JP5794954B2 - Disinfectant manufacturing method - Google Patents

Disinfectant manufacturing method Download PDF

Info

Publication number
JP5794954B2
JP5794954B2 JP2012149500A JP2012149500A JP5794954B2 JP 5794954 B2 JP5794954 B2 JP 5794954B2 JP 2012149500 A JP2012149500 A JP 2012149500A JP 2012149500 A JP2012149500 A JP 2012149500A JP 5794954 B2 JP5794954 B2 JP 5794954B2
Authority
JP
Japan
Prior art keywords
acid
disinfectant
solution
water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012149500A
Other languages
Japanese (ja)
Other versions
JP2014009227A (en
JP2014009227A5 (en
Inventor
秀行 関
秀行 関
Original Assignee
株式会社ピュアソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピュアソン filed Critical 株式会社ピュアソン
Priority to JP2012149500A priority Critical patent/JP5794954B2/en
Publication of JP2014009227A publication Critical patent/JP2014009227A/en
Publication of JP2014009227A5 publication Critical patent/JP2014009227A5/ja
Application granted granted Critical
Publication of JP5794954B2 publication Critical patent/JP5794954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、次亜塩素酸ナトリウム高濃度原液を水で希釈して製造される消毒液及びその製造方法にかかり、特に、長期間の保存に耐えることを可能にした消毒液の製造方法に関する。 The present invention relates to a disinfecting solution produced by diluting a sodium hypochlorite high-concentration stock solution with water and a method for producing the same, and more particularly to a disinfecting solution producing method capable of withstanding long-term storage.

手指、衣服、ドアノブ、家具、調理器具その他の消毒には、次亜塩素酸ナトリウムを水で希釈した消毒液を用いることが多く、古くから商品化されている。この消毒液は、通常、次亜塩素酸ナトリウムの原液(有効塩素濃度として1〜12%程度の水溶液)を水で薄めて、有効塩素濃度として0.02〜0.1%(1000mg/L)程度にして散布する。更に、若干量の界面活性剤を添加したものもある。また、公衆浴場やアクアパーク施設等の小規模浴槽では、約10倍希釈し1%(10,000mg/L)前後とし、薬液注入ポンプの流量調節を容易にした薬剤調製も頻繁に行われている。   For disinfection of fingers, clothes, door knobs, furniture, cooking utensils and other items, a disinfectant obtained by diluting sodium hypochlorite with water is often used and has been commercialized for a long time. This disinfectant is usually prepared by diluting a stock solution of sodium hypochlorite (an aqueous solution having an effective chlorine concentration of about 1 to 12%) with water to an effective chlorine concentration of 0.02 to 0.1% (1000 mg / L). Spread to the extent. In addition, there are some to which a small amount of a surfactant is added. In small baths such as public baths and aqua park facilities, pharmaceutical preparations that are diluted about 10 times to about 1% (10,000 mg / L) and the flow rate of the chemical injection pump is easily adjusted are frequently performed. Yes.

該次亜塩素酸ナトリウム原液は、流通段階における塩素ガス発生を回避するため通常0.3%程度の残留アルカリを有するので、pHが10を超える強塩基性であるものがほとんどである。しかも、強塩基性にしてなお次亜塩素酸ナトリウム原液自体が必ずしも安定でないこともあって、長期間の保存には耐えられない。そこで、調製したらなるべく早く使用することが推奨されている。   Since the sodium hypochlorite stock solution usually has residual alkali of about 0.3% in order to avoid generation of chlorine gas in the distribution stage, most of them are strongly basic with a pH exceeding 10. In addition, the sodium hypochlorite stock solution itself is not always stable because it is strongly basic and cannot withstand long-term storage. Therefore, it is recommended to use it as soon as possible after preparation.

また、該次亜塩素酸ナトリウム原液を希釈すると、希釈水に含まれたり、容器内に付着した金属酸化物等の微粒子が、吸着表面積を増す細孔を多く持つため、その触媒的効果により次亜塩素酸を分解し酸素を発生することも、過酸化水素同様に周知事実である。
従って、時間経過とともに顕著になる有効塩素濃度の低下は、次亜塩素酸が酸素を発生して分解したり、塩素酸(水中では同イオン)に転化するためと考えられている。また、強塩基性消毒剤の使用に伴うpHの上昇によって殺菌力の低下も招く。
それゆえ、従来から、特許文献1に記載されているように、次亜塩素酸ナトリウム水溶液に臭化物を添加してその安定性を図ること等が試みられている。
In addition, when the sodium hypochlorite stock solution is diluted, fine particles such as metal oxides contained in the diluted water or adhering to the container have many pores that increase the adsorption surface area. It is a well-known fact that oxygen is generated by decomposing chlorous acid as well as hydrogen peroxide.
Therefore, the decrease in the effective chlorine concentration that becomes conspicuous with the passage of time is considered to be because hypochlorous acid generates oxygen and decomposes it, or converts it into chloric acid (the same ion in water). Moreover, the increase in pH accompanying the use of a strong basic disinfectant also causes a decrease in sterilizing power.
Therefore, conventionally, as described in Patent Document 1, attempts have been made to add bromide to an aqueous sodium hypochlorite solution to improve its stability.

特開平01−164701号公報Japanese Patent Laid-Open No. 01-164701 特開2002−249407号公報JP 2002-249407 A 特開平10−81610号公報Japanese Patent Laid-Open No. 10-81610 国際公開第2006−057311号International Publication No. 2006-057311 特開2002−363017号公報JP 2002-363017 A

しかしながら、特許文献1に記載の技術では、次亜塩素酸ナトリウム原液レベルの高濃度の次亜塩素酸自体の安定性については一定の効果が認められるものの、原液を希釈した消毒液の安定性には効果が認められないことが分かっている。   However, in the technique described in Patent Document 1, although a certain effect is recognized with respect to the stability of hypochlorous acid itself at a high concentration of sodium hypochlorite stock solution level, the stability of the disinfectant solution diluted with the stock solution is improved. Is known to have no effect.

水道水の消毒用原液では、例えば、有効塩素濃度12%を保証するために若干高濃度の12〜13%で製造し、入荷次第すぐに消費すれば所期の目的を達成できる。ところが、前記の有効塩素濃度として0.02〜0.1%の消毒液では、入手量の全量をすぐに消費するのはごく稀であり、場合によっては半年以上の実質保管期間になることもある。消毒を専門に行い消毒液を多量消費する利用分野から外れるほど、消毒液の保管期間が長期化し失効する傾向は避けられない。   In the tap water disinfection stock solution, for example, if it is produced at a slightly high concentration of 12 to 13% to guarantee an effective chlorine concentration of 12% and consumed immediately upon arrival, the intended purpose can be achieved. However, with the disinfecting solution having the effective chlorine concentration of 0.02 to 0.1%, it is very rare to consume the entire amount immediately, and in some cases, the storage period may be more than half a year. is there. The farther from the field of use that specializes in disinfection and consumes a large amount of disinfectant, there is an unavoidable tendency for the disinfectant storage period to become longer and expire.

近年、ノロウイルス、ロタウイルスや新型インフルエンザウイルス等、ウイルスに起因する疾患が増大する傾向がみられる一方で、従来から知られる病原菌より大きなアメーバ絡みのレジオネラ属菌感染症やクリプトスポリジウム或いはジアルジア等原虫感染症が、法令の施行に沿って医師から国に報告され、この疾病も増大する傾向にある。   In recent years, virus-related diseases such as norovirus, rotavirus, and new influenza virus have been increasing, while legionella infections associated with larger amoeba and protozoan infections such as Cryptosporidium or Giardia, which are larger than previously known pathogens Diseases are reported to the country by doctors in line with the enforcement of the law, and this disease is also increasing.

消毒液の含有成分は様々であるが、ウイルス、細菌類、アメーバから原虫まで、病原体の大小を問わず効能を発揮する消毒薬の筆頭は塩素剤であり、薬液としては次亜塩素酸(HOCl)及び次亜塩素酸イオン(OCl)を主成分とするものが市場の過半数を占めていよう。アルコール系や第四級アンモニウム塩系の消毒液では、実質的に、細菌類だけに効能が限定されるからである。 The disinfectant contains various components, but the top of disinfectants that are effective regardless of the size of pathogens, from viruses, bacteria, amoeba to protozoa, is chlorinated. Hypochlorous acid (HOCl) is used as the chemical. ) And hypochlorite ions (OCl ) as the main component will dominate the market. This is because the efficacy of alcohol-based or quaternary ammonium salt-based disinfectants is limited to bacteria.

一方、浄水場等、次亜塩素酸ナトリウム液を多量消費する業種では、有効塩素の減少に比例して増加する塩素酸イオン(ClO )を毒性面で問題視し、わが国における現行の水道水質基準では、0.6mg/L以下と規制が設けられた。そのため、各施設では低温保管を目的に冷却装置を設置したり、計画的早期消費等、対策を始めている。 On the other hand, in industries that consume a large amount of sodium hypochlorite solution such as water purification plants, chlorate ions (ClO 3 ), which increase in proportion to the decrease in available chlorine, are regarded as a problem in terms of toxicity. In the water quality standard, regulation was set to 0.6 mg / L or less. Therefore, each facility has begun measures such as installing a cooling device for the purpose of low-temperature storage and systematic early consumption.

消毒液の有効塩素濃度を問わず、pHが6.0を超えて高まるほど塩素酸イオンの濃度は時間の経過につれ上昇する。もちろん、消毒液への照射光量が多いほど、また、液温が高いほど、塩素酸イオン濃度の上昇勾配が大きくなることも、既に分かっている。
発明者の永年の研究で、次亜塩素酸イオンの3分子が持つ外殻電子がゆっくり移動して塩素酸イオンの1分子と塩化物イオン(Cl)の2分子に転化する不均化反応を起こし、失効することも判明している。
一方、次亜塩素酸ナトリウム液のpHを酸性領域にすれば、塩素酸イオンの生成は抑えられるが、消毒液のpH緩衝力が弱ければ強酸と誤って混合したときpHが一気に低下し塩素ガス(Cl)を発生するpH境界である4.0を下回るリスクが増大する。従って、塩素剤をただ弱酸性になるよう中和して済むことではない。
Regardless of the effective chlorine concentration of the disinfectant, the concentration of chlorate ions increases with time as the pH rises above 6.0. Of course, it has already been found that the gradual increase in the chlorate ion concentration increases as the amount of light irradiated to the disinfectant increases and as the solution temperature increases.
Through the inventor's long-standing research, disproportionation reaction in which the outer shell electrons of three molecules of hypochlorite ion move slowly and convert into one molecule of chlorate ion and two molecules of chloride ion (Cl ). It has also been found that it will expire.
On the other hand, if the pH of the sodium hypochlorite solution is set to the acidic range, the formation of chlorate ions can be suppressed, but if the pH buffering power of the disinfectant solution is weak, the pH will drop suddenly when mixed with a strong acid and chlorine gas will be lost. The risk of falling below 4.0, the pH boundary that generates (Cl 2 ), increases. Therefore, it is not necessary to neutralize the chlorinating agent so that it becomes weakly acidic.

塩素ガス発生リスク低減の目的で、pH緩衝力を高めた弱酸性の消毒液を製造する公知技術は、pH緩衝液に消毒剤を添加する方法である。また、pHが5〜6の緩衝液は、芳香族のフタル酸水素カリウム(C(COOK)(COOH))と水酸化ナトリウム(NaOH)の各水溶液を公知規定書に沿って混合、調製するのが一般的である。 A known technique for producing a weakly acidic disinfectant with an increased pH buffering capacity for the purpose of reducing the risk of chlorine gas generation is a method of adding a disinfectant to the pH buffer. The buffer solution having a pH of 5 to 6 is prepared by mixing an aqueous solution of aromatic potassium hydrogen phthalate (C 6 H 4 (COOK) (COOH)) and sodium hydroxide (NaOH) in accordance with a known specification, It is common to prepare.

ところが、消毒液中に次亜塩素酸等の遊離有効塩素が存在した場合、従来の技術をそのまま応用すると薬効成分の有効塩素が消失する例が圧倒的に多い。芳香族カルボン酸は通常高価であり、これに代えて不飽和すなわち分子内に二重結合を持つフマル酸(HOOCCH=CHCOOH)等にすると、安価になっても、有効塩素により酸化されて所期の目的を果たせなくなる。これら特性は周知事実である。にもかかわらず、消毒剤関連の当業においては、塩素剤とpH緩衝液成分との反応性についての検討が欠けていた。   However, when free effective chlorine such as hypochlorous acid is present in the disinfecting solution, there are overwhelmingly many cases where effective chlorine as a medicinal component disappears when the conventional technique is applied as it is. Aromatic carboxylic acids are usually expensive, and instead of being unsaturated, that is, fumaric acid having a double bond in the molecule (HOOCCH = CHCOOH) or the like, it is oxidized by effective chlorine even if it becomes cheap. Cannot fulfill its purpose. These characteristics are well known. Nevertheless, in the field of disinfectant-related art, there has been a lack of studies on the reactivity between chlorine agents and pH buffer components.

故に、上記特許文献2にはコハク酸及びサリチル酸、特許文献3及び特許文献4にはコハク酸、グリコール酸、マレイン酸およびpH緩衝力を持たない無機酸が、有効塩素濃度を安定化させる成分として羅列してある。何れも、完全遮光下でも有効塩素を消費し酸化される。また、特許文献5に至っては、「公知文献である化学便覧に載るpH緩衝剤すべてを用いることができる」とし、次亜塩素酸と速やかに反応しクロラミンを生成して分解する典型的物質であるグリシンをも請求項に入れている。因って、本願発明に関し、これら文献に載る技術から先行技術として学べるものは全くない。   Therefore, in Patent Document 2, succinic acid and salicylic acid are used. In Patent Document 3 and Patent Document 4, succinic acid, glycolic acid, maleic acid, and inorganic acids having no pH buffering power are used as components for stabilizing the effective chlorine concentration. Listed. In any case, effective chlorine is consumed and oxidized even under complete light shielding. In addition, Patent Document 5 states that “all pH buffering agents listed in chemical manuals that are publicly known documents can be used”, which is a typical substance that rapidly reacts with hypochlorous acid to generate and decompose chloramine. Certain glycines are also claimed. Therefore, nothing can be learned as prior art from the techniques described in these documents regarding the present invention.

pH緩衝液において、フタル酸塩、リン酸塩及びホウ酸塩を各単独で調製した場合は、pHを5〜6の領域に常時維持することは不可能である。更に、残留アルカリを有する市販の次亜塩素酸ナトリウム液を、緩衝力を持たない塩酸、硫酸、硝酸で各中和してpHが5〜6になるようにしても、各酸と各塩との解離平衡値(解離定数)pKaは該pH領域から大きく外れており、緩衝力を得ることはできないことも公知事実である。
また、消毒液処方では、残留アルカリを有していれば、意図的な塩添加は不要である。
When phthalate, phosphate and borate are prepared individually in a pH buffer solution, it is impossible to constantly maintain the pH in the region of 5-6. Further, even when a commercially available sodium hypochlorite solution having residual alkali is neutralized with hydrochloric acid, sulfuric acid, or nitric acid having no buffering power to have a pH of 5 to 6, each acid and each salt It is also a known fact that the dissociation equilibrium value (dissociation constant) pKa is greatly deviated from the pH range, and a buffering force cannot be obtained.
Moreover, in the disinfectant formulation, if there is residual alkali, intentional salt addition is unnecessary.

有効塩素が有する微生物不活性化効能、所謂「殺菌力」を高める為に、従来技術に基づき採用される消毒液は、塩基性の塩素水を中性若しくは弱酸性にしたものである。該消毒液を早期に消費するのであれば、高塩基性の次亜塩素酸ナトリウム高濃度原液を水で希釈し、これに希酢酸を加えて中和すればpHが比較的安定した中性若しくは弱酸性の所望消毒液を容易に得ることができる。
前記特許文献2乃至特許文献5に載る酢酸以外の無機酸及び有機酸を敢えて選択しなくても、酢酸と原液中のアルカリから生成する非解離の酢酸塩と電離した酢酸イオンとで形成される解離平衡、すなわちpH緩衝効果によりpHも比較的安定するからである。
In order to enhance the microorganism inactivation effect, that is, the so-called “bactericidal power” of effective chlorine, the disinfecting solution adopted based on the prior art is a basic chlorine water made neutral or weakly acidic. If the disinfectant is consumed at an early stage, a highly basic neutral sodium hypochlorite concentrate diluted with water and neutralized by adding diluted acetic acid to neutral or A weakly acidic desired disinfectant can be easily obtained.
Even if inorganic acids and organic acids other than acetic acid listed in Patent Document 2 to Patent Document 5 are not selected, they are formed from acetic acid and non-dissociated acetate formed from alkali in the stock solution and ionized acetate ions. This is because the pH is relatively stable due to the dissociation equilibrium, that is, the pH buffer effect.

しかしながら、消毒液の商品流通を目的として調製する場合は、前記特許文献2乃至特許文献5の実施例に載る3日(72時間)より遙に長期間の保存条件において、該消毒液中の有効塩素濃度を減少させることなく維持することが求められる。
pHが6以下にpKaを有する有機酸で中和しただけでは、この目的を果たすことはできない。また、調製中に極微量の錆等異物が極微量混入したり、保存容器に開封・開栓等により保存容器内に光入射する可能性を完全に排除することも困難であるから、有機若しくは無機の酸が原液中の塩素を消費する可能性も皆無にはできない。
However, when it is prepared for the purpose of commercializing a disinfectant solution, it is effective in the disinfectant solution under storage conditions much longer than 3 days (72 hours) listed in the examples of Patent Document 2 to Patent Document 5. It is required to maintain the chlorine concentration without reducing it.
This purpose cannot be achieved only by neutralizing with an organic acid having a pKa of pH 6 or lower. In addition, it is difficult to completely eliminate the possibility that a very small amount of foreign matter such as rust is mixed during preparation, or the possibility of light entering the storage container by opening / opening the storage container, etc. There is no possibility that inorganic acids will consume chlorine in the stock solution.

こうした虐待条件が万一生じても、先ず塩素系消毒液の酸素発生分解に深く関係する金属酸化物は、これを溶解して金属イオンにすれば分解を抑えることが可能である。シュウ酸(HOOCCOOH)に代表されるジカルボン酸類やケトカルボン酸類(HOOCCO−R)の水溶液が、「赤錆」とも称される酸化鉄をも溶解する性質を持つことも、薬剤処方の策定において参考になる周知の知見である。
次に、該ジカルボン酸類やケトカルボン酸類は、シュウ酸を除き光照射下でも塩素消費が極少ないことが発明者の研究で判明している。例外的にシュウ酸は、紫外線照射下で次亜塩素酸によって二酸化炭素と水に完全分解する物質と分かっているから、処方の際は注意しなければならない。
Even if such abuse conditions occur, it is possible to suppress the decomposition of the metal oxide, which is deeply related to the oxygen generation decomposition of the chlorine-based disinfectant, by dissolving it into metal ions. The fact that aqueous solutions of dicarboxylic acids such as oxalic acid (HOOCCOOH) and ketocarboxylic acids (HOOCCO-R) also dissolve iron oxide, also known as “red rust”, is useful for the formulation of pharmaceutical formulations. This is a well-known finding.
Next, the inventors have found that the dicarboxylic acids and ketocarboxylic acids consume very little chlorine even under light irradiation except for oxalic acid. In exceptional cases, oxalic acid is known to be completely decomposed into carbon dioxide and water by hypochlorous acid under UV irradiation, so care must be taken when formulating.

本発明の目的は、有効塩素から塩素酸イオンへの転化と塩素ガス発生のリスクを同時に回避して数ヶ月以上も有効塩素濃度の維持を図り、且つ、不特定の病原体が増殖する際に不可欠なグリコーゲン解糖系及びクエン酸回路の物質代謝バランスを壊す物質を有効塩素の他に微量添加して、高度の消毒能を発揮する消毒剤を提供することにある。
複数の有機酸から成るpH緩衝液は、各酸イオンと各酸塩との解離平衡により緩衝効果を発揮するから単独の酸より複雑に作用し有効塩素の不均化反応も併せて抑制する。
The purpose of the present invention is to avoid the risk of conversion from available chlorine to chlorate ions and the risk of chlorine gas generation at the same time to maintain the effective chlorine concentration for several months or more, and is indispensable for the growth of unspecified pathogens Another object of the present invention is to provide a disinfectant that exhibits a high degree of disinfecting ability by adding a trace amount of a substance that breaks the substance metabolism balance of glycogen glycolysis and citric acid cycle in addition to effective chlorine.
A pH buffer solution composed of a plurality of organic acids exhibits a buffering effect due to the dissociation equilibrium between each acid ion and each acid salt, so that it acts more complicatedly than a single acid, and also suppresses disproportionation of effective chlorine.

上述の課題を解決するための手段は以下の通りである。
(1)水に、少なくとも塩基性を有する高濃度の次亜塩素酸ナトリウム水溶液を加え、有効塩素濃度を1mg/L〜10000mg/Lとする塩素水からなる消毒液の製造方法であって、
前記塩素水に、中和およびpH緩衝剤として酢酸、更に消毒補助剤として酢酸に対し0.1重量%〜1重量%相当の総含量になるピルビン酸、シュウ酸、オキサル酢酸、アジピン酸のうち少なくとも1種の有機酸を事前調合した混合液(以下、有機酸混液と略す)を加えて、pHが略5〜6になるようにした工程を有することを特徴とする消毒液の製造方法。
前記塩素剤原液としては、社団法人日本水道協会の規格等に適合した、遊離アルカリ2%以下の次亜塩素酸ナトリウム液を用いる。これにより、遊離アルカリ濃度を制限し、塩素酸イオンの生成をできる限り抑える。また、流通及び保管に要する日数をできる限り短くして希釈し、続いて中和作業を行うことで消毒液の取り扱いを容易にする。
更に、原液の希釈水として、残留塩素濃度規定が法制化されている水道水を中空糸膜でろ過して微細な異物を取り除くか、逆浸透膜でろ過した水を塩素消毒して水道水と同等の遊離残留塩素濃度を検出できるようにした水を用いる。また、水道水等希釈水の移送配管及び貯留容器に次亜塩素酸による酸化処理を実施して、被酸化物の付着及び残留も未然に防止する。
但し、事前調合した有機酸混液の全有機酸濃度を厳密に定めなくても大きな支障はないが、前記工程作業の際に扱い易い5%前後の濃度とする。
(2)前記有機酸混液を事前調合する際、ピルビン酸に代えて乳酸を調合し、塩素水中における次亜塩素酸との化学反応で乳酸をピルビン酸に転化させて消毒補助剤とする(1)に記載の消毒液の製造方法。
(3)前記消毒液のpHが最終的に5.0〜6.0になるように、前記消毒液に有機酸混液又は、アルカリ剤を再度加え、有機酸塩を意図的に加えることをしないことを特徴とする(1)に記載の消毒液の製造方法。
但し、有効塩素濃度の微調整に(1)に記載の高塩基性の塩素剤原液を用いるから、pHの微調整に該塩素剤原液をアルカリ剤として代用して差し支えない。
Means for solving the above-described problems are as follows.
(1) A method for producing a disinfectant solution comprising chlorinated water in which a high-concentration sodium hypochlorite aqueous solution having at least basicity is added to water so that the effective chlorine concentration is 1 mg / L to 10000 mg / L,
Of the pyruvic acid, oxalic acid, oxalic acetic acid, and adipic acid, the total amount corresponding to 0.1% by weight to 1% by weight of acetic acid as a neutralizing and pH buffering agent and further acetic acid as a disinfection aid. A method for producing a disinfectant solution comprising a step of adding a mixed solution prepared by pre-mixing at least one organic acid (hereinafter abbreviated as an organic acid mixed solution) so that the pH becomes approximately 5 to 6.
As the chlorinating agent stock solution, a sodium hypochlorite solution having a free alkali of 2% or less that conforms to the standards of the Japan Water Works Association is used. Thereby, a free alkali concentration is restrict | limited and the production | generation of a chlorate ion is suppressed as much as possible. In addition, the number of days required for distribution and storage is shortened as much as possible to dilute, followed by neutralization to facilitate the handling of the disinfectant solution.
Furthermore, as dilution water for the stock solution, tap water with a stipulated regulation of residual chlorine concentration is filtered through a hollow fiber membrane to remove fine foreign substances, or the water filtered through a reverse osmosis membrane is sterilized and treated with tap water. Use water that allows detection of equivalent free residual chlorine concentration. In addition, an oxidation treatment with hypochlorous acid is performed on a transfer pipe and a storage container for diluting water such as tap water to prevent adhesion and residue of oxides.
However, there is no major problem even if the total organic acid concentration of the premixed organic acid mixture is not strictly determined, but the concentration is about 5% which is easy to handle during the process operation.
(2) When pre-preparing the organic acid mixture, lactic acid is prepared instead of pyruvic acid, and lactic acid is converted to pyruvic acid by a chemical reaction with hypochlorous acid in chlorinated water to obtain a disinfection aid (1 The manufacturing method of the disinfection liquid as described in).
(3) An organic acid mixed solution or an alkali agent is added again to the disinfectant so that the pH of the disinfectant finally becomes 5.0 to 6.0, and an organic acid salt is not intentionally added. (1) The method for producing a disinfectant solution according to (1).
However, since the highly basic chlorine solution stock solution described in (1) is used for fine adjustment of the effective chlorine concentration, the chlorine solution stock solution may be used as an alkaline agent for fine adjustment of pH.

上述の手段(1)によれば、小規模の浴槽から一般家庭までの広範な用途に適した濃度の消毒液を得ることができる。また、何らかの被酸化物が希釈水や容器内部等に残っていたとしても顕著な塩素消費は避けられ、膜ろ過により異物混入も極力抑えられる。
更に、遊離有効塩素である次亜塩素酸が何らかの原因で分解しpH低下する現象が起きても、緩衝剤となる有機酸混液の成分のうち特に酢酸が確実に働いて、pH変動を緩衝・抑制することで分解を抑制する。
加えて、消毒補助剤として該有機酸混液に添加された有機酸は、同時に、分解促進の原因となりうる金属酸化物を完全除去できていなくても、これを溶解して金属イオンとし、触媒効果を失わせることが併せて可能となる。
従って、有効塩素の分解を触媒する金属や添加剤入りのプラスチックを接液材料として用いていない遮光容器に、該消毒液を充填すれば、有効塩素濃度の安定化及び長期間維持を図ることが可能となり、商品化・流通も容易になる。
According to the above-mentioned means (1), a disinfectant having a concentration suitable for a wide range of applications from a small bathtub to a general household can be obtained. In addition, even if some oxide remains in the diluted water or inside the container, remarkable chlorine consumption can be avoided, and contamination by foreign substances can be suppressed as much as possible by membrane filtration.
Furthermore, even if the phenomenon of hypochlorous acid, which is free effective chlorine, decomposes for some reason and lowers the pH, acetic acid works particularly reliably among the components of the organic acid mixture that acts as a buffering agent to buffer pH fluctuations. It suppresses decomposition by suppressing.
In addition, the organic acid added to the mixture of organic acids as a disinfectant aid is dissolved at the same time into a metal ion even if the metal oxide that can cause decomposition is not completely removed. Can be lost at the same time.
Therefore, if the disinfectant is filled in a light-shielding container that does not use a metal that catalyzes the decomposition of effective chlorine or a plastic containing additives as a liquid contact material, the effective chlorine concentration can be stabilized and maintained for a long period of time. It becomes possible, and commercialization and distribution become easy.

上述の手段(2)によれば、乳酸(CHCH(OH)COOH)をピルビン酸の代用とした場合に、次亜塩素酸により、乳酸は容易に酸化される。乳酸は、本願発明には用いない例えば過マンガン酸カリウム等の酸化剤によっても、同様に酸化される。
但し、生成物はピルビン酸(CHCOCOOH)への転化に止まり、二酸化炭素と水にまで分解しないことが発明者の研究で分かっているため、乳酸はピルビン酸の代用物質となる。
また、前記消毒補助剤の総添加量は、中和及びpH緩衝剤の酢酸に比較して極少ないから、有機酸混液を添加した直後の有効塩素濃度も僅かに減少するに止まる。
一方、該消毒液中に完全遮光下で全く塩素消費しない、ケトカルボン酸に属するピルビン酸、オキサル酢酸(HOOCCOCHCOOH)、又はジカルボン酸に属するシュウ酸、オキサル酢酸、アジピン酸(HOOC(CHCOOH)を微量添加することで、特定できない消毒相手の各種病原体が増殖する際に不可欠な、グリコーゲン解糖系及びクエン酸回路の物質代謝バランスを崩すことで不活性化が可能となる。
また、微生物の保有酵素が次亜塩素酸との化学反応で不活性化されるため、代謝回路は働かず、消毒補助剤の成分である有機酸種はことごとく残留したまま、老廃物としての毒性すなわち消毒能を補助的に発揮する。
因みに、ピルビン酸は、上記クエン酸回路の前段或いは肝臓における乳酸からの糖新生の初期段階に位置する物質である。また、オキサル酢酸(生化学ではオキザロ酢酸とも言う)はクエン酸回路の循環終段或いは糖新生では上記ピルビン酸の次に位置する物質である。従って、消毒補助剤としたピルビン酸以下の有機酸は、酵素なしでは代謝されないため微生物等増殖阻止の効果を発揮することになる。
当然、該有機酸混液は単なる中和剤と異なっており、酢酸に対し0.1重量%〜1重量%相当の消毒補助剤総含量であっても、金属酸化物の溶解及び微生物の不活性化に十分な対応量になる。また、複数有機酸の相互作用で有効塩素の不均化反応抑制にもなる。
According to the above means (2), when lactic acid (CH 3 CH (OH) COOH) is substituted for pyruvic acid, lactic acid is easily oxidized by hypochlorous acid. Lactic acid is similarly oxidized by an oxidizing agent such as potassium permanganate not used in the present invention.
However, since the inventor's research has shown that the product is only converted to pyruvic acid (CH 3 COCOOH) and does not decompose to carbon dioxide and water, lactic acid is a substitute for pyruvic acid.
Moreover, since the total amount of the disinfectant auxiliary agent is extremely small compared to the neutralization and acetic acid of the pH buffer agent, the effective chlorine concentration immediately after the addition of the organic acid mixed solution is slightly reduced.
On the other hand, no chlorine is consumed in the disinfecting solution under complete light shielding, but pyruvic acid, oxalic acetic acid (HOOCCOCH 2 COOH) belonging to ketocarboxylic acid, or oxalic acid, oxalic acetic acid, adipic acid (HOOC (CH 2 ) belonging to dicarboxylic acid. By adding a small amount of (4COOH), it becomes possible to inactivate by disrupting the substance metabolism balance of the glycogen glycolysis system and the citric acid cycle, which is indispensable when various pathogens of disinfecting partners that cannot be identified grow.
In addition, since the enzyme possessed by the microorganism is inactivated by a chemical reaction with hypochlorous acid, the metabolic circuit does not work, and all the organic acid species that are components of the disinfectant aid remain and remain toxic as waste products. That is, it demonstrates the disinfection ability as an auxiliary.
Incidentally, pyruvic acid is a substance located in the early stage of gluconeogenesis from lactic acid in the previous stage of the citric acid cycle or in the liver. Oxalacetic acid (also referred to as oxaloacetate in biochemistry) is a substance located next to the above-described pyruvate in the circulation stage of the citric acid cycle or in gluconeogenesis. Therefore, the organic acid below pyruvic acid used as a disinfection aid is not metabolized without an enzyme, and thus exerts an effect of inhibiting the growth of microorganisms and the like.
Naturally, the organic acid mixed solution is different from a mere neutralizing agent. Even if the total content of the disinfecting auxiliary agent is 0.1% by weight to 1% by weight with respect to acetic acid, dissolution of metal oxides and inactivation of microorganisms The amount of response is sufficient for conversion. Moreover, the disproportionation reaction of effective chlorine is suppressed by the interaction of a plurality of organic acids.

上述の手段(3)によれば、前記消毒液の製造規格を定め、有効塩素濃度とpHを規格に適合するよう各微調整を行う際に、塩素剤原液をアルカリ剤としても兼用可能であり、無機酸等を別に用意することなく有機酸混液も酸剤として兼用可能である。   According to the above-mentioned means (3), the manufacturing standard of the disinfecting solution is defined, and when making fine adjustments so that the effective chlorine concentration and pH conform to the standard, the chlorine solution stock solution can also be used as an alkaline agent. In addition, an organic acid mixed solution can also be used as an acid agent without separately preparing an inorganic acid or the like.

本発明の実施の形態にかかる消毒液の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the disinfection liquid concerning embodiment of this invention. 本発明の実施の形態にかかる消毒液の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the disinfection liquid concerning embodiment of this invention. 本発明の実施の形態にかかる消毒液のpH緩衝力を比較した図である。It is the figure which compared the pH buffer power of the disinfection liquid concerning embodiment of this invention.

図1及び図2は、本発明の実施例1にかかる消毒液の製造方法の説明図である。また、図3は、本発明の消毒液と公知の方法で調製した消毒薬とをpH緩衝力に関し比較した図である。以下、これらの図面を参考にしながら、本発明の実施の形態にかかる消毒液の製造方法を説明する。   1 and 2 are explanatory diagrams of a method for producing a disinfectant according to Example 1 of the present invention. Moreover, FIG. 3 is the figure which compared the disinfecting liquid of this invention and the disinfectant prepared by the well-known method regarding pH buffering power. Hereinafter, a method for producing a disinfectant according to an embodiment of the present invention will be described with reference to these drawings.

実施例1の形態にかかる消毒液の製造方法は、希釈水及び容器等の洗浄に用いる水の製造に始まる。有効塩素の浪費を防ぐため、希釈水の原水として水道水を用いるのが最適であるが、地下水等の未処理水を使用せざるを得ない場合は逆浸透膜でろ過した水を塩素消毒して水道水と同等の遊離残留塩素濃度を検出するようにして用いる。
まず、図1に示されるように、水道給水栓1からの水道水を中空糸膜ろ過装置2に導入してろ過し、ろ過後の水を希釈水貯蔵容器3に貯蔵する。無論のこと、希釈水貯蔵容器3は塩素水による事前洗浄をしてある。希釈水製造工程で膜ろ過を行うのは、次亜塩素酸が高い吸着能を持つ多孔質微粒子や藻の芽胞等の酵素保有微生物(生体)等によって分解促進されるからで、1μm以下の固形物も徹底して除去する必要がある。
The manufacturing method of the disinfection liquid concerning the form of Example 1 starts with the manufacture of water used for cleaning of dilution water and containers. In order to prevent waste of effective chlorine, it is best to use tap water as the raw water for dilution. However, if untreated water such as groundwater must be used, the water filtered through the reverse osmosis membrane should be disinfected with chlorine. The free residual chlorine concentration equivalent to tap water is detected.
First, as shown in FIG. 1, tap water from the tap tap 1 is introduced into the hollow fiber membrane filtration device 2 and filtered, and the filtered water is stored in the diluted water storage container 3. Of course, the dilution water storage container 3 has been pre-cleaned with chlorine water. Membrane filtration is performed in the diluting water production process because the decomposition is accelerated by porous microparticles with high adsorption capacity of hypochlorous acid and enzyme-containing microorganisms (biological organisms) such as algae spores. Things need to be thoroughly removed.

次に、pH調製に用いる有機酸混液を事前調合しておく。有機酸の濃度よりも各酸の組成比こそが重要である認識のもと、該有機酸混液の処方につき、実施例1を表1として示す。純粋な有機酸には、常温・常圧で結晶等固体もあるから、複数種の有機酸は水溶液にして調製する。

Figure 0005794954
Next, an organic acid mixed solution used for pH adjustment is prepared in advance. Based on the recognition that the composition ratio of each acid is more important than the concentration of the organic acid, Table 1 shows Example 1 for the formulation of the organic acid mixture. Since pure organic acids include solids such as crystals at room temperature and pressure, a plurality of types of organic acids are prepared as aqueous solutions.
Figure 0005794954

実施例1と消毒補助剤の含量比率を変えたものが表2である。

Figure 0005794954
Table 2 shows the content ratios of Example 1 and disinfection aids changed.
Figure 0005794954

実施例1及び実施例2と消毒補助剤の含量比率を変えたものが表3である。

Figure 0005794954
Table 3 shows the content ratios of Examples 1 and 2 and disinfection aids changed.
Figure 0005794954

発明者は、中和及びpH緩衝剤として酢酸、他に不測の条件下で起きうる分解促進性の藻や錆等の異物不活性化の目的で、次亜塩素酸をほとんど消費しないケトカルボン酸に属するピルビン酸及びオキサル酢酸やジカルボン酸に属するオキサル酢酸、シュウ酸及びアジピン酸のうち少なくとも1種の有機酸を調合することで、本発明の消毒液が酢酸を単独で用いた処方の消毒液より更に優れた消毒効果を発揮することを見出した。
尚、オキサル酢酸以下の有機酸も、完全遮光下では次亜塩素酸を消費しない、ことを発明者は確認済みである。いずれにせよ、該有機酸混液に、ピルビン酸以下の消毒補助剤は添加量の多少を問わず不可欠となる。
The inventor uses acetic acid as a neutralizing and pH buffering agent, and ketocarboxylic acid that consumes little hypochlorous acid for the purpose of inactivating foreign substances such as accelerating algae and rust that can occur under unexpected conditions. By formulating at least one organic acid among pyruvate, oxalacetate and dicarboxylic acid belonging to oxalic acid, oxalic acid and adipic acid, the disinfecting solution of the present invention is more effective than the disinfecting solution of the prescription using acetic acid alone. Furthermore, it discovered that the outstanding disinfection effect was exhibited.
The inventor has confirmed that organic acids below oxalic acetic acid do not consume hypochlorous acid under complete light shielding. In any case, disinfection aids below pyruvic acid are indispensable to the organic acid mixture regardless of the amount of addition.

次に、図2に示されるように、希釈水貯蔵容器3の開閉弁7を開いて、消毒液調製容器6に所定量の希釈水を入れる。次に、次亜塩素酸ナトリウム原液貯蔵容器4の開閉弁8を開いて、次亜塩素酸ナトリウム原液を前記消毒液調製容器6の希釈水に添加し、所定濃度に概略達したら開閉弁8を閉じる。   Next, as shown in FIG. 2, the opening / closing valve 7 of the dilution water storage container 3 is opened, and a predetermined amount of dilution water is put into the disinfectant preparation container 6. Next, the on / off valve 8 of the sodium hypochlorite stock solution storage container 4 is opened, and the sodium hypochlorite stock solution is added to the diluted water in the disinfectant preparation container 6. close up.

次に、かくはん機10を駆動させながら、有機酸混液貯蔵容器5の開閉弁9を開いて、
請求項1の条件を満たす表1処方等の有機酸混液を消毒液調製容器6の希釈液に添加し、pH計11を見ながらpHが略5〜6になったら開閉弁9を閉じる。
Next, while driving the agitator 10, the on-off valve 9 of the organic acid mixed solution storage container 5 is opened,
An organic acid mixture such as Table 1 formulation that satisfies the conditions of claim 1 is added to the diluted solution in the disinfectant preparation container 6, and the on-off valve 9 is closed when the pH becomes approximately 5 to 6 while viewing the pH meter 11.

次に、次亜塩素酸ナトリウム原液貯蔵容器4の開閉弁8を僅かに開いて、有効塩素濃度を所定濃度になるよう最終調製する。併せて、pHが5.0〜6.0になっているか確認し、少しでも外れていたら有機酸混液貯蔵容器5内の有機酸混液又は次亜塩素酸ナトリウム原液貯蔵容器4内の次亜塩素酸ナトリウム原液の少量を添加して最終調製し、製造目的たる消毒液を得る。厳密なpH調製を優先して行うことで、有効塩素濃度が若干高まることがあっても、所期の目的に関わる支障は生じない。
また、次亜塩素酸ナトリウム原液の有効塩素濃度及び残留アルカリ度には、ロット毎に許容された幅がある。加えて、入手するまでの流通段階で有効塩素濃度ばかりか塩素酸イオン濃度までも変化し、弱酸性にするための酸添加量は調製作業を終えるまで確定できない。従って、有機酸混液の添加量を示しても無意味である理由から、以下の説明ではこれに代えpH値を記載した。消毒効能は、一義に、消毒時点の有効塩素濃度とpH値によって決まり、両条件値を示すことで概略の効能を予測することもできる。
Next, the open / close valve 8 of the sodium hypochlorite stock solution storage container 4 is slightly opened to finally prepare the effective chlorine concentration to be a predetermined concentration. At the same time, it is confirmed that the pH is 5.0 to 6.0. If it is slightly off, the organic acid mixed solution in the organic acid mixed solution storage container 5 or the hypochlorite in the sodium hypochlorite stock solution storage container 4 A small amount of sodium acid stock solution is added to make a final preparation to obtain a disinfectant solution for manufacturing purposes. By giving priority to strict pH adjustment, even if the effective chlorine concentration may be slightly increased, there will be no trouble related to the intended purpose.
In addition, the effective chlorine concentration and residual alkalinity of the sodium hypochlorite stock solution have an allowable range for each lot. In addition, not only the effective chlorine concentration but also the chlorate ion concentration changes in the distribution stage until acquisition, and the amount of acid added to make it weakly acidic cannot be determined until the preparation work is completed. Therefore, since it is meaningless to show the addition amount of the organic acid mixed solution, the pH value is described in the following description instead. The disinfection efficacy is uniquely determined by the effective chlorine concentration and pH value at the time of disinfection, and the rough efficacy can be predicted by showing both condition values.

図3は、比較対象としてpH緩衝力を持たない塩酸による中和をした消毒液(1)及び消毒液(2)と本願実施例1の有機酸混液で調製した消毒液(3)に0.01モル/Lの硫酸を滴下し、滴定量とpH変化の関係を測定し比較したものである。
但し、調製保管時の消毒液pHは、類似の市販品実態に鑑み、消毒液(1)及び消毒液(2)は略中性の7前後、実施例1で調製した消毒液(3)は5.4とした。また、実験に供するまで、いずれの消毒液も完全遮光して常温で保存し、条件の一致を図った。
該3種の消毒液比較の為、略中性の消毒液には同じ0.01モル/Lの硫酸をpHが5.4になるまで添加し、滴定開始時のpH値を一致させた。また、滴定の終了はpHが4.0を超えて低下し、3.5に達した時点とした。
次亜塩素酸(HOCl)は、pHが略4以下になると分子状塩素(Cl)の形態に変化を始めるので、塩素ガス発生のリスク回避を前提にpHが4.0になるまでに要した該硫酸滴定量で比較するものとし、表4の結果になった。

Figure 0005794954
表4の硫酸滴定量の倍率単位は〔mL/mL〕である。
表4の結果は、本願実施例1の有機酸混液を用いて調製した消毒液(3)には、無機酸中和品と比較して7〜10倍のpH緩衝力が備わっていることを証明している。 FIG. 3 shows the disinfection solution (3) prepared by mixing the disinfecting solution (1) and disinfecting solution (2) neutralized with hydrochloric acid having no pH buffering power and the organic acid mixture of Example 1 of the present application as a comparison target. A 01 mol / L sulfuric acid was dropped, and the relationship between the titration amount and the pH change was measured and compared.
However, the pH of the disinfecting solution during preparation storage is around 7 in which the disinfecting solution (1) and the disinfecting solution (2) are substantially neutral in view of the actual situation of similar commercial products, and the disinfecting solution (3) prepared in Example 1 is It was set to 5.4. Moreover, until it used for experiment, all disinfectants were completely shaded and preserve | saved at normal temperature, and the conditions were aimed at.
For comparison of the three types of disinfectants, the same 0.01 mol / L sulfuric acid was added to the substantially neutral disinfectant until the pH reached 5.4, and the pH values at the start of titration were matched. Further, the end of the titration was set at the time when the pH dropped below 4.0 and reached 3.5.
Hypochlorous acid (HOCl) starts to change into the form of molecular chlorine (Cl 2 ) when the pH is about 4 or less, so it is necessary for the pH to reach 4.0 on the premise of avoiding the risk of chlorine gas generation. The results were as shown in Table 4 by comparison with the sulfate titration.
Figure 0005794954
The unit of magnification for sulfuric acid titration in Table 4 is [mL / mL].
The results in Table 4 show that the disinfecting solution (3) prepared using the organic acid mixed solution of Example 1 of the present application has a pH buffering power 7 to 10 times that of the inorganic acid neutralized product. Prove that.

上記の実験は、有効塩素濃度すなわち消毒効果を維持するために、消毒液のpH安定化が必須であることを意味するが、pHが3.5になるまで該硫酸液を添加することで、一種の虐待試験にもなっている。発明者の経験に基づく知見では、溶媒が水でなく、無水状態の酢酸であっても固形の高度さらし粉を添加しただけで、また、塩酸に粉末の二酸化マンガンを添加しただけで、双方共に塩素ガスを発生する。有効塩素の減少には微妙な原因が付き纏うから、単に中和しただけでは消毒剤の安全性は全く保証されない。
そこで、先ず上記虐待試験後の有効塩素濃度減少率を計算してみた、次に、該減少の一因である消毒液中の塩素酸イオンと遊離有効塩素とを、前者は上記測定終了後濃度、後者は初期濃度で計算式に代入し転化率をみた。該減少率及び転化率は、虐待条件下の消毒液の効能を予知させるに十分な結果となった。
表5は、実験終了時の有効塩素濃度〔mg/L〕減少量を初期濃度で除した減少率である。塩素剤の殺菌力は、pHを一定にすれば、有効塩素濃度と接触時間との乗数(CT値)で概略決まってしまうから、減少率をみることは失効速度をみることになる。

Figure 0005794954
表5の結果は、本願実施例1の有機酸混液を用いて調製した消毒液(3)が、虐待条件を課しても有効塩素濃度の減少を不都合な程に生じていないことを証明している。一方、塩酸で中和した消毒液は双方ともに希硫酸の添加により急激にpH低下し、分子状の塩素が気相に拡散する等により、13〜18%もの有効塩素濃度の減少をみた。 The above experiment means that in order to maintain the effective chlorine concentration, that is, the disinfecting effect, it is essential to stabilize the pH of the disinfecting solution, but by adding the sulfuric acid solution until the pH becomes 3.5, It is also a kind of abuse test. Based on the inventor's experience, even if the solvent is not water and acetic acid is in an anhydrous state, both solid chlorine and powdered manganese dioxide are added to hydrochloric acid. Generate gas. Since there is a subtle cause for the reduction of available chlorine, simply neutralizing does not guarantee the safety of the disinfectant.
Therefore, first, the reduction rate of the effective chlorine concentration after the abuse test was calculated.Next, the chlorate ion and free effective chlorine in the disinfectant solution that contributed to the decrease were calculated. In the latter case, the conversion was calculated by substituting the initial concentration into the calculation formula. The reduction rate and conversion rate were sufficient to predict the efficacy of the disinfectant solution under abuse conditions.
Table 5 shows the reduction rate obtained by dividing the effective chlorine concentration [mg / L] reduction amount at the end of the experiment by the initial concentration. The sterilizing power of the chlorine agent is roughly determined by the multiplier (CT value) between the effective chlorine concentration and the contact time if the pH is kept constant.
Figure 0005794954
The results in Table 5 prove that the disinfectant solution (3) prepared using the organic acid mixture of Example 1 of the present application did not cause an inconvenient decrease in the effective chlorine concentration even when the abuse condition was imposed. ing. On the other hand, both of the disinfectants neutralized with hydrochloric acid rapidly decreased in pH by the addition of dilute sulfuric acid, and the effective chlorine concentration decreased by 13 to 18% due to the diffusion of molecular chlorine into the gas phase.

表6は、実験終了時の消毒液中の塩素酸イオン濃度〔mg/L〕を有効塩素の初期濃度で除した塩素酸イオンへの転化率〔重量比〕である。尚、当然のことながら、測定された塩素酸イオン濃度には消毒液保管中に既に生成していたものも含まれる。

Figure 0005794954
本願実施例1の有機酸混液を用いて調製した消毒液(3)は、測定前の生成濃度を考慮し計算の補正をしなくても、僅か3%が塩素酸イオンに転化したにすぎない。画期的な安定度といえる。表6の結果は、塩酸中和の消毒液(1)及び塩酸中和の消毒液(2)に比し、該(3)が塩素酸イオンへの転化を十分抑えていることを明確に証明する。
一方、塩酸で中和した消毒液は、調製時のpHが略中性の7前後であったことで、有効塩素の15〜20%もが保管中に塩素酸イオンに転化済みであったことを示唆する。 Table 6 shows the conversion ratio (weight ratio) to chlorate ions obtained by dividing the chlorate ion concentration [mg / L] in the disinfectant solution at the end of the experiment by the initial concentration of effective chlorine. As a matter of course, the measured chlorate ion concentration includes those already generated during disinfectant storage.
Figure 0005794954
In the disinfectant solution (3) prepared using the organic acid mixture of Example 1 of the present application, only 3% was converted to chlorate ions even without correction of calculation in consideration of the generated concentration before measurement. . This is an epoch-making stability. The results in Table 6 clearly demonstrate that (3) sufficiently suppresses the conversion to chlorate ions compared to the hydrochloric acid neutralized disinfectant (1) and the hydrochloric acid neutralized disinfectant (2). To do.
On the other hand, the disinfectant neutralized with hydrochloric acid had a pH of about 7 at the time of preparation, and 15-20% of the effective chlorine had been converted to chlorate ions during storage. To suggest.

上記の実験は、有効塩素濃度すなわち消毒効果を維持するために、消毒液のpH値安定化が不可欠であることを示すに他ならない。また、長期保存実験でなければ、有機酸を混液にした場合の単一成分の場合との差異は明確に出てこない。そこで、酸滴定の実験とは別に、本願実施例の有機酸混液を用いて調製した消毒液を長期間容器内保存した場合の効能評価実験も行った。尚、効能評価は、有効塩素濃度及びpH値の推移をみることで足りる。また、保存条件として抑えておくべき、塩素酸イオン生成に関係する遮光、薬液量及び液温の条件を付して、その結果を表7に示す。ロット違いでpH値は都度多少異なる。

Figure 0005794954
表7は本発明の消毒液の長期間(1年超)安定性をみたものである。
保存条件:ダンボール内ポリエチレン製容器保存、容器20L、液温28〜32℃
尚、表7上段記載数値で56日経過時のpH5.2は測定誤差範囲内にある。
比較として、中和及びpH緩衝として5%の酢酸のみを使用した場合を示す。
Figure 0005794954
また、本比較例とは別ロット調製品で、稀ではあるが、3ヶ月〜1年の室温保存で有効塩素の濃度が極度に低下し失効するものがあった。原因を追及したところ、一例では緑藻の一種が観察され、また錆とみられる微小異物が含まれていたためと判明した。
中和及びpH緩衝に酢酸を単独で用いても3〜4ヶ月の保存期間であれば有効塩素濃度減少は約2%で、商品流通に支障はないとみることもできる。しかし、使用前に失効が確認された返品率を無視できない事態になれば、長期安定性を保証するため別種の有機酸を添加・混合することが不可欠となる。
表8の結果は、実施例1乃至実施例3の有機酸混液を用いて調製した消毒液が1年を経過しても、有効塩素濃度及びpH値に変化は殆どなく安定であることを証明する。
また、調製に用いた原液の同様実験では、pH値は12前後で安定しているものの、8ヶ月後の有効塩素濃度は初期濃度の約30%まで低下した事例が殆どであった。
5%の酢酸のみを使用した比較例と対照すれば、酢酸がpH緩衝の主役であることに相違はないが、酢酸に塩素を消費しないケトカルボン酸又はジカルボン酸を混合した方が有効塩素並びにpHの安定化が増す。実施例1でピルビン酸等の酢酸に対する総混合率は0.5%強、実施例2で同0.9%強、実施例3で同0.1%強にすぎないが、稀に混入し早期分解の原因となる藻の増殖を抑え、また、錆を溶解して吸着による触媒作用を阻止するには十分な含量である。そこで、混合し調製する該有機酸の酢酸に対する該有機酸総含量0.1重量%を有意の下限とし、実施例2を根拠に同1%を上限とした。
但し、酢酸に対する該有機酸総含量が1重量%を超えて処方された場合でも、調整後の消毒液効能や化学的特性に大きな差異が生じるとは考えられない。しかし、原液の残留アルカリを中和しpH緩衝力の事前算定が容易な酢酸の特性に大きく影響する高い総含量では、調整後の消毒液につき成分表示等品質保証の再検討を余儀なくされる。
表5及び表6の結果も併せ考察すると、pHを5.0〜6.0に厳格な調製を行い、pHの変動を抑え、且つ有効塩素消失の原因を徹底的に除かないと、有効塩素濃度が短時間のうちに初期濃度の10%を超えて低下した不良品がでることが明白になった。 The above-mentioned experiment is nothing but to show that stabilization of the pH value of the disinfecting solution is indispensable in order to maintain the effective chlorine concentration, that is, the disinfecting effect. Moreover, unless it is a long-term storage experiment, the difference from the case of a single component when an organic acid is mixed is not clearly shown. Therefore, apart from the acid titration experiment, an efficacy evaluation experiment was also conducted in the case where the disinfectant prepared using the organic acid mixed solution of the present example was stored in a container for a long period of time. In addition, efficacy evaluation is enough to look at transition of effective chlorine concentration and pH value. Table 7 shows the results of light shielding, chemical amount and liquid temperature conditions related to chlorate ion generation, which should be kept as storage conditions. The pH value varies slightly from lot to lot.
Figure 0005794954
Table 7 shows the long-term (over 1 year) stability of the disinfecting solution of the present invention.
Storage conditions: Polyethylene container storage in cardboard, container 20L, liquid temperature 28-32 ° C
In addition, as shown in the upper part of Table 7, pH 5.2 after 56 days is within the measurement error range.
As a comparison, the case where only 5% acetic acid is used as neutralization and pH buffer is shown.
Figure 0005794954
Moreover, although it was a different lot preparation from this comparative example, there was a rare product that expired due to extremely low concentration of available chlorine when stored at room temperature for 3 months to 1 year. When the cause was investigated, in one example, a kind of green algae was observed, and it was found that it contained minute foreign matter that appeared to be rust.
Even if acetic acid is used alone for neutralization and pH buffering, if the storage period is 3 to 4 months, the decrease in effective chlorine concentration is about 2%, and it can be considered that there is no problem in the distribution of goods. However, if it becomes impossible to ignore the return rate that has been confirmed to expire before use, it is essential to add and mix different organic acids to ensure long-term stability.
The results in Table 8 prove that the disinfectant prepared using the organic acid mixture of Examples 1 to 3 is stable with little change in effective chlorine concentration and pH value even after one year. To do.
In the same experiment of the stock solution used for the preparation, although the pH value was stable at around 12, the effective chlorine concentration after 8 months was almost lowered to about 30% of the initial concentration.
In contrast to the comparative example using only 5% acetic acid, there is no difference that acetic acid is the main role of pH buffering, but acetic acid and dicarboxylic acid that do not consume chlorine in acetic acid are more effective chlorine and pH. Increased stabilization. In Example 1, the total mixing ratio of acetic acid such as pyruvic acid was just over 0.5%, in Example 2 was just over 0.9%, and in Example 3 was just over 0.1%, but rarely mixed. The content is sufficient to suppress the growth of algae that cause premature degradation and to dissolve rust and prevent catalytic action by adsorption. Therefore, the total organic acid content of 0.1% by weight of the organic acid mixed and prepared with respect to acetic acid was made a significant lower limit, and the upper limit was made 1% based on Example 2.
However, even when the total organic acid content with respect to acetic acid is prescribed to exceed 1% by weight, it is not considered that a great difference is produced in the disinfectant solution efficacy and chemical characteristics after adjustment. However, with a high total content that neutralizes residual alkali in the stock solution and greatly affects the characteristics of acetic acid, which allows easy pre-calculation of pH buffering power, it is unavoidable to reexamine quality assurance such as component display for the adjusted disinfectant solution.
Considering the results of Table 5 and Table 6 together, if the pH is strictly adjusted to 5.0 to 6.0, the fluctuation of the pH is suppressed, and the cause of the loss of effective chlorine must be thoroughly removed, the effective chlorine It became clear that there was a defective product whose concentration fell below 10% of the initial concentration in a short time.

本発明の消毒液を使った微生物不活性化の効果試験結果を、先ずウイルスについて、表9に示す。尚、ノロウイルスの検査方法はRT−PCR法により、新型インフルエンザウイルス(H1N1)は試験細胞を用いてウイルス感染価を測定する方法によった。
専門検査機関に試験依頼し、適正な方法により報告された結果のみを以下に示す。

Figure 0005794954
検体は、実施例1処方の有効塩素濃度が80mg/L、pHが5.2の調製消毒液。
尚、H1N1ウイルスの不活性化試験では、該消毒液添加15秒後から「不検出」の結果が出た。従って、不活性化力は極めて高く、前記CT値を約20と算定できた。 Table 9 shows the test results of the inactivation effect of microorganisms using the disinfecting solution of the present invention. In addition, the inspection method of Norovirus was based on the RT-PCR method, and the new influenza virus (H1N1) was based on the method of measuring a virus infectivity value using a test cell.
Only the results that were submitted to the specialized inspection organization and reported in an appropriate manner are shown below.
Figure 0005794954
The specimen is a prepared disinfectant solution having an effective chlorine concentration of 80 mg / L and a pH of 5.2 according to the formulation of Example 1.
In the H1N1 virus inactivation test, a “not detected” result was obtained 15 seconds after the addition of the disinfectant solution. Therefore, the deactivation power was extremely high, and the CT value was calculated to be about 20.

更に、主に食中毒の原因となる病原菌・カビについて、本発明の消毒液を使った場合の効果試験結果を表10に示す。
専門検査機関に試験依頼し、適正な方法により報告された結果のみを以下に示す。

Figure 0005794954
検体は、実施例1処方の有効塩素濃度が80mg/L、pHが5.2の調製消毒液。
検査機関が選択した試験方法により、試料1mL当たりの生菌数〔cfu/mL〕を測定した。菌種毎に該消毒液との接触時間が異なるので、後尾に時間を記載してある。
但し、この効果試験は、各菌種を培養後、遠心分離、検体接種後に放置、培地に回収し4段階希釈して生菌数測定の各工程を経ており、消毒液の実用実態と同じではない。
表9及び表10の結果は、本発明の消毒液がウイルス、細菌及びカビ等の病原体種を問わず不活性化の著効を示し、所望の効果が得られることを証明している。
また、実施例2及び実施例3の処方による有機酸混液を用いて調製した本発明消毒液の効果試験でも同じ結果を得ており、有効塩素濃度を維持すれば効果にも差異はない。 Furthermore, Table 10 shows the results of an effect test when the disinfecting solution of the present invention is used for pathogenic bacteria and molds mainly causing food poisoning.
Only the results that were submitted to the specialized inspection organization and reported in an appropriate manner are shown below.
Figure 0005794954
The specimen is a prepared disinfectant solution having an effective chlorine concentration of 80 mg / L and a pH of 5.2 according to the formulation of Example 1.
The number of viable bacteria per mL of sample [cfu / mL] was measured by the test method selected by the inspection organization. Since the contact time with the disinfectant varies depending on the bacterial species, the time is written at the tail.
However, in this effect test, each bacterial species is cultured, centrifuged, left after inoculation of the specimen, collected in a medium, diluted in four stages, and subjected to each step of measuring the number of viable bacteria. Absent.
The results in Table 9 and Table 10 demonstrate that the disinfecting solution of the present invention exhibits a remarkable effect of inactivation regardless of pathogen species such as viruses, bacteria, and molds, and a desired effect can be obtained.
Moreover, the same result was obtained in the effect test of the disinfectant of the present invention prepared using the organic acid mixed solution according to the formulation of Example 2 and Example 3, and there is no difference in the effect as long as the effective chlorine concentration is maintained.

因って、消毒液の実用実態に近い条件でも試験し、その結果が表11及び表12である。

Figure 0005794954
表11の試験は、本発明による実施例1乃至実施例3処方の有機酸混液を用いて調製した、有効酸素濃度が80mg/L、pHが5.3の消毒液を使用し、手動式噴霧器で対象物に噴霧して1分間接触させる方法で行った。
Figure 0005794954
野菜等の食品を消毒する場合、学校給食施設等では前記の次亜塩素酸ナトリウム液市販品(表中では「次亜ソー」と略)を水道水等で希釈し、該塩素水に野菜等を浸漬するのが一般的である。従って、該次亜ソーと実施例1の本発明消毒液の効果を比較すれば、次亜塩素酸の効能が単に濃度だけで決まるものではないことが明白である。
また、本発明の消毒液が著効を示す一事例として、パセリについては浸漬だけでなく全体に噴霧した場合の結果も表12に載せた。因みに、パセリやホウレン草等の青物野菜は特に根の部分に、本発明の消毒補助剤処方の一つに挙げるシュウ酸を多く含んでいる。消毒補助剤処方に挙げる一連の有機酸は、動植物の代謝で産生される老廃物であるから、微量の含有を殊更警戒する必要はない。
ヒト皮膚一次刺激性試験のパッチテストでも被験者全員「反応なし」、衣服への影響試験でも特別視される悪影響は「なし」となったから、安全面での問題もない。
ここまでの効果試験の結果を総括すれば、本発明の消毒液は、細菌からウイルスに至るまで、その大小を問わずほぼ完ぺきに不活性化できることを証明している。 Therefore, tests were performed under conditions close to the practical use of the disinfectant, and the results are shown in Tables 11 and 12.
Figure 0005794954
The test of Table 11 uses a disinfectant having an effective oxygen concentration of 80 mg / L and a pH of 5.3, prepared using the organic acid mixture of the formulations of Examples 1 to 3 according to the present invention. The method was carried out by spraying the object and contacting it for 1 minute.
Figure 0005794954
When disinfecting foods such as vegetables, dilute the sodium hypochlorite liquid commercial products (abbreviated as “hyposo” in the table) with school water at school lunch facilities, etc. Is generally immersed. Therefore, comparing the effects of the hyposodium and the disinfectant of the present invention of Example 1 , it is clear that the efficacy of hypochlorous acid is not determined solely by the concentration.
Moreover, as an example in which the disinfecting solution of the present invention is highly effective, the results of spraying parsley as well as dipping the whole are listed in Table 12. Incidentally, green vegetables such as parsley and spinach contain a large amount of oxalic acid listed as one of the disinfectant adjuvant formulations of the present invention, particularly in the root portion. The series of organic acids listed in the disinfection aid formulation is a waste product produced by the metabolism of animals and plants, so there is no need to be particularly wary of the inclusion of trace amounts.
In the patch test of the human skin primary irritation test, all subjects were “no response”, and the adverse effect that was regarded as special in the influence test on clothes was “none”, so there was no safety problem.
Summarizing the results of the effect tests so far, it has been proved that the disinfecting solution of the present invention can be almost completely inactivated from bacteria to viruses regardless of its size.

容量が1m〜20mの小規模浴槽複数の消毒に用いる、有効塩素濃度が約1%の次亜塩素酸ナトリウム液において、本発明実施例4について以下説明する。
水に、日本水道協会規格に適合の12%次亜塩素酸ナトリウム液10Lを加えて希釈し、液量を100L弱とした。次に、原液中の残留アルカリを相殺中和する為に塩酸を加え、pHを略7とした。更に実施例1に記載の酸度4.3%・有機酸混液4Lを加えpHを5.8にし、消毒液の全量が100Lになるよう調製した。
該消毒液を薬液タンクに貯蔵し、浴槽水の遊離残留塩素濃度が0.4〜1.0mg/Lに維持されるよう定量ポンプを駆動して従来通りの水質管理を行ったところ、以前の塩素剤注入で生じていた「浴槽水pHの8.0超過」と「大腸菌群の1種であるエンテロバクター・クロアカ(Enterobacter cloacae)の散発的検出」の問題は起きなくなり、懸案事項は解決した。すなわち、浴槽水pHを常時7〜8に維持できるようになり、遊離塩素の殺菌力低下を抑えることで、大腸菌検査でも毎回「陰性」の結果と好転した。
また、実施例4のような用途では、有機酸混液の添加操作を使用の都度行うから、一週間以上の長期保存はしない。従って、有効塩素濃度が1%(10,000mg/L)の消毒液でも実施は優に可能である。
Capacity used in small tub plurality of disinfection of 1 m 3 to 20 m 3, the effective chlorine concentration is at about 1% sodium hypochlorite solution, it is described below the present invention Example 4.
The water was diluted by adding 10 L of a 12% sodium hypochlorite solution conforming to the standards of the Japan Water Works Association, and the amount of the solution was made less than 100 L. Next, hydrochloric acid was added to neutralize residual alkali in the stock solution, and the pH was adjusted to about 7. Further, 4 L of an acidity 4.3% / organic acid mixture described in Example 1 was added to adjust the pH to 5.8, and the total amount of the disinfectant was adjusted to 100 L.
The disinfectant solution was stored in a chemical tank, and the conventional water quality control was performed by driving the metering pump so that the free residual chlorine concentration in the bath water was maintained at 0.4 to 1.0 mg / L. The problems of “exceeding the bath water pH of 8.0” and “sporadic detection of Enterobacter cloacae, one of the coliforms” that occurred with the chlorinating agent disappeared, and the issue was resolved . That is, the bath water pH can be maintained at 7 to 8 at all times, and by suppressing the decrease in the sterilizing power of free chlorine, the results of “negative” were improved every time in the E. coli test.
In addition, in the application as in Example 4, since the addition operation of the organic acid mixed solution is performed every time it is used, it is not stored for a long period of one week or more. Accordingly, the disinfection solution having an effective chlorine concentration of 1% (10,000 mg / L) can be easily implemented.

本発明は、次亜塩素酸を主たる消毒成分とする塩素水に、弱酸性及びpH緩衝性を持たせる為に複数種の有機酸を処方した混合液を添加することで、該消毒用塩素水の長期保存を可能にする。また、該消毒液は、流通、保存並びに使用の過程で誤って酸性物質との混合が起きた場合でもpHが4以下にならないだけの強いpH緩衝力を持ち、安全面の品質保証も可能となる。
従って、本発明による消毒液は、病原微生物・ウイルスによる感染症予防の為に、野菜・果物等の食材や食器・調理器具の消毒の為に、手を触れる扉・窓・床・台所等の建築備品、家具、家庭電化製品や衣服の表面はもとより、小規模浴槽等の消毒にまで広く利用できる。また、用途に応じて本発明による消毒液を適宜希釈して用いることも可能である。
The present invention relates to chlorine water for disinfection by adding a mixed solution formulated with a plurality of organic acids to give weak acidity and pH buffering property to chlorine water containing hypochlorous acid as a main disinfecting component. Enables long-term storage. In addition, the disinfectant has a strong pH buffering power that does not become pH 4 or less even when mixed with an acidic substance by mistake in the process of distribution, storage, and use, and the quality of safety can be guaranteed. Become.
Therefore, the disinfectant according to the present invention is used for doors, windows, floors, kitchens, etc. that are touched to disinfect foods such as vegetables and fruits and dishes and cooking utensils in order to prevent infection by pathogenic microorganisms and viruses. It can be widely used not only for the surface of building fixtures, furniture, home appliances and clothes, but also for disinfection of small bathtubs. Moreover, it is also possible to dilute and use the disinfecting solution according to the present invention as appropriate according to the application.

1 水道給水栓
2 中空糸膜ろ過装置
3 希釈水貯蔵容器
4 次亜塩素酸ナトリウム原液貯蔵容器
5 有機酸混液貯蔵容器
6 消毒液調製容器
7〜9 各容器に接続した開閉弁
10 かくはん機
11 pH計
DESCRIPTION OF SYMBOLS 1 Water supply tap 2 Hollow fiber membrane filtration apparatus 3 Diluted water storage container 4 Sodium hypochlorite stock solution storage container 5 Organic acid mixed solution storage container 6 Disinfectant preparation container 7-9 Open / close valve connected to each container 10 Stirrer 11 pH Total

Claims (3)

水に、少なくとも塩基性を有する高濃度の次亜塩素酸ナトリウム水溶液を加え、有効塩素濃度を1mg/L〜10,000mg/Lとする塩素水からなる消毒液の製造方法であって、
前記塩素水に、中和及びpH緩衝剤として酢酸を、更に消毒補助剤として酢酸に対し0.1重量%〜1重量%相当の総含量になるピルビン酸、シュウ酸、オキサル酢酸及びアジピン酸を事前調合した混合液を加えて、pHが略5〜6になるようにした工程を有することを特徴とする消毒液の製造方法。
A method for producing a disinfectant solution comprising chlorinated water in which an aqueous solution of at least basic sodium hypochlorite having at least basicity is added to water so that the effective chlorine concentration is 1 mg / L to 10,000 mg / L,
Acetic acid as a neutralizing and pH buffering agent, and pyruvic acid, oxalic acid, oxalic acetic acid and adipic acid having a total content corresponding to 0.1% by weight to 1% by weight with respect to acetic acid as a disinfecting aid. A method for producing a disinfecting solution, comprising a step of adding a preliminarily prepared mixed solution to adjust the pH to about 5 to 6.
前記有機酸の混合液をつくる際に、前記塩素水中における次亜塩素酸との化学反応により前記消毒補助剤のピルビン酸を生成させる目的で、ピルビン酸に代えて乳酸を配合する請求項1記載の消毒液の製造方法。   The lactic acid is blended in place of pyruvic acid for the purpose of generating the disinfectant pyruvic acid by a chemical reaction with hypochlorous acid in the chlorinated water when preparing the organic acid mixture. Of manufacturing disinfectant solution. 前記消毒液のpHが最終的に5.0〜6.0になるように、前記消毒液に有機酸の混合液又は少なくとも塩基性を有する高濃度の次亜塩素酸ナトリウム水溶液を再度加え、有機酸塩を意図的に加えることをしないことを特徴とする請求項1記載の消毒液の製造方法。 A mixture of organic acids or a high-concentration sodium hypochlorite aqueous solution having at least basicity is added again to the disinfectant so that the pH of the disinfectant finally becomes 5.0 to 6.0. The method for producing a disinfectant solution according to claim 1, wherein an acid salt is not intentionally added.
JP2012149500A 2012-07-03 2012-07-03 Disinfectant manufacturing method Active JP5794954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149500A JP5794954B2 (en) 2012-07-03 2012-07-03 Disinfectant manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149500A JP5794954B2 (en) 2012-07-03 2012-07-03 Disinfectant manufacturing method

Publications (3)

Publication Number Publication Date
JP2014009227A JP2014009227A (en) 2014-01-20
JP2014009227A5 JP2014009227A5 (en) 2015-01-29
JP5794954B2 true JP5794954B2 (en) 2015-10-14

Family

ID=50106225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149500A Active JP5794954B2 (en) 2012-07-03 2012-07-03 Disinfectant manufacturing method

Country Status (1)

Country Link
JP (1) JP5794954B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568922A (en) * 2017-11-30 2019-06-05 Wcs Services Ltd Improvements relating to hypochlorous acid
JP7323147B2 (en) * 2021-07-06 2023-08-08 株式会社サンホープ Microbial treatment liquid and method for producing microbial treatment liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153095A (en) * 2010-01-27 2011-08-11 Pureson Corp Disinfection liquid and method for producing the same

Also Published As

Publication number Publication date
JP2014009227A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP3004958B2 (en) Disinfectant preparation
CN104206413B (en) A kind of thimerosal for haemodialysis control unit cleaning and sterilizing and preparation method thereof
JPH1081610A (en) Production of sterilizing antispetic solution and sterilizing disinfectant
JP2022121439A (en) Method for producing chlorous acid water using material obtained by salt electrolysis as raw material
JP2022009591A (en) Producing method of chlorous acid water by adsorption of chlorine dioxide
IE904549A1 (en) Stabilising solution for stabilising hydrogen peroxide,¹stabilised biocidal compositions and methods for using same
CN105836860B (en) A kind of stable type dioxygen aqueous disinfectant and its application in drinking water disinfection
CN103503922A (en) Disinfection powder for hospital wastewater disinfection
KR20190115372A (en) Method and apparatus for producing of pure chlorite solution
JP5794954B2 (en) Disinfectant manufacturing method
JP3554749B2 (en) Disinfectant
JP2007031374A (en) Method for producing germicidal disinfectant solution
KR102208456B1 (en) Antimicrobial composition for washing fruit and vegetable
CN106689194A (en) Sustained-release disinfectant fluid
JP2011153095A (en) Disinfection liquid and method for producing the same
JP2014148526A (en) Method for producing disinfectant antiseptic solution
KR102353182B1 (en) Percitric acid aqueous solution and method for producing the same
JP2003052796A (en) Disinfection method
WO2023063003A1 (en) Disinfection composition and disinfection method
KR101140147B1 (en) Compositoin for disinfection and deodorization and disinfectant for feed of livestock including the same
CN113180056B (en) Hypochlorous acid disinfectant
JP2023058200A (en) Disinfection composition and disinfection method
JP2023058199A (en) Disinfection composition, method for producing disinfection composition and disinfection method
JP2004010564A (en) Germicidal composition
JP6240632B2 (en) Manufacturing method of disinfectant

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R150 Certificate of patent or registration of utility model

Ref document number: 5794954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250