poor, breakage occurs during the SV process. In addition to such problems, there are problems such as chipper die chipping, wire surface disturbance, and tool life shortening. In addition, in a wire with poor SV processability, the swarf is finely divided, the swarf is entangled with the breaker to improve the swarf discharge performance, the motor load for driving the breaker becomes excessive, and the device stops. There is also a problem that the yield decreases.

SV処理性を向上させることで大幅な歩留まりの向上、および品質の向上が可能となる。SV処理性を向上させる技術としては、組織制御や介在物組成制御等が主流であるが、こうした技術はこれまでにも様々提案されている。   By improving the SV processability, it is possible to greatly improve the yield and quality. As techniques for improving SV processability, tissue control, inclusion composition control, and the like are mainstream, but various techniques have been proposed so far.

例えば特許文献1には、オーステナイト結晶粒度を粗くすることで被削性を改善することが提案されている。しかしながら、ばね鋼で高疲労強度を実現するためには、微細な結晶粒が必要とされており、またSV処理、伸線加工等の製造性を考慮すると、微細な結晶粒度であることが好ましい。   For example, Patent Document 1 proposes improving machinability by increasing the grain size of austenite. However, in order to achieve high fatigue strength with spring steel, fine crystal grains are required, and in consideration of manufacturability such as SV treatment and wire drawing, a fine crystal grain size is preferable. .

特許文献2では、酸化物系介在物の組成、および表層に存在する酸化物系介在物のサイズ、分布密度を規定することでSV処理性を向上させている。しかしながら、SV処理性を低下させる要因は、組織の延性、靭性を左右する合金系炭化物、窒化物等の影響が大きいのが現状である。   In Patent Document 2, the SV processability is improved by defining the composition of oxide inclusions and the size and distribution density of oxide inclusions existing on the surface layer. However, the factor that lowers the SV processability is that the influence of alloy-based carbides and nitrides that influence the ductility and toughness of the structure is large.

一方、特許文献3では、機械的特性を規定することでSV処理性を高めているが、この技術では合金添加量が多くなっており、合金系炭化物や窒化物等の析出が多いばね鋼では、機械的特性を満足させるだけではSV処理性が改善できないのが現状である。   On the other hand, in Patent Document 3, the SV processability is improved by defining the mechanical characteristics. However, in this technique, the amount of alloy addition is increased, and in spring steel where precipitation of alloy carbides and nitrides is large. At present, the SV processability cannot be improved only by satisfying the mechanical characteristics.

特開2000−256785号公報JP 2000-256785 A 特開2010−222604号公報JP 2010-222604 A 特開2000−239797号公報JP 2000-239797 A

特に弁ばねでは、高疲労強度、高疲労寿命であることが必要である。これらの特性を満足させるためには、ばねの表面性状が良好であることが求められ、圧延材の脱炭層や表面疵を除去するために、SV処理が実施される。このSV処理では、圧延材の真円性を高め、片削りを防止するためのスキンパス工程と、チッパーダイスを用いた皮削り工程で構成されており、スキンパス工程での断線を防止するためには圧延時にコンベア上での冷却条件を適正に制御し、圧延材組織に過冷組織(ベイナイトやマルテンサイト)が含まれないようにすることが求められる。   In particular, a valve spring needs to have high fatigue strength and high fatigue life. In order to satisfy these characteristics, the surface property of the spring is required to be good, and SV treatment is performed to remove the decarburized layer and surface flaws of the rolled material. This SV treatment consists of a skin pass process for improving the roundness of the rolled material and preventing one-side cutting and a skinning process using a chipper die, and in order to prevent disconnection in the skin pass process. It is required to properly control the cooling conditions on the conveyor during rolling so that the rolled material structure does not contain a supercooled structure (bainite or martensite).

また、チッパーダイスでの皮削り工程では、2トンコイルの全長が皮削り可能で、且つダイスマーク等がない、安定した線肌品質が求められる。そのため、圧延材組織に、断線の原因となりやすい過冷組織が含まれないことに加え、チッパーダイスに欠けが発生しにくく、工具への負荷が小さい等、皮削り性に優れた圧延材であることが必要である。更に、チッパーダイスでの皮削り時に生じる削り屑は、ブレーカにて細かく分断された後に排出されるが、ブレーカで分断されやすい削り屑であること、即ち削り屑の排出性が良好であることも必要とされる。   Further, in a chipping process with a chipper die, a stable line surface quality that can cut the entire length of a 2-ton coil and that does not have a die mark or the like is required. Therefore, in addition to the supercooled structure that is likely to cause disconnection in the rolled material structure, the chipper die is less likely to chip and the load on the tool is small. It is necessary. Furthermore, the swarf generated when chipping with a chipper die is discharged after being finely divided by a breaker, but it is also a swarf that can be easily divided by a breaker, that is, the swarf is well discharged. Needed.

本発明はこうした従来技術における課題を解決する為になされたものであって、その目的は、皮削り性および削り屑排出性が良好であることに加え、SV処理時に断線が生じないような、良好なSV処理性を発揮することのできる高強度ばね用鋼線材、およびこのような高強度ばね用鋼線材を素材として得られる高強度ばねを提供することにある。   The present invention was made in order to solve the problems in the prior art, and its purpose is not only to have good cutting properties and shavings discharge properties, but also to prevent disconnection during SV processing. An object of the present invention is to provide a steel wire for a high-strength spring capable of exhibiting good SV processability, and a high-strength spring obtained using such a steel wire for a high-strength spring as a raw material.

上記課題を解決することのできた本発明の高強度ばね用鋼線材とは、熱間圧延後の鋼線材であり、C:0.4%以上、1.2%未満(「質量%」の意味、化学成分組成について以下同じ)、Si:1.5〜3.0%、Mn:0.5〜1.5%、Cr:0.5%以下(0%を含まない)およびAl:0.01%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物からなり、パーライトを主体とする組織であり、パーライトノジュールの粒度番号の平均値Paveが下記(1)式を満足すると共に、表層の全脱炭層深さが0.20mm以下であり、且つCr系合金炭化物量が7.5%以下である点に要旨を有するものである。
6.0≦Pave≦12.0 …(1)
The steel wire for high-strength springs of the present invention that has solved the above problems is a steel wire after hot rolling, and C: 0.4% or more and less than 1.2% (meaning “mass%”) The same applies to the chemical component composition), Si: 1.5 to 3.0%, Mn: 0.5 to 1.5%, Cr: 0.5% or less (not including 0%), and Al: 0. Each structure contains 01% or less (excluding 0%), the balance is composed of iron and inevitable impurities, and is mainly composed of pearlite. The average value Pave of the pearlite nodule particle size number satisfies the following formula (1) In addition, the main decarburized layer depth of the surface layer is 0.20 mm or less, and the grit is that the Cr-based alloy carbide amount is 7.5% or less.
6.0 ≦ Pave ≦ 12.0 (1)

本発明の高強度ばね用鋼線材には、必要によって更に(a)V:0.5%以下(0%を含まない)および/またはNb:0.5%以下(0%を含まない)、(b)Mo:0.5%以下(0%を含まない)、(c)Ni:1.0%以下(0%を含まない)、(d)Cu:0.5%以下(0%を含まない)、(e)B:0.010%以下(0%を含まない)等を含有させることも有効であり、含有される成分に応じて高強度ばね用鋼線材の特性が更に改善される。   The steel wire for a high-strength spring of the present invention may further include (a) V: 0.5% or less (not including 0%) and / or Nb: 0.5% or less (not including 0%) if necessary. (B) Mo: 0.5% or less (not including 0%), (c) Ni: 1.0% or less (not including 0%), (d) Cu: 0.5% or less (0% (E) B: 0.010% or less (excluding 0%) is also effective, and the properties of the steel wire for high-strength springs are further improved according to the components contained. The

本発明には、上記のような上記のような高強度ばね用鋼線材から得られた高強度ばねをも包含する。   The present invention also includes a high-strength spring obtained from the steel wire for a high-strength spring as described above.

本発明では、化学成分組成を適切に調整して製造条件を適切にすることによって、パーライトを主体とする組織とすると共に、パーライトノジュール粒度番号の平均値Paveが所定範囲となるようにし、且つ表層全脱炭層深さやCr系合金炭化物量を適切に制御するようにしたので、皮削り性および削り屑排出性が良好であることに加え、SV処理時に断線が生じないような、良好なSV処理性を発揮することのできる高強度ばね用鋼線材が実現でき、このような高強度ばね用鋼線材は高強度ばねを製造するための素材として極めて有用である。   In the present invention, by appropriately adjusting the chemical component composition and making the manufacturing conditions appropriate, the structure is mainly composed of pearlite, the average value Pave of the pearlite nodule particle size number is within a predetermined range, and the surface layer Since the total decarburized layer depth and Cr alloy carbide content are appropriately controlled, good SV treatment that prevents cutting and swarf discharge and prevents disconnection during SV treatment A steel wire for a high-strength spring capable of exhibiting the properties can be realized, and such a steel wire for a high-strength spring is extremely useful as a material for producing a high-strength spring.

評価用試料のサンプリング方法(リング分割位置)を示す説明図である。It is explanatory drawing which shows the sampling method (ring division position) of the sample for evaluation. 線材の組織観察位置を模式的に示す横断面図である。It is a cross-sectional view which shows typically the structure | tissue observation position of a wire. 線材の表面脱炭観察位置を模式的に示す横断面図である。It is a cross-sectional view which shows typically the surface decarburization observation position of a wire. 試験No.2(発明例)におけるブレーカ電流値の変位を示したグラフである。Test No. It is the graph which showed the displacement of the breaker electric current value in 2 (invention example). 試験No.27(比較例)におけるブレーカ電流値の変位を示したグラフである。Test No. It is the graph which showed the displacement of the breaker electric current value in 27 (comparative example).

本発明者らは、上記目的に適う高強度ばね用鋼線材を実現するべく、様々な角度から検討した。その結果、圧延材を構成する化学成分組成、組織、パーライトノジュールの粒度番号、表層脱炭深さ、および圧延材表層のCr系合金炭化物量等を適切に制御することで、皮削り性および削り屑排出性が良好であることに加え、SV処理時に断線が生じないような、SV処理性が飛躍的に向上することを明らかにした。尚、以下では、皮削り性および削り屑排出性を含めて、「SV処理性」と呼ぶことがある。次に、本発明で規定する各要件について説明する。   The present inventors have studied from various angles in order to realize a high-strength spring steel wire suitable for the above-described purpose. As a result, by appropriately controlling the chemical composition, structure, pearlite nodule particle size number, surface decarburization depth, and amount of Cr-based alloy carbide on the surface of the rolled material, it is possible to control the cutting and cutting properties. It was clarified that in addition to good waste discharging performance, the SV processing performance is greatly improved so that disconnection does not occur during the SV processing. In addition, below, it may be called "SV processability" including the shaving property and shavings discharge property. Next, each requirement prescribed | regulated by this invention is demonstrated.

[パーライトを主体とする組織]
本発明の鋼線材(熱間圧延後の鋼線材:圧延線材)は、パーライトを主体とする組織である。パーライトを主体とする組織を有する圧延線材とは、圧延線材横断面に占めるベイナイト、マルテンサイトの過冷組織およびフェライトの面積率が少ない圧延線材を意味する。パーライト主体の圧延線材は、SV処理時に断線することなくSV処理が可能となるが、ベイナイト、マルテンサイト等の過冷組織が一定量以上生じた圧延線材では、延性、靭性に乏しくなり、SV処理時に断線が生じる等、SV処理性が悪くなる。
[Perlite-based organization]
The steel wire rod of the present invention (steel wire rod after hot rolling: rolled wire rod) has a structure mainly composed of pearlite. The rolled wire rod having a structure mainly composed of pearlite means a rolled wire rod having a bainite, a martensite supercooled structure, and a ferrite having a small area ratio in the cross section of the rolled wire rod. The pearlite-based rolled wire can be subjected to the SV treatment without disconnection during the SV treatment. However, the rolled wire with a certain amount or more of supercooled structures such as bainite and martensite has poor ductility and toughness, and the SV treatment. SV processability deteriorates, such as disconnection sometimes occurring.

またフェライトは、ベイナイトやマルテンサイト等の過冷組織ほどSV処理性を低下させるものではなく、一部含んでいてもよいが、その量が過剰になると組織が不均一となるためSV処理性には好ましくない。こうした観点から本発明の鋼線材では、パーライトの面積率が90面積%以上であることが好ましい。パーライトの面積率は、より好ましくは92面積%以上(更に好ましくは95面積%以上)である。   Ferrite does not decrease the SV processability as much as the supercooled structure such as bainite and martensite, and may be partially contained. However, when the amount is excessive, the structure becomes non-uniform, so the SV processability is improved. Is not preferred. From such a viewpoint, in the steel wire of the present invention, the area ratio of pearlite is preferably 90 area% or more. The area ratio of pearlite is more preferably 92 area% or more (more preferably 95 area% or more).

[パーライトノジュールの粒度番号の平均値Pave:6.0≦Pave≦12.0]
パーライトノジュールの粒度番号(以下、「パーライトノジュールサイズ」と呼ぶことがある)の平均値Paveは、圧延線材の延性に大きな影響を及ぼす。パーライトノジュールサイズが小さい圧延線材は延性に乏しく、SV処理中の断線原因となる。また、パーライトノジュールサイズは、大きい程延性は向上するが、パーライトノジュールを極度に微細にするためには、熱間圧延での載置温度を極端に低下させ、且つ急冷のために過大な冷却設備が必要となるため、現実的に製造は難しい。こうした観点から、パーライトノジュールサイズの平均値Paveは、6.0≦Pave≦12.0とした。好ましくは、7.0≦Pave≦11.0である。
[Average value of particle numbers of pearlite nodules Pave: 6.0 ≦ Pave ≦ 12.0]
The average value Pave of the grain number of pearlite nodules (hereinafter sometimes referred to as “pearlite nodule size”) greatly affects the ductility of the rolled wire rod. A rolled wire rod having a small pearlite nodule size is poor in ductility and causes disconnection during the SV treatment. In addition, the larger the pearlite nodule size, the better the ductility, but in order to make the pearlite nodule extremely fine, the mounting temperature in the hot rolling is extremely lowered and excessive cooling equipment is used for rapid cooling. Is actually difficult to manufacture. From such a viewpoint, the average value Pave of the pearlite nodule size was set to 6.0 ≦ Pave ≦ 12.0. Preferably, 7.0 ≦ Pave ≦ 11.0.

[表層の全脱炭層深さ:0.20mm以下]
表層の脱炭は、通常SV処理によって除去されるが、表層全脱炭層が深いと、SV処理時に生じる削り屑の延性が高くなるため、チップブレーカによる削り屑の分断性が悪くなり、削り屑排出性が低下し、SV処理性が低下する。また表層全脱炭層が深い場合には、SV処理後も表層全脱炭層が残存し、ばねの疲労強度を著しく低下させることにもなる。そのため、表層全脱炭層深さは0.20mm以下とした。好ましくは0.15mm以下(より好ましくは0.10mm以下)である。
[Total decarburized layer depth of surface layer: 0.20 mm or less]
Decarburization of the surface layer is usually removed by the SV treatment, but if the surface decarburization layer is deep, the ductility of the shavings generated during the SV processing becomes high, so that the severability of the shavings by the chip breaker deteriorates, and the shavings The discharge performance is lowered, and the SV processability is lowered. When the surface decarburized layer is deep, the surface fully decarburized layer remains even after the SV treatment, and the fatigue strength of the spring is significantly reduced. Therefore, the surface layer total decarburization layer depth was set to 0.20 mm or less. Preferably it is 0.15 mm or less (more preferably 0.10 mm or less).

[Cr系合金炭化物量≦7.5質量%]
Cr系合金炭化物は、鉄系炭化物に比べて著しく硬いため、少量の析出でチッパー刃先の欠け、チッパーダイスの寿命低下および切り屑排出性の悪化等を引き起こし、SV処理性を低下させる。そのため、Cr系合金炭化物量の上限を7.5%とした。Cr系合金炭化物量は、好ましくは5.0%以下(より好ましくは4.0%以下)である。尚、本発明で対象とするCr系合金炭化物は、基本的にCrを主体として含む炭化物であるが、V,Nb,Mo等の炭化物形成元素を含有する場合には、これらとの複合合金炭化物をも含む主旨である。また、Cr系合金炭化物量には、微量の窒化物や炭窒化物が含まれることがある。
[Cr-based alloy carbide content ≦ 7.5 mass%]
Since the Cr-based alloy carbide is remarkably harder than the iron-based carbide, a small amount of precipitation causes chipping of the tip of the chipper, a decrease in the life of the chipper die, a deterioration in chip dischargeability, and the like, thereby reducing the SV processability. Therefore, the upper limit of the amount of Cr-based alloy carbide is set to 7.5%. The amount of Cr-based alloy carbide is preferably 5.0% or less (more preferably 4.0% or less). The Cr-based alloy carbide targeted in the present invention is basically a carbide containing Cr as a main component, but when it contains carbide-forming elements such as V, Nb, and Mo, a composite alloy carbide with these It is the main point including. Moreover, a trace amount nitride and carbonitride may be contained in Cr system alloy carbide amount.

上記のような高強度ばね用鋼線材を製造するに当たっては、その製造条件も適切に制御する必要がある。高強度ばね用鋼線材を製造するための手順は次の通りである。まず、所定の化学成分組成を有する鋼ビレットを熱間圧延し、所望の線径に加工する。この圧延時の加熱温度については、高すぎると旧オーステナイト結晶粒度の粗大化に伴う組織脆化の原因となり、SV処理性を低下させる。加熱温度が低すぎると、鋼材の変形抵抗が高くなるため、圧延機の負荷が高くなり製造性を低下させる。そのため、圧延前の加熱温度は900℃以上、1100℃以下であることが好ましい。より好ましくは950℃以上、1050℃以下である。   In producing the steel wire for a high-strength spring as described above, it is necessary to appropriately control the production conditions. The procedure for producing a steel wire for high strength springs is as follows. First, a steel billet having a predetermined chemical composition is hot-rolled and processed into a desired wire diameter. When the heating temperature at the time of rolling is too high, it causes the structure embrittlement associated with the coarsening of the prior austenite grain size, and decreases the SV processability. If the heating temperature is too low, the deformation resistance of the steel material increases, so the load on the rolling mill increases and the productivity decreases. Therefore, the heating temperature before rolling is preferably 900 ° C. or higher and 1100 ° C. or lower. More preferably, it is 950 degreeC or more and 1050 degreeC or less.

続いて、熱間圧延後の鋼線材をコイル状にして冷却コンベア上に載置するが、このときの温度(載置温度)が1100℃を超えると旧オーステナイト結晶粒度が粗大化し、パーライトノジュールサイズの粗大化に伴う組織脆化の原因となる、また860℃未満になると深い表層脱炭が生じやすく、また変形抵抗が高くなり、巻取り形状不良が生じやすくなる。こうしたことから載置温度は、860〜1100℃であることが好ましく、こうした温度範囲に制御することで、パーライトノジュールサイズの粗大化、および表層脱炭を抑制することができる。載置温度はより好ましくは900℃以上、1050℃以下である。   Subsequently, the steel wire after hot rolling is coiled and placed on a cooling conveyor. When the temperature (mounting temperature) at this time exceeds 1100 ° C., the prior austenite grain size becomes coarse, and the pearlite nodule size When the temperature becomes less than 860 ° C., deep surface decarburization tends to occur, deformation resistance becomes high, and winding shape defects tend to occur. For these reasons, the mounting temperature is preferably 860 to 1100 ° C., and by controlling the temperature within such a range, coarsening of the pearlite nodule size and surface decarburization can be suppressed. The mounting temperature is more preferably 900 ° C. or higher and 1050 ° C. or lower.

コンベア載置後、パーライト変態の終了温度域である600℃までの平均冷却速度を1.0℃/秒以上(好ましくは3.5℃/秒以上)、10℃/秒以下(好ましくは8℃/秒)とし、パーライト主体の組織で、且つパーライトノジュールサイズの粗大化を抑制した圧延材組織が得られる。また600℃未満から400℃までの平均冷却速度を3℃/秒以上(好ましくは3.5℃/秒以上)、10℃/秒以下(好ましくは8℃/秒以下)とし、400℃以下(好ましくは375℃以下)まで冷却することで、パーライト主体の組織中にCr系合金炭化物の析出を抑制した、SV処理性に優れた圧延線材が得られる。   After placing on the conveyor, the average cooling rate up to 600 ° C. which is the end temperature range of pearlite transformation is 1.0 ° C./second or more (preferably 3.5 ° C./second or more), 10 ° C./second or less (preferably 8 ° C. / Sec), a rolled material structure that is a pearlite-based structure and suppresses coarsening of the pearlite nodule size is obtained. The average cooling rate from less than 600 ° C. to 400 ° C. is 3 ° C./second or more (preferably 3.5 ° C./second or more), 10 ° C./second or less (preferably 8 ° C./second or less), and 400 ° C. or less ( By cooling to preferably 375 ° C. or lower, a rolled wire rod excellent in SV processability is obtained in which precipitation of Cr-based alloy carbide is suppressed in the pearlite-based structure.

本発明の高強度ばね用鋼線材は、最終製品(高強度ばね)としての特性を発揮させるために、その化学成分組成を適切に調整する必要がある。その化学成分組成における各成分(元素)による範囲限定理由は次の通りである。   The steel wire rod for high-strength springs of the present invention needs to appropriately adjust the chemical component composition in order to exhibit the characteristics as a final product (high-strength spring). The reason for the range limitation by each component (element) in the chemical component composition is as follows.

[C:0.4%以上、1.2%未満]
Cは、鋼材における基本的な強度を確保し、ばねの強度・耐へたり性の上昇に有効な元素であり、そのためには0.4%以上含有させる必要がある。C含有量の増加に伴ってばねの強度・耐へたり性は向上するが、過剰になると粗大セメンタイトが多量に析出し、延性・靱性が低下し、ばね加工性やばね特性に悪影響を及ぼすことになる。こうした観点から、C含有量は1.2%未満とする必要がある。C含有量の好ましい下限は0.5%以上であり、好ましい上限は1.0%以下である。
[C: 0.4% or more and less than 1.2%]
C is an element that secures the basic strength of the steel material and is effective in increasing the strength and sag resistance of the spring. For that purpose, it is necessary to contain 0.4% or more. As the C content increases, the strength and sag resistance of the spring will improve, but if it is excessive, a large amount of coarse cementite will precipitate, reducing ductility and toughness, which will adversely affect spring workability and spring characteristics. become. From such a viewpoint, the C content needs to be less than 1.2%. The preferable lower limit of the C content is 0.5% or more, and the preferable upper limit is 1.0% or less.

[Si:1.5〜3.0%]
Siは、鋼の脱酸のために必要な元素であり、またばねの強度、硬度と耐へたり性を確保するためにも必要な元素である。これらの効果を発揮させるためには、Siは1.5%以上含有させる必要がある。しかしながら、Si含有量が過剰になると、材料を硬化させるだけでなく、延性・靱性を低下させる他、表面の脱炭が増加してSV処理性、および疲労特性を低下させるため、3.0%以下とする必要がある。Si含有量の好ましい下限は1.6%以上(より好ましくは1.7%以上)であり、好ましい上限は2.8%以下(より好ましくは2.5%以下)である。
[Si: 1.5 to 3.0%]
Si is an element necessary for deoxidation of steel, and is also an element necessary for ensuring the strength, hardness and sag resistance of the spring. In order to exhibit these effects, it is necessary to contain 1.5% or more of Si. However, when the Si content is excessive, not only the material is hardened, but also ductility and toughness are reduced, and surface decarburization is increased to reduce SV processability and fatigue characteristics. It is necessary to do the following. The preferable lower limit of the Si content is 1.6% or more (more preferably 1.7% or more), and the preferable upper limit is 2.8% or less (more preferably 2.5% or less).

[Mn:0.5〜1.5%]
MnもSiと同様に、鋼の脱酸のために必要な元素であり、また鋼中のSをMnSとして固定することに加えて、焼入れ性を高めてばね強度の向上に貢献する。これらの効果を発揮させるためには、0.5%以上含有させる必要がある。しかしながら、Mn含有量が過剰になると、焼入れ性が過度に高くなって、マルテンサイト、ベイナイト等の過冷組織が生成しやすくなる。そのため、Mn含有量は1.5%以下とする必要がある。Mn含有量の好ましい下限は0.6%以上(より好ましくは0.7%以上)であり、好ましい上限は1.4%以下(より好ましくは1.3%以下)である。
[Mn: 0.5 to 1.5%]
Mn, like Si, is an element necessary for deoxidation of steel. In addition to fixing S in steel as MnS, it enhances hardenability and contributes to improvement of spring strength. In order to exhibit these effects, it is necessary to contain 0.5% or more. However, when the Mn content is excessive, the hardenability becomes excessively high, and a supercooled structure such as martensite and bainite is easily generated. Therefore, the Mn content needs to be 1.5% or less. A preferable lower limit of the Mn content is 0.6% or more (more preferably 0.7% or more), and a preferable upper limit is 1.4% or less (more preferably 1.3% or less).

[Cr:0.5%以下(0%を含まない)]
Crは、焼入れ性および焼戻し軟化抵抗を向上させて、ばね強度を向上させることに加え、Cの活量を低下させて圧延時や熱処理時の脱炭を防止する効果がある。しかしながら、Crの含有量が過剰になると、Cr系合金炭化物、窒化物、炭窒化物の析出が過剰となり、SV処理性を低下させる。そのため、Cr含有量は0.5%以下とする必要がある。上記効果を発揮させるためには、Cr含有量は0.05%以上である。Cr含有量のより好ましい下限は0.10%以上であり、好ましい上限は0.45%以下(より好ましくは0.40%以下)である。
[Cr: 0.5% or less (excluding 0%)]
In addition to improving hardenability and temper softening resistance and improving spring strength, Cr has the effect of reducing the activity of C and preventing decarburization during rolling and heat treatment. However, when the Cr content is excessive, precipitation of Cr-based alloy carbide, nitride, and carbonitride becomes excessive, and the SV processability is lowered. Therefore, the Cr content needs to be 0.5% or less. In order to exhibit the said effect, Cr content is 0.05% or more. A more preferable lower limit of the Cr content is 0.10% or more, and a preferable upper limit is 0.45% or less (more preferably 0.40% or less).

[Al:0.01%以下(0%を含まない)]
Alは、脱酸元素であるが、鋼中でAl23やAlNの介在物を形成する。これらの介在物は、ばねの疲労寿命を著しく低減させるため、Alは極力低減すべきである。こうした観点から、Al含有量は0.01%以下、好ましくは0.008%以下とする必要がある。より好ましくは0.005%以下とするのが良い。
[Al: 0.01% or less (excluding 0%)]
Al is a deoxidizing element, but forms inclusions of Al 2 O 3 and AlN in the steel. Since these inclusions significantly reduce the fatigue life of the spring, Al should be reduced as much as possible. From such a viewpoint, the Al content needs to be 0.01% or less, preferably 0.008% or less. More preferably, it is 0.005% or less.

本発明に係る高強度ばね用鋼線材における基本成分は上記の通りであり、残部は鉄および不可避不純物(例えば、P,S等)である。本発明に係る高強度ばね用鋼線材には、必要によって(a)V:0.5%以下(0%を含まない)および/またはNb:0.5%以下(0%を含まない)、(b)Mo:0.5%以下(0%を含まない)、(c)Ni:1.0%以下(0%を含まない)、(d)Cu:0.5%以下(0%を含まない)、(e)B:0.010%以下(0%を含まない)等を含有させてもよく、含有させる元素の種類に応じて、鋼線材の特性が更に改善される。これらの元素の好ましい範囲設定理由は下記の通りである。   The basic components in the steel wire for high-strength springs according to the present invention are as described above, and the balance is iron and inevitable impurities (for example, P, S, etc.). In the steel wire for high-strength springs according to the present invention, if necessary, (a) V: 0.5% or less (not including 0%) and / or Nb: 0.5% or less (not including 0%), (B) Mo: 0.5% or less (not including 0%), (c) Ni: 1.0% or less (not including 0%), (d) Cu: 0.5% or less (0% (E) B: 0.010% or less (not including 0%) or the like may be included, and the properties of the steel wire are further improved depending on the type of element to be included. The reason for setting a preferable range of these elements is as follows.

[V:0.5%以下(0%を含まない)および/またはNb:0.5%以下(0%を含まない)]
VおよびNbは、いずれも熱間圧延および焼入れ焼戻し処理において結晶粒を微細化する作用があり、延性、靭性を向上させる。このうちVは、ばね成形後の歪取焼鈍時に2次析出硬化を起こしてばねの強度の向上に寄与する効果もある。しかしながら、過剰に含有させると、Crと、VやNbとの複合合金炭化物の析出が過剰となり、SV処理性を低下させる。そのため、いずれも含有量は0.5%以下が好ましい。上記効果を発揮させるための好ましい下限は、いずれも0.05%以上(より好ましくは0.10%以上)であり、より好ましい上限はいずれも0.45%以下(更に好ましくは0.40%以下)である。
[V: 0.5% or less (not including 0%) and / or Nb: 0.5% or less (not including 0%)]
V and Nb both have the effect of refining crystal grains in hot rolling and quenching and tempering treatments, and improve ductility and toughness. Among these, V also has an effect of causing secondary precipitation hardening at the time of stress relief annealing after spring forming and contributing to improvement of spring strength. However, if excessively contained, precipitation of composite alloy carbides of Cr and V or Nb becomes excessive, and the SV processability is lowered. For this reason, the content is preferably 0.5% or less. The preferable lower limit for exhibiting the above effects is 0.05% or more (more preferably 0.10% or more), and the more preferable upper limit is 0.45% or less (more preferably 0.40%). The following).

[Mo:0.5%以下(0%を含まない)]
Moは、ばね成形後の歪取焼鈍時に2次析出硬化を起こしてばねの強度の向上に寄与する。しかしながら、Mo含有量が過剰になると、CrとMoの複合合金炭化物の析出が過剰となり、SV処理性を低下させる。そのため、Mo含有量は0.5%以下とすることが好ましい。上記効果を発揮させるための好ましい含有量は、0.05%以上である。Mo含有量のより好ましい下限は、0.10%以上であり、より好ましい上限は0.45%以下(更に好ましくは0.40%以下)である。
[Mo: 0.5% or less (excluding 0%)]
Mo contributes to improving the strength of the spring by causing secondary precipitation hardening at the time of stress relief annealing after spring forming. However, when the Mo content is excessive, precipitation of the composite alloy carbide of Cr and Mo becomes excessive, and the SV processability is lowered. Therefore, the Mo content is preferably 0.5% or less. A preferable content for exhibiting the above effect is 0.05% or more. A more preferable lower limit of the Mo content is 0.10% or more, and a more preferable upper limit is 0.45% or less (more preferably 0.40% or less).

[Ni:1.0%以下(0%を含まない)]
Niは、熱間圧延時の脱炭を抑制する他、焼入れ焼戻し後の延性、靭性、および耐腐食性の向上に寄与する。しかし、含有量が過剰になると焼入れ性が過度に向上するため、マルテンサイト、ベイナイト等の過冷組織が生成しやすくなる。また、OT線(オイルテンパー線)の製造工程である焼入れ焼戻しで残留オーステナイトが過度に生成するので、ばねの耐へたり性を著しく低下させる。そのため、Ni含有は1.0%以下とすることが好ましい。Ni含有量の好ましい下限は0.05%以上(より好ましくは0.10%以上)であり、より好ましい上限は0.9%以下(更に好ましくは0.8%以下)である。
[Ni: 1.0% or less (excluding 0%)]
Ni contributes to the improvement of ductility, toughness, and corrosion resistance after quenching and tempering as well as suppressing decarburization during hot rolling. However, when the content is excessive, the hardenability is excessively improved, so that a supercooled structure such as martensite and bainite is easily generated. In addition, since retained austenite is excessively generated by quenching and tempering, which is a manufacturing process of the OT wire (oil tempered wire), the sag resistance of the spring is significantly reduced. Therefore, the Ni content is preferably 1.0% or less. A preferable lower limit of the Ni content is 0.05% or more (more preferably 0.10% or more), and a more preferable upper limit is 0.9% or less (more preferably 0.8% or less).

[Cu:0.5%以下(0%を含まない)]
Cuは、熱間圧延時の脱炭を抑制する他、耐腐食性の向上に寄与する。しかしながら、過剰に含有させると熱間延性を低下させ、熱間圧延時に割れを生じる危険がある。そのため、Cu添加量は0.5%以下とすることが好ましい。Cu含有量の好ましい下限は0.05%以上(より好ましくは0.1%以上)であり、より好ましい上限は0.45%以下(更に好ましくは0.40%以下)である。
[Cu: 0.5% or less (excluding 0%)]
Cu not only suppresses decarburization during hot rolling, but also contributes to improvement of corrosion resistance. However, if it is contained excessively, the hot ductility is lowered and there is a risk of cracking during hot rolling. Therefore, the Cu addition amount is preferably 0.5% or less. The minimum with preferable Cu content is 0.05% or more (more preferably 0.1% or more), and a more preferable upper limit is 0.45% or less (more preferably 0.40% or less).

[B:0.010%以下(0%を含まない)]
Bは、焼入れ性の向上とオーステナイト結晶粒界の清浄化による延性・靱性の向上効果がある。しかしながら、過剰に含有させるとFeとBの複合化合物が析出し、熱間圧延時の割れを引き起こす危険がある。また、焼入れ性が過度に向上するため、マルテンサイト、ベイナイト等の過冷組織が生成しやすくなる。そのため、B含有量は0.010%以下とすることが好ましい。B含有量の好ましい下限は0.0010%以上(より好ましくは0.0015%以上、更に好ましくは0.0020%以上)であり、より好ましい上限は0.0080%以下(更に好ましくは0.0060%以下)である。
[B: 0.010% or less (excluding 0%)]
B has an effect of improving ductility and toughness by improving hardenability and cleaning austenite grain boundaries. However, if it is contained excessively, a composite compound of Fe and B precipitates and there is a risk of causing cracks during hot rolling. Moreover, since hardenability improves excessively, it becomes easy to produce | generate supercooled structures, such as a martensite and a bainite. Therefore, the B content is preferably 0.010% or less. A preferable lower limit of the B content is 0.0010% or more (more preferably 0.0015% or more, still more preferably 0.0020% or more), and a more preferable upper limit is 0.0080% or less (more preferably 0.0060). % Or less).

本発明の高強度鋼線材は、熱間圧延後のものを想定したものであるが、この高強度鋼線材は、その後皮削り処理、焼鈍、伸線前処理(酸洗処理)、伸線、コイリング、焼入れ焼き戻し処理、表面処理等が施されることによって、高強度ばねに成形される。このようにして得られる高強度ばねは、良好な特性を発揮するものとなる。   The high-strength steel wire rod according to the present invention assumes that after hot rolling, but this high-strength steel wire rod is subsequently subjected to skinning treatment, annealing, wire drawing pretreatment (pickling treatment), wire drawing, A high-strength spring is formed by performing coiling, quenching and tempering treatment, surface treatment, and the like. The high-strength spring thus obtained exhibits good characteristics.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1、2に示す化学成分組成の鋼塊を転炉で溶製した後、この鋼塊を分塊圧延して断面が155mm×155mmの鋼ビレットを作製し、1000℃に加熱した後、熱間圧延し、下記表3、4に示すコンベア載置温度(圧延後の載置温度)、平均冷却速度(載置温度から600℃まで、および600℃未満から400℃までの平均冷却速度)で冷却し、線径:8.0mmφ、単重2tonのコイルを製造した(試験No.1〜31)。   After melting steel ingots having the chemical composition shown in Tables 1 and 2 below in a converter, this steel ingot is subjected to ingot rolling to produce a steel billet having a cross section of 155 mm × 155 mm and heated to 1000 ° C. Conveyor placement temperature (mounting temperature after rolling) and average cooling rate shown in Tables 3 and 4 below, average cooling rate (average cooling rate from placement temperature to 600 ° C. and from less than 600 ° C. to 400 ° C.) Then, a coil having a wire diameter of 8.0 mmφ and a single weight of 2 ton was manufactured (Test Nos. 1 to 31).

得られた各コイルのパーライト面積率、パーライトノジュールサイズ、全脱炭層深さ、Cr系合金炭化物量、SV処理性を調査した。SV処理性の調査は、2トンコイル全量を用いた。SV処理性の調査の他は、各加工性調査用の2トンコイルの端末から1リングずつ切り出し、図1に示すように円周方向に8分割(線材長手方向の8分割に相当)して採取したサンプルを使用し、各々の測定値を平均することにより、各コイルの代表値を求めた。   The pearlite area ratio, pearlite nodule size, total decarburized layer depth, Cr-based alloy carbide content, and SV processability of each obtained coil were investigated. In the investigation of the SV processability, the total amount of the 2-ton coil was used. In addition to the investigation of SV processability, one ring is cut out from the end of each 2-ton coil for workability investigation, and it is sampled by dividing into 8 parts in the circumferential direction (corresponding to 8 parts in the longitudinal direction of the wire) as shown in FIG. The representative value of each coil was calculated | required by using each sample and averaging each measured value.

パーライト面積率は、圧延線材の上記8部位において、図2(組織観察位置を模式的に示した横断面図)に示すように、各表層(2視野)、表面から1/4D位置(Dは線材直径:2視野)、1/2D(D/4〜D/4の中央領域:1視野)の部分において(合計5視野)、光学顕微鏡を用いて測定した。熱間圧延線材の横断面を埋め込み研磨し、ピクリン酸を用いた化学腐食を実施した後、光学顕微鏡により、倍率400倍で200μm×200μmの領域の組織写真を撮影し、画像解析ソフト(「Image Pro Plus」 Media Cybemetics社製)を用いて、画像を2値化した後、パーライト面積率を求め、平均値を算出した。8部位で各々5視野のパーライト面積率を求め、それらを平均することで、コイル毎のパーライト面積率を算出した。尚、表層に脱炭層が存在する場合には、JIS G 0558の4で規定される全脱炭部は測定部位から除外した。パーライト面積率が90%以上の組織をP、パーライトが90%未満でベイナイトやマルテンサイトが生成している場合には「P+B+M」若しくは「B+M」と表記した。   As shown in FIG. 2 (cross-sectional view schematically showing the structure observation position), the pearlite area ratio is a 1 / 4D position (D is the D from the surface layer (2 fields of view), as shown in FIG. Wire rod diameter: 2 visual fields), 1 / 2D (D / 4 to D / 4 central region: 1 visual field) (total 5 visual fields) were measured using an optical microscope. After embedding and polishing the cross section of the hot-rolled wire, and performing chemical corrosion using picric acid, an optical microscope was used to take a structure photograph of an area of 200 μm × 200 μm at a magnification of 400 times, and image analysis software (“Image” The image was binarized using “Pro Plus” (Media Cybermetrics), and then the perlite area ratio was determined, and the average value was calculated. The pearlite area ratio of 5 fields of view was obtained at 8 sites, and the pearlite area ratio for each coil was calculated by averaging them. In addition, when the decarburized layer existed in the surface layer, the entire decarburized part specified by 4 of JIS G 0558 was excluded from the measurement site. A structure having a pearlite area ratio of 90% or more was expressed as P, and when pearlite was less than 90% and bainite or martensite was formed, it was expressed as “P + B + M” or “B + M”.

パーライトノジュールサイズの測定は、熱間圧延線材の8部位において、前記図2に示したように、各表層(2視野)、表面から1/4D位置(Dは線材直径:2視野)、1/2D(D/4〜D/4の中央領域:1視野)の部分において(合計5視野)、光学顕微鏡を用いて測定した。ここで、パーライトノジュールとは、パーライト組織中のフェライト結晶粒が同一方位を示す領域を示し、その測定方法は以下の通りである。まず熱間圧延線材の横断面を埋め込み研磨し、濃硝酸(62%):アルコール=1:100(体積比)の溶液を用いて腐食した後(フェライト粒の結晶面に対する腐食量の差からパーライトノジュール粒が浮かび上がって観察される)、パーライトノジュールの粒度番号を測定した。8部位で各々5視野のパーライトノジュールの粒度番号を測定し、それらを平均することで、コイル毎のパーライトノジュールサイズの平均値Paveを算出した。パーライトノジュールの粒度番号の測定は、JIS G 0551に記載の「オーステナイト結晶粒度の測定」に準じてその粒度番号を測定した。   The pearlite nodule size is measured at each of the eight layers of the hot-rolled wire, as shown in FIG. 2, with each surface layer (2 fields of view), 1 / 4D position from the surface (D is the wire diameter: 2 fields of view), 1 / In the 2D (D / 4 to D / 4 central region: 1 field of view) portion (total of 5 fields of view), measurement was performed using an optical microscope. Here, the pearlite nodule indicates a region in which the ferrite crystal grains in the pearlite structure have the same orientation, and the measurement method is as follows. First, the cross section of the hot rolled wire is embedded and polished, and then corroded using a solution of concentrated nitric acid (62%): alcohol = 1: 100 (volume ratio). The nodule grains are observed to emerge), and the particle number number of the pearlite nodules was measured. The average number Pave of the pearlite nodule size for each coil was calculated by measuring the particle size numbers of pearlite nodules with 5 fields of view at 8 sites and averaging them. The particle number of pearlite nodules was measured according to “Measurement of austenite crystal particle size” described in JIS G 0551.

全脱炭層深さの測定は、熱間圧延線材の8部位において、図3(脱炭観察位置を模式的に示した横断面図)に示すように、各表層8箇所において、光学顕微鏡を用いて測定した。熱間圧延線材の横断面を埋め込み研磨し、ピクリン酸を用いた化学腐食を実施した後に観察を行い、8箇所の最大深さを各部位で測定し、8部位で最も深い全脱炭層深さを、そのコイルの全脱炭層深さとした。測定は、JIS G 0558に記載の「鋼の脱炭層深さ測定方法」に準じてその全脱炭層深さを求めた。   The total decarburized layer depth was measured using an optical microscope at 8 locations on each surface layer as shown in FIG. 3 (cross sectional view schematically showing the decarburization observation position) at 8 locations of the hot-rolled wire rod. Measured. The cross section of hot-rolled wire is embedded and polished, and after chemical corrosion using picric acid is observed, the maximum depth at 8 locations is measured at each location, and the deepest total decarburized layer depth at 8 locations. Was the total decarburization depth of the coil. The measurement calculated | required the total decarburization layer depth according to "the decarburization layer depth measuring method of steel" as described in JISG0558.

Cr系合金炭化物量は、電解抽出法によって求めた。まず、圧延線材のスケールをサンドペーパーで除去し、アセトンで洗浄した後、このサンプルを電解液(アセチルアセトンを10質量%含有するエタノール溶液)中に浸漬させ(線材表層から電解量を0.4〜0.5g程度とした後、サンプルを取出した)、母相の金属Feを電気分解し、電解液に存在する鋼中の合金析出物(炭化物、および微量の窒化物、炭窒化物を含む)を残渣として採取し、その残渣質量を電解量で割ることで、Cr系合金炭化物量(質量%)を求めた。測定される合金析出物は、主にCr系の合金炭化物であるが、選択元素を添加した際には、Crと、V,Nb,Mo等との複合合金炭化物を含む。尚、残渣を採取するためのフィルターとして、メッシュ直径0.1μmのフィルター[アドバンテック東洋(株)製メンブランフィルターなど]を使用した。   The amount of Cr-based alloy carbide was determined by the electrolytic extraction method. First, after removing the scale of the rolled wire with sandpaper and washing with acetone, this sample was immersed in an electrolytic solution (ethanol solution containing 10% by mass of acetylacetone). After about 0.5 g, the sample was taken out), the metal phase metal Fe was electrolyzed, and alloy precipitates in the steel existing in the electrolyte (including carbides, trace amounts of nitrides, carbonitrides) Was collected as a residue, and the amount of Cr-based alloy carbide (mass%) was determined by dividing the residue mass by the amount of electrolysis. The alloy precipitate to be measured is mainly a Cr-based alloy carbide, but when a selective element is added, it includes a composite alloy carbide of Cr and V, Nb, Mo or the like. A filter having a mesh diameter of 0.1 μm [a membrane filter manufactured by Advantech Toyo Co., Ltd.] was used as a filter for collecting the residue.

SV処理性は、コイルに熱処理を加えることなくSV処理を実施し、このSV処理での断線の有無、チッパーダイスの入り側にセットされている削り屑を分断するブレーカの負荷、チッパーダイスの欠けの有無、等で評価した。   SV treatment is performed without applying heat treatment to the coil, the presence or absence of disconnection in this SV treatment, the load of the breaker that breaks up the chip set on the chipper die entry side, the chipper die missing The presence or absence, etc. were evaluated.

[SV処理性の評価基準]
(1)断線の有無:2トンコイル全量をSV処理した際に、断線が生じなかったコイルをSV処理性が良い:○、断線が1回以上生じたコイルをSV処理性が悪い:×と評価した。
[SV Evaluation Criteria]
(1) The presence or absence of disconnection: When the entire 2-ton coil is subjected to the SV process, the coil in which the disconnection does not occur has good SV processability: ○, the coil in which the disconnection has occurred once or more is evaluated as poor in SV processability: x did.

(2)ブレーカの負荷:ブレーカの電流値の変位(0〜10A)をデータロガーにてサンプリング間隔1秒で測定し、SV処理時のTOP、BOTの各端末10kgを除いたデータを使用した。測定データの60点平均移動線の一部の値が9Aを超えないコイルをSV処理性が良い:○、60点平均移動線の一部の値が9Aを超えるコイルをSV処理性が悪い:×と評価した(後記図4、5参照)。   (2) Breaker load: The displacement (0 to 10 A) of the current value of the breaker was measured with a data logger at a sampling interval of 1 second, and data excluding each 10 kg of TOP and BOT terminals during SV processing was used. A coil whose measurement data has a part of the 60-point average moving line that does not exceed 9A has good SV processability: A coil that has a part of the 60-point average moving line that has a value that exceeds 9A has a poor SV processing ability: X was evaluated (see FIGS. 4 and 5 below).

(3)チッパーダイスの欠け:2トンコイル全量をSV処理した後、チッパーダイスを取外し、実体顕微鏡にてチッパーダイスのワイヤ接触部分の欠けを確認した。チッパーダイスのワイヤ接触部分に欠け(チッパー欠け)のなかったコイルをSV処理性が良い:○、ワイヤ接触部分に欠けの発生したコイルをSV処理性が悪い:×と評価した。   (3) Chipper die chipping: After the entire amount of the 2-ton coil was subjected to SV treatment, the chipper die was removed, and chipping of the wire contact portion of the chipper die was confirmed with a stereomicroscope. A coil having no chipping (chipper chipping) in the wire contact portion of the chipper die was evaluated as having good SV processability: ○, and a coil having chipping in the wire contact portion was evaluated as having poor SV processing performance: x.

これらの評価結果を、圧延線材組織(パーライト面積率、パーライトノジュールサイズの平均値Pave)、Cr系合金炭化物量と共に、下記表5、6に示す。   These evaluation results are shown in Tables 5 and 6 below together with the rolled wire structure (perlite area ratio, average value Pave of pearlite nodule size) and Cr alloy carbide amount.

試験No.1〜15のもの(表5)は、本発明で規定する要件を満足する例、試験No.16〜23のもの(表6)は、化学成分組成は満足する(鋼種B1,B2,C1,C2,E1,G1,G2,L1)が、製造条件が本発明で規定する要件を満足しない例、試験No.24〜31のもの(表6)は、化学成分組成が本発明で規定する範囲を外れるもの(鋼種P〜W)である。   Test No. Nos. 1 to 15 (Table 5) are examples satisfying the requirements defined in the present invention, Test No. Examples 16 to 23 (Table 6) satisfy the chemical composition (steel types B1, B2, C1, C2, E1, G1, G2, L1), but the manufacturing conditions do not satisfy the requirements defined in the present invention. , Test No. 24 to 31 (Table 6) are those in which the chemical composition is outside the range defined in the present invention (steel types P to W).

これらの結果から、次のように考察できる。まず試験No.1〜15は、本発明で規定する要件を満足しており、これらの鋼線材は、SV処理性の全ての項目(断線の有無、ブレーカ負荷、チッパー欠け)において良好な結果が得られている。   From these results, it can be considered as follows. First, test no. Nos. 1 to 15 satisfy the requirements defined in the present invention, and these steel wires have good results in all items of SV processability (presence of disconnection, breaker load, chipper chipping). .

これに対し、試験No.16は、圧延後の載置温度が高いために、圧延材のパーライトノジュールサイズが粗くなっており、SV処理で断線が発生している。試験No.17は、圧延後の載置温度が低いために、圧延線材表層の全脱炭層が深くなっており、ブレーカの負荷が上昇している。   In contrast, test no. In No. 16, since the mounting temperature after rolling is high, the pearlite nodule size of the rolled material is coarse, and disconnection occurs in the SV treatment. Test No. In No. 17, since the mounting temperature after rolling is low, the entire decarburized layer of the rolled wire rod surface layer is deep, and the load of the breaker is increased.

試験No.18、21は、コンベア載置後600℃までの平均冷却速度が遅いために、圧延材のパーライトノジュールサイズが粗くなっており、SV処理で断線が発生している。試験No.19、22は、600℃未満から400℃までの平均冷却速度が遅いために、Cr系合金炭化物量が増加し、ブレーカでの負荷が大きくなると共に、チッパーでの欠けが発生している。   Test No. Nos. 18 and 21 have a slow average cooling rate up to 600 ° C. after placing the conveyor, so that the pearlite nodule size of the rolled material is coarse, and disconnection occurs in the SV process. Test No. In Nos. 19 and 22, since the average cooling rate from less than 600 ° C. to 400 ° C. is slow, the amount of Cr-based alloy carbide increases, the load on the breaker increases, and chipping in the chipper occurs.

試験No.20は、コンベア載置後600℃までの平均冷却速度が速いために、パーライト単相の組織とはならず、マルテンサイトやベイナイトが生成し、SV処理時に断線が生じている。試験No.23は、600℃未満から400℃までの平均冷却速度が速いために、パーライト単相の組織とはならず、マルテンサイトやベイナイトが生成し、SV処理時に断線が生じている。   Test No. No. 20 has a high average cooling rate up to 600 ° C. after placing on the conveyor, so it does not have a pearlite single phase structure, but martensite and bainite are generated, and disconnection occurs during SV processing. Test No. Since No. 23 has a high average cooling rate from less than 600 ° C. to 400 ° C., it does not become a pearlite single phase structure, but martensite and bainite are generated, and disconnection occurs during the SV treatment.

試験No.24は、Si含有量が過剰な鋼種(表2の鋼種P)を用いた例であり、圧延線材表層の全脱炭層が深くなっており、ブレーカの負荷が上昇している。   Test No. No. 24 is an example using a steel type with excessive Si content (steel type P in Table 2), where the entire decarburized layer of the rolled wire rod surface layer is deep, and the breaker load is increased.

試験No.25、26、31は、各成分(Mn,Ni,B)の含有量が過剰な鋼種(表2の鋼種Q,R,W)を用いた例であり、焼入れ性が過度に上昇したために、パーライト単相とはならず、ベイナイトやマルテンサイトが生成し、SV処理時に断線が生じている。   Test No. 25, 26, 31 are examples using steel types (steel types Q, R, W in Table 2) in which the content of each component (Mn, Ni, B) is excessive, and the hardenability increased excessively. It does not become a pearlite single phase, but bainite and martensite are generated, and disconnection occurs during the SV treatment.

試験No.27〜30は、各成分(Cr,V,Mo,Nb)の含有量が過剰な鋼種(表2の鋼種S,T,U,V)を用いた例であり、Cr系合金炭化物量が増加し、ブレーカでの負荷が大きくなると共に、チッパーでの欠けが発生している。   Test No. 27 to 30 are examples using steel types (steel types S, T, U, V in Table 2) in which the content of each component (Cr, V, Mo, Nb) is excessive, and the amount of Cr-based alloy carbide increases. In addition, the load on the breaker increases and chipping on the chipper occurs.

図4は、試験No.2(発明例)におけるブレーカ電流値の変位を示したものであり、電流値が安定していることが分かる。これに対し、図5は試験No.27(比較例)におけるブレーカ電流値の変位を示したものであり、ブレーカの負荷が部分的に高くなっていることがわかる(破線で囲んだ部分のブレーカ負荷が高く、電流値が大きい)。   FIG. 2 (invention example) shows the displacement of the breaker current value, and it can be seen that the current value is stable. On the other hand, FIG. 27 (comparative example) shows the displacement of the breaker current value, and it can be seen that the load of the breaker is partially increased (the breaker load in the portion surrounded by the broken line is high and the current value is large).

Claims (7)

熱間圧延後の鋼線材であり、C:0.4%以上、1.2%未満(「質量%」の意味、化学成分組成について以下同じ)、Si:1.5〜3.0%、Mn:0.5〜1.5%、Cr:0.5%以下(0%を含まない)およびAl:0.01%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物からなり、パーライトを主体とする組織であり、パーライトノジュールの粒度番号の平均値Paveが下記(1)式を満足すると共に、表層の全脱炭層深さが0.20mm以下であり、且つCr系合金炭化物量が7.5%以下であることを特徴とする皮削り性に優れた高強度ばね用鋼線材。
6.0≦Pave≦12.0 …(1)
It is a steel wire after hot rolling, C: 0.4% or more, less than 1.2% (meaning “mass%”, the same applies to the chemical composition), Si: 1.5-3.0%, Mn: 0.5 to 1.5%, Cr: 0.5% or less (not including 0%) and Al: 0.01% or less (not including 0%), respectively, the balance being iron and inevitable It consists of impurities and is a structure mainly composed of pearlite, the average value Pave of the pearlite nodule particle size number satisfies the following formula (1), the total decarburized layer depth of the surface layer is 0.20 mm or less, and Cr A steel wire for high-strength springs with excellent carving characteristics, characterized in that the amount of carbide of the alloy is 7.5% or less.
6.0 ≦ Pave ≦ 12.0 (1)
V:0.5%以下(0%を含まない)および/またはNb:0.5%以下(0%を含まない)を含有する請求項1に記載の高強度ばね用鋼線材。   The steel wire for high-strength springs according to claim 1, containing V: 0.5% or less (not including 0%) and / or Nb: 0.5% or less (not including 0%). Mo:0.5%以下(0%を含まない)を含有する請求項1または2に記載の高強度ばね用鋼線材。   The steel wire for high-strength springs according to claim 1 or 2, containing Mo: 0.5% or less (not including 0%). 更に、Ni:1.0%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の高強度ばね用鋼線材。   Furthermore, Ni: 1.0% or less (0% is not included) The steel wire for high-strength springs in any one of Claims 1-3 containing. 更に、Cu:0.5%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の高強度ばね用鋼線材。   Furthermore, Cu: 0.5% or less (0% is not included) The steel wire for high strength springs in any one of Claims 1-4 containing. 更に、B:0.010%以下(0%を含まない)を含有する請求項1〜5のいずれかに記載の高強度ばね用鋼線材。   Furthermore, the steel wire for high strength springs according to any one of claims 1 to 5, further comprising B: 0.010% or less (not including 0%). 請求項1〜6のいずれかに記載の高強度ばね用鋼線材から得られた高強度ばね。   A high-strength spring obtained from the steel wire for a high-strength spring according to any one of claims 1 to 6.
JP2012083005A 2012-03-30 2012-03-30 High strength spring steel wire rod and high strength spring with excellent skin machinability Expired - Fee Related JP5796782B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012083005A JP5796782B2 (en) 2012-03-30 2012-03-30 High strength spring steel wire rod and high strength spring with excellent skin machinability
CN201380015707.3A CN104169453B (en) 2012-03-30 2013-03-25 The steel wire for high-strength spring material of peeling excellence and high-strength spring
PCT/JP2013/058564 WO2013146675A1 (en) 2012-03-30 2013-03-25 Steel wire rod with excellent shavability for high-strength spring, and high-strength spring
MX2014011610A MX2014011610A (en) 2012-03-30 2013-03-25 Steel wire rod with excellent shavability for high-strength spring, and high-strength spring.
KR1020147026596A KR101601582B1 (en) 2012-03-30 2013-03-25 Steel wire rod with excellent shavability for high-strength spring, and high-strength spring
EP13768751.3A EP2832891B1 (en) 2012-03-30 2013-03-25 Steel wire rod with excellent shavability for high-strength spring, and high-strength spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083005A JP5796782B2 (en) 2012-03-30 2012-03-30 High strength spring steel wire rod and high strength spring with excellent skin machinability

Publications (2)

Publication Number Publication Date
JP2013213238A JP2013213238A (en) 2013-10-17
JP5796782B2 true JP5796782B2 (en) 2015-10-21

Family

ID=49259926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083005A Expired - Fee Related JP5796782B2 (en) 2012-03-30 2012-03-30 High strength spring steel wire rod and high strength spring with excellent skin machinability

Country Status (6)

Country Link
EP (1) EP2832891B1 (en)
JP (1) JP5796782B2 (en)
KR (1) KR101601582B1 (en)
CN (1) CN104169453B (en)
MX (1) MX2014011610A (en)
WO (1) WO2013146675A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208611B2 (en) 2014-03-31 2017-10-04 株式会社神戸製鋼所 High strength steel with excellent fatigue properties
JP6479527B2 (en) 2015-03-27 2019-03-06 株式会社神戸製鋼所 Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP6453693B2 (en) * 2015-03-31 2019-01-16 株式会社神戸製鋼所 Heat treated steel wire with excellent fatigue characteristics
JP6453138B2 (en) * 2015-03-31 2019-01-16 株式会社神戸製鋼所 Heat-treated steel wire with excellent bending workability
CN110573638A (en) * 2017-03-28 2019-12-13 住友电气工业株式会社 Wire and spring
KR102020385B1 (en) * 2017-09-29 2019-11-04 주식회사 포스코 Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
KR102120699B1 (en) * 2018-08-21 2020-06-09 주식회사 포스코 Wire rod and steel wire for spring with improved toughness and corrosion fatigue resistance and method for manufacturing the same
WO2020173647A1 (en) * 2019-02-26 2020-09-03 Nv Bekaert Sa Helical compression spring for an actuator for opening and closing a door or a tailgate of a car

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932943B2 (en) * 1993-11-04 1999-08-09 株式会社神戸製鋼所 High corrosion resistance and high strength steel for springs
JP3599551B2 (en) * 1998-01-09 2004-12-08 株式会社神戸製鋼所 Wire with excellent drawability
JP2000239797A (en) 1998-12-21 2000-09-05 Kobe Steel Ltd Steel for spring excellent in workability and production of steel wire for spring
JP3739958B2 (en) 1999-03-09 2006-01-25 新日本製鐵株式会社 Steel with excellent machinability and its manufacturing method
JP3435112B2 (en) * 1999-04-06 2003-08-11 株式会社神戸製鋼所 High carbon steel wire excellent in longitudinal crack resistance, steel material for high carbon steel wire, and manufacturing method thereof
JP4088220B2 (en) * 2002-09-26 2008-05-21 株式会社神戸製鋼所 Hot-rolled wire rod with excellent wire drawing workability that can omit heat treatment before wire drawing
JP4476846B2 (en) * 2005-03-03 2010-06-09 株式会社神戸製鋼所 High strength spring steel with excellent cold workability and quality stability
EP1897964B8 (en) * 2005-06-29 2019-07-17 Nippon Steel Corporation High-strength wire rod excelling in wire drawing performance and process for producing the same
JP2007327084A (en) * 2006-06-06 2007-12-20 Kobe Steel Ltd Wire rod having excellent wire drawability and its production method
WO2008044356A1 (en) * 2006-10-12 2008-04-17 Nippon Steel Corporation High-strength steel wire excelling in ductility and process for producing the same
JP4310359B2 (en) * 2006-10-31 2009-08-05 株式会社神戸製鋼所 Steel wire for hard springs with excellent fatigue characteristics and wire drawability
CN101624679B (en) * 2007-07-20 2011-08-17 株式会社神户制钢所 Steel wire material for spring and its producing method
JP5121360B2 (en) * 2007-09-10 2013-01-16 株式会社神戸製鋼所 Spring steel wire rod excellent in decarburization resistance and wire drawing workability, and method for producing the same
JP5329272B2 (en) 2009-03-19 2013-10-30 株式会社神戸製鋼所 Spring steel
CN101928892B (en) * 2010-08-27 2012-05-02 南京钢铁股份有限公司 Spring steel round steel and production process thereof
EP2612941B1 (en) * 2010-08-30 2019-02-27 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for high-strength spring which has excellent wire-drawing properties and process for production thereof, and high-strength spring

Also Published As

Publication number Publication date
JP2013213238A (en) 2013-10-17
MX2014011610A (en) 2014-10-17
KR20140129262A (en) 2014-11-06
KR101601582B1 (en) 2016-03-08
EP2832891B1 (en) 2019-02-20
EP2832891A4 (en) 2016-04-27
CN104169453A (en) 2014-11-26
CN104169453B (en) 2016-03-30
EP2832891A1 (en) 2015-02-04
WO2013146675A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5796782B2 (en) High strength spring steel wire rod and high strength spring with excellent skin machinability
KR101031679B1 (en) Method of producing steel wire material for spring
JP4476846B2 (en) High strength spring steel with excellent cold workability and quality stability
KR101600146B1 (en) Steel wire material for high-strength spring which has excellent wire-drawing properties and process for production thereof, and high-strength spring
JP5070149B2 (en) Spring wire and method for manufacturing the same
EP2937434B1 (en) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP6816738B2 (en) Steel wire manufacturing method
JP4486040B2 (en) Steel wire for cold forming springs with excellent cold cutability and fatigue characteristics and manufacturing method thereof
KR20150105476A (en) High-strength cold-rolled steel sheet having excellent bendability
KR20140135264A (en) Steel wire rod or steel bar having excellent cold forgeability
JP6249846B2 (en) Steel wire rod for high strength spring excellent in wire drawing workability and bending workability after wire drawing work, method for producing the same, high strength spring, and method for producing the same
JP5679455B2 (en) Spring steel, spring steel wire and spring
JP5329272B2 (en) Spring steel
JP4847988B2 (en) Spring wire with excellent corrosion fatigue characteristics
KR101660616B1 (en) Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring
KR20170043662A (en) Steel strip for electric-resistance-welded steel pipe or tube, electric-resistance-welded steel pipe or tube, and process for producing steel strip for electric-resistance-welded steel pipe or tube
JP6460883B2 (en) Manufacturing method of heat-treated steel wire with excellent workability
WO2016158562A1 (en) Heat-treated steel wire having excellent fatigue-resistance characteristics
JP6208611B2 (en) High strength steel with excellent fatigue properties
JP4900251B2 (en) Manufacturing method of nitrided parts
JP6453138B2 (en) Heat-treated steel wire with excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5796782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees