JP5329272B2 - Spring steel - Google Patents

Spring steel Download PDF

Info

Publication number
JP5329272B2
JP5329272B2 JP2009068811A JP2009068811A JP5329272B2 JP 5329272 B2 JP5329272 B2 JP 5329272B2 JP 2009068811 A JP2009068811 A JP 2009068811A JP 2009068811 A JP2009068811 A JP 2009068811A JP 5329272 B2 JP5329272 B2 JP 5329272B2
Authority
JP
Japan
Prior art keywords
less
steel
wire
inclusions
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009068811A
Other languages
Japanese (ja)
Other versions
JP2010222604A (en
Inventor
慶 増本
直 吉原
亮廣 松ケ迫
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP2009068811A priority Critical patent/JP5329272B2/en
Publication of JP2010222604A publication Critical patent/JP2010222604A/en
Application granted granted Critical
Publication of JP5329272B2 publication Critical patent/JP5329272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ばね鋼に関するものであり、好ましくは自動車のクラッチ、エンジン、燃料噴射装置、懸架機構などに使用されるばねを製造するのに有用なばね鋼に関するものであり、より好ましくは表面疵の影響をうけやすいばね(弁ばね、クラッチばねなど)を改良するのに有用なばね鋼に関する。   The present invention relates to spring steel, and preferably relates to spring steel useful for manufacturing springs used in automobile clutches, engines, fuel injection devices, suspension mechanisms and the like, and more preferably surface steel. The present invention relates to spring steel useful for improving springs (valve springs, clutch springs, etc.) that are easily affected by the above.
自動車などの軽量化や高応力化に伴い、エンジン、クラッチ、サスペンション等に使用される弁ばねやクラッチばねについても高強度化が指向されている。高強度化は、合金元素の添加によって達成されており、例えば、窒化性を高める為にCr、Vなどが添加されており、焼戻し軟化抵抗を高める為にSi、Cr、V、Mo、Co、Wなどが添加されている。   With the reduction in weight and stress of automobiles and the like, the strength of valve springs and clutch springs used in engines, clutches, suspensions and the like is also increasing. Strengthening is achieved by the addition of alloy elements. For example, Cr, V, etc. are added to enhance nitriding properties, and Si, Cr, V, Mo, Co, etc. are added to increase temper softening resistance. W etc. are added.
熱間圧延線材の表面疵を皮削り(SV)によって除去し、伸線して、必要に応じてオイルテンパーした後、コイリングすることによってばねは製造されている。ばねが高強度化されるに伴って、ばねの表面疵に対する感受性も高まってきており、皮削り(SV)工程が必要不可欠になる。しかし、高合金化した熱間圧延線材は、皮削り(SV)工程で使用する工具(チッパー)を損傷させ易く、また皮削り(SV)工程で断線し易くなる。   The spring is manufactured by removing the surface wrinkles of the hot-rolled wire rod by shaving (SV), drawing, oil-tempering as necessary, and coiling. As the strength of springs increases, the sensitivity of the springs to surface wrinkles has increased, and a shaving (SV) process becomes indispensable. However, the hot-rolled wire rod made of a high alloy tends to damage a tool (chipper) used in the skin cutting (SV) process, and breaks easily in the skin cutting (SV) process.
特許文献1には、ばね鋼の引張強さを1200MPa以下にして、絞り値を30〜70%にすれば、SV性が改善されることが記載されている。   Patent Document 1 describes that if the tensile strength of spring steel is 1200 MPa or less and the aperture value is 30 to 70%, the SV property is improved.
特開2000−239797号公報JP 2000-239797 A
本発明は上記の様な事情に着目してなされたものであって、その目的は、皮削り(SV)工程におけるチッパーの損傷や線材の断線をより高度に防止できる技術を確立することにある。
本発明の他の目的は、ばねにしたときの疲労特性を損なうことなく、皮削り(SV)工程におけるチッパーの損傷や線材の断線をより高度に防止できる技術を確立することにある。
The present invention has been made paying attention to the circumstances as described above, and its purpose is to establish a technique capable of preventing chipper damage and wire breakage at a higher level in the skin cutting (SV) process. .
Another object of the present invention is to establish a technique that can prevent chipper damage and wire breakage in a skin cutting (SV) process to a higher degree without impairing the fatigue characteristics of a spring.
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、酸化物系介在物を積極的に鋼材表層域に存在させても、その組成と量が適切であれば、ばねにしたときの疲労特性を損なわず、しかも皮削り(SV)工程におけるチッパーの損傷や線材の断線をより高度に防止できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that a spring can be used as long as the composition and amount thereof are appropriate even if the oxide inclusions are actively present in the steel surface region. As a result, the present inventors have found that it is possible to prevent damage to the chipper and breakage of the wire rod in the skin cutting (SV) process to a higher degree without impairing the fatigue characteristics.
すなわち、本発明に係るばね鋼は、C:0.2〜0.9%(質量%の意味。以下、同じ)、Si:0.8〜3%、Mn:0.1〜2.0%、Cr:0.01〜3.0%、P:0.1%以下(0%を含まない)、及びS:0.1%以下(0%を含まない)を含有し、さらにNi:1.0%以下(0%を含まない)、V:0.7%以下(0%を含まない)、及びMo:0.8%以下(0%を含まない)から選択される少なくとも一種を含有し、残部は鉄及び不可避不純物である。このばね鋼に含まれる酸化物系介在物は、下記式(1)〜(3)を満足しており、鋼の縦断面における表面から深さ0.3mmまでの表層域に存在する厚み2〜15μmの酸化物系介在物の面積率が、300×10-8〜700×10-8である。またこのばね鋼では、マルテンサイト及びベイナイトの合計面積率が10%以下である。 That is, the spring steel according to the present invention has C: 0.2 to 0.9% (meaning mass%, hereinafter the same), Si: 0.8 to 3%, Mn: 0.1 to 2.0%. , Cr: 0.01 to 3.0%, P: 0.1% or less (not including 0%), and S: 0.1% or less (not including 0%), Ni: 1 0.0% or less (not including 0%), V: 0.7% or less (not including 0%), and Mo: 0.8% or less (not including 0%) The balance is iron and inevitable impurities. The oxide inclusions contained in this spring steel satisfy the following formulas (1) to (3), and have a thickness of 2 to 2 in the surface layer region from the surface in the longitudinal section of the steel to a depth of 0.3 mm. The area ratio of 15 μm oxide inclusions is 300 × 10 −8 to 700 × 10 −8 . In this spring steel, the total area ratio of martensite and bainite is 10% or less.
18≦[Al23]/S×100≦38 …(1)
37≦[SiO2]/S×100≦60 …(2)
2≦[CaO]/S×100≦40 …(3)
(式中、Sは、[Al23]、[SiO2]、[CaO]、[MgO]、[MnO]の合計を示す。[Al23]、[SiO2]、[CaO]、[MgO]、[MnO]は、全酸化物系介在物に含まれる各元素(Al、Si、Ca、Mg、Mn)の合計含有量を、その酸化物としての質量で示した値である)
18 ≦ [Al 2 O 3 ] / S × 100 ≦ 38 (1)
37 ≦ [SiO 2 ] / S × 100 ≦ 60 (2)
2 ≦ [CaO] / S × 100 ≦ 40 (3)
(In the formula, S represents the sum of [Al 2 O 3 ], [SiO 2 ], [CaO], [MgO], and [MnO]. [Al 2 O 3 ], [SiO 2 ], [CaO] , [MgO] and [MnO] are values indicating the total content of each element (Al, Si, Ca, Mg, Mn) contained in all oxide inclusions in terms of mass as an oxide. )
前記ばね鋼の引張強さは、例えば、900〜1300MPaであり、絞りは、例えば、35%以上である。   The tensile strength of the spring steel is, for example, 900 to 1300 MPa, and the restriction is, for example, 35% or more.
本発明によれば、適切な組成の酸化物系介在物が適量で鋼材表層域に存在している為、皮削り(SV)工程におけるチッパーの損傷や線材の断線をより高度に防止できる。またばねにしたときの疲労特性も損なわない。   According to the present invention, since oxide inclusions having an appropriate composition are present in an appropriate amount in the steel surface layer region, chipper damage and wire breakage in the skin cutting (SV) process can be prevented to a higher degree. Moreover, the fatigue characteristics when used as a spring are not impaired.
図1は、介在物面積率と疲労強度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the inclusion area ratio and fatigue strength. 図2は、介在物面積率と、工具付着性又は皮削り特性との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the inclusion area ratio and the tool adhesion or the cutting characteristics.
本発明は、高合金化したばね鋼の皮削り特性の改善(チッパー損傷防止、断線防止など)を目的とする。この高合金化ばね鋼の化学成分は、より詳細には、C:0.2〜0.9%、Si:0.8〜3%、Mn:0.1〜2.0%、Cr:0.01〜3.0%、P:0.1%以下(0%を含まない)、及びS:0.1%以下(0%を含まない)である。また本発明のばね鋼は、さらにNi:1.0%以下(0%を含まない)、V:0.7%以下(0%を含まない)、及びMo:0.8%以下(0%を含まない)から選択される少なくとも一種を含有しており、残部は鉄及び不可避不純物である。各成分について、さらに詳細に説明する。   An object of the present invention is to improve the skin-cutting characteristics of a highly alloyed spring steel (such as chipper damage prevention and disconnection prevention). More specifically, the chemical composition of this highly alloyed spring steel is as follows: C: 0.2 to 0.9%, Si: 0.8 to 3%, Mn: 0.1 to 2.0%, Cr: 0 0.01% to 3.0%, P: 0.1% or less (not including 0%), and S: 0.1% or less (not including 0%). Further, the spring steel of the present invention further has Ni: 1.0% or less (not including 0%), V: 0.7% or less (not including 0%), and Mo: 0.8% or less (0%) At least one selected from the group consisting of iron and inevitable impurities. Each component will be described in more detail.
C:0.2〜0.9%
Cは、鋼の焼入れ性を高め、ばねの引張強度を確保するのに有効な元素である。よってC量は、0.2%以上、好ましくは0.3%以上、さらに好ましくは0.4%以上とする。ただしC量が過剰になると、焼入性が増大しすぎて、熱間圧延後の冷却過程で過冷組織が発生し、皮削り(SV)工程やその後の伸線工程で断線し易くなる。よってC量は、0.9%以下、好ましくは0.8%以下、さらに好ましくは0.75%以下とする。
C: 0.2-0.9%
C is an element effective in enhancing the hardenability of steel and ensuring the tensile strength of the spring. Therefore, the C content is 0.2% or more, preferably 0.3% or more, and more preferably 0.4% or more. However, when the amount of C becomes excessive, hardenability increases too much, and a supercooled structure is generated in the cooling process after hot rolling, and breakage is likely to occur in the skin removal (SV) process or the subsequent wire drawing process. Therefore, the C content is 0.9% or less, preferably 0.8% or less, and more preferably 0.75% or less.
Si:0.8〜3%
Siは、固溶強化元素として強度向上に寄与し、疲労特性の改善に貢献する。また、ばね加工工程では、コイリング後の歪み取りのため400℃以上で熱処理(焼鈍)されるが、Siはその際の軟化抵抗を高める作用も有している。よってSi量は、0.8%以上、好ましくは1.0%以上、さらに好ましくは1.3%以上とする。しかし、Si量が過剰になると表面脱炭を増進して疲労特性を劣化させる。よってSi量は、3%以下、好ましくは2.5%以下、さらに好ましくは2.0%以下とする。
Si: 0.8-3%
Si contributes to strength improvement as a solid solution strengthening element and contributes to improvement of fatigue characteristics. Further, in the spring processing step, heat treatment (annealing) is performed at 400 ° C. or more for removing distortion after coiling, but Si also has an effect of increasing softening resistance at that time. Therefore, the Si content is 0.8% or more, preferably 1.0% or more, and more preferably 1.3% or more. However, when the amount of Si becomes excessive, surface decarburization is promoted and fatigue characteristics are deteriorated. Therefore, the Si amount is 3% or less, preferably 2.5% or less, and more preferably 2.0% or less.
Mn:0.1〜2.0%
Mnは、鋼の焼入性を向上させ、ばねの引張強度を確保するのに有効な元素である。よってMn量は、0.1%以上、好ましくは0.3%以上、さらに好ましくは0.4%以上とする。しかし、Mn量が過剰になると、熱間圧延後の冷却で過冷組織が発生して、皮削り(SV)工程やその後の伸線工程で断線し易くなる。よってMn量は、2.0%以下、好ましくは1.5%以下、さらに好ましくは1.0%以下とする。
Mn: 0.1 to 2.0%
Mn is an element effective in improving the hardenability of steel and ensuring the tensile strength of the spring. Therefore, the amount of Mn is 0.1% or more, preferably 0.3% or more, more preferably 0.4% or more. However, when the amount of Mn becomes excessive, a supercooled structure is generated by cooling after hot rolling, and breakage is likely to occur in the skin removal (SV) process or the subsequent wire drawing process. Therefore, the Mn content is 2.0% or less, preferably 1.5% or less, and more preferably 1.0% or less.
Cr:0.01〜3.0%
Crは、パーライトのラメラ間隔を狭くし、伸線前熱処理として行われるパテンティング後の強度を高め、疲労強度を高める作用を有する。よってCr量は、0.01%以上、好ましくは0.3%以上、さらに好ましくは0.5%以上とする。しかしCrが多過ぎると焼入れ性が高まり、熱間圧延後の冷却で過冷組織が発生して、皮削り(SV)工程やその後の伸線工程で断線し易くなる。よってCr量は、3.0%以下、好ましくは2.0%以下、さらに好ましくは1.2%以下とする。
Cr: 0.01 to 3.0%
Cr has the effect of narrowing the lamella spacing of pearlite, increasing the strength after patenting performed as heat treatment before wire drawing, and increasing fatigue strength. Therefore, the Cr content is 0.01% or more, preferably 0.3% or more, more preferably 0.5% or more. However, if there is too much Cr, the hardenability increases, and a supercooled structure is generated by cooling after hot rolling, and breakage is likely to occur in the skin-cutting (SV) process or the subsequent wire drawing process. Therefore, the Cr content is 3.0% or less, preferably 2.0% or less, more preferably 1.2% or less.
P:0.1%以下(0%を含まない)
Pは、旧オーステナイト粒界に偏析して粒界を脆化させ、疲労特性を低下させる元素である。P量は、低いほど好ましく、0.1%以下、好ましくは0.03%以下、さらに好ましくは0.015%以下に制御する。
P: 0.1% or less (excluding 0%)
P is an element that segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue characteristics. The P content is preferably as low as possible, and is controlled to 0.1% or less, preferably 0.03% or less, and more preferably 0.015% or less.
S:0.1%以下(0%を含まない)
Sも旧オーステナイト粒界に偏析して粒界を脆化させ、疲労特性を低下させる元素である。S量も、低いほど好ましく、0.1%以下、好ましくは0.03%以下、さらに好ましくは0.015%以下に制御する。
S: 0.1% or less (excluding 0%)
S is an element that segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue characteristics. The lower the S content, the better. The amount is controlled to 0.1% or less, preferably 0.03% or less, more preferably 0.015% or less.
Ni:1.0%以下(0%を含まない)
Niは、セメンタイトの延性を向上させて伸線性を高める作用を有する他、鋼線自体の伸線性向上にも寄与する。また、熱間圧延時やパテンティング処理時における表層部の脱炭を抑制する作用も有している。Niを添加する場合には、例えば、0.01%以上、好ましくは0.1%以上、さらに好ましくは0.15%以上にすることが推奨される。しかしNiが多過ぎると焼入れ性が高まり、熱間圧延後の冷却で過冷組織が発生して、皮削り(SV)工程やその後の伸線工程で断線し易くなる。よってNi量は、1.0%以下、好ましくは0.7%以下、さらに好ましくは0.3%以下とする。
Ni: 1.0% or less (excluding 0%)
Ni has the effect of improving the ductility of cementite to improve the drawability, and also contributes to the improvement of the drawability of the steel wire itself. Moreover, it has the effect | action which suppresses the decarburization of the surface layer part at the time of hot rolling and a patenting process. In the case of adding Ni, for example, it is recommended that the content be 0.01% or more, preferably 0.1% or more, and more preferably 0.15% or more. However, if Ni is too much, the hardenability is enhanced, and a supercooled structure is generated by cooling after hot rolling, and breakage is likely to occur in the skin removal (SV) process or the subsequent wire drawing process. Therefore, the Ni content is 1.0% or less, preferably 0.7% or less, and more preferably 0.3% or less.
V:0.7%以下(0%を含まない)
Vは、パーライトノジュールサイズを微細化して伸線加工性を高め、更には、ばねの靱性や耐へたり性の向上にも寄与する有用な元素である。Vを添加する場合には、例えば、0.01%以上、好ましくは0.1%以上、さらに好ましくは0.2%以上にすることが推奨される。しかし、Vが多過ぎると、パーライト変態の終了が遅延し、過冷組織が発生して、皮削り(SV)工程やその後の伸線工程で断線し易くなる。よってV量は、0.7%以下、好ましくは0.5%以下、さらに好ましくは0.4%以下とする。
V: 0.7% or less (excluding 0%)
V is a useful element that refines the pearlite nodule size to improve the wire drawing workability and contributes to the improvement of the toughness and sag resistance of the spring. When V is added, for example, 0.01% or more, preferably 0.1% or more, more preferably 0.2% or more is recommended. However, when V is too much, the end of the pearlite transformation is delayed, and a supercooled structure is generated, and breakage is likely to occur in the shaving (SV) process or the subsequent wire drawing process. Therefore, the V amount is 0.7% or less, preferably 0.5% or less, more preferably 0.4% or less.
Mo:0.8%以下(0%を含まない)
Moは、焼入れ性を高めると共に、軟化抵抗を高めて耐へたり性を向上させるうえで有用な元素である。Moを添加する場合には、例えば、0.01%以上、好ましくは0.05%以上、さらに好ましくは0.10%以上にすることが推奨される。しかしMoが多すぎると、パーライト変態の終了が遅延し、過冷組織が発生して、皮削り(SV)工程やその後の伸線工程で断線し易くなる。よってMo量は、0.8%以下、好ましくは0.6%以下、さらに好ましくは0.5%以下にする。
Mo: 0.8% or less (excluding 0%)
Mo is an element useful for improving hardenability and increasing softening resistance to improve sag resistance. In the case of adding Mo, for example, it is recommended that the content be 0.01% or more, preferably 0.05% or more, and more preferably 0.10% or more. However, if there is too much Mo, the end of the pearlite transformation is delayed, a supercooled structure is generated, and breakage is likely to occur in the skin removal (SV) process or the subsequent wire drawing process. Therefore, the Mo amount is 0.8% or less, preferably 0.6% or less, and more preferably 0.5% or less.
本発明のばね鋼(線材)は、高合金化した前記ばね鋼において、酸化物系介在物がアノーサイト組成に制御されており、かつこのアノーサイト系介在物が表面に所定量存在するように調製されている点に特徴がある。通常のばね鋼(線材)では、表面の介在物は伸線加工性や疲労特性を低下させる欠陥であると考えられており、例えば、連続鋳造時に電磁撹拌装置を用いることで、介在物を中心に偏在させる様にしている。これに対して、本発明のばね鋼は、積極的に表面の酸化物系介在物を増大させている。表面に酸化物系介在物を増大させても、アノーサイト組成にし、かつその量が過剰にならないように制御することで、伸線加工性や疲労特性の低下を防止できる。そして酸化物系介在物をアノーサイトにしておくと、その量が伸線加工性や疲労特性を低下させない程度であっても、皮削り(SV)で使用するチッパーに効果的に付着し、チッパーの欠けを防止でき、また断線を防止できる。   The spring steel (wire material) of the present invention is such that the oxide-based inclusions are controlled to have an anorthite composition in the highly alloyed spring steel, and a predetermined amount of the anorthite-type inclusions are present on the surface. It is characterized in that it is prepared. In normal spring steel (wire), inclusions on the surface are considered to be defects that reduce wire drawing workability and fatigue characteristics. For example, by using an electromagnetic stirrer during continuous casting, I try to make it unevenly distributed. In contrast, the spring steel of the present invention actively increases the oxide inclusions on the surface. Even if the oxide inclusions are increased on the surface, it is possible to prevent the wire drawing workability and the fatigue characteristics from being deteriorated by controlling the anorthite composition so that the amount thereof is not excessive. When the oxide inclusions are made anorthite, even if the amount does not deteriorate the wire drawing workability and fatigue characteristics, the oxide inclusions effectively adhere to the chipper used for the shaving (SV). Chipping can be prevented and disconnection can be prevented.
前記アノーサイト系介在物とは、具体的には、下記式(1)〜(3)を満足する介在物をいう。
18≦[Al23]/S×100≦38 …(1)
37≦[SiO2]/S×100≦60 …(2)
2≦[CaO]/S×100≦40 …(3)
(式中、Sは、[Al23]、[SiO2]、[CaO]、[MgO]、及び[MnO]の合計を示す。[Al23]、[SiO2]、[CaO]、[MgO]、[MnO]は、全酸化物系介在物に含まれる各元素(Al、Si、Ca、Mg、Mn)の合計含有量を、その酸化物としての質量で示した値である)
The anorthite inclusions specifically mean inclusions that satisfy the following formulas (1) to (3).
18 ≦ [Al 2 O 3 ] / S × 100 ≦ 38 (1)
37 ≦ [SiO 2 ] / S × 100 ≦ 60 (2)
2 ≦ [CaO] / S × 100 ≦ 40 (3)
(In the formula, S represents the total of [Al 2 O 3 ], [SiO 2 ], [CaO], [MgO], and [MnO]. [Al 2 O 3 ], [SiO 2 ], [CaO] ], [MgO], and [MnO] are values indicating the total content of each element (Al, Si, Ca, Mg, Mn) contained in all oxide inclusions in terms of mass as an oxide. is there)
[Al23]/S×100の好ましい範囲は20〜33であり、より好ましい範囲は25〜36である。[SiO2]/S×100の好ましい範囲は40〜57であり、より好ましい範囲は44〜55である。[CaO]/S×100の好ましい範囲は4〜30であり、より好ましい範囲は9〜20である。 A preferable range of [Al 2 O 3 ] / S × 100 is 20 to 33, and a more preferable range is 25 to 36. A preferable range of [SiO 2 ] / S × 100 is 40 to 57, and a more preferable range is 44 to 55. The preferable range of [CaO] / S × 100 is 4 to 30, and the more preferable range is 9 to 20.
アノーサイト系介在物の量は、鋼の縦断面(圧延方向に並行な断面)における表面から深さ0.3mmまでの表層域に存在する厚み2〜15μmの介在物の面積率(表層域全体の面積を1としたときの介在物の面積)として規定される。皮削り(SV)工程で工具(チッパー)と接触するのはこの表層域である。表層域のアノーサイト系介在物の量を適量にすることで、皮削り(SV)工程におけるチッパーの損傷や線材の断線を高いレベルで防止できる。前記表層域におけるアノーサイト系介在物の面積率は、300×10-8〜700×10-8、好ましくは400×10-8〜600×10-8、さらに好ましくは430×10-8〜570×10-8である。 The amount of anorthite inclusions is the area ratio of inclusions having a thickness of 2 to 15 μm existing in the surface layer region from the surface to a depth of 0.3 mm in the longitudinal section (cross section parallel to the rolling direction) of steel (the entire surface layer region). The area of inclusions when the area of 1 is 1). It is this surface layer that contacts the tool (chipper) in the skinning (SV) process. By making the amount of the anorthite inclusions in the surface region appropriate, it is possible to prevent chipper damage and wire breakage at a high level in the skin removal (SV) process. The area ratio of the anorthite inclusions in the surface layer region is 300 × 10 −8 to 700 × 10 −8 , preferably 400 × 10 −8 to 600 × 10 −8 , and more preferably 430 × 10 −8 to 570. × 10 -8 .
なお厚み2μm未満の介在物を測定するのは難しい。また2μm未満の介在物は、チッパー損傷防止や断線防止に対する効果が低い。一方、厚み15μm超の介在物は、殆ど存在しないものの、ばねの市場折損の起点となる可能性があるため、望ましくない。そのため厚み2〜15μmの介在物の面積率を測定した。   It is difficult to measure inclusions having a thickness of less than 2 μm. In addition, inclusions less than 2 μm have a low effect on chipper damage prevention and disconnection prevention. On the other hand, inclusions with a thickness of more than 15 μm are not desirable because they are hardly present but may be a starting point for breakage of the spring market. Therefore, the area ratio of inclusions having a thickness of 2 to 15 μm was measured.
また本発明のばね鋼は、高合金化成分が前記範囲に調節されているため、過冷組織が抑制されている。マルテンサイト及びベイナイトの合計面積率は、例えば、10%以下、好ましくは7%以下、さらに好ましくは5%以下である。   Moreover, since the high alloying component is adjusted to the said range, the spring steel of this invention has suppressed the overcooling structure | tissue. The total area ratio of martensite and bainite is, for example, 10% or less, preferably 7% or less, and more preferably 5% or less.
前記ばね鋼の引張強さは、例えば、900〜1300MPa程度、好ましくは950〜1250MPa程度、さらに好ましくは1000〜1200MPa程度である。またばね鋼の絞りは、例えば、35%以上、好ましくは40%以上、さらに好ましくは45%以上である。絞りは高いほど好ましいが、例えば、80%以下(特に70%以下)程度であってもよい。   The tensile strength of the spring steel is, for example, about 900 to 1300 MPa, preferably about 950 to 1250 MPa, and more preferably about 1000 to 1200 MPa. Further, the restriction of the spring steel is, for example, 35% or more, preferably 40% or more, and more preferably 45% or more. A higher aperture is more preferable, but it may be, for example, about 80% or less (particularly 70% or less).
前記ばね鋼は、溶製時にスラグ組成を適切に調節して、酸化物系介在物の組成をアノーサイト組成に制御すると共に、酸素源(酸化鉄など)を積極的に添加して、鋼表層域の酸化物系介在物を増やすことによって製造できる。スラグ組成は、得られる酸化物系介在物組成とほぼ同等である。酸素投入量(質量基準)は、例えば、50〜170ppm程度、好ましくは70〜150ppm程度である。   The spring steel appropriately adjusts the slag composition at the time of melting, controls the composition of oxide inclusions to the anorthite composition, and actively adds an oxygen source (iron oxide, etc.) It can be manufactured by increasing the oxide inclusions in the region. The slag composition is almost equivalent to the resulting oxide inclusion composition. The amount of oxygen input (mass basis) is, for example, about 50 to 170 ppm, preferably about 70 to 150 ppm.
本発明のばね鋼は、上記のようにしてスラグ組成と酸素源(酸化鉄など)を適切に調節すれば、連続鋳造条件、圧延条件、焼鈍条件などを大幅に変更することなく製造できる点にも特徴がある。すなわち従来の製造設備をそのまま用いても、ばねにしたときの疲労特性を損なうことなく、皮削り(SV)工程におけるチッパーの損傷や線材の断線をより高度に防止できる。   The spring steel of the present invention can be manufactured without significant changes in continuous casting conditions, rolling conditions, annealing conditions, etc., if the slag composition and oxygen source (such as iron oxide) are appropriately adjusted as described above. There is also a feature. That is, even if the conventional manufacturing equipment is used as it is, damage to the chipper and breakage of the wire rod can be prevented to a higher degree without impairing the fatigue characteristics of the spring.
より具体的には、連続鋳造時には、従来と同様、電磁撹拌をおこなってよく、他の条件も一般的な範囲で調製すればよい。
熱間圧延前の加熱温度は、例えば、800〜1000℃程度、好ましくは850〜950℃程度の範囲で設定してもよい。熱間圧延後の巻き取り温度は、例えば、700〜900℃程度、好ましくは750〜850℃程度の範囲で設定してもよい。熱間圧延後の冷却速度は、例えば、0.5〜9.5℃/秒程度、好ましくは1.0〜9.0℃/秒程度の範囲で設定してもよい。
焼鈍は実施してもよく、実施しなくてもよい。焼鈍を実施する場合には、加熱温度は、例えば、600〜680℃程度の範囲で設定してもよい。
More specifically, during continuous casting, electromagnetic stirring may be performed as in the conventional case, and other conditions may be adjusted within a general range.
The heating temperature before hot rolling may be set in the range of, for example, about 800 to 1000 ° C, preferably about 850 to 950 ° C. The coiling temperature after hot rolling may be set, for example, in the range of about 700 to 900 ° C, preferably about 750 to 850 ° C. The cooling rate after hot rolling may be set, for example, in the range of about 0.5 to 9.5 ° C./second, preferably about 1.0 to 9.0 ° C./second.
Annealing may or may not be performed. When performing annealing, you may set heating temperature in the range of about 600-680 degreeC, for example.
なお過冷組織が発生する場合には、その原因として、1)熱間圧延の巻き取り温度が高く、結晶粒が粗大化することによる焼入れ性の増大、2)熱間圧延の冷却速度が早すぎること、3)焼鈍温度が低すぎることなどが考えられる。従って過冷組織が発生した場合には、これらの原因を取り除くべく、製造条件を調節すればよい。
またばね鋼を伸線する際にシェブロンクラックが発生して断線する場合には、その原因として、1)熱間圧延の冷却速度が遅すぎて、粗大なパーライトが生成していること、2)焼鈍温度が高すぎて、セメンタイトが球状化していることなどが考えられる。従ってシェブロンクラックによる断線が発生する場合には、これらの原因を取り除くべく、製造条件を調節すればよい。
When a supercooled structure is generated, the causes are as follows: 1) hot rolling coiling temperature is high, hardenability is increased by coarsening of crystal grains, and 2) hot rolling cooling rate is high. 3) The annealing temperature is too low. Therefore, when supercooled tissue occurs, the manufacturing conditions may be adjusted to remove these causes.
Moreover, when chevron cracks are generated and wire breaks when drawing spring steel, 1) that the cooling rate of hot rolling is too slow and coarse pearlite is generated, 2) It is considered that the annealing temperature is too high and the cementite is spheroidized. Therefore, when disconnection due to chevron cracks occurs, manufacturing conditions may be adjusted to eliminate these causes.
上記のようにして得られるばね鋼(線材)は、必要に応じて酸洗及びボンデ処理した後、真円性を高める為にスキンパス圧延し、次いで皮削り(SV)処理される。本発明のばね鋼(線材)は、酸化物系介在物が適切に制御されている為、皮削り(SV)処理におけるチッパー欠けを防止でき、かつ断線も防止できる。   The spring steel (wire) obtained as described above is pickled and bonded as necessary, and then subjected to skin pass rolling to improve roundness, and then subjected to skin (SV) treatment. In the spring steel (wire material) of the present invention, oxide inclusions are appropriately controlled, so that chipper chipping in the shaving (SV) process can be prevented and disconnection can also be prevented.
皮削り(SV)処理したばね鋼は、パテンティング処理(又は焼鈍)及び酸洗・ボンデ処理を必要に応じて行った後、伸線し、コイリングすることによってばねになる。なお通常、コイリング前にオイルテンパーによって強度調節され、コイリング後は焼鈍される。   The spring steel subjected to the skin cutting (SV) treatment is subjected to a patenting treatment (or annealing) and a pickling / bonding treatment as necessary, and then drawn and coiled to become a spring. Normally, the strength is adjusted by an oil temper before coiling, and annealing is performed after coiling.
上記のようにして得られるばねは、高強度であり、かつ疲労特性に優れている。そのため自動車のクラッチ、エンジン、燃料噴射装置、懸架機構などに使用されるばねとして有用であり、より好ましくは弁ばね、クラッチばねとして有用である。   The spring obtained as described above has high strength and excellent fatigue characteristics. Therefore, it is useful as a spring for use in automobile clutches, engines, fuel injection devices, suspension mechanisms, and the like, and more preferably as a valve spring and a clutch spring.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
実験例1〜48
容量90トンの転炉で溶製した鋼材を精錬工程で成分調整し、鋳型上部に鋳型内電磁撹拌装置(M−EMS)を備えた連続鋳造機で当業者常用の製造方法に基づき連続鋳造することによって表1〜2に示す化学組成の鋳片(300mm×430mm)を製造した。なお精錬工程では酸化鉄を投入しており、その投入量及びスラグ組成は表3〜4に示した通りである。得られた鋳片を温度1200℃で5時間均熱処理した後、分塊圧延して鋼片(155mm×155mm)を製造した。この鋼片を表3〜4に示す条件で熱間圧延した後、焼鈍することによって直径8mmの線材を得た。
得られた圧延線材の諸特性を以下の様にして調べた。
Experimental Examples 1-48
The steel material melted in a converter with a capacity of 90 tons is adjusted in the refining process, and continuously casted based on the manufacturing method commonly used by those skilled in the art in a continuous casting machine equipped with an in-mold electromagnetic stirring device (M-EMS) at the upper part of the mold. As a result, slabs (300 mm × 430 mm) having chemical compositions shown in Tables 1 and 2 were produced. In the refining process, iron oxide is added, and the amount and composition of slag are as shown in Tables 3-4. The obtained slab was soaked for 5 hours at a temperature of 1200 ° C. and then rolled to produce a steel slab (155 mm × 155 mm). The steel piece was hot-rolled under the conditions shown in Tables 3 to 4, and then annealed to obtain a wire having a diameter of 8 mm.
Various characteristics of the obtained rolled wire were examined as follows.
(1)介在物(表層域の介在物の面積率、鋼中介在物の平均組成)
面積率:
得られた線材の縦断面を光学顕微鏡で観察した(倍率400倍。10視野)。観察部位を画像処理し、表面から深さ0.3mmまでの表層域に存在する厚み2〜15μmの介在物の面積を、全測定面積1に対する比率(面積率)として求めた。なお全測定面積は、0.3mm(深さ)×200mm(長さ)×10(視野数)×2(1視野当たりの表層域の数)で求まる。
介在物の平均組成:
得られた線材の縦断面に存在する全介在物について定量分析EPMA(日本電子株式会社、型式「JXA−8621MX」、加速電圧:20kV、操作電流:5A)を行った。Mg、Al、Si、Ca、Mn、Zr、Ti、S、Crについて定量し、Mg、Al、Si、Ca、Mnの5元素が主要元素であることを確認した後、これら5元素が酸化物として存在すると仮定し、各5元素の酸化物の量を、5元素の酸化物の総量100質量%に対する割合として算出した。
(1) Inclusions (area ratio of inclusions in the surface layer area, average composition of inclusions in steel)
Area ratio:
The longitudinal section of the obtained wire was observed with an optical microscope (magnification 400 times, 10 fields of view). The observation site was image-processed, and the area of inclusions having a thickness of 2 to 15 μm existing in the surface layer region from the surface to a depth of 0.3 mm was determined as a ratio (area ratio) to the total measurement area 1. The total measurement area is determined by 0.3 mm (depth) × 200 mm (length) × 10 (number of visual fields) × 2 (number of surface layer areas per visual field).
Average composition of inclusions:
Quantitative analysis EPMA (JEOL Ltd., model “JXA-8621MX”, acceleration voltage: 20 kV, operating current: 5 A) was performed on all inclusions present in the longitudinal section of the obtained wire. After quantifying Mg, Al, Si, Ca, Mn, Zr, Ti, S, and Cr and confirming that the five elements Mg, Al, Si, Ca, and Mn are the main elements, these five elements are oxides. The amount of each five element oxide was calculated as a ratio with respect to the total amount of five element oxides of 100% by mass.
(2)過冷組織分率
樹脂に圧延線材の横断面を埋め込み、研磨した後、5%ピクリン酸アルコール液に15〜30秒間浸漬して腐食させた後、光学顕微鏡によってD/4(Dは直径)部を組織観察した。そして、400倍で10視野撮影し、パーライト組織部分を確定した後、画像処理によってマルテンサイト組織とベイナイト組織の面積率を求め、これらの合計を過冷組織分率とした。なお画像処理では、撮影した写真の電子データ(本例ではJPEG方式で圧縮された電子データ)をアドビシステムズ社製のソフトウェア「Adobe(登録商標)Photoshop(登録商標)」に取り込み、2値化した後、過冷組織(マルテンサイト組織及びベイナイト組織)の面積率を求めた。
(2) Supercooled structure fraction After embedding and polishing the cross-section of the rolled wire rod in the resin, it was immersed in 5% picric acid alcohol solution for 15-30 seconds to be corroded, and then D / 4 (D was The structure of the (diameter) part was observed. Then, 10 fields of view were photographed at 400 times and the pearlite structure portion was determined, and then the area ratios of the martensite structure and the bainite structure were obtained by image processing, and the sum of these was used as the supercooled tissue fraction. In the image processing, electronic data of the photographed photograph (in this example, electronic data compressed by the JPEG method) is taken into software “Adobe (registered trademark) Photoshop (registered trademark)” manufactured by Adobe Systems, and binarized. Then, the area ratio of the supercooled structure (martensite structure and bainite structure) was determined.
(3)引張強さ(TS)、絞り(RA)
線材コイルをローラ矯正して直線形状にした後、チャック間距離200mmで10本の引張試験を行い、引張強さ及び絞りを測定し、平均値を求めた。
(3) Tensile strength (TS), restriction (RA)
After the wire coil was straightened by straightening the wire coil, ten tensile tests were performed at a distance between chucks of 200 mm, the tensile strength and the drawing were measured, and the average value was obtained.
(4)工具付着性
圧延線材をライン速度100m/分でスキンパス(直径:7.7mm)して真円性を高め、超硬工具(W−Co−Ti)からなるチッパー(内径7.4mm)で皮削り(SV)した。
圧延線材8トン(=2トン×4束)を処理した後のチッパーを走査型電子顕微鏡で10視野(倍率200倍)観察し、「Adobe(登録商標)Photoshop(登録商標)」を用いて画像処理し、チッパーの刃先に沿って形成された付着物の面積率を求めた。面積率が95%を超える視野の数を工具付着率の点数とした。1つの視野でのみ付着物の面積率が95%を超えていれば1点になり、全ての視野(10視野)で付着物の面積率が95%を超えていれば10点になる。
(4) Tool adhesion A chipper (inner diameter 7.4 mm) made of a carbide tool (W-Co-Ti) with a skin pass (diameter: 7.7 mm) at a line speed of 100 m / min to improve roundness. (SV).
The chipper after processing 8 tons of rolled wire rods (= 2 tons × 4 bundles) was observed with a scanning electron microscope in 10 fields (200 times magnification), and an image was displayed using “Adobe (registered trademark) Photoshop (registered trademark)”. It processed and calculated | required the area ratio of the deposit | attachment formed along the blade edge | tip of the chipper. The number of fields of view with an area ratio exceeding 95% was defined as the tool adhesion rate score. If the area ratio of the deposits exceeds 95% only in one field of view, the score is 1 point. If the area ratio of the deposits exceeds 95% in all fields of view (10 fields), the score is 10.
(5)皮削り特性
前記(4)工具付着性と同様にして、スキンパス圧延と皮削り(SV)を行った。圧延線材を8トン(=2トン×4束)処理し、その間に生じた断線の回数、及びチッパー欠けの回数をカウントし、以下の基準で点数化した。
(5) Skin Cutting Characteristics Skin pass rolling and skin cutting (SV) were performed in the same manner as in (4) Tool adhesion. The rolled wire rod was treated with 8 tons (= 2 tons × 4 bundles), and the number of breaks and chipper breaks that occurred in the meantime were counted and scored according to the following criteria.
10点:断線0回、チッパー欠け0回
9点:断線0回、チッパー欠け1回
8点:断線0回、チッパー欠け2回
7点:断線0回、チッパー欠け3回
6点:断線0回、チッパー欠け4回
5点:断線1回、チッパー欠け0回
4点:断線1回、チッパー欠け1回
3点:断線1回、チッパー欠け2回
2点:断線1回、チッパー欠け3回
1点:断線1回、チッパー欠け4回
0点:断線2回以上
10 points: 0 times disconnected, 0 times chipper missing 9 points: 0 times disconnected, 1 time chipper missing 8 points: 0 times disconnected, 2 times chipper missing 7 points: 0 times disconnected, 3 times chipper missing 6 points: 0 times disconnected , Chipper chipping 4 times 5 points: disconnection 1 time, chipper chipping 0 times 4 points: disconnection 1 time, chipper chipping 1 time 3 points: disconnection 1 time, chipper chipping 2 times 2 points: disconnection 1 time, chipper chipping 3 times 1 Point: Disconnection 1 time, chipper chipping 4 times 0 point: Disconnection 2 times or more
(6)疲労強度
前記(4)工具付着性と同様にして、スキンパス圧延と皮削り(SV)を行った後、直径4mmにまで伸線加工し、オイルテンパー処理(OT)した。疲労強度が最高になるように、オイルテンパーの焼入れ温度及び焼戻し温度を適宜調節した。このOTワイヤーに、ばね作製時の歪取り焼鈍に相当する熱処理(400℃×20分)を施し、ショットピーニング処理(スチールボール、φ=0.6mm、45m/秒、10分)した後、低温歪取り焼鈍(220℃×20分)を施した。
歪取り焼鈍後のワイヤーを用い、試験応力を850〜1300MPaの範囲で変化させながら中村式回転曲げ疲労試験を行った。2000万回まで折損しなかった応力を疲労強度とした。
結果を表5〜8に示す。
(6) Fatigue strength In the same manner as in (4) Tool adhesion, after performing skin pass rolling and skinning (SV), the wire was drawn to a diameter of 4 mm and oil tempered (OT). The quenching temperature and tempering temperature of the oil temper were appropriately adjusted so that the fatigue strength was maximized. This OT wire is subjected to a heat treatment (400 ° C. × 20 minutes) corresponding to the stress relief annealing at the time of spring production, and after shot peening treatment (steel balls, φ = 0.6 mm, 45 m / second, 10 minutes) Strain relief annealing (220 ° C. × 20 minutes) was applied.
Using the wire after strain relief annealing, a Nakamura type rotary bending fatigue test was performed while changing the test stress in the range of 850 to 1300 MPa. The stress that did not break up to 20 million times was defined as fatigue strength.
The results are shown in Tables 5-8.
また介在物面積率と、疲労強度、工具付着性、皮削り特性などとの関係を図1〜2に示す。これら図1〜2では、No.1〜32とNo.43〜48のデータを用い、介在物面積率の影響を確認した。
図2から明らかな様に、介在物面積率が約300×10-8以上になると、工具付着性が急激に上昇し、皮削り特性が急激に改善する。そして図1から明らかな様に、介在物面積率300×10-8以上程度では、疲労強度は殆ど低下していない。なお介在物面積率が約700×10-8を超え始めると、疲労強度が低下し始める。
In addition, the relationship between the inclusion area ratio and fatigue strength, tool adhesion, and cutting characteristics is shown in FIGS. In these FIGS. 1-32 and no. Using the data of 43 to 48, the influence of the inclusion area ratio was confirmed.
As is clear from FIG. 2, when the inclusion area ratio is about 300 × 10 −8 or more, the tool adhesion is rapidly increased, and the shaving characteristics are rapidly improved. As is clear from FIG. 1, the fatigue strength hardly decreases at an inclusion area ratio of about 300 × 10 −8 or more. When the inclusion area ratio starts to exceed about 700 × 10 −8 , the fatigue strength starts to decrease.
例えば、精錬時のスラグ組成が不適切であって、介在物組成が不適切な場合には(No.47、48)、介在物面積率が不足し、工具付着性及び皮削り特性が悪化する。またスラグ組成が適切であっても、精錬時に酸化鉄を投入しない場合には(No.45、46)、介在物面積率が不足し、工具付着性及び皮削り特性が悪化する。さらに精錬時に酸化鉄を投入し過ぎた場合には(No.43、44)、介在物面積率が過剰になって、疲労強度が低下している。   For example, when the slag composition at the time of refining is inappropriate and the inclusion composition is inappropriate (No. 47, 48), the inclusion area ratio is insufficient, and the tool adhesion and the cutting characteristics deteriorate. . Even if the slag composition is appropriate, if iron oxide is not added during refining (No. 45, 46), the inclusion area ratio is insufficient, and the tool adhesion and the cutting characteristics deteriorate. Further, when iron oxide is excessively added during refining (No. 43, 44), the inclusion area ratio becomes excessive and the fatigue strength is reduced.
これらに対して、精錬時にスラグ組成を適切にすると共に、適量の酸化鉄を投入している例(No.1〜32)では、介在物面積率を適切にでき、工具付着性、皮削り特性、及び疲労強度のいずれもが良好である。   On the other hand, in the example (Nos. 1 to 32) in which the slag composition is made appropriate during refining and an appropriate amount of iron oxide is added (No. 1 to 32), the inclusion area ratio can be made appropriate, and the tool adhesion and the cutting characteristics , And fatigue strength are both good.
なお圧延時の巻き取り温度が高いと、結晶粒が粗大化し、焼入れ性が増し、過冷組織が発生する(No.33)。圧延の冷却速度が速すぎる場合も過冷組織が発生する(No.34〜35)。焼入れ性元素(Mn,Cr、Niなど)が多い場合にも過冷組織が発生し(No.36〜38)、MoやVが多い時にもパーライト変態が終了しない為に過冷組織が発生する(No.39〜40)。これら過冷組織が発生した例では、絞り特性が悪化しており、伸線してばねにする際に断線が発生し易くなっていた。   If the winding temperature during rolling is high, the crystal grains become coarse, the hardenability increases, and a supercooled structure is generated (No. 33). An overcooled structure is also generated when the rolling cooling rate is too high (No. 34 to 35). Even when there are many hardenable elements (Mn, Cr, Ni, etc.), a supercooled structure is generated (No. 36 to 38), and even when there is a large amount of Mo and V, a pearlite transformation is not completed and a supercooled structure is generated. (No. 39-40). In the example in which these supercooled structures are generated, the drawing characteristics are deteriorated, and disconnection is likely to occur when the wire is drawn into a spring.
圧延時の冷却速度が遅すぎる例(No.41)では、パーライト組織が粗大化していた。焼鈍温度が高すぎる例(No.42)では、セメンタイトが球状化していた。これらパーライト組織が粗大化したり、セメンタイトが球状化した例では、伸線してばねにする際にシェブロンクラックが発生して断線し易くなっていた。   In the example where the cooling rate during rolling was too slow (No. 41), the pearlite structure was coarsened. In an example where the annealing temperature was too high (No. 42), cementite was spheroidized. In these examples where the pearlite structure was coarsened or cementite was spheroidized, chevron cracks were generated when the wire was drawn to form a spring, and the wire was easily broken.

Claims (2)

  1. C :0.2〜0.9%(質量%の意味。以下、同じ)、
    Si:0.8〜3%、
    Mn:0.1〜2.0%、
    Cr:0.01〜3.0%、
    P :0.1%以下(0%を含まない)、及び
    S :0.1%以下(0%を含まない)を含有し、さらにNi:1.0%以下(0%を含まない)、V:0.7%以下(0%を含まない)、及びMo:0.8%以下(0%を含まない)から選択される少なくとも一種を含有し、残部は鉄及び不可避不純物である鋼であって、
    この鋼に含まれる酸化物系介在物は、下記式(1)〜(3)を満足しており、
    鋼の縦断面における表面から深さ0.3mmまでの表層域に存在する厚み2〜15μmの酸化物系介在物の面積率が、300×10-8〜700×10-8であり、
    マルテンサイト及びベイナイトの合計面積率が10%以下であるばね鋼。
    18≦[Al23]/S×100≦38 …(1)
    37≦[SiO2]/S×100≦60 …(2)
    2≦[CaO]/S×100≦40 …(3)
    (式中、Sは、[Al23]、[SiO2]、[CaO]、[MgO]、[MnO]の合計を示す。[Al23]、[SiO2]、[CaO]、[MgO]、[MnO]は、全酸化物系介在物に含まれる各元素(Al、Si、Ca、Mg、Mn)の合計含有量を、その酸化物としての質量で示した値である)
    C: 0.2 to 0.9% (meaning mass%, hereinafter the same),
    Si: 0.8-3%,
    Mn: 0.1 to 2.0%,
    Cr: 0.01 to 3.0%,
    P: 0.1% or less (not including 0%), and S: 0.1% or less (not including 0%), and Ni: 1.0% or less (not including 0%), V: 0.7% or less (excluding 0%) and Mo: containing at least one selected from 0.8% or less (not including 0%), the balance being steel that is iron and inevitable impurities There,
    The oxide inclusions contained in this steel satisfy the following formulas (1) to (3),
    The area ratio of the oxide inclusions having a thickness of 2 to 15 μm existing in the surface layer region from the surface in the longitudinal section of the steel to a depth of 0.3 mm is 300 × 10 −8 to 700 × 10 −8 ,
    Spring steel in which the total area ratio of martensite and bainite is 10% or less.
    18 ≦ [Al 2 O 3 ] / S × 100 ≦ 38 (1)
    37 ≦ [SiO 2 ] / S × 100 ≦ 60 (2)
    2 ≦ [CaO] / S × 100 ≦ 40 (3)
    (In the formula, S represents the sum of [Al 2 O 3 ], [SiO 2 ], [CaO], [MgO], and [MnO]. [Al 2 O 3 ], [SiO 2 ], [CaO] , [MgO] and [MnO] are values indicating the total content of each element (Al, Si, Ca, Mg, Mn) contained in all oxide inclusions in terms of mass as an oxide. )
  2. 引張強さが900〜1300MPa、絞りが35%以上である請求項1に記載のばね鋼。   The spring steel according to claim 1, having a tensile strength of 900 to 1300 MPa and a drawing of 35% or more.
JP2009068811A 2009-03-19 2009-03-19 Spring steel Expired - Fee Related JP5329272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068811A JP5329272B2 (en) 2009-03-19 2009-03-19 Spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068811A JP5329272B2 (en) 2009-03-19 2009-03-19 Spring steel

Publications (2)

Publication Number Publication Date
JP2010222604A JP2010222604A (en) 2010-10-07
JP5329272B2 true JP5329272B2 (en) 2013-10-30

Family

ID=43040113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068811A Expired - Fee Related JP5329272B2 (en) 2009-03-19 2009-03-19 Spring steel

Country Status (1)

Country Link
JP (1) JP5329272B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796781B2 (en) * 2012-03-07 2015-10-21 株式会社神戸製鋼所 Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
JP5796782B2 (en) 2012-03-30 2015-10-21 株式会社神戸製鋼所 High strength spring steel wire rod and high strength spring with excellent skin machinability
JP6249846B2 (en) * 2013-03-25 2017-12-20 株式会社神戸製鋼所 Steel wire rod for high strength spring excellent in wire drawing workability and bending workability after wire drawing work, method for producing the same, high strength spring, and method for producing the same
WO2021002074A1 (en) * 2019-07-01 2021-01-07 住友電気工業株式会社 Steel wire and spring
WO2021075501A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Valve spring
WO2021075500A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Damper spring
WO2021075509A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Steel wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423050B2 (en) * 2003-06-18 2010-03-03 株式会社神戸製鋼所 High cleanliness steel with excellent fatigue strength and cold workability
JP4315825B2 (en) * 2003-06-18 2009-08-19 株式会社神戸製鋼所 Steel wire for highly clean springs with excellent fatigue characteristics
JP4393335B2 (en) * 2004-10-01 2010-01-06 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel with excellent fatigue strength or cold workability
JP4347786B2 (en) * 2004-11-24 2009-10-21 株式会社神戸製鋼所 High cleanliness spring steel

Also Published As

Publication number Publication date
JP2010222604A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP5329272B2 (en) Spring steel
JP5162875B2 (en) High strength wire rod excellent in wire drawing characteristics and method for producing the same
JP4621133B2 (en) High carbon steel wire rod excellent in drawability and production method thereof
JP3737354B2 (en) Wire rod for wire drawing excellent in twisting characteristics and method for producing the same
JP4374356B2 (en) High-strength wire rod excellent in wire drawing characteristics, manufacturing method thereof, and high-strength steel wire excellent in wire drawing properties
JP2007138260A (en) Spring steel wire rod having superior pickling characteristics
JP4369415B2 (en) Spring steel wire rod with excellent pickling performance
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
JP5796782B2 (en) High strength spring steel wire rod and high strength spring with excellent skin machinability
KR20170002541A (en) Steel wire
KR102243985B1 (en) High-strength cold rolled steel sheet and its manufacturing method
JP3918587B2 (en) Spring steel for cold forming
WO2016158562A1 (en) Heat-treated steel wire having excellent fatigue-resistance characteristics
JP5796781B2 (en) Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
WO2020256140A1 (en) Wire rod
JP5679455B2 (en) Spring steel, spring steel wire and spring
JP6460883B2 (en) Manufacturing method of heat-treated steel wire with excellent workability
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
WO1994023084A1 (en) Bainite rod wire or steel wire for wire drawing and process for producing the same
WO2017169481A1 (en) Steel wire having excellent fatigue characteristics and method for manufacturing same
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP6135553B2 (en) Reinforcing bar and method for manufacturing the same
JP6208611B2 (en) High strength steel with excellent fatigue properties
KR101819343B1 (en) Wire rod having excellent drawability and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees