JP5796479B2 - Cooling water treatment method - Google Patents

Cooling water treatment method Download PDF

Info

Publication number
JP5796479B2
JP5796479B2 JP2011273588A JP2011273588A JP5796479B2 JP 5796479 B2 JP5796479 B2 JP 5796479B2 JP 2011273588 A JP2011273588 A JP 2011273588A JP 2011273588 A JP2011273588 A JP 2011273588A JP 5796479 B2 JP5796479 B2 JP 5796479B2
Authority
JP
Japan
Prior art keywords
cooling water
agent
chlorine
concentration
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011273588A
Other languages
Japanese (ja)
Other versions
JP2013123680A (en
Inventor
智之 沖田
智之 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011273588A priority Critical patent/JP5796479B2/en
Publication of JP2013123680A publication Critical patent/JP2013123680A/en
Application granted granted Critical
Publication of JP5796479B2 publication Critical patent/JP5796479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

この発明は、循環使用する冷却水を結合塩素剤で処理する方法に関する。   The present invention relates to a method of treating circulating coolant with a combined chlorine agent.

従来より、工場等で使用する冷却水は、用水の使用量削減を目的として循環利用することが行われている。その場合、循環水が高濃縮化されて腐食したり、スケールやスライムが含まれた状態となることを防止するために、使用済冷却水を水処理剤で処理する必要がある。水処理剤の一つであるスライムコントロール剤としては、近年、次亜塩素酸ナトリウム等の塩素系薬品に代えて結合塩素剤を用いることが多くなっている。
結合塩素剤は、遊離塩素と塩素安定化剤(刺激抑制成分)が結合されたものである。結合塩素剤による冷却水のスライム処理は、結合塩素剤の塩素分がスライムと結合することで行われるため、スライム処理によって前記結合塩素剤の塩素分が消費されて塩素安定化剤が使用済冷却水中に残留する。
Conventionally, cooling water used in factories or the like has been circulated for the purpose of reducing the amount of water used. In that case, it is necessary to treat the used cooling water with a water treatment agent in order to prevent the circulating water from being highly concentrated and corroded or becoming in a state containing scales and slime. In recent years, as a slime control agent, which is one of water treatment agents, a bonded chlorine agent is often used instead of a chlorine-based chemical such as sodium hypochlorite.
The combined chlorine agent is a combination of free chlorine and a chlorine stabilizer (stimulus suppression component). The slime treatment of the cooling water with the combined chlorine agent is performed by combining the chlorine content of the combined chlorine agent with the slime, so the chlorine content of the combined chlorine agent is consumed by the slime treatment and the chlorine stabilizer is used. Remains in water.

特許文献1には、結合塩素剤を用いた水系処理剤の濃度制御方法として、遊離塩素を水系に発生させて、該水系の結合塩素の量を制御する方法が記載されている。また、水系内の遊離塩素と水系内に残留している塩素安定化剤と結合させて結合塩素にすることが記載されている。また、遊離塩素を発生させるために、次亜塩素酸ナトリウムなどを水系へ供給することが記載されている。さらに、循環水系を長期運転させると塩素安定化剤が水系に多量に残留するため、この方法は循環水系に好適であると記載されている。
このように、特許文献1に記載された方法では、水系に結合塩素剤と塩素成分(遊離塩素発生成分)を供給しているが、塩素安定化剤は供給していない。結合塩素剤は高価である。
Patent Document 1 describes a method for controlling the amount of aqueous combined chlorine by generating free chlorine in the aqueous system as a method for controlling the concentration of the aqueous processing agent using the combined chlorine agent. Moreover, it describes combining with free chlorine in the aqueous system and a chlorine stabilizer remaining in the aqueous system to form combined chlorine. Further, it describes that sodium hypochlorite and the like are supplied to an aqueous system in order to generate free chlorine. Furthermore, since a large amount of chlorine stabilizer remains in the water system when the circulating water system is operated for a long time, this method is described as being suitable for the circulating water system.
As described above, in the method described in Patent Document 1, the combined chlorine agent and the chlorine component (free chlorine generating component) are supplied to the aqueous system, but the chlorine stabilizer is not supplied. Combined chlorinating agents are expensive.

特開2009−195823号公報JP 2009-195823 A

この発明の課題は、循環使用する冷却水を結合塩素剤で処理する方法の処理コストを低減することである。   The subject of this invention is reducing the processing cost of the method of processing the cooling water used in circulation with a combined chlorine agent.

上記課題を解決するために、この発明の冷却水の処理方法は、下記の構成(1) 〜(4) を有することを特徴とする。
(1) 循環使用する冷却水を、結合塩素剤を添加せずに結合塩素剤で処理する。
(2) 冷却水使用設備に供給する冷却水を貯留する冷却水貯留槽と、前記冷却水貯留槽と前記設備の冷却水導入口とを接続する給水管と、前記冷却水貯留槽と前記設備の冷却水排出口とを接続する戻し管と、水系で結合されて結合塩素剤となる塩素剤および塩素安定化剤を別々に前記冷却水貯留槽に供給する薬剤供給装置と、前記給水管内の冷却水に含まれている前記結合塩素剤の濃度を検出する入側濃度検出器と、前記戻し管内の使用済冷却水に含まれている前記結合塩素剤の濃度を検出する出側濃度検出器と、を用いる。
(3) 前記入側濃度検出器で検出された入側結合塩素剤濃度が基準値未満の場合は、前記薬剤供給装置から前記冷却水貯留槽に前記塩素剤と塩素安定化剤の両方を供給する。
(4) 前記入側濃度検出器で検出された入側結合塩素剤濃度が基準値以上の場合は、前記入側結合塩素剤濃度と前記出側濃度検出器で検出された出側結合塩素剤濃度との差に応じて、前記薬剤供給装置から前記冷却水貯留槽に前記塩素剤のみを供給する。
In order to solve the above-mentioned problems, the cooling water treatment method of the present invention is characterized by having the following configurations (1) to (4).
(1) Treat the cooling water to be circulated with the combined chlorine agent without adding the combined chlorine agent.
(2) A cooling water storage tank for storing cooling water to be supplied to the cooling water use facility, a water supply pipe connecting the cooling water storage tank and the cooling water inlet of the facility, the cooling water storage tank and the facility A return pipe that connects the cooling water discharge port, a chemical supply device that separately supplies a chlorine agent and a chlorine stabilizer that are combined in an aqueous system and become a combined chlorine agent to the cooling water storage tank, and An inlet side concentration detector for detecting the concentration of the combined chlorine agent contained in the cooling water, and an outlet side concentration detector for detecting the concentration of the combined chlorine agent contained in the used cooling water in the return pipe And are used.
(3) When the concentration of the inlet side bound chlorine agent detected by the inlet side concentration detector is less than a reference value, supply both the chlorine agent and the chlorine stabilizer from the drug supply device to the cooling water storage tank. To do.
(4) In the case where the concentration of the inlet-side chlorinated agent detected by the inlet-side concentration detector is equal to or higher than a reference value, the concentration of the inlet-side chlorinated agent and the outlet-side chlorinated agent detected by the outlet-side concentration detector Only the chlorine agent is supplied from the medicine supply device to the cooling water storage tank according to the difference with the concentration.

この発明の方法では、前記冷却水貯留槽に前記薬剤供給装置から塩素剤および塩素安定化剤が別々に供給される。また、前記冷却水貯留槽からの冷却水が、給水管から冷却水使用設備に供給され、前記冷却水使用設備からの使用済冷却水が、戻し管から冷却水貯留槽に導入される。また、冷却水使用設備の入側と出側で結合塩素剤の濃度が検出される。
そして、この方法では、前記入側濃度検出器で検出された入側結合塩素剤濃度が基準値以上となるまで、前記薬剤供給装置から前記冷却水貯留槽に前記塩素剤と塩素安定化剤の両方が供給される。これにより、前記冷却水貯留槽内で塩素剤および塩素安定化剤が結合されて結合塩素剤となり、この結合塩素剤が含まれた冷却水が前記冷却水貯留槽から前記設備の冷却水導入口に供給される。
In the method of the present invention, the chlorine agent and the chlorine stabilizer are separately supplied from the chemical supply device to the cooling water storage tank. Moreover, the cooling water from the said cooling water storage tank is supplied to a cooling water use installation from a water supply pipe, and the used cooling water from the said cooling water use installation is introduce | transduced into a cooling water storage tank from a return pipe. Moreover, the concentration of the combined chlorinating agent is detected on the entry side and the exit side of the cooling water use facility.
In this method, the chlorine supply agent and the chlorine stabilizer are supplied from the chemical supply device to the cooling water storage tank until the concentration of the input side combined chlorine agent detected by the input side concentration detector becomes equal to or higher than a reference value. Both are supplied. Thus, the chlorine agent and the chlorine stabilizer are combined in the cooling water storage tank to become a combined chlorine agent, and the cooling water containing the combined chlorine agent is supplied from the cooling water storage tank to the cooling water inlet of the facility. To be supplied.

また、前記入側濃度検出器で検出された入側結合塩素剤濃度が基準値以上になった場合は、前記入側結合塩素剤濃度と前記出側濃度検出器で検出された出側結合塩素剤濃度との差に応じて、前記薬剤供給装置から前記冷却水貯留槽に前記塩素剤のみが供給される。この塩素剤により、スライム処理によって消費された塩素分が前記冷却水貯留槽に補給される。そして、この塩素剤と、前記冷却水貯留槽に導入された使用済冷却水に含まれていた塩素安定化剤が結合されて、結合塩素剤となる。
したがって、この発明の方法によれば、高額な結合塩素剤を購入することなく、安価な塩素剤および塩素安定化剤を供給することで、結合塩素剤によるスライム処理を行うことができる。
In addition, when the concentration of the inlet-side chlorinated agent detected by the inlet-side concentration detector exceeds a reference value, the concentration of the inlet-side chlorinated agent and the outlet-side bound chlorine detected by the outlet-side concentration detector Only the chlorine agent is supplied from the medicine supply device to the cooling water storage tank according to the difference with the agent concentration. With this chlorine agent, the chlorine content consumed by the slime treatment is supplied to the cooling water storage tank. And this chlorine agent and the chlorine stabilizer contained in the used cooling water introduced into the said cooling water storage tank are combined, and it becomes a combined chlorine agent.
Therefore, according to the method of the present invention, it is possible to perform slime treatment with a combined chlorine agent by supplying an inexpensive chlorine agent and a chlorine stabilizer without purchasing an expensive combined chlorine agent.

この発明の方法によれば、循環使用する冷却水を結合塩素剤で処理する方法の処理コストを低減できる。   According to the method of this invention, the processing cost of the method of processing the cooling water to be circulated with the combined chlorine agent can be reduced.

実施形態の方法が実施可能な水処理設備を示す概略構成図である。It is a schematic block diagram which shows the water treatment facility which can implement the method of embodiment. 図1の水処理設備を構成する制御装置が実施する演算処理を示すフローチャートである。It is a flowchart which shows the arithmetic processing which the control apparatus which comprises the water treatment installation of FIG. 1 implements.

以下、この発明の実施形態について説明する。
この実施形態の方法は、工場で使用する冷却水を結合塩素剤で処理して循環使用する方法であって、図1に示す水処理設備を使用して実施することができる。
この水処理設備は、工場(冷却水使用設備)1に供給する冷却水を貯留する冷却水貯留槽2を有する。冷却水貯留槽2には、冷却塔20で冷却された水が貯留される。冷却水貯留槽2はブロー用の排水管21を有する。排水管21はバルブ22を有する。バルブ22は電動開閉装置23で開閉される。バルブ22は通常は閉じてあるが、濃縮防止のために定期的に所定時間、開状態とする。
Embodiments of the present invention will be described below.
The method of this embodiment is a method in which cooling water used in a factory is treated with a combined chlorine agent and circulated, and can be implemented using the water treatment facility shown in FIG.
This water treatment facility has a cooling water storage tank 2 for storing cooling water supplied to a factory (cooling water use facility) 1. The cooling water storage tank 2 stores water cooled by the cooling tower 20. The cooling water storage tank 2 has a drainage pipe 21 for blow. The drain pipe 21 has a valve 22. The valve 22 is opened and closed by an electric opening / closing device 23. The valve 22 is normally closed, but is kept open for a predetermined time periodically to prevent concentration.

冷却水貯留槽2と工場1の冷却水導入口が給水管3で接続されている。冷却水貯留槽2と工場1の冷却水排出口が戻し管4で接続されている。給水管3はポンプ30を有する。給水管3および戻し管4は濃度検出器31a,41aを経由する迂回管31,41を有する。濃度検出器31a,41aは、迂回管31,41内の冷却水に含まれている有機系クロラミン(結合塩素剤)の濃度C3 ,C4 を検出する。 The cooling water storage tank 2 and the cooling water inlet of the factory 1 are connected by a water supply pipe 3. The cooling water storage tank 2 and the cooling water discharge port of the factory 1 are connected by a return pipe 4. The water supply pipe 3 has a pump 30. The water supply pipe 3 and the return pipe 4 have detour pipes 31 and 41 that pass through the concentration detectors 31a and 41a. The concentration detectors 31 a and 41 a detect the concentrations C 3 and C 4 of organic chloramine (bound chlorine agent) contained in the cooling water in the bypass pipes 31 and 41.

この水処理設備は、また、薬液タンク5,6と、配管51,61と、ポンプ52,62と、バルブ53,63と、電動開閉装置54,64からなる薬剤供給装置を有する。薬液タンク5には次亜塩素酸ナトリウム(塩素剤)の水溶液が入っている。薬液タンク6にはベンゼンスルホンアミド誘導体(塩素安定化剤)を含有する液体が入っている。
薬液タンク5,6と冷却水貯留槽2は、それぞれ配管51,61で接続されている。配管51,61は、それぞれポンプ52,62とバルブ53,63を有する。バルブ53,63は、それぞれ電動開閉装置54,64で開閉される。
This water treatment facility also includes a chemical supply device including chemical tanks 5 and 6, pipes 51 and 61, pumps 52 and 62, valves 53 and 63, and electric switchgears 54 and 64. The chemical solution tank 5 contains an aqueous solution of sodium hypochlorite (chlorine agent). The chemical tank 6 contains a liquid containing a benzenesulfonamide derivative (chlorine stabilizer).
The chemical tanks 5 and 6 and the cooling water storage tank 2 are connected by pipes 51 and 61, respectively. The pipes 51 and 61 have pumps 52 and 62 and valves 53 and 63, respectively. The valves 53 and 63 are opened and closed by electric opening and closing devices 54 and 64, respectively.

この水処理設備は、さらに、制御装置7を有する。制御装置7は、濃度検出器31a,41aからの濃度検出信号S3 ,S4 を入力して、図2に示すフローチャートに従う演算処理を所定間隔で常時行って、電動開閉装置54,64に開閉信号S5 ,S6 を出力する。なお、バルブ22の電動開閉装置23の制御は、制御装置7とは別の制御装置で行っている。 This water treatment facility further includes a control device 7. The control device 7 receives the concentration detection signals S 3 and S 4 from the concentration detectors 31a and 41a, and constantly performs arithmetic processing according to the flowchart shown in FIG. 2 at predetermined intervals to open and close the electric opening and closing devices 54 and 64. Signals S 5 and S 6 are output. The electric opening / closing device 23 of the valve 22 is controlled by a control device different from the control device 7.

図2のフローチャートについて説明する。
先ず、ステップS1では、濃度検出信号S3 が示す有機系クロラミンの濃度(入側結合塩素剤濃度)C3 と、濃度検出信号S4 が示す有機系クロラミンの濃度(出側結合塩素剤濃度)C4 を読み込んでステップS2に移行する。ステップS2では、入側濃度C3 が基準値CS 以上であるか否かを判断して、基準値以上であればステップS3に、基準値未満であればステップS4に移行する。
The flowchart of FIG. 2 will be described.
First, in step S1, the organic chloramines indicated density detection signal S 3 concentration (entry side combined chlorine concentration) C 3, the concentration of organic chloramines indicated concentration detection signal S 4 (exit side combined chlorine concentration) the process proceeds to step S2 reads the C 4. In step S2, the inlet side concentration C 3 is then determined whether the reference value C S above, step S3 equal to or more than the reference value, the process proceeds to step S4 if it is less than the reference value.

ステップS3では、入側濃度C3 と出側濃度C4 との差(ΔC=C3 −C4 )を算出してステップS5に移行する。ステップS5では、開閉信号S5 をΔCに応じた開度に開く信号に設定し、開閉信号S6 を閉じる信号に設定して、ステップS6に移行する。
ステップS4では、開閉信号S5 ,S6 をともに所定開度で開く信号に設定して、ステップS6に移行する。
ステップS6では、ステップS5またはステップS4で設定された開閉信号S5 ,S6 を電動開閉装置54,64に出力して、この演算処理を終了する。
In step S3, the process proceeds to step S5 to calculate the difference between the inlet side concentration C 3 and the exit-side concentration C 4 (ΔC = C 3 -C 4). In step S5, sets the signal for opening the switching signal S 5 to the opening degree corresponding to the [Delta] C, by setting the switching signal S 6 closing signal, the process proceeds to step S6.
In step S4, sets the switching signal S 5, S 6 are both signal for opening to a predetermined degree, the process proceeds to step S6.
In step S6, the opening / closing signals S 5 and S 6 set in step S5 or step S4 are output to the electric opening / closing devices 54 and 64, and this calculation process is terminated.

図1の処理設備は以下のように作動する。
この設備の使用開始当初は、給水管3内の有機系クロラミンの濃度C3 が基準値CS 未満であるため、図2の演算処理でステップS2からステップS4に移行して、ステップS4で開閉信号S5 ,S6 がともに所定開度で開く信号に設定されて、ステップS6で電動開閉装置54,64に出力される。これに伴って、電動開閉装置54,64が作動してバルブ53,63が所定開度で開状態となり、薬液タンク5,6から冷却水貯留槽2に配管51,61を介して、次亜塩素酸ナトリウムの水溶液とベンゼンスルホンアミド誘導体を含有する液体が供給される。
これにより、冷却水貯留槽2内で次亜塩素酸とベンゼンスルホンアミド誘導体が結合されて有機系クロラミンとなる。この有機系クロラミンが含まれた冷却水が、冷却水貯留槽2から工場1の冷却水導入口に供給される。
The processing facility of FIG. 1 operates as follows.
Beginning of use this facility, since the concentration C 3 organic chloramines in the water supply pipe 3 is less than the reference value C S, the process proceeds from step S2 to step S4 by the arithmetic processing of Fig. 2, open and close in step S4 Signals S 5 and S 6 are both set to open at a predetermined opening, and are output to electric switchgears 54 and 64 in step S6. Along with this, the electric opening / closing devices 54 and 64 are operated to open the valves 53 and 63 at a predetermined opening degree, and the hypothetical tanks 5 and 6 are connected to the cooling water storage tank 2 via the pipes 51 and 61. A liquid containing an aqueous solution of sodium chlorate and a benzenesulfonamide derivative is supplied.
Thereby, hypochlorous acid and a benzenesulfonamide derivative are combined in the cooling water storage tank 2 to form an organic chloramine. The cooling water containing the organic chloramine is supplied from the cooling water storage tank 2 to the cooling water inlet of the factory 1.

次に、給水管3内の有機系クロラミンの濃度C3 が基準値CS 以上となると、図2の演算処理でステップS2からステップS3に移行して、入側濃度C3 と出側濃度C4 との差(ΔC=C3 −C4 )が算出される。次に、ステップS5で、開閉信号S5 がΔCに応じた開度に開く信号に設定され、開閉信号S6 が閉じる信号に設定されて、これらの信号S5 ,S6 がステップS6で電動開閉装置54,64に出力される。 Then, when the concentration C 3 organic chloramines in the water supply pipe 3 becomes higher than the reference value C S, the process proceeds from step S2 to step S3 in processing of FIG. 2, the inlet side concentration C 3 and the exit-side concentration C The difference from 4 (ΔC = C 3 −C 4 ) is calculated. Next, in step S5, the switching signal S 5 is set to signal for opening the opening corresponding to the [Delta] C, is set to open the signal S 6 is closed signals, electric these signals S 5, S 6 are in step S6 It is output to the opening / closing devices 54 and 64.

これに伴って、電動開閉装置54,64が作動して、バルブ53がΔCに応じた開度で開状態となり、バルブ63が閉じた状態となる。その結果、薬液タンク5から冷却水貯留槽2に配管51を介して、次亜塩素酸ナトリウムの水溶液が供給されるが、薬液タンク6からの供給は停止される。これにより、スライム処理によって消費された塩素分が冷却水貯留槽2に補給される。そして、この次亜塩素酸ナトリウムと、戻し管4の使用済冷却水に含まれていたベンゼンスルホンアミド誘導体が冷却水貯留槽2内で反応して、有機系クロラミンとなる。   Along with this, the electric opening / closing devices 54 and 64 are operated, and the valve 53 is opened at an opening degree corresponding to ΔC, and the valve 63 is closed. As a result, the aqueous solution of sodium hypochlorite is supplied from the chemical tank 5 to the cooling water storage tank 2 via the pipe 51, but the supply from the chemical tank 6 is stopped. Thereby, the chlorine component consumed by the slime treatment is supplied to the cooling water storage tank 2. And this sodium hypochlorite and the benzenesulfonamide derivative contained in the used cooling water of the return pipe 4 react in the cooling water storage tank 2, and become organic chloramine.

したがって、この実施形態の方法によれば、高額な有機系クロラミン(結合塩素剤)を購入することなく、安価な次亜塩素酸ナトリウム(塩素剤)およびベンゼンスルホンアミド誘導体(塩素安定化剤)を冷却水貯留槽2内に供給することにより、工場1の冷却水に対する有機系クロラミン(結合塩素剤)によるスライム処理を行うことができるため、処理コストを低減できる。   Therefore, according to the method of this embodiment, inexpensive sodium hypochlorite (chlorine agent) and benzenesulfonamide derivative (chlorine stabilizer) can be obtained without purchasing expensive organic chloramine (bound chlorine agent). Since the slime process by the organic chloramine (bonded chlorine agent) with respect to the cooling water of the factory 1 can be performed by supplying in the cooling water storage tank 2, processing cost can be reduced.

上記実施形態の方法では、塩素剤として次亜塩素酸ナトリウムを使用し、塩素安定化剤として、次亜塩素酸ナトリウムと水系で結合されて有機系クロラミン(例えば、クロラミンT、クロラミンB)となるベンゼンスルホンアミド誘導体を使用しているが、この発明の方法で使用可能な塩素剤および塩素安定化剤の組み合わせは、水系で結合されて結合塩素剤となる塩素剤および塩素安定化剤の組み合わせであれば、他の組み合わせであってもよい。   In the method of the above embodiment, sodium hypochlorite is used as a chlorinating agent, and as a chlorine stabilizer, it is combined with sodium hypochlorite in an aqueous system to form an organic chloramine (for example, chloramine T, chloramine B). Although the benzenesulfonamide derivative is used, the combination of a chlorine agent and a chlorine stabilizer that can be used in the method of the present invention is a combination of a chlorine agent and a chlorine stabilizer that are combined in an aqueous system to become a combined chlorine agent. Any other combination may be used.

1 工場(冷却水使用設備)
2 冷却水貯留槽
20 冷却塔
21 ブロー用の排水管
22 バルブ
23 電動開閉装置
3 給水管
30 ポンプ
31 迂回管
31a 濃度検出器(入側濃度検出器)
4 戻し管
41 迂回管
41a 濃度検出器(出側濃度検出器)
5 薬液タンク
51 配管
52 ポンプ
53 バルブ
54 電動開閉装置
6 薬液タンク
61 配管
62 ポンプ
63 バルブ
64 電動開閉装置
7 制御装置
1 factory (equipment using cooling water)
2 Cooling water storage tank 20 Cooling tower 21 Blowing drain pipe 22 Valve 23 Electric switchgear 3 Water supply pipe 30 Pump 31 Detour pipe 31a Concentration detector (incoming concentration detector)
4 Return pipe 41 Detour pipe 41a Concentration detector (outside concentration detector)
5 Chemical liquid tank 51 Piping 52 Pump 53 Valve 54 Electric switchgear 6 Chemical liquid tank 61 Piping 62 Pump 63 Valve 64 Electric switchgear 7 Control device

Claims (1)

循環使用する冷却水を、結合塩素剤を添加せずに結合塩素剤で処理する冷却水の処理方法であって、
冷却水使用設備に供給する冷却水を貯留する冷却水貯留槽と、
前記冷却水貯留槽と前記設備の冷却水導入口とを接続する給水管と、
前記冷却水貯留槽と前記設備の冷却水排出口とを接続する戻し管と、
水系で結合されて結合塩素剤となる塩素剤および塩素安定化剤を別々に前記冷却水貯留槽に供給する薬剤供給装置と、
前記給水管内の冷却水に含まれている前記結合塩素剤の濃度を検出する入側濃度検出器と、
前記戻し管内の使用済冷却水に含まれている前記結合塩素剤の濃度を検出する出側濃度検出器と、
を用い、
前記入側濃度検出器で検出された入側結合塩素剤濃度が基準値未満の場合は、前記薬剤供給装置から前記冷却水貯留槽に前記塩素剤と塩素安定化剤の両方を供給し、
前記入側濃度検出器で検出された入側結合塩素剤濃度が基準値以上の場合は、前記入側結合塩素剤濃度と前記出側濃度検出器で検出された出側結合塩素剤濃度との差に応じて、前記薬剤供給装置から前記冷却水貯留槽に前記塩素剤のみを供給することを特徴とする冷却水の処理方法。
A cooling water treatment method for treating circulating cooling water with a combined chlorine agent without adding a combined chlorine agent,
A cooling water storage tank for storing cooling water to be supplied to the cooling water use facility;
A water supply pipe connecting the cooling water storage tank and the cooling water inlet of the facility;
A return pipe connecting the cooling water storage tank and the cooling water discharge port of the facility;
A chemical supply device that separately supplies a chlorine agent and a chlorine stabilizer, which are combined in an aqueous system and become a combined chlorine agent, to the cooling water storage tank;
An entry-side concentration detector for detecting the concentration of the combined chlorine agent contained in the cooling water in the water supply pipe;
An outlet concentration detector for detecting the concentration of the combined chlorine agent contained in the used cooling water in the return pipe;
Use
When the inlet-side combined chlorine agent concentration detected by the inlet-side concentration detector is less than a reference value, supply both the chlorine agent and the chlorine stabilizer from the drug supply device to the cooling water storage tank,
In the case where the inlet-side bound chlorinating agent concentration detected by the inlet-side concentration detector is greater than or equal to a reference value, the inlet-side bound chlorinating agent concentration and the outlet-side bound chlorinating agent concentration detected by the outlet-side concentration detector are According to a difference, only the said chlorine agent is supplied to the said cooling water storage tank from the said chemical | medical agent supply apparatus, The processing method of the cooling water characterized by the above-mentioned.
JP2011273588A 2011-12-14 2011-12-14 Cooling water treatment method Expired - Fee Related JP5796479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011273588A JP5796479B2 (en) 2011-12-14 2011-12-14 Cooling water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011273588A JP5796479B2 (en) 2011-12-14 2011-12-14 Cooling water treatment method

Publications (2)

Publication Number Publication Date
JP2013123680A JP2013123680A (en) 2013-06-24
JP5796479B2 true JP5796479B2 (en) 2015-10-21

Family

ID=48775262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011273588A Expired - Fee Related JP5796479B2 (en) 2011-12-14 2011-12-14 Cooling water treatment method

Country Status (1)

Country Link
JP (1) JP5796479B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156572B1 (en) * 2021-06-03 2022-10-19 栗田工業株式会社 Apparatus for producing stabilized halogen and method for producing stabilized halogen
WO2022254877A1 (en) * 2021-06-03 2022-12-08 栗田工業株式会社 Stabilized halogen production apparatus and stabilized halogen production method
CN116422151B (en) * 2023-06-13 2023-09-26 杭州尚善若水环保科技有限公司 Application method of slime stripping agent for reverse osmosis membrane system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811703B2 (en) * 2005-05-18 2011-11-09 三浦工業株式会社 Membrane filtration system
JP2008241296A (en) * 2007-03-26 2008-10-09 Japan Organo Co Ltd State determination method of water
JP5806793B2 (en) * 2008-02-21 2015-11-10 栗田工業株式会社 Concentration control method for aqueous processing agents
JP5141163B2 (en) * 2007-09-27 2013-02-13 栗田工業株式会社 Bactericidal and algae killing method

Also Published As

Publication number Publication date
JP2013123680A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
US11865240B2 (en) Water treatment systems, devices, and methods for fluid preparation
US6143184A (en) Air and water purification using continuous breakpoint halogenation
US7390399B2 (en) Water treatment control systems and methods of use
US6998057B2 (en) Method for monitoring and controlling chlorine levels in an aqueous medium
US6149819A (en) Air and water purification using continuous breakpoint halogenation and peroxygenation
JP5796479B2 (en) Cooling water treatment method
US20150203388A1 (en) Monochloramine water disinfection system and method
KR102139556B1 (en) Water pipe chlorine input device and its input method to keep the chlorine concentration in tap water constant
WO2018163475A1 (en) Ballast water measurement device, ship provided with ballast water measurement device, and ballast water measurement method
EP2599752B1 (en) Method and arrangement for a water treatment
TW201838930A (en) Cleaning water supply device
JP5410767B2 (en) Continuous automatic generator of hypochlorous acid aqueous solution
KR101564356B1 (en) Ship ballast processing device having hypochlorite storage tank and processing method thereof
JP5190674B2 (en) Operation method of boiler system
KR101754740B1 (en) Ict based ballast water residual chlorine measurement module for flux, fluid speed reliability
JP7033077B2 (en) Chlorine disinfection method for drinking water of ships, especially passenger ships
JP2005161142A (en) Apparatus for producing sterilizing water continuously
JP7492383B2 (en) Dialysis wastewater neutralization system, control device, dialysis wastewater neutralization method, and dialysis wastewater neutralization program
JP2023500705A (en) Controlled production of aqueous halogen solutions with various compositions
WO2021247975A1 (en) Real time monitoring of drinking water chlorination
JP2016074341A (en) Container unit, and ballast water treatment system
JP2003181461A (en) Water treatment apparatus and water treatment method
JPH06296974A (en) Water introducing type solid chemical dissolving device and treatment of water with chlorine using the same
JP2006089332A (en) Chlorine dioxide water production device
WO2018146849A1 (en) Ballast water measurement device and ballast water measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5796479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees