JP2008241296A - State determination method of water - Google Patents

State determination method of water Download PDF

Info

Publication number
JP2008241296A
JP2008241296A JP2007078686A JP2007078686A JP2008241296A JP 2008241296 A JP2008241296 A JP 2008241296A JP 2007078686 A JP2007078686 A JP 2007078686A JP 2007078686 A JP2007078686 A JP 2007078686A JP 2008241296 A JP2008241296 A JP 2008241296A
Authority
JP
Japan
Prior art keywords
water
chlorine
chlorine concentration
residual
free chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078686A
Other languages
Japanese (ja)
Inventor
Nami Kumagai
奈美 熊谷
Shintaro Someya
新太郎 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2007078686A priority Critical patent/JP2008241296A/en
Publication of JP2008241296A publication Critical patent/JP2008241296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To present the state having high sterilizing power and low corrosiveness using features of free chlorine and bound chlorine by remaining the free chlorine and bound chlorine in target water in a balanced manner. <P>SOLUTION: In the state determination method of water, a chlorine-based oxidizing agent for early providing sufficient free chlorine concentration and sulfamic acid or its salt are added individually to the target water, and it is determined whether the residual free chlorine concentration and residual whole chlorine concentration are in a balance state of a predetermined range, especially it is determined with a peculiar management expression. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水の状態判定方法に関し、とくに、冷却水等の対象水を目標とする処理状態の範囲内に管理するためにその対象水が所定の状態の範囲内にあるか否かを判定する方法に関する。   The present invention relates to a water state determination method, and in particular, determines whether or not the target water is within a predetermined state range in order to manage the target water such as cooling water within a target processing state range. On how to do.

処理対象水中の菌類や藻類の増殖を抑えるために、各種薬剤、とくに塩素系酸化剤を添加する方法が知られている。例えば冷却水系では、細菌、糸状菌、藻類などから構成されるスライムが系内に発生し、熱効率の低下、通水配管の閉塞、配管金属材質の腐食などの障害を起こす原因となる。従来より、菌類や藻類によるこのような障害を防ぐために、次亜塩素酸塩などの塩素系酸化剤を添加し、菌類や藻類の増殖を抑える方法が知られている。   In order to suppress the growth of fungi and algae in the water to be treated, methods for adding various agents, particularly chlorine-based oxidizing agents, are known. For example, in a cooling water system, slime composed of bacteria, filamentous fungi, algae, and the like is generated in the system, causing problems such as a decrease in thermal efficiency, blockage of water pipes, and corrosion of pipe metal materials. Conventionally, in order to prevent such troubles caused by fungi and algae, a method of suppressing the growth of fungi and algae by adding a chlorine-based oxidizing agent such as hypochlorite is known.

しかしながら、塩素系酸化剤は、有効成分の形態が遊離塩素であるため、有効成分が消費しやすく、また管理する残留塩素濃度によっては配管や熱交換器の金属材質の腐食を引き起こす。   However, since the form of the active ingredient is free chlorine, the chlorine-based oxidant is likely to be consumed, and depending on the residual chlorine concentration to be managed, corrosion of the metal material of the pipe and heat exchanger is caused.

特許文献1には、塩素系酸化剤とスルファミン酸もしくはその塩との併用により塩素を結合化(結合塩素化)する技術によって、有効成分の消費を抑える方法が提案されている。   Patent Document 1 proposes a method of suppressing the consumption of active ingredients by a technique for bonding chlorine (bonded chlorination) by using a chlorine-based oxidizing agent and sulfamic acid or a salt thereof in combination.

また、特許文献2には、塩素系酸化剤とスルファミン酸もしくはその塩を含有するスライム剥離剤を使用したスライム剥離方法が提案されている。
特公昭41−15116号公報 特開2003−267811号公報
Patent Document 2 proposes a slime peeling method using a slime peeling agent containing a chlorine-based oxidizing agent and sulfamic acid or a salt thereof.
Japanese Patent Publication No.41-15116 JP 2003-267811 A

しかしながら、上記のような従来方法においては、以下のような問題がある。
まず、遊離塩素(塩素系酸化剤)のみによる処理では、殺菌力が強く即効性はあるものの、上述の如く有効成分が消失しやすく、腐食性が高い。
However, the conventional method as described above has the following problems.
First, in the treatment with only free chlorine (chlorine oxidant), although the bactericidal power is strong and has an immediate effect, the active ingredient is easily lost as described above, and the corrosivity is high.

また、結合塩素(塩素系酸化剤とスルファミン酸もしくはその塩との併用)による処理では、殺菌力は抑制されてしまうが、遊離塩素に比べて有効成分の持続性が向上し、腐食性は低い。上記特許文献2による方法では、薬剤が、塩素系酸化剤とスルファミン酸もしくはその塩を含有する1剤の薬剤として添加されるものであるため、遊離塩素による殺菌力は基本的にそれほど期待できない。   In addition, treatment with bound chlorine (a combination of a chlorine-based oxidant and sulfamic acid or a salt thereof) suppresses bactericidal activity, but improves the sustainability of the active ingredient and lowers corrosivity compared to free chlorine . In the method according to Patent Document 2, since the drug is added as a single drug containing a chlorine-based oxidizing agent and sulfamic acid or a salt thereof, the bactericidal power due to free chlorine cannot be expected so much.

そこで本発明の課題は、対象水中に遊離塩素と結合塩素をバランスよく残存させることにより、遊離塩素、結合塩素のそれぞれの特徴を生かした状態、つまり、高い殺菌力と低い腐食性とを併せ持つ状態を現出できるようにすることにある。   Therefore, the object of the present invention is to leave free chlorine and combined chlorine in the target water in a well-balanced state, making use of the characteristics of free chlorine and combined chlorine, that is, a state having both high bactericidal power and low corrosivity. Is to be able to appear.

上記課題を解決するために、本発明に係る水の状態判定方法は、対象水に、初期に十分な遊離塩素濃度を与えるための塩素系酸化剤と、スルファミン酸もしくはその塩をそれぞれ個別に添加し、残留遊離塩素濃度と残留全塩素濃度が予め定めた範囲のバランス状態にあるか否かの判定を行うことを特徴とする方法からなる。   In order to solve the above-mentioned problems, the water state determination method according to the present invention adds a chlorine-based oxidizing agent for giving a sufficient free chlorine concentration to the target water and sulfamic acid or a salt thereof individually. And determining whether or not the residual free chlorine concentration and the residual total chlorine concentration are in a balanced state within a predetermined range.

この方法においては、塩素系酸化剤とスルファミン酸もしくはその塩をそれぞれ個別に添加することにより、塩素系酸化剤による遊離塩素と、スルファミン酸もしくはその塩を併用することにより生成される結合塩素とを、ともにバランスよく残留させ、残留遊離塩素による殺菌力と、残留結合塩素による有効成分の持続性向上、それによる低腐食性とを、ともにバランスよく発現させることができる。   In this method, a chlorine-based oxidizing agent and a sulfamic acid or a salt thereof are added separately, so that free chlorine produced by the chlorine-based oxidizing agent and a combined chlorine produced by using the sulfamic acid or a salt thereof together. Both of them can be left in a well-balanced manner, and the sterilizing power due to residual free chlorine, the improvement of the sustainability of active ingredients due to residual bound chlorine, and the resulting low corrosiveness can be expressed in a well-balanced manner.

一般的に結合塩素濃度を直接測定することはないので、残留遊離塩素濃度と残留全塩素濃度を測定することになる。予め定めた範囲のバランス状態にあるか否かの判定については、例えば、残留遊離塩素濃度と残留全塩素濃度の積からなる管理式に基づいて行うことが可能である。   Generally, since the combined chlorine concentration is not directly measured, the residual free chlorine concentration and the residual total chlorine concentration are measured. The determination as to whether or not the balance state is within a predetermined range can be made based on, for example, a management formula consisting of the product of the residual free chlorine concentration and the residual total chlorine concentration.

中でも、より的確に判定を行うために、例えば、初期に与える遊離塩素濃度を2(mg/L)以上とし、かつ、水中の〔残留遊離塩素濃度(mg/L)+0.1〕×〔残留全塩素濃度(mg/L)〕の値が0.1〜1.0(mg/L)2の範囲内にあるか否かの判定を行うことが好ましい。この管理式による判定により、後述の実施例に示すように、残留遊離塩素濃度と残留全塩素濃度の積からなる管理式に基づく判定に比べ、殺菌効果と腐食性を合わせた判定を、より的確に行うことが可能になる。 Above all, in order to judge more accurately, for example, the free chlorine concentration given initially is set to 2 (mg / L) or more and [residual free chlorine concentration (mg / L) +0.1] × [residual in water It is preferable to determine whether or not the value of [total chlorine concentration (mg / L)] is in the range of 0.1 to 1.0 (mg / L) 2 . As shown in the examples described later, this management formula makes a more accurate judgment that combines the bactericidal effect and the corrosivity than the judgment based on the management formula consisting of the product of residual free chlorine concentration and residual total chlorine concentration. It becomes possible to do.

本発明における対象水としては冷却水が好適であるが、本発明は、冷却水処理系以外にも、スクラバー水系、紙パルプ水系等の用水系処理や、工場排水や生活排水等の排水系処理、および純水処理等、各種水処理全般に適用することができる。   Although the cooling water is suitable as the target water in the present invention, the present invention is not limited to the cooling water treatment system, but is used for water treatment such as scrubber water system and paper pulp water system, and waste water system treatment such as factory waste water and domestic waste water. And various water treatments in general, such as pure water treatment.

本発明に係る水の状態判定方法によれば、初期に十分な遊離塩素濃度を与え、高菌数や藻類による汚染を低減させた後、結合塩素で低菌数、藻類抑制を維持管理することで、遊離塩素の殺菌力、即効性の特徴を活かしつつ、結合塩素の持続性、低腐食性の特徴を十分に活かした処理を行うことができる。より具体的には、例えば初期に与える遊離塩素濃度を2(mg/L)以上とし、かつ、水中の〔残留遊離塩素濃度(mg/L)+0.1〕×〔残留全塩素濃度(mg/L)〕の値が0.1〜1.0(mg/L)2の範囲内となるよう管理することにより、極めて効率よく処理できる。 According to the water state determination method according to the present invention, after providing a sufficient free chlorine concentration in the initial stage and reducing contamination by high bacteria and algae, maintaining low bacteria count and algal inhibition with combined chlorine. Thus, it is possible to carry out a treatment that fully utilizes the sustainability and low corrosive characteristics of bound chlorine while taking advantage of the sterilizing power and immediate effect of free chlorine. More specifically, for example, the free chlorine concentration given initially is set to 2 (mg / L) or more, and [residual free chlorine concentration (mg / L) +0.1] × [residual total chlorine concentration (mg / L) in water. By controlling the value of L)] to be in the range of 0.1 to 1.0 (mg / L) 2 , it can be processed extremely efficiently.

以下に、本発明について、実施例とともに詳細に説明する。
本発明に係る水の状態判定方法は、対象水に、初期に十分な遊離塩素濃度を与えるための塩素系酸化剤と、スルファミン酸もしくはその塩をそれぞれ個別に添加する。本発明に用いる塩素系酸化剤は、塩素系の酸化剤であれば特に限定されるものではないが、コスト、取扱性、安全性、水への溶解度などから、好ましくは次亜塩素酸またはその塩、さらに好ましくは次亜塩素酸ナトリウムである。次亜塩素酸ナトリウムは、工業薬品として一般に流通している12%次亜塩素酸ナトリウムを用いることができる。
Hereinafter, the present invention will be described in detail together with examples.
In the water state determination method according to the present invention, a chlorine-based oxidizing agent for providing a sufficient free chlorine concentration in the initial stage and sulfamic acid or a salt thereof are individually added to the target water. The chlorine-based oxidant used in the present invention is not particularly limited as long as it is a chlorine-based oxidant. However, from the viewpoint of cost, handleability, safety, solubility in water, etc., hypochlorous acid or its A salt, more preferably sodium hypochlorite. As sodium hypochlorite, 12% sodium hypochlorite which is generally distributed as an industrial chemical can be used.

酸化剤安定化剤としてのスルファミン酸もしくはその塩についても、特に限定されるものではなく、スルファミン酸、スルファミン酸ナトリウム、スルファミン酸アンモニウムなどを用いることができる。   The sulfamic acid or a salt thereof as the oxidant stabilizer is not particularly limited, and sulfamic acid, sodium sulfamate, ammonium sulfamate and the like can be used.

本発明において、残留塩素とは、JIS K0101に準拠した残留塩素測定法によって測定される塩素のことである。残留塩素には、残留遊離塩素と残留結合塩素があり、両者を合わせて残留全塩素という。残留塩素の定量には、DPD(ジエチル−p−フェニレンジアミン)比色法を適用する場合が多く、DPD法では結合塩素濃度は式(1)により求めることができる。
結合塩素濃度=全塩素濃度−遊離塩素濃度・・・式(1)
従って、遊離塩素と結合塩素をバランスよく管理するため、より簡便な方法として、本発明では遊離塩素濃度および全塩素濃度を用いることとした。
In the present invention, the residual chlorine is chlorine measured by a residual chlorine measuring method based on JIS K0101. Residual chlorine includes residual free chlorine and residual combined chlorine, which are collectively referred to as residual total chlorine. For the determination of residual chlorine, the DPD (diethyl-p-phenylenediamine) colorimetric method is often applied, and in the DPD method, the bound chlorine concentration can be obtained by the equation (1).
Combined chlorine concentration = total chlorine concentration-free chlorine concentration (1)
Therefore, in order to manage free chlorine and bonded chlorine in a well-balanced manner, as a simpler method, the present invention uses free chlorine concentration and total chlorine concentration.

遊離塩素による処理、結合塩素による処理、遊離塩素と結合塩素とをバランスさせた条件での処理を比較するために、表1に示す薬剤1、薬剤2、薬剤3を調製、添加し、表2〜4に示す実施例1〜4、比較例1〜6の試験を実施した。   In order to compare the treatment with free chlorine, the treatment with combined chlorine, and the treatment under the condition where free chlorine and combined chlorine are balanced, the drugs 1, 2 and 3 shown in Table 1 were prepared and added. Table 2 The test of Examples 1-4 shown in -4 and Comparative Examples 1-6 was implemented.

Figure 2008241296
Figure 2008241296

試験(1):殺菌試験
相模原市水にブイヨンを添加し30度で2日間培養したもの〔初期菌数:106(cfu/ml) 〕をビーカーにとり、初期有効塩素濃度(初期遊離塩素濃度)が6mg/Lとなるよう薬剤1、薬剤2、薬剤3を添加したものを、それぞれ比較例1、比較例2、実施例1とした。また、初期有効塩素濃度(初期遊離塩素濃度)を2mg/Lとなるよう薬剤3を添加したものを実施例2とした。30℃で保存しながら、薬剤添加後1、24、120時間経過後の菌数を測定した。同時に、24時間後、120時間後の試験水中の残留塩素濃度を測定した。結果を表2に示す。
Test (1): Sterilization test Add bouillon to Sagamihara city water and incubate at 30 degrees for 2 days [Initial number of bacteria: 10 6 (cfu / ml)] in a beaker, initial effective chlorine concentration (initial free chlorine concentration) Comparative Example 1, Comparative Example 2, and Example 1 were respectively added with Drug 1, Drug 2, and Drug 3 so as to be 6 mg / L. Further, Example 2 was prepared by adding the drug 3 so that the initial effective chlorine concentration (initial free chlorine concentration) was 2 mg / L. While storing at 30 ° C., the number of bacteria after 1, 24 and 120 hours after the addition of the drug was measured. At the same time, the residual chlorine concentration in the test water after 24 hours and 120 hours was measured. The results are shown in Table 2.

Figure 2008241296
Figure 2008241296

表2に示した24時間後の結果より、菌数が高い時は比較例2の結合塩素のみでは菌数低減処理に時間が掛かっている。そのため、実機において滞留時間が短い場合は菌数抑制効果を発揮仕切れないリスクがある。実施例1と比較例1は初期に十分な遊離塩素濃度を与えているため、1時間後に菌数減少が見られる。また、経過時間に対する残留遊離塩素濃度は実施例1、比較例1はほぼ同じ挙動を示しているが、実施例1は120時間後には結合塩素の形で残存するため、菌数を低いまま維持できている。一方、全塩素として残存されていない比較例1では120時間後に菌数が再上昇している。実施例2より、初期有効塩素濃度を実施例1の1/3である2mg/Lとした場合であっても、120時間後まで菌数抑制を維持できており、本発明による効果が高いことが証明された。なお、比較例2において、残留遊離塩素濃度が24時間後に0.02mg/L、120時間後に0.05mg/L検出されているが、薬剤2をビーカーに添加した直後においては、遊離塩素濃度は0.00mg/Lであり、本発明における“初期に十分な遊離塩素濃度を与える”方法とは著しく異なる。   From the results after 24 hours shown in Table 2, when the number of bacteria is high, it takes time to reduce the number of bacteria with the combined chlorine of Comparative Example 2 alone. Therefore, when the residence time is short in an actual machine, there is a risk that the effect of suppressing the number of bacteria cannot be exhibited. Since Example 1 and Comparative Example 1 gave a sufficient free chlorine concentration in the initial stage, the number of bacteria decreased after 1 hour. In addition, the residual free chlorine concentration with respect to the elapsed time shows almost the same behavior in Example 1 and Comparative Example 1, but since Example 1 remains in the form of bound chlorine after 120 hours, the number of bacteria is kept low. is made of. On the other hand, in Comparative Example 1 in which no total chlorine remains, the number of bacteria rises again after 120 hours. From Example 2, even when the initial effective chlorine concentration is 2 mg / L, which is 1/3 of Example 1, the suppression of the number of bacteria can be maintained until 120 hours later, and the effect of the present invention is high. Proved. In Comparative Example 2, the residual free chlorine concentration was detected as 0.02 mg / L after 24 hours and 0.05 mg / L after 120 hours, but immediately after the drug 2 was added to the beaker, the free chlorine concentration was 0.00 mg. / L, which is significantly different from the method of “giving sufficient free chlorine concentration in the initial stage” in the present invention.

試験(2):殺藻試験
冷却塔より採取した藍藻主体で緑藻、珪藻を含む藻類を冷却水に添加したものをビーカーに採り、試験水とした。初期有効塩素濃度が24mg/Lとなるよう、薬剤1、薬剤2、薬剤3を加えたものをそれぞれ比較例3、4、実施例3とし、30℃明所にて24時間保存後の外観を観察した。結果を表3に示す。藻類の処理には初期に強い酸化力が求められるため、比較例3、実施例3では効果が認められたが、比較例4では十分な効果が得られなかった。
Test (2): Algae killing test An algae mainly collected from the cooling tower and containing algae containing green and diatoms added to cooling water was taken in a beaker and used as test water. Add the drug 1, drug 2, and drug 3 so that the initial effective chlorine concentration is 24 mg / L. Observed. The results are shown in Table 3. Since a strong oxidizing power is required in the early stage for the treatment of algae, an effect was recognized in Comparative Example 3 and Example 3, but a sufficient effect was not obtained in Comparative Example 4.

Figure 2008241296
Figure 2008241296

試験(3):腐食試験
相模原市水に銅防食剤(ベンゾトリアゾール;BTA)を1mg/Lとなるよう添加したものを試験水とした。初期有効塩素濃度が6mg/Lとなるよう、薬剤1、薬剤2、薬剤3を添加したものをそれぞれ比較例5、6、実施例3とし、水温35℃、試験期間7日間での銅(C1220P)の腐食性を、回転式腐食試験機を用いて評価した。また、開始時のBTA濃度と終了時の濃度から、残存率を算出した。結果を表4に示す。比較例3においてBTAの分解が進み腐食が認められた一方、実施例4と比較例6とでは、BTA残存率も高く良好に防食されていた。
Test (3): Corrosion test Test water was prepared by adding a copper anticorrosive agent (benzotriazole; BTA) to Sagamihara city water to 1 mg / L. Comparative Examples 5, 6, and 3 were prepared by adding Drug 1, Drug 2, and Drug 3 so that the initial effective chlorine concentration was 6 mg / L, respectively, and copper (C1220P) at a water temperature of 35 ° C. and a test period of 7 days was used. ) Was evaluated using a rotary corrosion tester. Further, the residual ratio was calculated from the BTA concentration at the start and the concentration at the end. The results are shown in Table 4. In Comparative Example 3, decomposition of BTA progressed and corrosion was observed. On the other hand, in Example 4 and Comparative Example 6, the BTA residual ratio was high and the corrosion was well prevented.

Figure 2008241296
Figure 2008241296

次に、前述の遊離塩素と結合塩素の特徴より、初期に十分な遊離塩素濃度を与えたにもかかわらず、遊離塩素濃度が低い場合には低減した菌数が再上昇しないよう結合塩素濃度を保つ必要性と、反対に遊離塩素濃度が高い場合には結合塩素濃度が低くてもスライム処理できる事例より、残留遊離塩素濃度と残留全塩素濃度の積より成る管理式を見出すことを鋭意検討した。その結果、単純積である下式(2)では実際の効果と必ずしも相関していない場合があり、遊離塩素が低い場合に積が小さくなるケースが多く、この点について補正をかけた下式(3)を用いれば、実際の効果とより正確に相関することを見出し、管理する上でより適切な指標になり得ることを見出した。
管理式=残留遊離塩素濃度(mg/L)×残留全塩素濃度(mg/L)・・・式(2)
管理式=〔残留遊離塩素濃度(mg/L)+0.1〕×残留全塩素濃度(mg/L)・・・式(3)実施例1、2、5〜11の結果を表5に示す。
Next, due to the characteristics of free chlorine and bound chlorine described above, the bound chlorine concentration should be adjusted so that the number of reduced bacteria does not rise again when the free chlorine concentration is low, even though sufficient free chlorine concentration was given initially. On the other hand, we sought to find a management formula consisting of the product of residual free chlorine concentration and residual total chlorine concentration from the case where slime treatment is possible even when the combined chlorine concentration is low, when the free chlorine concentration is high . As a result, the following equation (2), which is a simple product, may not always correlate with the actual effect, and in many cases, the product becomes small when the free chlorine is low. Using 3), it was found that there is a more accurate correlation with actual effects, and that it can be a more appropriate index for management.
Control formula = Residual free chlorine concentration (mg / L) x Residual total chlorine concentration (mg / L) Formula (2)
Control formula = [Residual free chlorine concentration (mg / L) +0.1] × Residual total chlorine concentration (mg / L) Formula (3) Table 5 shows the results of Examples 1, 2, and 5-11. .

Figure 2008241296
Figure 2008241296

表5には、試験(1)(殺菌試験)、試験(3)(腐食試験)において、初期に与える遊離塩素を変化させて薬剤3を添加した試験結果を示した。殺菌効果は、試験期間を通じて菌数が103(cfu/ml)未満であった場合を○、103(cfu/ml)以上検出された場合があるものを×とした。腐食性については、mdd(Cu)>1を×、mdd(Cu)≦1を○とした。管理適否については、殺菌、腐食性とも良好な場合は○、どちらかに×がある場合は×とした。表5の実施例1、2、5〜7と実施例8〜11との比較から明らかなように、上記管理式(3)を使用し、管理範囲を0.1〜1.0の範囲として判定することにより、より適切な判定が可能になることが分かる。 Table 5 shows the test results in which the chemical 3 was added by changing the free chlorine given at the initial stage in the test (1) (sterilization test) and the test (3) (corrosion test). The bactericidal effect was evaluated as “◯” when the number of bacteria was less than 10 3 (cfu / ml) throughout the test period, and “×” when 10 3 (cfu / ml) or more was detected. For corrosiveness, mdd (Cu)> 1 was evaluated as x, and mdd (Cu) ≦ 1 was evaluated as ◯. In terms of management suitability, it was rated as ○ when both sterilization and corrosiveness were good, and × when either was present. As is clear from the comparison between Examples 1, 2, 5-7 and Examples 8-11 in Table 5, the management formula (3) is used, and the management range is set to a range of 0.1 to 1.0. It can be seen that a more appropriate determination can be made by the determination.

本発明に係る方法は、とくに冷却水処理系に好適なものであり、その他にも、スクラバー水系、紙パルプ水系等の用水系処理や、工場排水や生活排水等の排水系処理、および純水処理等、各種水処理全般に適用することができる。   The method according to the present invention is particularly suitable for a cooling water treatment system. In addition, water treatment such as scrubber water system and paper pulp water system, waste water system treatment such as factory waste water and domestic waste water, and pure water. It can be applied to various types of water treatment such as treatment.

Claims (4)

対象水に、初期に十分な遊離塩素濃度を与えるための塩素系酸化剤と、スルファミン酸もしくはその塩をそれぞれ個別に添加し、残留遊離塩素濃度と残留全塩素濃度が予め定めた範囲のバランス状態にあるか否かの判定を行うことを特徴とする水の状態判定方法。   Chlorine oxidizer and sulfamic acid or its salt to give sufficient free chlorine concentration in the initial stage to the target water are added separately, and the residual free chlorine concentration and residual total chlorine concentration are in a predetermined balance range. A method for determining the state of water, comprising determining whether or not the water is present. 予め定めた範囲のバランス状態にあるか否かの判定を、残留遊離塩素濃度と残留全塩素濃度の積からなる管理式に基づいて行う、請求項1に記載の水の状態判定方法。   The water state determination method according to claim 1, wherein the determination as to whether or not the balance state is within a predetermined range is made based on a management formula comprising a product of the residual free chlorine concentration and the residual total chlorine concentration. 初期に与える遊離塩素濃度を2(mg/L)以上とし、かつ、水中の〔残留遊離塩素濃度(mg/L)+0.1〕×〔残留全塩素濃度(mg/L)〕の値が0.1〜1.0(mg/L)2の範囲内にあるか否かの判定を行う、請求項1に記載の水の状態判定方法。 The initial concentration of free chlorine is 2 (mg / L) or more, and the [residual free chlorine concentration (mg / L) + 0.1] x [residual total chlorine concentration (mg / L)] in water is 0.1. The water state determination method according to claim 1, wherein determination is made as to whether or not it is within a range of ˜1.0 (mg / L) 2 . 対象水が冷却水である、請求項1〜3のいずれかに記載の水の状態判定方法。   The water state determination method according to claim 1, wherein the target water is cooling water.
JP2007078686A 2007-03-26 2007-03-26 State determination method of water Pending JP2008241296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078686A JP2008241296A (en) 2007-03-26 2007-03-26 State determination method of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078686A JP2008241296A (en) 2007-03-26 2007-03-26 State determination method of water

Publications (1)

Publication Number Publication Date
JP2008241296A true JP2008241296A (en) 2008-10-09

Family

ID=39912851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078686A Pending JP2008241296A (en) 2007-03-26 2007-03-26 State determination method of water

Country Status (1)

Country Link
JP (1) JP2008241296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123680A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method for treating cooling water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123680A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method for treating cooling water

Similar Documents

Publication Publication Date Title
JP4317762B2 (en) Method for the preparation of biocides containing stabilized hypochlorite and bromide ion sources, and methods for controlling microbial fouling using the same
TWI527933B (en) Composition and method for controlling copper discharge and erosion of copper alloys in industrial systems
JP3832399B2 (en) Bactericidal algicide composition and water-based bactericidal algae method
JP2009154113A (en) Sterilization treatment method for water system water
JP5665524B2 (en) Water treatment method for suppressing microbial damage in water
JP4867930B2 (en) Disinfection method of aqueous Legionella bacteria
JP2009084163A (en) Bactericidal/algicidal method
JP6691418B2 (en) Microbial inhibitor composition and method for inhibiting microorganisms
JP4959062B2 (en) Water treatment method
JP2015117216A (en) Sterilization method of water system
JP2009160505A (en) Method for controlling slime in water of water system
JP5703456B2 (en) Manganese scale formation inhibitor in seawater and method for preventing damage of manganese scale
JP2008241296A (en) State determination method of water
JP5281465B2 (en) Bactericidal algicide composition, water-based bactericidal algicide method, and method for producing bactericidal algicide composition
JP2007255788A (en) Management method for heat storage cold and hot water system
JP6093620B2 (en) Oxidative slime control agent composition with high storage stability
JP7266224B2 (en) Method for preventing adherence of marine organisms
JP5057030B2 (en) Dichloroisocyanurate composition with high storage stability
JP6548870B2 (en) Method for controlling slime in papermaking process water
JP4470121B2 (en) Disinfecting and algae killing method of circulating cooling water system
JP6792247B2 (en) Method for suppressing local corrosion of metals in water systems
JP5938874B2 (en) Ship ballast water treatment agent and ship ballast water treatment method using the same
JP6331364B2 (en) Corrosion reducing method and corrosion reducing agent
JP4230901B2 (en) Formulation composition
JP2005161254A (en) Method for preventing adhesion of slime in water system