JP5794906B2 - Copper alloy material with excellent machinability - Google Patents

Copper alloy material with excellent machinability Download PDF

Info

Publication number
JP5794906B2
JP5794906B2 JP2011279878A JP2011279878A JP5794906B2 JP 5794906 B2 JP5794906 B2 JP 5794906B2 JP 2011279878 A JP2011279878 A JP 2011279878A JP 2011279878 A JP2011279878 A JP 2011279878A JP 5794906 B2 JP5794906 B2 JP 5794906B2
Authority
JP
Japan
Prior art keywords
phase
minutes
hot working
hot
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011279878A
Other languages
Japanese (ja)
Other versions
JP2013129876A (en
Inventor
清慈 廣瀬
清慈 廣瀬
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011279878A priority Critical patent/JP5794906B2/en
Publication of JP2013129876A publication Critical patent/JP2013129876A/en
Application granted granted Critical
Publication of JP5794906B2 publication Critical patent/JP5794906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Extrusion Of Metal (AREA)

Description

この発明は、電子機器、精密機械等に使用される金属部品、特に切削加工により製造される銅合金部品に適する銅合金材およびその製造方法に関するものである。   The present invention relates to a copper alloy material suitable for metal parts used in electronic equipment, precision machines, etc., particularly copper alloy parts produced by cutting, and a method for producing the same.

金属部品を製造する方法として旋削、穿孔などの切削加工がある。切削加工は、特に複雑な形状を持つ部品や高い寸法精度を要する部品の製造には有効な加工方法である。切削加工を行う場合、被削性がしばし問題となる。被削性には切削屑処理、工具寿命、切削抵抗、切削面粗さなどの項目があり、これらが向上するように材料に改良が施されている。   Cutting methods such as turning and drilling are methods for producing metal parts. Cutting is an effective processing method particularly for manufacturing parts having complicated shapes and parts requiring high dimensional accuracy. When cutting, machinability often becomes a problem. The machinability includes items such as cutting waste treatment, tool life, cutting resistance, and cutting surface roughness, and the material has been improved to improve them.

銅合金は、強度が高い、導電性・熱伝導性に優れる、耐食性に優れる、色調に優れるなどの理由から多くの金属部品に使用されている。切削による加工も多く実施されており、例えば水道の蛇口、バルブ、歯車、装飾品などの用途があり、黄銅(Cu−Zn系)、青銅(Cu−Sn系)、アルミ青銅(Cu−Al系)、洋白(Cu−Zn−Ni系)に被削性を向上させるために鉛を添加した合金が使用されている(特許文献1〜4)。   Copper alloys are used in many metal parts for reasons such as high strength, excellent electrical conductivity and thermal conductivity, excellent corrosion resistance, and excellent color tone. There are also many cutting processes, such as taps, valves, gears, ornaments, etc., brass (Cu-Zn), bronze (Cu-Sn), aluminum bronze (Cu-Al). ), Alloys in which lead is added to white (Cu—Zn—Ni system) to improve machinability are used (Patent Documents 1 to 4).

このように銅合金材の被削性を向上させるために、一般的には鉛が添加されている。これは、鉛が銅合金に固溶しないため材料内に微細に分散し、切削加工時に切削屑がその部分で分断されやすくなることによる。しかし、鉛は人体や環境に影響を及ぼすとされていることから使用が制限されつつあり、鉛を含有せずに被削性を向上させた材料の要求が高まっている。鉛を含有する銅合金の代替材料として、黄銅や青銅にビスマスを添加した銅合金(特許文献5,6)が知られている。
また黄銅では、亜鉛量を向上させることで、銅−亜鉛系化合物であるβ相γ相を形成させ、あるいはケイ素を添加して銅−亜鉛−ケイ素系化合物であるκ相を形成させ、これらの化合物を切削屑分断の起点として作用させることで被削性を向上させている(特許文献7)。亜鉛量を向上させ形成させる銅−亜鉛系化合物のうち、特にγ相を形成させる技術としては、Snを添加する事により、α、β、γの3相にする技術等が知られている(特許文献8〜11)。
In order to improve the machinability of the copper alloy material as described above, lead is generally added. This is because lead does not dissolve in the copper alloy, so it is finely dispersed in the material, and the cutting waste is easily divided at that portion during cutting. However, the use of lead is being restricted because it is believed to affect the human body and the environment, and there is an increasing demand for materials that have improved machinability without containing lead. As an alternative material for a copper alloy containing lead, a copper alloy obtained by adding bismuth to brass or bronze (Patent Documents 5 and 6) is known.
In brass, by increasing the amount of zinc, a β-phase γ phase that is a copper-zinc compound is formed, or silicon is added to form a κ phase that is a copper-zinc-silicon compound, and these Machinability is improved by causing a compound to act as a starting point for cutting waste cutting (Patent Document 7). Among the copper-zinc-based compounds that are formed by improving the amount of zinc, as a technique for forming a γ phase in particular, a technique for forming three phases of α, β, and γ by adding Sn is known ( Patent Documents 8 to 11).

特開昭60−056036号公報JP 60-056036 A 特開昭58−113336号公報JP 58-113336 A 特開昭51−101716号公報JP 51-101716 A 特開平01−177327号公報Japanese Patent Laid-Open No. 01-177327 特開2001−059123号公報JP 2001-059123 A 特開2000−336442号公報JP 2000-336442 A 特開2004−183056号公報JP 2004-183056 A 特開2000−319737号公報JP 2000-319737 A 特開平11−131159号公報JP-A-11-131159 特開2002−12928公報JP 2002-12928 A 特許第3303301号公報Japanese Patent No. 3303301 特開2001−11551公報JP 2001-11551 A

しかし、各特許文献に記載された技術は、以下の問題点を有する。
特許文献1〜4の各技術では、前述のとおり被削性を向上させるための添加元素として鉛を用いており、環境への負荷が懸念される。また、特許文献5および6の技術では、ビスマスを添加すると被削性は改善されるが、加工中に割れやすくなり、特に熱間加工が困難となる。すなわち、熱間加工性の改善を図ることが改めて必要となる。
特許文献7では、銅−亜鉛−ケイ素系化合物のκ相は被削性を向上させるが、熱間加工性、冷間加工性を劣化させ、板形状等への加工は困難である。
特許文献8〜11では、銅-亜鉛-錫系の合金において、β相およびγ相の分散により被削性を向上させるが、α相との共存により冷間加工性を担保するため、被削性を犠牲にしており、更なる被削性の向上の要求がある。
However, the technique described in each patent document has the following problems.
In each technique of Patent Literatures 1 to 4, as described above, lead is used as an additive element for improving machinability, and there is a concern about the burden on the environment. In addition, in the techniques of Patent Documents 5 and 6, machinability is improved when bismuth is added, but cracking is likely to occur during processing, and particularly hot processing becomes difficult. That is, it is necessary to improve the hot workability.
In Patent Document 7, the κ phase of a copper-zinc-silicon compound improves machinability, but deteriorates hot workability and cold workability, and is difficult to process into a plate shape or the like.
In Patent Documents 8 to 11, in a copper-zinc-tin alloy, machinability is improved by dispersion of β and γ phases. However, in order to ensure cold workability by coexistence with α phase, There is a demand for further improvement in machinability.

上述のように被削性を向上させようとした銅合金の発明では、有害元素を含有する、被削性がまだ不十分である、板形状等への加工には展伸性が不十分であるといった問題がある。歯車、時計地板等の精密機械用の金属部品には、板の形状の金属素材からプレス加工後切削加工を施す、などの工程にて作成されるため、板形状への加工が可能な銅合金材料が求められる。またICソケットのピン等への用途では、細径の棒材からの切削にて製造される為、細径の棒材への加工が必要である。しかしながら、被削性と展伸性の両立は不十分であるため、いまだに鉛を含有させた被削黄銅が使用されているのが現状であり、環境および人体への影響から鉛を含有せずに被削性を向上させ、かつ展伸性に優れたCu−Zn板の開発が望まれている。   As described above, in the invention of the copper alloy which is intended to improve the machinability, the machinability is not sufficient, which contains harmful elements, the machinability is still insufficient, and the extensibility is insufficient for processing into a plate shape or the like. There is a problem. Copper alloys that can be processed into plate shapes because metal parts for precision machinery such as gears and watch base plates are made by pressing and cutting from metal materials in the shape of plates. Material is required. Moreover, since it is manufactured by cutting from a small-diameter bar for use as an IC socket pin or the like, it needs to be processed into a small-diameter bar. However, since the compatibility between machinability and extensibility is inadequate, it is still the case that machined brass containing lead is still used, and it does not contain lead due to environmental and human effects. In addition, it is desired to develop a Cu—Zn plate having improved machinability and excellent extensibility.

このような問題に鑑み本発明はなされたもので、被削性に優れる銅合金素材でありながら、板形状や、細径の棒形状への加工が可能であり、環境負荷を軽減するCu−Zn合金材を提供することを課題とするものである。   In view of such a problem, the present invention has been made, and while it is a copper alloy material excellent in machinability, it can be processed into a plate shape or a thin rod shape, and Cu- It is an object to provide a Zn alloy material.

本発明者らは鋭意検討した結果、Cu−Zn系合金において、Zn量を向上させ、合金中の組織をβ相とγ相の2相組織とし、β相の粒界上のγ相がβ相粒界を包括する割合を制御し、β相粒界上のγ相の厚さを制御し、また、β相粒内のγ相の分散を制御することによって、被削性に優れるCu−Zn系合金を見出した。   As a result of intensive studies, the present inventors have found that in a Cu-Zn alloy, the Zn content is improved, the structure in the alloy is a two-phase structure of a β phase and a γ phase, and the γ phase on the grain boundary of the β phase is β By controlling the ratio including the phase boundary, controlling the thickness of the γ phase on the β phase grain boundary, and controlling the dispersion of the γ phase in the β phase grain, Cu— excellent in machinability A Zn-based alloy was found.

すなわち、本発明は、以下の解決手段を提供するものである。
(1)Znを48〜54mass%含有し、残部がCuおよび不可避的不純物からなる銅合金材であって、γ相がβ相の粒界上にβ相の周囲を覆うように形成されており、β相の全粒界長さにおいてγ相が包括している割合を断面で評価したとき、その粒界包括率が60%以上であり、γ相の厚さの平均値のβ相の平均粒径に対する比が、0.5%以上、10%以下であることを特徴とする、被削性に優れた銅合金材。
(2)β相の粒内にγ相が分散しており、β相粒内にあるγ相の数密度が250個/mm以上、1000個/mm未満であることを特徴とする、(1)に記載の被削性に優れた銅合金材。
(3)形状が板材である(1)または(2)に記載の銅合金材。
(4)β単相にする熱処理を600℃以上840℃以下で10〜120分行った後、γ相を分散させる熱処理を300℃以上600℃未満で10〜600分行う処理を含む(1)〜(3)のいずれか1項に記載の銅合金材の製造方法。
(5)β単相にする熱処理を600℃以上840℃以下で10〜120分行った後、γ相をβ相の粒界に覆うように形成させる500℃以上600℃未満で10〜120分行う熱処理と、γ相をβ相の粒内に形成させる300℃以上500℃未満で120〜600分行う熱処理とを、任意の順番で実施する処理を含む(1)〜(3)のいずれか1項に記載の銅合金材の製造方法。
(6)β単相にする熱処理の前に熱間加工の工程を含み、熱間加工前の材料加熱を600℃以上840℃以下で実施し、熱間加工を470℃以上で終了する製造工程を含む(4)または(5)に記載の製造方法。
(7)前記熱間加工が熱間圧延であり、熱間圧延前の材料加熱を600℃以上840℃以下で実施し、熱間圧延を470℃以上で終了する製造工程を含む(6)に記載の製造方法。
(8)前記熱間加工が熱間押出であり、熱間押出前の材料加熱を600℃以上840℃以下で実施し、熱間押出を470℃以上で終了する製造工程を含む(6)に記載の製造方法。
(9)熱間加工の工程を含み、熱間加工前の材料加熱を600℃以上840℃未満で実施し、熱間加工を600℃以上で終了し急冷する工程で熱間加工と同時にβ単相にした後に、γ相を分散させる熱処理を300℃以上600℃未満で10〜600分行う処理を含む製造工程を含む(1)〜(3)のいずれか1項に記載の銅合金材の製造方法。
(10)熱間加工の工程を含み、熱間加工前の材料加熱を600℃以上840℃未満で実施し、熱間加工を600℃以上で終了し急冷する工程で熱間加工と同時にβ単相にした後に、γ相をβ相の粒界に覆うように形成させる500℃以上600℃未満で10〜120分行う熱処理と、γ相をβ相の粒内に形成させる300℃以上500℃未満で120〜600分行う熱処理とを、任意の順番で実施する処理を含む(1)〜(3)のいずれか1項に記載の銅合金材の製造方法。
(11)前記熱間加工が熱間圧延である(9)または(10)に記載の製造方法。
(12)前記熱間加工が熱間押出である(9)または(10)に記載の製造方法。
That is, the present invention provides the following solutions.
(1) A copper alloy material containing Zn in an amount of 48 to 54 mass%, the balance being Cu and inevitable impurities, and the γ phase is formed on the grain boundary of the β phase so as to cover the periphery of the β phase. When the ratio of the γ phase included in the total grain boundary length of the β phase is evaluated by a cross section, the grain boundary inclusion rate is 60% or more, and the average value of the thickness of the γ phase is the average of the β phase. A copper alloy material excellent in machinability, wherein the ratio to the particle size is 0.5% or more and 10% or less.
(2) The γ phase is dispersed in the β phase grains, and the number density of the γ phases in the β phase grains is 250 / mm 2 or more and less than 1000 / mm 2 , The copper alloy material excellent in machinability as described in (1).
(3) The copper alloy material according to (1) or (2), wherein the shape is a plate material.
(4) including a treatment in which a heat treatment for making a β single phase is performed at 600 ° C. or more and 840 ° C. or less for 10 to 120 minutes, and then a heat treatment for dispersing the γ phase is performed at 300 ° C. or more and less than 600 ° C. for 10 to 600 minutes. The manufacturing method of the copper alloy material of any one of-(3).
(5) The heat treatment for forming a β single phase is performed at 600 ° C. or more and 840 ° C. or less for 10 to 120 minutes, and then the γ phase is formed so as to cover the grain boundaries of the β phase. Any one of (1) to (3), including a heat treatment to be performed and a heat treatment to be performed at 300 ° C. or more and less than 500 ° C. for 120 to 600 minutes to form a γ phase in the β phase grains in any order 2. A method for producing a copper alloy material according to item 1.
(6) A manufacturing process including a hot working step before heat treatment to make a β single phase, performing material heating before hot working at 600 ° C. or higher and 840 ° C. or lower, and finishing hot working at 470 ° C. or higher. (4) or the manufacturing method as described in (5).
(7) (6) including a manufacturing process in which the hot working is hot rolling, material heating before hot rolling is performed at 600 ° C. or higher and 840 ° C. or lower, and hot rolling is ended at 470 ° C. or higher. The manufacturing method as described.
(8) The manufacturing process in which the hot working is hot extrusion, material heating before hot extrusion is performed at 600 ° C. or higher and 840 ° C. or lower, and hot extrusion is finished at 470 ° C. or higher is included in (6). The manufacturing method as described.
(9) Including a hot working step, material heating before hot working is performed at 600 ° C. or higher and lower than 840 ° C., and hot working is finished at 600 ° C. or higher and rapidly cooled. The copper alloy material according to any one of (1) to (3), including a manufacturing process including a process of performing a heat treatment for dispersing the γ phase at a temperature of 300 ° C. or higher and lower than 600 ° C. for 10 to 600 minutes after forming the phase. Production method.
(10) Including a hot working step, material heating before hot working is performed at 600 ° C. or higher and lower than 840 ° C., and hot working is finished at 600 ° C. or higher and rapidly cooled. After forming the phase, heat treatment is performed at 500 ° C. or more and less than 600 ° C. for 10 to 120 minutes so that the γ phase is covered with the β phase grain boundary, and 300 ° C. or more and 500 ° C. is formed to form the γ phase in the β phase grains. The manufacturing method of the copper alloy material of any one of (1)-(3) including the process which implements the heat processing performed for 120 to 600 minutes below in arbitrary orders.
(11) The manufacturing method according to (9) or (10), wherein the hot working is hot rolling.
(12) The manufacturing method according to (9) or (10), wherein the hot working is hot extrusion.

図1に本発明における、材料組織の模式図を示す。なお、γ相がβ相粒界を「包括する」とは、図1に示すように、β相粒1の周回をγ相2が覆う状態をいう。γ相の厚さとは図1の4で示す矢印間の幅をいう。β相粒内にγ相が分散するとは図1においてγ相3がβ相粒内に分散して存在している状態をいう。
また、粒界包括率を評価する断面の位置は特に制限はないが、板材の場合には「切削加工に供する面」、棒材の場合には「押出方向に対して垂直な面」が好ましい。
FIG. 1 shows a schematic diagram of a material structure in the present invention. In addition, the γ phase “includes” the β phase grain boundary means a state in which the γ phase 2 covers the circumference of the β phase grain 1 as shown in FIG. The thickness of the γ phase refers to the width between arrows indicated by 4 in FIG. The dispersion of the γ phase in the β phase grains means a state in which the γ phase 3 is dispersed in the β phase grains in FIG.
Further, the position of the cross section for evaluating the grain boundary coverage is not particularly limited, but in the case of a plate material, a “surface for cutting” is preferable, and in the case of a bar material, a “surface perpendicular to the extrusion direction” is preferable. .

本発明のCu−Zn銅合金材は、鉛などの環境負荷物質を利用することなく、被削性に優れる。また、本発明の銅合金材は、切削加工により製造される精密部品等の部品用材料として好適である。   The Cu—Zn copper alloy material of the present invention is excellent in machinability without using environmentally hazardous substances such as lead. The copper alloy material of the present invention is suitable as a material for parts such as precision parts manufactured by cutting.

本発明の銅合金材の組織を模式的に示す断面図である。It is sectional drawing which shows typically the structure | tissue of the copper alloy material of this invention.

本発明において銅合金材とは、その形状や厚さや幅を制限するものでなく、板材、棒材などを包含する。好ましくは板材である。   In the present invention, the copper alloy material does not limit the shape, thickness, or width, but includes a plate material, a bar material, and the like. A plate material is preferred.

本発明の銅合金材の好ましい実施の態様について、詳細に説明する。まず、各合金元素の作用効果とその含有量の範囲について説明する。   A preferred embodiment of the copper alloy material of the present invention will be described in detail. First, the effect of each alloy element and the range of its content will be described.

本発明の銅合金材に好ましい実施の態様において亜鉛(Zn)は、β相およびγ相の形成を左右し、被削性を向上させる。本発明においては、β+γの2相組織を呈する範囲にする必要があり、48〜54mass%が好ましい。より好ましくは49〜52mass%である。少なすぎるとγ相が形成せず、多すぎる場合γ相の形成量が多すぎるために好適なγ相分散状態にできず、加工中に割れが発生するなどの問題が生じる。   In a preferred embodiment of the copper alloy material of the present invention, zinc (Zn) affects the formation of β phase and γ phase and improves machinability. In the present invention, it is necessary to make the range exhibit a β + γ two-phase structure, and is preferably 48 to 54 mass%. More preferably, it is 49-52 mass%. If the amount is too small, the γ phase is not formed. If the amount is too large, the amount of γ phase formed is too large, so that a suitable γ phase dispersion state cannot be obtained, and problems such as cracking occur during processing.

CuおよびZn以外の不純物はCu−Zn合金の相を変化させる水準でなければ、微量含有することを許容される。   Impurities other than Cu and Zn are allowed to be contained in trace amounts unless the level changes the phase of the Cu-Zn alloy.

次に、被削性向上を可能にする金属組織の好ましい形態について述べる。β相を母相として、被削性を向上させるために屑分断の起点となるγ相を形成させる形態が必要である。γ相は単に形成すれば良いものではなく、γ相はβ相の粒界上に形成し、β相の周囲を覆うように形成されていることが必要である。β相の全粒界長さにおいてγ相が包括している割合を粒界包括率として、次式にて定義した場合、ある断面についての粒界包括率fの範囲は60%〜100%である。60%未満では、屑分断性が不十分である。100%でも屑分断性に問題は無いが、γ相に覆われないβ相粒界が存在した場合の方が、切削加工時に粒内にも亀裂が進展しやすいため、切削加工製品の形状が良好になるといえる。その観点からより好ましい範囲は、80〜95%である。

粒界包括率f=β相粒界上のγ相長さの総和/β相粒界長さ×100(%)
Next, a preferred form of the metal structure that can improve machinability will be described. In order to improve the machinability with the β phase as the parent phase, a form in which the γ phase that is the starting point of the fragmentation is formed is necessary. The γ phase is not simply formed, and the γ phase needs to be formed on the grain boundary of the β phase so as to cover the periphery of the β phase. When the ratio of the γ phase included in the total grain boundary length of the β phase is defined by the following equation as the grain boundary coverage ratio, the range of the grain boundary coverage ratio f for a certain cross section is 60% to 100%. is there. If it is less than 60%, the chip breaking property is insufficient. Even if 100%, there is no problem with the chip breaking property, but when there is a β-phase grain boundary that is not covered by the γ phase, cracks are more likely to develop in the grains during the cutting process. It can be said that it will be good. From that viewpoint, a more preferable range is 80 to 95%.

Grain boundary inclusion rate f = total of γ phase length on β phase grain boundary / β phase grain boundary length × 100 (%)

粒界上のγ相の厚さの平均値は、次式で決定されるβ相の平均結晶粒径に対する比が0.5%以上、10%以下であることが好ましい。0.5%よりも小さい場合には被削性が不十分であることがある。10%を超えて大きい場合には、脆くなりすぎるため、切削加工時に欠けが発生し、製品形状が出ない場合がある。

β相粒界上のγ相厚さの平均値/β相平均結晶粒径×100(%)
As for the average value of the thickness of the γ phase on the grain boundary, the ratio of the β phase to the average crystal grain size determined by the following formula is preferably 0.5% or more and 10% or less. If it is less than 0.5%, the machinability may be insufficient. If it exceeds 10%, it becomes too brittle, so that chipping may occur during cutting and the product shape may not be obtained.

Average value of γ phase thickness on β phase grain boundary / β phase average crystal grain size x 100 (%)

また、γ相はβ相の粒内にも形成させることで、被削性をより向上させることが出来る。β相粒内にあるγ相の数密度が250〜1000個/mmとなるように形成することが好ましい。より好ましい範囲は400〜1000個/mmである。数密度が250個/mmよりも小さい場合は、被削性が不十分となることがある。数密度が1000個/mmを超える場合、脆くなりすぎるため、切削加工時に欠けが発生し、製品形状が出ない場合がある。 Further, the machinability can be further improved by forming the γ phase in the grains of the β phase. It is preferable that the number density of γ phases in the β phase grains is 250 to 1000 / mm 2 . A more preferable range is 400 to 1000 pieces / mm 2 . When the number density is smaller than 250 pieces / mm 2 , the machinability may be insufficient. When the number density exceeds 1000 pieces / mm 2 , it becomes too brittle, so that chipping may occur during cutting and the product shape may not be obtained.

β相の粒内のγ相の粒子サイズは、被削性に対する寄与度はγ相の数密度よりも大きくはなく、その粒子サイズはミクロンオーダーであれば良い。   As for the particle size of the γ phase in the β phase grains, the contribution to the machinability is not larger than the number density of the γ phase, and the particle size may be on the order of microns.

β相は実質的に再結晶組織を有することが好ましい。その結晶粒径は30〜500μmが好ましい。より好ましくは、50〜300μmである。本明細書において結晶粒径とはJIS H 0501の切断法に基づき測定した平均結晶粒径をいう。   The β phase preferably has a substantially recrystallized structure. The crystal grain size is preferably 30 to 500 μm. More preferably, it is 50-300 micrometers. In the present specification, the crystal grain size means an average crystal grain size measured based on the cutting method of JIS H 0501.

次いで、本発明の好ましい実施の態様における製造条件について述べる。本発明の銅合金材の製造工程は、常法により製造した上記合金組成の鋳塊を、熱間加工後、熱処理の一連の工程を含む製造工程で処理して行うことができる。上述のγ相の分散状態が被削性を決定するため、熱間加工から熱処理までの一連の工程を制御することが必要となる。   Next, production conditions in a preferred embodiment of the present invention will be described. The manufacturing process of the copper alloy material of the present invention can be performed by processing an ingot of the above alloy composition manufactured by a conventional method in a manufacturing process including a series of processes of heat treatment after hot working. Since the above-described dispersed state of the γ phase determines machinability, it is necessary to control a series of steps from hot working to heat treatment.

熱間加工前の、鋳塊の保持温度は600℃以上840℃以下で実施することが好ましく、より好ましくは、650〜750℃である。保持時間は30〜600分、好ましくは60〜120分である。保持温度が840℃を超えて高い場合、Cu−Zn系の相が溶解し、熱間加工時に割れる要因となる。600℃未満の場合には、熱間加工時中の温度低下により後述の熱間加工を470℃までに完了することが出来ない。保持時間が30分よりも短い場合には、鋳造組織の均質化が出来ない。600分を超えて実施した場合には、Znの蒸発が材料表面から起こり材料が不均一となる可能性がある。   The ingot holding temperature before hot working is preferably 600 ° C. or higher and 840 ° C. or lower, more preferably 650 to 750 ° C. The holding time is 30 to 600 minutes, preferably 60 to 120 minutes. When the holding temperature is higher than 840 ° C., the Cu—Zn phase is dissolved and becomes a factor that breaks during hot working. When the temperature is lower than 600 ° C., the hot processing described later cannot be completed by 470 ° C. due to a temperature drop during the hot processing. If the holding time is shorter than 30 minutes, the cast structure cannot be homogenized. When it is carried out for more than 600 minutes, Zn may evaporate from the material surface and the material may become non-uniform.

熱間加工は470℃までで完了することが好ましい。470℃未満ではβ相の規則度が高まり、材料の加工性が著しく低下して熱間加工中に割れに至ることがある。   The hot working is preferably completed up to 470 ° C. If it is less than 470 degreeC, the regularity of a beta phase will increase, the workability of material may fall remarkably, and it may lead to a crack in hot processing.

熱間加工の加工方法について鍛造、押出、圧延等の様式は特に選ばないが、熱間圧延および熱間押出により材料を展伸させる処理が好ましい。   Regarding the hot working method, forging, extrusion, rolling and the like are not particularly selected, but a treatment for extending the material by hot rolling and hot extrusion is preferred.

熱間加工の加工率を調整することで、実質的に再結晶したβ相の結晶粒径を制御することが可能である。具体的には加工率を5〜40%にするのが好ましい。   By adjusting the processing rate of hot working, it is possible to control the crystal grain size of the substantially recrystallized β phase. Specifically, the processing rate is preferably 5 to 40%.

γ相の形態を制御するためには、一度β単相にした後にγ相を形成する熱処理を実施する必要がある。β単相にする熱処理は熱間加工後、600℃以上840℃以下で実施することが好ましい。より好ましい温度は650℃以上750℃以下である。熱処理時間は10〜120分が好ましい。より好ましくは30〜60分である。600℃未満ではβ単相に出来ず、840℃を超えて高い場合、Cu−Zn系の相が溶解する。処理時間が10分よりも短い場合にはβ単相に出来ず、処理時間が120分を超える場合にはβ相の結晶粒粗大化が著しい。β単相とはγ相がβ相の粒界および粒内に存在しない状態をいう。β単相化処理の後は水冷や送風による急速冷却等により、冷却速度を10℃/分以上としγ相の形成を抑制することが望ましい。より好ましくは50℃/分以上である。   In order to control the form of the γ phase, it is necessary to perform heat treatment for forming the γ phase after the β phase is once changed. It is preferable that the heat treatment for forming a β single phase is performed at 600 ° C. or higher and 840 ° C. or lower after hot working. A more preferable temperature is 650 ° C. or higher and 750 ° C. or lower. The heat treatment time is preferably 10 to 120 minutes. More preferably, it is 30 to 60 minutes. If it is lower than 600 ° C., it cannot be a β single phase, and if it is higher than 840 ° C., a Cu—Zn phase is dissolved. When the treatment time is shorter than 10 minutes, the β single phase cannot be obtained, and when the treatment time exceeds 120 minutes, the β phase crystal grains are markedly coarsened. The β single phase means a state in which the γ phase does not exist in the grain boundaries and grains of the β phase. After the β single phase treatment, it is desirable to suppress the formation of the γ phase by setting the cooling rate to 10 ° C./min or more by rapid cooling by water cooling or air blowing. More preferably, it is 50 ° C./min or more.

β単相化は熱間加工と同時に行っても良い。熱間加工とβ単相化を同時に行う場合には、熱間加工を600℃までに完了し、β単相化処理の後は水冷や送風による急速冷却等により、冷却速度を10℃/分以上で冷却しγ相の形成を抑制することが望ましい。より好ましくは50℃/分以上である。   The β single phase may be performed simultaneously with hot working. When performing hot working and β single phase at the same time, complete the hot working up to 600 ° C, and after the β single phase treatment, the cooling rate is 10 ° C / min. It is desirable to cool down and suppress the formation of the γ phase. More preferably, it is 50 ° C./min or more.

γ相の分散についてはβ単相化処理の後、300℃以上600℃未満で10〜600分の熱処理により、上述の形態に形成することができる。300℃未満および600℃以上の場合にはγ相の形成が不十分であり、粒界包括率が低く、また粒内のγ相密度も低い。   About dispersion | distribution of (gamma) phase, it can form in the above-mentioned form by heat processing for 10 to 600 minutes at 300 degreeC or more and less than 600 degreeC after (beta) single phase process. When the temperature is lower than 300 ° C. and 600 ° C. or higher, the formation of the γ phase is insufficient, the grain boundary coverage is low, and the γ phase density in the grains is also low.

γ相の分散については、2段階の熱処理を実施することにより、β粒界上と粒内のγ相の制御を厳密にすることができる。すなわち、γ相をβ相の粒界に覆うように形成させる熱処理を500℃以上600℃未満で10〜120分行い、γ相をβ相の粒内に形成させる熱処理を300℃以上500℃未満で120〜600分実施するとより好ましいγ相形態となる。γ相をβ相の粒界に形成させる処理とβ相の粒内に形成させる処理はどちらを先に実施してもよい。この場合、粒界上への形成を促す高温処理は、粒内への形成を促す低温処理よりも短時間で行うことが望ましい。   Regarding the dispersion of the γ phase, it is possible to strictly control the γ phase on the β grain boundaries and in the grains by performing a two-stage heat treatment. That is, the heat treatment for forming the γ phase so as to cover the grain boundaries of the β phase is performed at 500 ° C. or more and less than 600 ° C. for 10 to 120 minutes, and the heat treatment for forming the γ phase in the grains of the β phase is 300 ° C. or more and less than 500 ° C. When it is carried out for 120 to 600 minutes, a more preferable γ phase form is obtained. Either the process of forming the γ phase at the grain boundary of the β phase or the process of forming the γ phase in the grains of the β phase may be performed first. In this case, it is desirable that the high temperature treatment for promoting the formation on the grain boundaries is performed in a shorter time than the low temperature treatment for promoting the formation within the grains.

以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
表1の合金成分で示される組成の発明例および比較例の銅合金を高周波溶解炉にて溶解し、厚さ30mm、幅120mm、長さ150mmの鋳鉄製鋳型に鋳造し鋳塊を得た。
Example 1
The inventive and comparative copper alloys having the compositions shown in Table 1 were melted in a high-frequency melting furnace and cast into a cast iron mold having a thickness of 30 mm, a width of 120 mm, and a length of 150 mm to obtain an ingot.

発明例1〜3および比較例1では、得られた鋳塊の湯口および湯底部を切断して750℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。各パスの圧延率は10〜25%として、8回のパスにて厚さ6mmまで実施した。熱間圧延は600℃までで終了しその後室温まで空冷を行った。両面を各1.5mmずつ切削して酸化皮膜を除去した。その後、アルゴンガス雰囲気にて680℃で30分の熱処理を行い水冷した(冷却速度150℃/分以上)。続けてアルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Examples 1 to 3 and Comparative Example 1, the gate and bottom of the ingot obtained were cut and heated to 750 ° C., held at that temperature for 1 hour, and then hot rolled. The rolling rate of each pass was 10 to 25%, and the thickness was reduced to 6 mm in 8 passes. The hot rolling was finished up to 600 ° C. and then air-cooled to room temperature. Both sides were cut 1.5 mm each to remove the oxide film. Thereafter, heat treatment was performed at 680 ° C. for 30 minutes in an argon gas atmosphere, and water cooling was performed (cooling rate of 150 ° C./min or more). Subsequently, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

発明例4では、発明例1と680℃までの熱処理は同様であるが、最後の熱処理をアルゴンガス雰囲気で500℃で60分とし、室温まで空冷を行った。   In Invention Example 4, the heat treatment up to 680 ° C. was the same as that in Invention Example 1, but the final heat treatment was performed at 500 ° C. for 60 minutes in an argon gas atmosphere and air-cooled to room temperature.

発明例5では、発明例1と680℃までの熱処理は同様であるが、最後の熱処理をアルゴンガス雰囲気で400℃で60分とし、室温まで空冷を行った。   In Invention Example 5, the heat treatment up to 680 ° C. was the same as that in Invention Example 1, but the final heat treatment was performed at 400 ° C. for 60 minutes in an argon gas atmosphere and air-cooled to room temperature.

発明例6では、発明例1と680℃までの熱処理は同様であるが、最後の熱処理をアルゴンガス雰囲気で300℃で600分とし、室温まで空冷を行った。   In Invention Example 6, the heat treatment up to 680 ° C. was the same as that in Invention Example 1, but the final heat treatment was performed at 300 ° C. for 600 minutes in an argon gas atmosphere and air-cooled to room temperature.

発明例7では、発明例2と680℃までの熱処理は同様であるが、最後の熱処理をアルゴンガス雰囲気で420℃で60分とし、室温まで空冷を行った。   In Invention Example 7, the heat treatment up to 680 ° C. was the same as that in Invention Example 2, but the final heat treatment was performed at 420 ° C. for 60 minutes in an argon gas atmosphere and air-cooled to room temperature.

発明例8では、発明例1と680℃までの熱処理は同様であるが、その後、アルゴンガス雰囲気で550℃にて30分の熱処理を実施し室温まで空冷した後、最後の熱処理をアルゴンガス雰囲気にて350℃で300分実施し室温まで空冷を行った。   In Invention Example 8, the heat treatment up to 680 ° C. is the same as that in Invention Example 1, but after that, the heat treatment is performed at 550 ° C. for 30 minutes in an argon gas atmosphere and air-cooled to room temperature. Was carried out at 350 ° C. for 300 minutes and air-cooled to room temperature.

発明例9では、発明例1と680℃までの熱処理は同様であるが、その後、アルゴンガス雰囲気で350℃にて300分の熱処理を実施し室温まで空冷した後、最後の熱処理をアルゴンガス雰囲気にて570℃で20分実施し室温まで空冷を行った。   In Invention Example 9, the heat treatment up to 680 ° C. is the same as that in Invention Example 1, but after that, the heat treatment is performed at 350 ° C. for 300 minutes in an argon gas atmosphere and air-cooled to room temperature. Was carried out at 570 ° C. for 20 minutes and air-cooled to room temperature.

発明例10では、得られた鋳塊の湯口および湯底部を切断して切断後830℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。各パスの圧延率は10〜25%として、8回のパスにて厚さ6mmまで実施した。熱間圧延は780℃までで終了しその後室温まで空冷を行った。両面を各1.5mmずつ切削して酸化皮膜を除去した。その後、アルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Example 10, the pouring gate and the bottom of the ingot obtained were cut, heated to 830 ° C. after cutting, held at that temperature for 1 hour, and then hot rolled. The rolling rate of each pass was 10 to 25%, and the thickness was reduced to 6 mm in 8 passes. Hot rolling was finished up to 780 ° C. and then air-cooled to room temperature. Both sides were cut 1.5 mm each to remove the oxide film. Thereafter, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

発明例11では、得られた鋳塊の湯口および湯底部を切断して切断後600℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。各パスの圧延率は10〜25%として、8回のパスにて厚さ6mmまで実施した。熱間圧延は470℃までで終了しその後室温まで空冷を行った。両面を各1.5mmずつ切削して酸化皮膜を除去した。その後、アルゴンガス雰囲気にて680℃で30分の熱処理を行い水冷した(冷却速度150℃/分以上)。続けてアルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Example 11, the gate and bottom of the resulting ingot were cut and heated to 600 ° C., held at that temperature for 1 hour, and then hot rolled. The rolling rate of each pass was 10 to 25%, and the thickness was reduced to 6 mm in 8 passes. Hot rolling was finished up to 470 ° C. and then air-cooled to room temperature. Both sides were cut 1.5 mm each to remove the oxide film. Thereafter, heat treatment was performed at 680 ° C. for 30 minutes in an argon gas atmosphere, and water cooling was performed (cooling rate of 150 ° C./min or more). Subsequently, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

発明例12では、得られた鋳塊の湯口および湯底部を切断して750℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。各パスの圧延率を10〜25%として、7回のパスを実施し、最後の8パス目の圧延パスを33%で実施した。熱間圧延は600℃までで終了しその後速やかに水冷を行った。両面を各1.5mmずつ切削して酸化皮膜を除去した。その後、アルゴンガス雰囲気にて680℃で30分の熱処理を行い水冷した(冷却速度150℃/分以上)。続けてアルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Example 12, the gate and bottom of the ingot obtained were cut and heated to 750 ° C., held at that temperature for 1 hour, and then hot rolled. The rolling rate of each pass was set to 10 to 25%, 7 passes were performed, and the final 8th rolling pass was performed at 33%. The hot rolling was finished up to 600 ° C., and then water cooling was performed promptly. Both sides were cut 1.5 mm each to remove the oxide film. Thereafter, heat treatment was performed at 680 ° C. for 30 minutes in an argon gas atmosphere, and water cooling was performed (cooling rate of 150 ° C./min or more). Subsequently, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

発明例13では、得られた鋳塊の湯口および湯底部を切断して750℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。各パスの圧延率を10〜25%として、6回のパスを実施し、最後の7パス目および8パス目を各々8%および9%で実施した。熱間圧延は600℃までで終了しその後速やかに水冷を行った。両面を各1.5mmずつ切削して酸化皮膜を除去した。その後、アルゴンガス雰囲気にて680℃で30分の熱処理を行い水冷した(冷却速度150℃/分以上)。続けてアルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Example 13, the gate and bottom of the resulting ingot were cut and heated to 750 ° C., held at that temperature for 1 hour, and then hot rolled. The rolling rate of each pass was 10 to 25%, 6 passes were performed, and the final 7th pass and 8th pass were executed at 8% and 9%, respectively. The hot rolling was finished up to 600 ° C., and then water cooling was performed promptly. Both sides were cut 1.5 mm each to remove the oxide film. Thereafter, heat treatment was performed at 680 ° C. for 30 minutes in an argon gas atmosphere, and water cooling was performed (cooling rate of 150 ° C./min or more). Subsequently, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

比較例2では、得られた鋳塊の湯口および湯底部を切断時に材料が砕けた為、試験を中止した。   In Comparative Example 2, the test was stopped because the material was crushed at the time of cutting the pouring gate and the bottom of the resulting ingot.

比較例3は、得られた鋳塊の湯口および湯底部を切断して750℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。各パスの圧延率は10〜25%として、8回のパスにて厚さ6mmまで実施した。熱間圧延は600℃までで終了しその後空冷にて室温まで冷却した。両面を各1.5mmずつ切削して酸化皮膜を除去した。その後、アルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Comparative Example 3, the pouring gate and the bottom of the resulting ingot were cut and heated to 750 ° C., held at that temperature for 1 hour, and then hot rolled. The rolling rate of each pass was 10 to 25%, and the thickness was reduced to 6 mm in 8 passes. The hot rolling was finished up to 600 ° C. and then cooled to room temperature by air cooling. Both sides were cut 1.5 mm each to remove the oxide film. Thereafter, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

比較例4では、発明例1と680℃までの熱処理は同様であるが、最後の熱処理をアルゴンガス雰囲気で300℃で5分とし、室温まで空冷を行った。   In Comparative Example 4, the heat treatment up to 680 ° C. was the same as that of Invention Example 1, but the final heat treatment was performed at 300 ° C. for 5 minutes in an argon gas atmosphere and air-cooled to room temperature.

比較例5では、発明例1と680℃までの熱処理は同様であるが、最後の熱処理をアルゴンガス雰囲気で280℃で600分とし、室温まで空冷を行った。   In Comparative Example 5, the heat treatment up to 680 ° C. was the same as that in Invention Example 1, but the final heat treatment was performed at 280 ° C. for 600 minutes in an argon gas atmosphere and air-cooled to room temperature.

比較例6は、得られた鋳塊の湯口および湯底部を切断して750℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。各パスの圧延率は10〜25%として、8回のパスにて厚さ6mmまで実施した。熱間圧延は600℃までで終了しその後空冷にて室温まで冷却した。両面を各1.5mmずつ切削して酸化皮膜を除去した。その後、アルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Comparative Example 6, the pouring gate and the bottom of the obtained ingot were cut and heated to 750 ° C., held at that temperature for 1 hour, and then hot-rolled. The rolling rate of each pass was 10 to 25%, and the thickness was reduced to 6 mm in 8 passes. The hot rolling was finished up to 600 ° C. and then cooled to room temperature by air cooling. Both sides were cut 1.5 mm each to remove the oxide film. Thereafter, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

比較例7では、得られた鋳塊の湯口および湯底部を切断して850℃に加熱し、その温度にて1時間保持後、熱間圧延を施したところ、熱延中に割れが発生した為、試験を中止した。   In Comparative Example 7, the sprue and bottom of the resulting ingot were cut and heated to 850 ° C., held at that temperature for 1 hour, and then hot-rolled to generate cracks during hot rolling. Therefore, the test was stopped.

比較例8では、得られた鋳塊の湯口および湯底部を切断して550℃に加熱し、その温度にて1時間保持後、熱間圧延を施した。最終パスを450℃で実施したところ、熱延中に割れが発生した為、試験を中止した。   In Comparative Example 8, the gate and bottom of the ingot obtained were cut and heated to 550 ° C., held at that temperature for 1 hour, and then hot rolled. When the final pass was performed at 450 ° C., cracks occurred during hot rolling, so the test was stopped.

このようにして得られた各々の銅合金板材のサンプルについて被削性を調べた。被削性として、汎用ボール盤を用いて切削屑の分断性を評価した。切削屑が1mm以下に分断されるものは優、切削屑が1mmを超え2mm以下のものは良、切削屑が2mmを超え3mm以下のものは可、切削屑が3mmを超えるものは不良とした。使用可能な水準は優、良および可であり、より好ましいのは優および良である。また、切削屑は使用可能な水準にあるものの、切削後の穴の周囲に欠け等が発生したものは「欠け」として、使用不可とした。なお切削条件は、2mmφの超硬製ドリルを用い、回転数420rpmとし、切削油は不使用とした。   The machinability of each of the copper alloy sheet samples thus obtained was examined. As machinability, the cutting property of the cutting waste was evaluated using a general-purpose drilling machine. Cutting chips that are divided to 1 mm or less are excellent, cutting scraps that exceed 1 mm and 2 mm or less are good, cutting scraps that exceed 2 mm and 3 mm or less are acceptable, and those that exceed 3 mm are considered defective. . Usable levels are good, good and good, more preferred are good and good. In addition, although cutting scraps were at a usable level, those with chipping or the like around the hole after cutting were regarded as “chips” and could not be used. The cutting conditions were a 2 mmφ carbide drill, a rotation speed of 420 rpm, and no cutting oil.

材料組織の評価は、板状サンプルの任意の3か所の圧延面について、光学顕微鏡を用いて、それぞれ3視野(総計9視野に相当)について組織観察を行うことにより求めた。β相の粒界長さおよび、β相の粒界上に形成したγ相の長さを各視野にて測定し、その総和を算出して次式により、粒界包括率fを定義した。

粒界包括率f=β相粒界上のγ相長さの総和/β相粒界長さ×100(%)
The evaluation of the material structure was determined by observing the structure of each of three visual fields (corresponding to a total of nine visual fields) with respect to any three rolled surfaces of the plate-like sample using an optical microscope. The grain boundary inclusion rate f was defined by the following equation by measuring the grain boundary length of the β phase and the length of the γ phase formed on the grain boundary of the β phase in each field of view, and calculating the total sum.

Grain boundary inclusion rate f = total of γ phase length on β phase grain boundary / β phase grain boundary length × 100 (%)

β相粒界上に形成したγ相の厚さは、各視野において20点測定し、その平均をγ相厚さとした。β相の平均結晶粒径は、JIS H 0501の切断法に基づき測定し、平均粒径とした。求めたγ相の厚さをβ相の平均粒径で除した比率を次式で算出した

β相粒界上のγ相厚さの平均値/β相平均結晶粒径×100(%)
The thickness of the γ phase formed on the β phase grain boundary was measured at 20 points in each field of view, and the average was taken as the γ phase thickness. The average crystal grain size of the β phase was measured based on the cutting method of JIS H 0501 and used as the average grain size. The ratio obtained by dividing the thickness of the obtained γ phase by the average particle size of the β phase was calculated by the following equation.

Average value of γ phase thickness on β phase grain boundary / β phase average crystal grain size x 100 (%)

β相粒内におけるγ相の数を各視野にて測定して総和し、観察視野面積の総和で除して規格化して、粒内のγ相の数密度とした。   The number of γ phases in the β-phase grains was measured and summed up in each field, and was divided by the sum of the observation field areas to be normalized to obtain the number density of γ phases in the grains.

Figure 0005794906
Figure 0005794906

本発明例1〜13は成分および組織の形態が、本発明の範囲内であり、被削性に優れていた。特にβ相内のγ相の数密度が多かった発明例3および8、9は特に被削性に優れた。   Examples 1 to 13 of the present invention were excellent in machinability in the form of components and structures within the scope of the present invention. Inventive Examples 3, 8, and 9 in which the number density of γ phases in the β phase was particularly high were particularly excellent in machinability.

比較例1および4は粒界包括率fと粒内のγ相の数密度が本発明の範囲よりも小さかったために被削性が劣った。比較例3および6はβ相粒界上のγ相の厚さ比率および粒内のγ相の数密度が、本発明の範囲よりも大きかったために、切削屑形状は「優」であったが、穴周囲に欠けは発生したため、「欠け」として使用不可とした。被削試験中に加工部から亀裂進展し破壊した。比較例5は粒界包括率fおよび粒界上のγ相の厚さ比率が本発明よりも小さかった為に、被削性が劣った。比較例2、7および8は上述の様に試験を中止している。   In Comparative Examples 1 and 4, the machinability was inferior because the grain boundary coverage f and the number density of γ phases in the grains were smaller than the range of the present invention. In Comparative Examples 3 and 6, since the thickness ratio of the γ phase on the β phase grain boundary and the number density of the γ phase in the grain were larger than the range of the present invention, the cutting waste shape was “excellent” Since chipping occurred around the hole, it was not allowed to be used as “chipping”. During the cutting test, cracks propagated from the machined part and destroyed. In Comparative Example 5, the machinability was inferior because the grain boundary coverage ratio f and the thickness ratio of the γ phase on the grain boundary were smaller than those of the present invention. In Comparative Examples 2, 7 and 8, the test was stopped as described above.

(実施例2)
表2の合金成分で示される組成の発明例および比較例の銅合金を直径200mm×500mmの鋳塊を作成し、熱間押出用のビレットとした。
(Example 2)
Ingots having a diameter of 200 mm × 500 mm were prepared from the copper alloys of the inventive examples and comparative examples having the compositions shown in Table 2 as alloy billets for hot extrusion.

発明例2−1〜2−3では、得られた鋳塊の湯口および湯底部を切断して750℃に加熱し、その温度にて1時間保持後、押出加工を実施して厚さ10mm×幅180mmの素板を得た。押出直後は速やかに室温まで水冷した(冷却速度150℃/分以上)。その後、100mm長さ分をサンプル採取して、続けてアルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Examples 2-1 to 2-3, the pouring gate and the bottom of the ingot obtained were cut and heated to 750 ° C., held at that temperature for 1 hour, and then subjected to extrusion to obtain a thickness of 10 mm × A base plate having a width of 180 mm was obtained. Immediately after extrusion, it was rapidly cooled to room temperature (cooling rate of 150 ° C./min or more). Thereafter, a sample having a length of 100 mm was sampled, followed by heat treatment at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling to room temperature.

発明例2−4〜2−6では、得られた鋳塊の湯口および湯底部を切断して750℃に加熱し、その温度にて1時間保持後、押出加工を実施して直径20mmφの棒材を得た。押出直後は速やかに室温まで水冷した(冷却速度150℃/分以上)。その後、100mm長さ分をサンプル採取して、続けてアルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Examples 2-4 to 2-6, the pouring gate and the bottom of the ingot obtained were cut and heated to 750 ° C., held at that temperature for 1 hour, and then subjected to extrusion to obtain a rod having a diameter of 20 mmφ. The material was obtained. Immediately after extrusion, it was rapidly cooled to room temperature (cooling rate of 150 ° C./min or more). Thereafter, a sample having a length of 100 mm was sampled, followed by heat treatment at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling to room temperature.

発明例2−7では、得られた鋳塊の湯口および湯底部を切断して520℃に加熱し、その温度にて1時間保持後、押出加工を実施して直径20mmφの棒材を得た。押出直後は速やかに室温まで水冷した(冷却速度150℃/分以上)。その後、100mm長さ分をサンプル採取して、アルゴンガス雰囲気にて680℃で30分の熱処理を行い水冷した。続けてアルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Invention Example 2-7, the sprue and bottom of the resulting ingot were cut and heated to 520 ° C., held at that temperature for 1 hour, and then subjected to extrusion to obtain a rod having a diameter of 20 mmφ. . Immediately after extrusion, it was rapidly cooled to room temperature (cooling rate of 150 ° C./min or more). Thereafter, a sample having a length of 100 mm was sampled, heat-treated at 680 ° C. for 30 minutes in an argon gas atmosphere, and water-cooled. Subsequently, heat treatment was performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling was performed to room temperature.

比較例2−1では、発明例2−7の熱間押出までは同様であるが、100mm長さをサンプル採取後、アルゴンガス雰囲気にて450℃で60分の熱処理を行い室温まで空冷を行った。   In Comparative Example 2-1, the process is the same up to the hot extrusion of Invention Example 2-7, but after taking a sample of 100 mm length, heat treatment is performed at 450 ° C. for 60 minutes in an argon gas atmosphere, and air cooling is performed to room temperature. It was.

比較例2−2では、得られた鋳塊の湯口および湯底部を切断して450℃に加熱し、その温度にて1時間保持後、押出加工を実施したところ、材料に割れが発生した為、試験を中止した。   In Comparative Example 2-2, the sprue and bottom of the resulting ingot were cut and heated to 450 ° C., held at that temperature for 1 hour, and then subjected to extrusion. As a result, cracking occurred in the material. The trial was discontinued.

このようにして得られた各々の銅合金板材のサンプルについて被削性は、実施例1と同様の条件にて被削性を評価した。   The machinability of each of the copper alloy sheet samples thus obtained was evaluated under the same conditions as in Example 1.

材料組織の評価は、板状サンプル、棒状サンプル共に、押出方向と垂直な面にて任意の3か所について光学顕微鏡を用いて、それぞれ3視野(総計9視野に相当)について組織観察を行うことにより求めた。組織の定量評価は実施例1と同様である。   For the evaluation of the material structure, both the plate sample and the rod sample should be observed in 3 visual fields (corresponding to 9 visual fields in total) using an optical microscope at any 3 locations in the plane perpendicular to the extrusion direction. Determined by The quantitative evaluation of the tissue is the same as in Example 1.

Figure 0005794906
Figure 0005794906

本発明例2−1〜2−7は成分および組織の形態が、本発明の範囲内であり、被削性に優れていた。   Inventive Examples 2-1 to 2-7 were excellent in machinability in the form of components and structures within the scope of the present invention.

比較例2−1は粒界包括率fと粒内のγ相の数密度が本発明の範囲よりも大きかったので、切削屑形状は「優」であったが、穴周囲に欠けが発生した為「欠け」として使用不可とした。比較例2−2は上述の様に試験を中止している。   In Comparative Example 2-1, the grain boundary coverage ratio f and the number density of γ phases in the grains were larger than the range of the present invention, so that the shape of the chip was “excellent”, but chipping occurred around the hole. For this reason, it could not be used as a “chip”. In Comparative Example 2-2, the test was stopped as described above.

1 β相粒
2 β相粒界上のγ相
3 β相内のγ相
4 β相粒界上のγ相の厚さ
1 β phase grain 2 γ phase on β phase grain boundary 3 γ phase in β phase 4 Thickness of γ phase on β phase grain boundary

Claims (12)

Znを48〜54mass%含有し、残部がCuおよび不可避的不純物からなる銅合金材であって、
γ相がβ相の粒界上にβ相の周囲を覆うように形成されており、β相の全粒界長さにおいてγ相が包括している割合を断面で評価したとき、その粒界包括率が60%以上であり、
γ相の厚さの平均値のβ相の平均粒径に対する比が、0.5%以上、10%以下であることを特徴とする、被削性に優れた銅合金材。
A copper alloy material containing Zn in an amount of 48 to 54 mass%, the balance being Cu and inevitable impurities,
The γ phase is formed on the grain boundary of the β phase so as to cover the periphery of the β phase, and when the ratio of the γ phase included in the total grain boundary length of the β phase is evaluated by cross section, the grain boundary The coverage rate is 60% or more,
A copper alloy material excellent in machinability, wherein the ratio of the average value of the thickness of the γ phase to the average particle size of the β phase is 0.5% or more and 10% or less.
β相の粒内にγ相が分散しており、β相粒内にあるγ相の数密度が250個/mm以上、1000個/mm未満であることを特徴とする、請求項1に記載の被削性に優れた銅合金材。 The γ phase is dispersed in the β phase grains, and the number density of the γ phases in the β phase grains is 250 / mm 2 or more and less than 1000 / mm 2 , A copper alloy material having excellent machinability as described in 1. 形状が板材である請求項1または2に記載の銅合金材。   The copper alloy material according to claim 1 or 2, wherein the shape is a plate material. β単相にする熱処理を600℃以上840℃以下で10〜120分行った後、γ相を分散させる熱処理を300℃以上600℃未満で10〜600分行う処理を含む請求項1〜3のいずれか1項に記載の銅合金材の製造方法。   The process according to claim 1, further comprising a treatment in which a heat treatment for dispersing the γ phase is performed at 300 ° C. or more and less than 600 ° C. for 10 to 600 minutes after the heat treatment for forming a β single phase is performed at 600 ° C. or more and 840 ° C. or less for 10 to 120 minutes The manufacturing method of the copper alloy material of any one. β単相にする熱処理を600℃以上840℃以下で10〜120分行った後、γ相をβ相の粒界に覆うように形成させる500℃以上600℃未満で10〜120分行う熱処理と、γ相をβ相の粒内に形成させる300℃以上500℃未満で120〜600分行う熱処理とを、任意の順番で実施する処理を含む請求項1〜3のいずれか1項に記載の銅合金材の製造方法。   A heat treatment for forming a β single phase at 600 ° C. or higher and 840 ° C. or lower for 10 to 120 minutes and then forming a γ phase so as to cover the β phase grain boundaries at a temperature of 500 ° C. or higher and lower than 600 ° C. for 10 to 120 minutes The process according to any one of claims 1 to 3, comprising a process of forming a γ phase in grains of a β phase at a temperature of 300 ° C or higher and lower than 500 ° C for 120 to 600 minutes in any order. A method for producing a copper alloy material. β単相にする熱処理の前に熱間加工の工程を含み、熱間加工前の材料加熱を600℃以上840℃以下で実施し、熱間加工を470℃以上で終了する製造工程を含む請求項4または5に記載の製造方法。   A process including a hot working step before the heat treatment to form a β single phase, including a manufacturing step in which the material heating before the hot working is performed at 600 ° C. or higher and 840 ° C. or lower and the hot working is finished at 470 ° C. or higher. Item 6. The manufacturing method according to Item 4 or 5. 前記熱間加工が熱間圧延であり、熱間圧延前の材料加熱を600℃以上840℃以下で実施し、熱間圧延を470℃以上で終了する製造工程を含む請求項6に記載の製造方法。   The manufacturing according to claim 6, wherein the hot working is hot rolling, and includes a manufacturing process in which material heating before hot rolling is performed at 600 ° C. or higher and 840 ° C. or lower and hot rolling is ended at 470 ° C. or higher. Method. 前記熱間加工が熱間押出であり、熱間押出前の材料加熱を600℃以上840℃以下で実施し、熱間押出を470℃以上で終了する製造工程を含む請求項6に記載の製造方法。   The manufacturing according to claim 6, wherein the hot working is hot extrusion, and includes a manufacturing process in which material heating before hot extrusion is performed at 600 ° C. or higher and 840 ° C. or lower and hot extrusion is ended at 470 ° C. or higher. Method. 熱間加工の工程を含み、熱間加工前の材料加熱を600℃以上840℃未満で実施し、熱間加工を600℃以上で終了し急冷する工程で熱間加工と同時にβ単相にした後に、γ相を分散させる熱処理を300℃以上600℃未満で10〜600分行う処理を含む製造工程を含む請求項1〜3のいずれか1項に記載の銅合金材の製造方法。   Including the hot working process, material heating before hot working is performed at 600 ° C. or more and less than 840 ° C., and the hot working is finished at 600 ° C. or more and rapidly cooled to make β single phase simultaneously with hot working. The manufacturing method of the copper alloy material according to any one of claims 1 to 3, further comprising a manufacturing step including a process of performing a heat treatment for dispersing the γ phase at 300 ° C or higher and lower than 600 ° C for 10 to 600 minutes. 熱間加工の工程を含み、熱間加工前の材料加熱を600℃以上840℃未満で実施し、熱間加工を600℃以上で終了し急冷する工程で熱間加工と同時にβ単相にした後に、γ相をβ相の粒界に覆うように形成させる500℃以上600℃未満で10〜120分行う熱処理と、γ相をβ相の粒内に形成させる300℃以上500℃未満で120〜600分行う熱処理とを、任意の順番で実施する処理を含む請求項1〜3のいずれか1項に記載の銅合金材の製造方法。   Including the hot working process, material heating before hot working is performed at 600 ° C. or more and less than 840 ° C., and the hot working is finished at 600 ° C. or more and rapidly cooled to make β single phase simultaneously with hot working. Later, heat treatment is performed at 500 ° C. or more and less than 600 ° C. for 10 to 120 minutes so that the γ phase is formed so as to cover the β phase grain boundaries, and γ phase is formed at 300 ° C. or more and less than 500 ° C. for 120 minutes. The manufacturing method of the copper alloy material of any one of Claims 1-3 including the process which implements the heat processing performed for -600 minutes in arbitrary orders. 前記熱間加工が熱間圧延である請求項9または10に記載の製造方法。   The manufacturing method according to claim 9 or 10, wherein the hot working is hot rolling. 前記熱間加工が熱間押出である請求項9または10に記載の製造方法。   The manufacturing method according to claim 9 or 10, wherein the hot working is hot extrusion.
JP2011279878A 2011-12-21 2011-12-21 Copper alloy material with excellent machinability Active JP5794906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279878A JP5794906B2 (en) 2011-12-21 2011-12-21 Copper alloy material with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279878A JP5794906B2 (en) 2011-12-21 2011-12-21 Copper alloy material with excellent machinability

Publications (2)

Publication Number Publication Date
JP2013129876A JP2013129876A (en) 2013-07-04
JP5794906B2 true JP5794906B2 (en) 2015-10-14

Family

ID=48907669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279878A Active JP5794906B2 (en) 2011-12-21 2011-12-21 Copper alloy material with excellent machinability

Country Status (1)

Country Link
JP (1) JP5794906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892745A4 (en) * 2018-12-03 2021-11-24 JX Nippon Mining & Metals Corporation Corrosion-resistant cuzn alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370197B2 (en) * 2019-09-05 2023-10-27 Jx金属株式会社 Easy-to-process corrosion-resistant electrode alloy
EP4057077A1 (en) * 2021-03-09 2022-09-14 Association Suisse pour la Recherche Horlogère Timepiece component made of lead-free brass and manufacturing method thereof
EP4305496A1 (en) * 2021-03-09 2024-01-17 Association Suisse Pour la Recherche Horlogère Timepiece component made of lead-free brass, and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892745A4 (en) * 2018-12-03 2021-11-24 JX Nippon Mining & Metals Corporation Corrosion-resistant cuzn alloy
US11643707B2 (en) 2018-12-03 2023-05-09 Jx Nippon Mining & Metals Corporation Corrosion-resistant CuZn alloy

Also Published As

Publication number Publication date
JP2013129876A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP3731600B2 (en) Copper alloy and manufacturing method thereof
JP6335194B2 (en) Lead-free, easy-to-cut, corrosion-resistant brass alloy with good thermoformability
CN103930576B (en) Lead free cutting copper alloys and production method thereof
WO2020261636A1 (en) Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
JP6799305B1 (en) Method for manufacturing free-cutting copper alloy castings and free-cutting copper alloy castings
CN110952019B (en) Free-cutting zinc white copper and preparation method and application thereof
JP5794906B2 (en) Copper alloy material with excellent machinability
CN111655878B (en) Easy-cutting lead-free copper alloy without containing lead and bismuth
JP2005298922A (en) Aluminum alloy plate to be formed, and manufacturing method therefor
JP2005290543A (en) Copper alloy and its production method
TWI510650B (en) Lead - free steel
JP2008214760A (en) Lead-free free-cutting brass alloy and its manufacturing method
KR100631041B1 (en) free cutting brass alloy having an improved of machinability and workability
JP6736869B2 (en) Copper alloy material
TWI645053B (en) Hot worked product of brass alloy and method for manufacturing hot worked product of brass alloy
JPH0285331A (en) Aluminum alloy having excellent cross feed machinability and its manufacture
WO2020261666A1 (en) Free-cutting copper alloy and method for producing free-cutting copper alloy
JP4184357B2 (en) Lead-free free-cutting brass alloy and method for producing the same
JP5830234B2 (en) Cu-Zn based copper alloy sheet
JP2012180557A (en) Zinc alloy cast ingot having excellent workability and method for producing the zinc alloy cast ingot
JP5856764B2 (en) Hypereutectic aluminum-silicon alloy rolled sheet molded product and method for producing the same
JP5554207B2 (en) Cu-Si based copper alloy sheet with excellent machinability
TW202407111A (en) Wrought copper-zinc alloy, semi-finished product made from a wrought copper-zinc alloy, and method for producing such a semi-finished product
KR20040062314A (en) Composition of Unleaded Free Cutting Brass with Advenced Corrosion Resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R151 Written notification of patent or utility model registration

Ref document number: 5794906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350