JP5792088B2 - Copper alloy tube - Google Patents

Copper alloy tube Download PDF

Info

Publication number
JP5792088B2
JP5792088B2 JP2012021330A JP2012021330A JP5792088B2 JP 5792088 B2 JP5792088 B2 JP 5792088B2 JP 2012021330 A JP2012021330 A JP 2012021330A JP 2012021330 A JP2012021330 A JP 2012021330A JP 5792088 B2 JP5792088 B2 JP 5792088B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
peak
depth
alloy tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012021330A
Other languages
Japanese (ja)
Other versions
JP2013159803A (en
Inventor
細木 哲郎
哲郎 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2012021330A priority Critical patent/JP5792088B2/en
Publication of JP2013159803A publication Critical patent/JP2013159803A/en
Application granted granted Critical
Publication of JP5792088B2 publication Critical patent/JP5792088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明は、エコキュート(登録商標)におけるガスクーラーを構成する水流管用の伝熱管に好適の銅合金管に関し、特に、炭酸カルシウムを主成分とするスケールの抑制機能を維持しつつ、ガスクーラーを高性能化させるための加工性が優れた銅合金管に関する。   The present invention relates to a copper alloy tube suitable for a heat transfer tube for a water flow tube that constitutes a gas cooler in Ecocute (registered trademark), and in particular, while maintaining a function of suppressing a scale mainly composed of calcium carbonate, The present invention relates to a copper alloy tube excellent in workability for performance.

主に、ガスクーラーは、りん脱酸銅管(JIS H3300 C1220)により製造されている。また、このガスクーラーは種々の形式があり、性能向上のため水流管を下記のように加工して放熱管と組み合わせるものが多い(特許文献1乃至5)。   Mainly, the gas cooler is manufactured by a phosphorus deoxidized copper pipe (JIS H3300 C1220). In addition, there are various types of gas coolers, and in order to improve the performance, many water flow pipes are processed as follows and combined with a heat radiating pipe (Patent Documents 1 to 5).

エコキュートの構成上、なるべく高温で貯湯タンクに湯をためることが求められるため、気候などから制御される運転モードによっては、特に気温の低い冬場には、ガスクーラー内で水が流通する過程で90℃を超えて出湯されることもある。   The eco-cute structure requires hot water to be stored in the hot water storage tank at as high a temperature as possible. Depending on the operation mode controlled from the climate, etc., especially in the winter when the temperature is low, the water is circulated in the gas cooler in the process of 90 There are also cases where the water is discharged at over ℃.

使用される水の水質によっては硬度がまちまちな場合が多く、水質項目中における炭酸カルシウム硬度の高い水質(一般的には100mgCaCO3/L以上)の場合は、水温が高くなる程、炭酸カルシウムスケールを析出させる。 Depending on the quality of the water used, the hardness often varies, and in the case of water quality with a high calcium carbonate hardness in the water quality items (generally 100 mg CaCO 3 / L or more), the higher the water temperature, the calcium carbonate scale To precipitate.

ガスクーラーが高温で出湯されるモードで運転される場合、ガスクーラー中の高温部位において、炭酸カルシウムスケールが析出し、水流管内に堆積し、最終的には水流管を閉塞させ、エコキュート機器そのものの使用を不能にさせる不具合が生じることがある。   When the gas cooler is operated in a mode in which the hot water is discharged at a high temperature, calcium carbonate scale deposits and accumulates in the water flow pipe at the high temperature portion in the gas cooler, eventually clogging the water flow pipe, Problems that make it impossible to use may occur.

特に、一般家庭においても、近年の節約志向の影響で、地下水を好んで使用する家庭が増えているが、地下水にはカルシウム硬度成分の高い水質が多く、今後のエコキュートの販売拡大の妨げになる要素を含んでおり、炭酸カルシウムスケールの問題解決が急務となっている。   Especially in ordinary households, the number of households who prefer to use groundwater is increasing due to the recent saving-oriented influence, but groundwater has a lot of water with a high calcium hardness component, which hinders future sales expansion of Ecocute. There is an urgent need to solve the problem of calcium carbonate scale.

この炭酸カルシウムスケールを防止するための技術が特許文献1に開示されている。通常のガスクーラー用水流管に用いられるりん脱酸銅管(JIS H3300 C1220)は、素材として、主に平滑管若しくは内面溝付管の直管又はレベルワウンドコイル(LWC)として、ユーザーに販売され、納入される。また、水流管を通流する水に、放熱管からの熱を効率よく伝えるために、水が乱流の状態で撹拌されながら水流管内を通流することが好ましい。また、エコキュートの場合、流速が毎分1L(リットル)と遅いため、撹拌効果を出すためには、管外表面よりらせん状にディスクを押しつけて、管内表面にらせん状に連続した山を形成するコルゲート加工(特許文献2)と、同じく外表面から打痕を付けて内表面に不連続な突起を付けるディンプル加工(特許文献6)等が施される。   A technique for preventing this calcium carbonate scale is disclosed in Patent Document 1. Phosphorus deoxidized copper pipes (JIS H3300 C1220) used in ordinary gas cooler water pipes are sold to users mainly as straight pipes or level-wound coils (LWC) of smooth pipes or internally grooved pipes. Delivered. Further, in order to efficiently transfer heat from the heat radiating pipe to the water flowing through the water flow pipe, it is preferable that the water flow through the water flow pipe while being stirred in a turbulent state. In the case of EcoCute, the flow rate is as slow as 1 liter (L) per minute, so in order to produce a stirring effect, the disk is pressed spirally from the outer surface of the tube to form a continuous mountain on the inner surface of the tube. Corrugating (Patent Document 2), dimple processing (Patent Document 6), and the like, in which a dent is made from the outer surface and discontinuous protrusions are formed on the inner surface, are performed.

上記先行技術に開示された合金組成により製造した水流管に、上述のコルゲート加工又はディンプル加工を施すことにより、熱交換性能が優れ、且つスケール付着抑制効果が優れたエコキュート用ガスクーラーを得ることができる。   By applying the corrugating or dimple processing described above to the water flow tube manufactured with the alloy composition disclosed in the above prior art, it is possible to obtain an eco-cute gas cooler with excellent heat exchange performance and excellent scale adhesion suppression effect. it can.

特開2008−274421号公報JP 2008-274421 A 特開2010−112565号公報JP 2010-112565 A 特開2005−147566号公報JP 2005-147466 A 特開2003−097898号公報JP 2003-097898 A 特開2004−360974号公報JP 2004-360974 A 特開2004−190923号公報JP 2004-190923 A

上述のような加工を施す際の素材の調質は、加工性を考慮して、加熱焼鈍により軟化させた軟質材が好適であると考えられる。また、加熱焼鈍により、添加元素が材料表面に濃縮し、スケール付着抑制作用をより増大させる効果が得られることも公知である(特許文献1)。   In consideration of workability, it is considered that a soft material softened by heat annealing is suitable for the tempering of the material when performing the above-described processing. In addition, it is also known that the effect of increasing the scale adhesion suppressing action by adding additional elements to the material surface by heat annealing is obtained (Patent Document 1).

しかしながら、加工性を考慮するあまり、銅管が過度に加熱されると、結晶粒の粗大化を引き起こす。そして、加熱により表面に濃化した添加元素は、結晶粒界に、より一層集まりやすくなり、結晶粒界と結晶粒内の添加元素の濃度差から、表面を巨視的(マクロ的)に見た場合に、添加元素の不均一な状態を形成してしまうことがある。   However, considering the workability, if the copper tube is heated excessively, the crystal grains become coarse. The additive elements concentrated on the surface by heating are more likely to gather at the crystal grain boundaries, and the surface was viewed macroscopically (macroscopically) from the concentration difference between the crystal grain boundaries and the additive elements within the crystal grains. In some cases, a non-uniform state of the additive element may be formed.

添加元素の不均一な状態は、スケール付着抑制に有効な部位とそうでない部位が不均一に存在することになり、スケールの付着する部分と付着しない部分が生じてしまうことになる。図4に示すように、粗大な結晶粒の場合に、結晶粒界の近傍に集積した添加元素により、添加元素の濃度が相対的に高い領域が結晶粒界から一定の幅で形成される。また、図5に示すように、微細な結晶粒の場合も、結晶粒に集まる添加元素により、添加元素の濃度が相対的に高い領域が結晶粒界から一定の幅で形成され、この幅は、粗大結晶粒の場合と同様である。従って、微細結晶粒の場合は、添加元素の濃度が低い領域は少なく、添加元素の濃度の不均一の程度は低いが、粗大結晶粒の場合は、添加元素の濃度が高い領域と低い領域とが明確に現れ、添加元素の不均一な状態が明瞭となる。   When the additive element is in a non-uniform state, there are non-uniform portions that are effective in suppressing scale adhesion and non-uniform portions, resulting in a portion where the scale adheres and a portion where the scale does not adhere. As shown in FIG. 4, in the case of a coarse crystal grain, a region having a relatively high concentration of the additive element is formed with a certain width from the crystal grain boundary due to the additive element accumulated in the vicinity of the crystal grain boundary. In addition, as shown in FIG. 5, even in the case of fine crystal grains, a region where the concentration of the additive element is relatively high is formed from the crystal grain boundary with a certain width due to the additive elements gathered in the crystal grains. This is the same as in the case of coarse crystal grains. Therefore, in the case of fine crystal grains, there are few regions where the concentration of the additive element is low, and the degree of non-uniformity of the concentration of the additive element is low. Appears clearly, and the non-uniform state of the additive element becomes clear.

このような粗大結晶粒における状況は、スケールが付着する部分を抑制できないばかりか、不均一に表面が露出することにより、この露出部分は孔食などのような局部腐食の起点となり得るため、好ましくない。   The situation in such coarse crystal grains is not only preferable because the portion to which the scale adheres cannot be suppressed, but the exposed portion can be a starting point of local corrosion such as pitting corrosion because the surface is unevenly exposed. Absent.

本発明はかかる問題点に鑑みてなされたものであって、スケールの付着が抑制され、伝熱性能が優れた銅合金管を提供することを目的とする。   This invention is made | formed in view of this problem, Comprising: It aims at providing the copper alloy pipe | tube with which scale adhesion was suppressed and heat transfer performance was excellent.

本願第1発明に係る銅合金管は、
Sn:0.05〜3.0質量%、
P:0.004〜0.2質量%、
Zr(母相中に固溶体、単体及び/又は化合物として含有):0.005〜0.2質量%(化合物の場合はZr換算値)
を含有し、
残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、
グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのPの質量割合の最大値Ppeakと深さ1900〜2000nmのPの平均濃度P2000との差Ppeak−P2000が0.50質量%以上、25質量%以下であり、
前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのSnの質量割合の最大値Snpeakと深さ1900〜2000nmにおけるSnの平均濃度Sn2000との差Snpeak−Sn2000が0.30質量%以上、15質量%以下であり、
前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのZrの質量割合の最大値Zrpeakと深さ1900〜2000nmにおけるZrの平均濃度Zr2000との差Zrpeak−Zr2000が0.010質量%以上、3.0質量%以下であり、
平均結晶粒径が5〜25μmであり、
引張強度σが260〜450MPa
であることを特徴とする。
The copper alloy tube according to the first invention of this application is:
Sn: 0.05 to 3.0% by mass,
P: 0.004 to 0.2% by mass,
Zr (contained as solid solution, simple substance and / or compound in matrix): 0.005 to 0.2% by mass (in the case of compound, converted to Zr)
Containing
A copper alloy tube having a composition in which the balance is made of Cu and inevitable impurities,
The difference P peak -P 2000 between the maximum value P peak of the mass ratio of P from the outermost surface of the copper alloy tube to a depth of 250 nm and the average concentration P 2000 of P at a depth of 1900 to 2000 nm is determined by glow discharge luminescence surface analysis. 0.50 mass% or more and 25 mass% or less,
Difference between the maximum value Sn peak of Sn mass from the outermost surface of the copper alloy tube to a depth of 250 nm and the average Sn concentration Sn 2000 at a depth of 1900 to 2000 nm by the glow discharge luminescence surface analysis Sn peak −Sn 2000 Is 0.30 mass% or more and 15 mass% or less,
Difference Zr peak -Zr 2000 the average density Zr 2000 of Zr in maximum Zr peak and depth 1900~2000nm the weight ratio of Zr to a depth of 250nm from the outermost surface of the copper alloy tube according to the glow discharge emission surface analysis Is 0.010 mass% or more and 3.0 mass% or less,
The average grain size is 5-25 μm,
Tensile strength σ is 260 to 450 MPa
It is characterized by being.

本願第2発明に係る銅合金は、
Snと、Zn及びAlからなる群から選択された少なくとも1種の元素:合計値で0.05〜3.0質量%であると共に、Sn、Zn及びAl中のSnの割合が77.5%以上、
P:0.004〜0.2質量%、
Zr(母相中に固溶体、単体及び/又は化合物として含有):0.005〜0.2質量%(化合物の場合はZr換算値)
を含有し、
残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、
グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのPの質量割合の最大値Ppeakと深さ1900〜2000nmのPの平均濃度P2000との差Ppeak−P2000が0.50質量%以上、25質量%以下であり、
前記Snと、Zn及びAlからなる群から選択された少なくとも1種の選択元素に関し、前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでの前記Snと選択元素の合計の質量割合の最大値SZApeakと深さ1900〜2000nmにおける前記Snと選択元素の合計の平均濃度SZA2000との差SZApeak−SZA2000が0.30質量%以上、15質量%以下であり、
前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのZrの質量割合の最大値Zrpeakと深さ1900〜2000nmにおけるZrの平均濃度Zr2000との差Zrpeak−Zr2000が0.010質量%以上、3.0質量%以下であり、
平均結晶粒径が5〜25μmであり、
引張強度σが260〜450MPa
であることを特徴とする。
The copper alloy according to the second invention of the present application is
Sn and at least one element selected from the group consisting of Zn and Al: the total value is 0.05 to 3.0% by mass , and the ratio of Sn in Sn, Zn and Al is 77.5% that's all,
P: 0.004 to 0.2% by mass,
Zr (contained as solid solution, simple substance and / or compound in matrix): 0.005 to 0.2% by mass (in the case of compound, converted to Zr)
Containing
A copper alloy tube having a composition in which the balance is made of Cu and inevitable impurities,
The difference P peak -P 2000 between the maximum value P peak of the mass ratio of P from the outermost surface of the copper alloy tube to a depth of 250 nm and the average concentration P 2000 of P at a depth of 1900 to 2000 nm is determined by glow discharge luminescence surface analysis. 0.50 mass% or more and 25 mass% or less,
With respect to at least one selected element selected from the group consisting of Sn and Zn and Al, the total of the Sn and selected elements from the outermost surface of the copper alloy tube to a depth of 250 nm by the glow discharge luminescence surface analysis. The difference SZA peak -SZA 2000 between the maximum value SZA peak of the mass ratio and the average concentration SZA 2000 of the Sn and the selected element at a depth of 1900 to 2000 nm is 0.30% by mass or more and 15% by mass or less.
Difference Zr peak -Zr 2000 the average density Zr 2000 of Zr in maximum Zr peak and depth 1900~2000nm the weight ratio of Zr to a depth of 250nm from the outermost surface of the copper alloy tube according to the glow discharge emission surface analysis Is 0.010 mass% or more and 3.0 mass% or less,
The average grain size is 5-25 μm,
Tensile strength σ is 260 to 450 MPa
It is characterized by being.

これらの銅合金管において、耐力σ0.5と引張強度σとの比(降伏比)σ0.5/σが、0.850≦σ0.5/σ≦0.985であることが好ましい。また、これらの銅合金管は、例えば、内面に複数の溝が形成された内面溝付管である。 In these copper alloy tubes, the ratio (yield ratio) σ 0.5 / σ of the proof stress σ 0.5 and the tensile strength σ is preferably 0.850 ≦ σ 0.5 /σ≦0.985. . Further, these copper alloy tubes are, for example, inner surface grooved tubes in which a plurality of grooves are formed on the inner surface.

本発明によれば、銅合金管における水流に接触する面のスケールの付着を抑制することができ、伝熱管として長寿命であり、伝熱性能が優れた銅合金管を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the adhesion of the scale of the surface which contacts the water flow in a copper alloy pipe | tube can be suppressed, and a copper alloy pipe | tube with a long life as a heat transfer pipe | tube and excellent in heat transfer performance can be obtained.

グロー放電発光表面分析によるPの分析結果を示すグラフ図である。It is a graph which shows the analysis result of P by glow discharge luminescence surface analysis. グロー放電発光表面分析によるSnの分析結果を示すグラフ図である。It is a graph which shows the analysis result of Sn by a glow discharge luminescence surface analysis. グロー放電発光表面分析によるZrの分析結果を示すグラフ図である。It is a graph which shows the analysis result of Zr by glow discharge luminescence surface analysis. 粗大な結晶粒の場合における添加元素の結晶粒界への濃縮を示す図である。It is a figure which shows the concentration to the crystal grain boundary of the additive element in the case of a coarse crystal grain. 微細な結晶粒の場合における添加元素の結晶粒界への濃縮を示す図である。It is a figure which shows the concentration to the crystal grain boundary of the addition element in the case of a fine crystal grain.

以下、本発明の実施形態について、詳細に説明する。先ず、本願第1発明の銅合金管の組成における成分添加理由及び組成限定理由について説明する。   Hereinafter, embodiments of the present invention will be described in detail. First, the reason for adding the component and the reason for limiting the composition in the composition of the copper alloy tube of the first invention of the present application will be described.

「Sn:0.05乃至3.0質量%」
Snは、これを銅合金管に添加することにより、銅合金管に対し、スケールが付着することを抑制する機能を有する。Sn含有量が0.05質量%を下回ると、たとえ添加元素を表面に濃縮させる熱処理が施されても、Snによるスケール付着抑制機能が不十分となる。Snが3.0質量%を超えると、引張強度が必要以上に上昇し、コルゲート加工などの加工性を劣化させる。また、銅合金管の表面に存在するSn酸化物の量が多くなり、ろう材の濡れ広がり性が低下する。よって、Snは0.05乃至3.0質量%含有する。
“Sn: 0.05 to 3.0 mass%”
Sn has a function of preventing the scale from adhering to the copper alloy tube by adding it to the copper alloy tube. When the Sn content is less than 0.05% by mass, even if a heat treatment for concentrating the additive element on the surface is performed, the function of suppressing the adhesion of scale due to Sn becomes insufficient. When Sn exceeds 3.0 mass%, tensile strength will rise more than necessary and workability, such as corrugating, will deteriorate. Further, the amount of Sn oxide present on the surface of the copper alloy tube is increased, and the wettability of the brazing material is lowered. Therefore, Sn is contained in an amount of 0.05 to 3.0% by mass.

「P:0.004乃至0.2質量%」
Pは通常、溶解工程及び鋳造工程で脱酸剤として添加されるものであるが、Pを添加することにより、Pは銅合金管の表面を負に帯電させると考えられ、銅合金管の表面に対するスケールの生成及び付着を抑制する効果がある。しかし、Pが0.2質量%を超えると、鋳造工程において欠陥が生じるようになり、その後の工程を経ても品質を維持できなくなる。また、Pが0.2質量%を超えると、熱処理後の表面に濃縮した状態において、銅合金管の耐食性にも影響し始める。Pが0.004質量%未満の場合は、たとえ添加元素を表面に濃縮させる熱処理が施されても、そのスケール抑制効果は期待できない。
“P: 0.004 to 0.2 mass%”
P is usually added as a deoxidizer in the melting process and the casting process, but by adding P, P is considered to negatively charge the surface of the copper alloy tube, and the surface of the copper alloy tube There is an effect of suppressing the generation and adhesion of scale to the surface. However, if P exceeds 0.2% by mass, defects are generated in the casting process, and the quality cannot be maintained even after the subsequent process. On the other hand, when P exceeds 0.2% by mass, the corrosion resistance of the copper alloy tube starts to be affected in a state of being concentrated on the surface after the heat treatment. When P is less than 0.004% by mass, the effect of suppressing the scale cannot be expected even if heat treatment for concentrating the additive element on the surface is performed.

「Zr(母相中に固溶体、単体及び/又は化合物として含有):0.005乃至0.2質量%(化合物の場合はZr換算値)」
Zrも銅合金管に対するスケール付着防止効果を有するが、このZrの含有量が0.005質量%を下回ると、スケール付着防止効果が得られない。また、Zr含有量が0.2質量%を超えると、引張強度が必要以上に上昇し、コルゲート加工などの加工性を劣化させる。また、銅合金管の表面に存在するZr酸化物の量が多くなり、ろう材の濡れ広がり性が低下する。
“Zr (contained as solid solution, simple substance and / or compound in the matrix): 0.005 to 0.2% by mass (in the case of a compound, converted to Zr)”
Zr also has an effect of preventing scale adhesion to the copper alloy tube, but if the content of Zr is less than 0.005% by mass, the effect of preventing scale adhesion cannot be obtained. On the other hand, if the Zr content exceeds 0.2% by mass, the tensile strength increases more than necessary, and workability such as corrugating is deteriorated. In addition, the amount of Zr oxide present on the surface of the copper alloy tube is increased, and the wettability of the brazing material is lowered.

「銅合金部材表面からのグロー放電発光表面分析において、最表面から深さ250nmまでのPの質量割合の最大値PPeakと、深さ1900〜2000nmにおけるPの平均濃度P2000との差PPeak−P2000が0.50質量%以上、25質量%以下」
前述の組成範囲で添加されたPの添加量によらず、最表面から深さ250nmまでの領域に現れるP分布のピークPPeakが、バルクのベース濃度とみなす1900〜200nmにおけるPの平均濃度P2000との差において、0.50質量%以上あれば、スケール付着を抑制する効果が十分得られる。この差が0.50質量%未満であると、その効果は不十分となる。また、前記差が25質量%を超えると、表面状態に起因する腐食(例えば孔食)に対する耐食性が劣化する。
“Difference between the maximum value P Peak of the mass ratio of P from the outermost surface to a depth of 250 nm and the average concentration P 2000 of P at a depth of 1900 to 2000 nm in glow discharge light emitting surface analysis from the surface of the copper alloy member P Peak -P 2000 is 0.50 mass% or more and 25 mass% or less "
Regardless of the amount of P added in the above composition range, the peak P Peak of the P distribution appearing in the region from the outermost surface to a depth of 250 nm is the average concentration P of P at 1900 to 200 nm, which is regarded as the base concentration of the bulk. If the difference from 2000 is 0.50% by mass or more, the effect of suppressing scale adhesion is sufficiently obtained. If this difference is less than 0.50% by mass, the effect becomes insufficient. On the other hand, when the difference exceeds 25% by mass, the corrosion resistance against corrosion (for example, pitting corrosion) due to the surface state deteriorates.

「銅合金部材表面からのグロー放電発光表面分析において、最表面から深さ250nmまでのSnの質量割合の最大値SnPeakと、深さ1900〜2000nmにおけるSnの平均濃度Sn2000との差SnPeak−Sn2000が0.30質量%以上、15質量%以下」
前述の組成範囲で添加されたSnの添加量によらず、最表面から深さ250nmまでの領域に現れるSn分布のピークSnPeakが、バルクのベース濃度とみなす1900〜200nmにおけるSnの平均濃度Sn2000との差において、0.30質量%以上あれば、スケール付着を抑制する効果が十分得られる。この差が0.30質量%未満であると、その効果は不十分となる。また、前記差が15質量%を超えると、熱交換器製作工程でろう付け接合される際に、ろう材の濡れ拡がり性が低下する。
In glow discharge emission surface analysis from "copper alloy member surface, the difference between Sn Peak of the maximum value Sn Peak mass ratio of Sn to a depth of 250nm from the outermost surface, and the average concentration Sn 2000 of Sn in depth 1900~2000nm -Sn 2000 is 0.30 mass% or more and 15 mass% or less "
Regardless of the amount of Sn added in the composition range described above, the Sn distribution peak Sn Peak appearing in the region from the outermost surface to a depth of 250 nm is the average Sn Sn concentration at 1900 to 200 nm regarded as the bulk base concentration. If the difference from 2000 is 0.30% by mass or more, the effect of suppressing scale adhesion can be sufficiently obtained. If this difference is less than 0.30% by mass, the effect becomes insufficient. Moreover, when the said difference exceeds 15 mass%, when brazing and joining in a heat exchanger manufacturing process, the wetting spreadability of a brazing material will fall.

「銅合金部材表面からのグロー放電発光表面分析において、最表面から深さ250nmまでのZrの質量割合の最大値ZrPeakと、深さ1900〜2000nmにおけるZrの平均濃度Zr2000との差ZrPeak−Zr2000が0.010質量%以上、3.0質量%以下。」
前述の組成範囲で添加されたZrの添加量によらず、最表面から深さ250nmまでの領域に現れるZr分布のピークZrPeakが、バルクのベース濃度とみなす1900〜200nmにおけるZrの平均濃度Zr2000との差において0.010質量%以上あれば、スケール付着を抑制する効果が十分得られる。この差が0.010質量%未満であると、その効果は不十分となる。前記差が3質量%を超えると、Zr酸化物の量が多くなり、ろう材の濡れ広がり性が低下する。
“Difference between the maximum value Zr Peak of the mass ratio of Zr from the outermost surface to a depth of 250 nm and the average concentration Zr 2000 of Zr at a depth of 1900 to 2000 nm in the glow discharge emission surface analysis from the surface of the copper alloy member Zr Peak -Zr 2000 is 0.010 mass% or more and 3.0 mass% or less. "
Regardless of the amount of Zr added in the composition range described above, the peak Zr Peak of Zr distribution appearing in the region to a depth of 250nm from the outermost surface, the average concentration of Zr Zr in 1900~200nm regarded as base density of bulk If it is 0.010 mass% or more in the difference with 2000 , the effect which suppresses scale adhesion is fully acquired. If this difference is less than 0.010% by mass, the effect is insufficient. When the difference exceeds 3% by mass, the amount of Zr oxide increases and the wetting and spreading property of the brazing material decreases.

「平均結晶粒径が5〜25μm」
銅に添加される添加元素は、一般的にその結晶粒界近傍と結晶粒内において異なる濃度分布を示す。材料表面を巨視的に見た場合に、平均結晶粒径が25μmを超えると、結晶粒界と結晶粒内との添加元祖の不均一な分布が顕著となり、所望のスケール付着抑制機能が得られなくなる。また、平均結晶粒径が25μmを超えると、材料強度的にも軟らかくなり過ぎ、コルゲート加工などの2次加工性を悪化させる。一方、平均結晶粒径が5μm未満の場合は、引張強度の抑制が困難になり、同様に、コルゲート加工等の2次加工性が劣化する。
“Average crystal grain size is 5-25 μm”
Additive elements added to copper generally exhibit different concentration distributions near the grain boundaries and within the crystal grains. When the surface of the material is viewed macroscopically, if the average crystal grain size exceeds 25 μm, the non-uniform distribution of the origin of addition between the crystal grain boundaries and the crystal grains becomes prominent, and the desired scale adhesion suppression function is obtained. Disappear. On the other hand, if the average crystal grain size exceeds 25 μm, the material strength becomes too soft, and the secondary workability such as corrugating is deteriorated. On the other hand, when the average crystal grain size is less than 5 μm, it is difficult to suppress the tensile strength, and similarly, secondary workability such as corrugating is deteriorated.

「引張強度σが260〜450MPa」
銅合金管の引張強度σが260MPaを下回ると、コルゲート加工などの2次加工性を劣化させる。引張強度σが450MPaを超えると、例えば、素材が硬過ぎて、加工がしにくくなり、加工部分、例えばコルゲート加工における管内表面の山高さ等の寸法を十分確保することができなくなる。
“Tensile strength σ is 260 to 450 MPa”
When the tensile strength σ of the copper alloy tube is less than 260 MPa, secondary workability such as corrugating is deteriorated. If the tensile strength σ exceeds 450 MPa, for example, the material is too hard and difficult to process, and it is impossible to ensure sufficient dimensions such as the height of the processed portion, for example, the height of the inner surface of the pipe in corrugating.

次に、本願第2発明の銅合金管の組成における成分添加理由及び組成限定理由について説明する。この第2発明は、第1発明の添加元素Snに加えて、Zn及びAlからなる群から選択された少なくとも1種の元素を銅合金管に添加する。   Next, the reason for adding the component and the reason for limiting the composition in the composition of the copper alloy tube of the second invention of the present application will be described. In the second invention, in addition to the additive element Sn of the first invention, at least one element selected from the group consisting of Zn and Al is added to the copper alloy tube.

「Snと、Zn及びAlからなる群から選択された少なくとも1種の元素:合計値で0.05〜3.0質量%」
Zn及びAlは、Snと同様に、銅合金管にスケール付着抑制機能を付与する。Snに加えてZn及び/又はAlの含有量の合計が0.05質量%を下回ると、たとえ添加元素を銅合金管表面に濃縮させる熱処理が施されても、スケール付着抑制機能が不十分となる。Snと、Zn及び/又はAlの合計値が3.0質量%を超えると、引張強度が必要以上に上昇し、コルゲート加工などの加工性を悪化させると共に、銅合金管の表面に存在するSn,Zn及びAlの酸化物の量が多くなり、ろう材の濡れ広がり性が低下する。
“At least one element selected from the group consisting of Sn, Zn and Al: 0.05 to 3.0 mass% in total”
Zn and Al, like Sn, impart a scale adhesion inhibiting function to the copper alloy tube. If the total content of Zn and / or Al in addition to Sn is less than 0.05% by mass, even if a heat treatment is performed to concentrate the additive elements on the surface of the copper alloy tube, the function of inhibiting scale adhesion is insufficient. Become. When the total value of Sn and Zn and / or Al exceeds 3.0% by mass, the tensile strength increases more than necessary, and the workability such as corrugating is deteriorated, and Sn existing on the surface of the copper alloy tube is present. , Zn and Al oxides increase and the wetting and spreading properties of the brazing material decrease.

「Snに加えて、Zn及びAlの少なくともいずれか1種を添加する場合(以下、SnとZn及び/又はAlの合計をSZAという)、銅合金部材表面からのグロー放電発光表面分析において、最表面から深さ250nmまでのSZAの質量割合の最大値SZAPeakと、深さ1900〜2000nmにおけるSZAの平均濃度SZA2000の差SZAPeak−SZA2000が0.30質量%以上、25質量%以下」
前述の組成範囲で添加されたSZAの合計の添加量によらず、最表面から深さ250nmまでの領域に現れるSZAの合計の分布のピークSZAPeakが、バルクのベース濃度とみなす1900〜200nmにおけるSZAの平均濃度SZA2000との差において、0.30質量%以上あれば、スケール付着を抑制する効果が十分得られる。前記差が0.30質量%未満であると、その効果は不十分となる。前記差が25質量%を超えると、表面状態に起因する腐食(例えば孔食)に対する耐食性に影響が出るようになる。
“When at least one of Zn and Al is added in addition to Sn (hereinafter, the total of Sn, Zn and / or Al is referred to as SZA), in the glow discharge emission surface analysis from the surface of the copper alloy member, The difference SZA Peak- SZA 2000 between the maximum value SZA Peak of the mass ratio of SZA from the surface to a depth of 250 nm and the average concentration SZA 2000 of SZA at a depth of 1900 to 2000 nm is 0.30 mass% or more and 25 mass% or less.
Regardless of the total amount of SZA added in the aforementioned composition range, the peak SZA Peak of the total distribution of SZA appearing in the region from the outermost surface to a depth of 250 nm is considered to be a bulk base concentration at 1900 to 200 nm. If the difference from the average concentration of SZA SZA 2000 is 0.30% by mass or more, the effect of suppressing the scale adhesion is sufficiently obtained. If the difference is less than 0.30% by mass, the effect is insufficient. When the difference exceeds 25% by mass, the corrosion resistance against corrosion (for example, pitting corrosion) due to the surface state is affected.

本願第2発明におけるその他の構成は本願第1発明と同様である。次に、好ましい構成について説明する。   Other configurations in the second invention of the present application are the same as those of the first invention of the present application. Next, a preferable configuration will be described.

「降伏比σ0.5/σが、0.850≦σ0.5/σ≦0.985」
コルゲート加工及びディンプル加工などの2次加工に際し、水の流れる流路を確保するために芯金を入れて加工を実施する場合がある。耐力値σ0.5と引張強度σとの比として得られる降伏比σ0.5/σが一定の範囲内であると、加工された後の材料のスプリングバックを利用でき、芯金が銅合金管内でカシメられてしまうことがなく、芯金が抜けやすくなるので好適である。耐力値σ0.5が一定値以下で、降伏比σ0.5/σが0.850を下回ると、加工された銅管が芯金にカシメられてしまい、芯金が抜けない不具合が生じやすくなる。降伏比σ0.5/σが0.985を超えると、2次加工時のスプリングバックが大きくなり、必要な寸法が確保できなくなる可能性がある。
“Yield ratio σ 0.5 / σ is 0.850 ≦ σ 0.5 /σ≦0.985”
In secondary processing such as corrugation processing and dimple processing, processing may be performed with a cored bar inserted in order to ensure a flow path for water. When the yield ratio σ 0.5 / σ obtained as a ratio of the proof stress value σ 0.5 and the tensile strength σ is within a certain range, the spring back of the material after processing can be used, and the core metal is copper. This is preferable because the metal core is not squeezed in the alloy tube and the cored bar is easily removed. If the proof stress σ 0.5 is less than a certain value and the yield ratio σ 0.5 / σ is less than 0.850, the processed copper tube will be squeezed into the core bar, causing a problem that the core bar will not come off. It becomes easy. If the yield ratio σ 0.5 / σ exceeds 0.985, the spring back at the time of secondary processing becomes large, and the necessary dimensions may not be ensured.

なお、本願第1発明及び第2発明の銅合金管は、その内表面に一定のねじれ角をもつ螺旋溝が形成された内面溝付管とすることができる。   The copper alloy tubes of the first and second inventions of the present application can be internally grooved tubes in which spiral grooves having a constant twist angle are formed on the inner surface.

次に、上述の銅合金管の製造方法について説明する。添加元素が有効に働く表面への濃縮作用を促しつつ、結晶粒を成長させない焼鈍方法として、例えば一酸化炭素2体積%及び水素4体積%と窒素93.999体積%に混合された還元性ガス、又は窒素99.999%の不活性ガスに、40ppmの酸素を混合したガスの雰囲気中で、雰囲気温度を450〜550℃とし、加熱時間を20〜600分として、熱処理することにより、調質することができる。又は、高温で、且つ短時間での熱処理によれば、同様に添加元素が有効に働く表面への濃縮作用を促しつつ、結晶粒を成長させずに焼鈍を行うことができる。具体的には、前述と同様のガス雰囲気中で、高周波誘導加熱方式又は通電加熱方式等により、ワーク温度が700〜950℃となるように加熱電圧を選択し、加熱時間1〜30秒間での熱処理することが可能である。この方式によれば、結晶粒を粗大化させずに、銅合金管材料をある程度の硬さまで軟質化できるので、表面への添加元素の不均一な濃縮を引き起こすことなく、前述の2次加工をする場合でも、その良好な加工性を確保することができる。   Next, a method for manufacturing the above-described copper alloy tube will be described. As an annealing method that promotes concentration to the surface where the additive element works effectively and does not grow crystal grains, for example, reducing gas mixed with 2% by volume of carbon monoxide, 4% by volume of hydrogen and 93.999% by volume of nitrogen. Or in a gas atmosphere in which 40 ppm of oxygen is mixed with an inert gas of 99.999% nitrogen, the temperature of the atmosphere is set to 450 to 550 ° C., and the heating time is set to 20 to 600 minutes. can do. Alternatively, according to the heat treatment at a high temperature and in a short time, the annealing can be performed without growing the crystal grains while promoting the concentration action on the surface where the additive element works effectively. Specifically, in the same gas atmosphere as described above, the heating voltage is selected so that the workpiece temperature becomes 700 to 950 ° C. by the high frequency induction heating method or the current heating method, and the heating time is 1 to 30 seconds. Heat treatment is possible. According to this method, since the copper alloy tube material can be softened to a certain degree of hardness without coarsening the crystal grains, the secondary processing described above can be performed without causing non-uniform concentration of the additive elements on the surface. Even if it does, the favorable workability can be ensured.

更に、前述の加工に際し、素材にある程度の硬さが必要な場合は、更に加工率(断面減少率)10〜20%程度の抽伸工程をもう一度入れることで、結晶粒径が無用に小さくなることなく、加工硬化により、強度を向上させることができる。この素材にある程度硬さが必要な加工として、コルゲート加工がある。このコルゲート加工においては、管軸に垂直な方向に、例えば3方向から転造ディスクを押し当て、遊星回転させながら、3条の螺旋溝(表面への螺旋状の山)を形成する。このときに、素材の調質が軟らかすぎると、素材にディスクが押しあてられた際に素材に曲がりが生じ、加工を進めて行くと、材料にうねりが生じ、途中で加工ができなくなるなど不具合が生じる。   Furthermore, if the material requires a certain degree of hardness in the above-described processing, the crystal grain size can be reduced unnecessarily by performing another drawing step with a processing rate (section reduction rate) of about 10 to 20%. However, the strength can be improved by work hardening. Corrugation is a process that requires a certain degree of hardness in this material. In this corrugating process, three spiral grooves (helical peaks on the surface) are formed while pressing a rolling disk from three directions, for example, in a direction perpendicular to the tube axis and rotating the planet. At this time, if the tempering of the material is too soft, the material will bend when the disc is pressed against the material, and if you proceed with processing, the material will swell and you will not be able to process it in the middle Occurs.

次に、本発明の効果を実証するための試験結果について説明する。先ず、添加元素の母材の表面近傍における深さ方向分布の測定方法について説明する。この深さ方向分布は、GD−OES分析(グロー放電発光表面分析装置:Glow Discharge Optical Emission Spectrometry)により行うことができる。   Next, test results for demonstrating the effects of the present invention will be described. First, a method for measuring the distribution in the depth direction in the vicinity of the surface of the base material of the additive element will be described. This distribution in the depth direction can be performed by GD-OES analysis (Glow Discharge Optical Emission Spectrometry).

GD−OES(グロー放電発光表面分析装置:Glow Discharge Optical Emission Spectrometry)は数十μmの深い領域から極表面(数nm乃至数十nm)の領域を短持間で一括分析できる最新の分析装置である。発光を利用した分析装置であるため感度が高く、H、C、N、O等の軽元素も分析可能な手法である。   GD-OES (Glow Discharge Optical Emission Spectrometer) is the latest analyzer that can analyze the region from several tens of μm deep region to the extreme surface (several nm to several tens of nm) in a short time. is there. Since the analyzer uses light emission, it has high sensitivity and can analyze light elements such as H, C, N, and O.

原子濃度はGD−OES装置(堀場社製GD−PROFILER2型GD−OES)で測定し、得られた質量濃度を、予め測定した標準試料(C:0.403質量%及び0.837質量%、O:47.07質量%、P:0.0044質量%及び0.0595質量%、Cu:0.36質量%及び99.99質量%、Zr:0.0029質量%及び0.0051質量%、Sn:0.0067質量%及び0.0041質量%)の原子濃度及び質量濃度によって、原子濃度に換算する。   The atomic concentration was measured with a GD-OES apparatus (GD-PROFILER 2 type GD-OES manufactured by Horiba), and the obtained mass concentration was measured in advance using standard samples (C: 0.403 mass% and 0.837 mass%, O: 47.07 mass%, P: 0.0044 mass% and 0.0595 mass%, Cu: 0.36 mass% and 99.99 mass%, Zr: 0.0029 mass% and 0.0051 mass%, (Sn: 0.0067 mass% and 0.0041 mass%) atomic concentration and mass concentration are converted into atomic concentrations.

測定深さは、GD−OES装置(堀場社製GD−PROFILER2型GD−OES)で測定し、得られたスパッタ時間を、予め測定した標準試料のスパッタ時間、及び表面粗さ計によって測定したスパッタクレータ深さによって、測定深さに換算する。なお、表面粗さ計は段差標準試料(9090ű5%)により校正されたものを用いる。   The measurement depth was measured with a GD-OES apparatus (GD-PROFILER 2 type GD-OES manufactured by Horiba), and the sputter time obtained was measured with a pre-measured standard sample sputter time and a surface roughness meter. Convert to measurement depth by crater depth. Note that a surface roughness meter calibrated with a step standard sample (9090 ± 5%) is used.

GD−OES装置(堀場社製GD−PROFILER2型GD−OES)による分析条件は以下のとおりである。
分析モード :ノーマルスパッタ
アノード径(分析面積):φ4mm
放電電力 :35W
Arガス圧 :600Pa
The analysis conditions using a GD-OES apparatus (GD-PROFILER type 2 GD-OES manufactured by Horiba) are as follows.
Analysis mode: Normal sputter anode diameter (analysis area): φ4mm
Discharge power: 35W
Ar gas pressure: 600 Pa

上記GD−OES装置を用いて、GD−OES分析を行った。先ず、0.06質量%のP、0.03質量%のZr及び0.66質量%のSnを含有し、残部がCuと不可避的不純物からなる組成を有し、外径が12.7mm、肉厚が0.8mm、長さが50mmの銅合金管(調質3/4H材)を製作した。所定のサイズまで抽伸加工された素材を、誘導加熱炉により、一酸化炭素が2体積%、水素が4体積%、窒素が93.999体積%に混合された還元性ガスに40ppmの酸素を混合した雰囲気中で、一定の加熱電圧出力で焼鈍した後、所定の加工率(断面減少率)で抽伸加工して、引張強度が350MPaの調質材になるようにした。銅合金管の平均結晶粒径は、管を縦割りして、管軸をとおる断面を出現させ、この管軸を含む断面を鏡面に研磨した後、エッチングにより結晶組織を出現させ、金属顕微鏡により観察し、JIS・H0501−6.比較法により評価したところ、10μmであった。   GD-OES analysis was performed using the GD-OES apparatus. First, it contains 0.06% by mass of P, 0.03% by mass of Zr and 0.66% by mass of Sn, and the balance is composed of Cu and inevitable impurities, the outer diameter is 12.7 mm, A copper alloy tube (tempered 3 / 4H material) having a wall thickness of 0.8 mm and a length of 50 mm was produced. The material drawn to the specified size is mixed with a reducing gas containing 2% by volume of carbon monoxide, 4% by volume of hydrogen and 93.999% by volume of nitrogen in an induction heating furnace with 40ppm oxygen. In the atmosphere, after annealing at a constant heating voltage output, drawing was performed at a predetermined processing rate (cross-sectional reduction rate) so that a tempered material having a tensile strength of 350 MPa was obtained. The average crystal grain size of the copper alloy tube is obtained by vertically dividing the tube so that a cross section passing through the tube axis appears. After the cross section including this tube axis is polished to a mirror surface, a crystal structure appears by etching. Observe, JIS H0501-6. When evaluated by a comparative method, it was 10 μm.

また、上記銅合金管を管軸方向に半割りした後、油圧プレスを用いて銅管を平坦にし、管の内表面を分析に供して、GD−OES分析を行った。この分析結果を図1乃至3に示す。GD−OES分析の指定元素はCu、P、Sn及びZrとした。図1はPの分析結果、図2はSnの分析結果、図3はZrの分析結果を示す。図1乃至3より、深さ約200〜250nmの部位から最表面にかけてP濃度,Sn濃度及びZr濃度の立ち上がりが認められ、最表面より深さ250nmまでに認められる質量濃度の最大値Xpeak(Xは各添加元素の元素記号)は、Pが16.03質量%、Snが2.72質量%、Zrが0.081質量%であった。また、深さ1900〜2000nmにおける平均濃度X2000(Xは各添加元素の元素記号)は、Pが0.062質量%、Snが0.66質量%、Zrが0.029質量%であった。このときの前記Xpeakと前記X2000との差は、夫々、Pが15.96質量%、Snが2.06質量%、Zrが0.052質量%であった。このようにして、銅合金管の表面からの元素分布を求めることができる。 Further, after the copper alloy tube was divided in half in the tube axis direction, the copper tube was flattened using a hydraulic press, and the inner surface of the tube was subjected to analysis to perform GD-OES analysis. The analysis results are shown in FIGS. Designated elements for GD-OES analysis were Cu, P, Sn and Zr. FIG. 1 shows the analysis result of P, FIG. 2 shows the analysis result of Sn, and FIG. 3 shows the analysis result of Zr. 1 to 3, rising of P concentration, Sn concentration and Zr concentration is recognized from a portion having a depth of about 200 to 250 nm to the outermost surface, and the maximum value X peak of the mass concentration recognized from the outermost surface to a depth of 250 nm is observed. X is an element symbol of each additive element. P was 16.03 mass%, Sn was 2.72 mass%, and Zr was 0.081 mass%. The average concentration X 2000 at a depth of 1900 to 2000 nm (X is an element symbol of each additive element) was 0.062 mass% for P, 0.66 mass% for Sn, and 0.029 mass% for Zr. . At this time, the difference between the X peak and the X 2000 was 15.96 mass% for P, 2.06 mass% for Sn, and 0.052 mass% for Zr, respectively. In this way, the element distribution from the surface of the copper alloy tube can be obtained.

以下、本発明の効果を実証するために、本発明の実施例の特性について、本発明の範囲から外れる比較例と対比して説明する。GD−OES分析からの読み取りによるXpeakとX2000(X:各種添加元素)との差、Xpeak−X2000の値が、各元素ごとに規定される値以上の場合を○,規定値未満の場合を×として、各元素のGD−OES分析結果からの読み取り値の欄に記載した。 Hereinafter, in order to demonstrate the effect of the present invention, the characteristics of the examples of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention. Difference between X peak and X 2000 (X: various additive elements) read from GD-OES analysis, X peak −X 2000 value is more than the value specified for each element, ○, less than specified value In the case of, “x” is indicated, and the result is described in the column of the reading value from the GD-OES analysis result of each element.

結晶粒径の測定方法は、JIS H0501−6.比較法に依拠した。   The measuring method of the crystal grain size is JIS H0501-6. Relying on comparative methods.

<スケール付着評価方法>
スケール付着量の評価方法は市販の家庭用エコキュート実機システムを用い、実際にスケールが付着し易く、比較的硬度が高い水質である神奈川県秦野市の水道水を用いて、約6ヵ月間の実機運転を実施した。下記表1に、評価に供した秦野市水の水質分析結果を示す。
<Scale adhesion evaluation method>
The scale adherence evaluation method uses a commercially available eco-cute machine system for home use, and the actual machine for about 6 months using tap water from Hadano City, Kanagawa Prefecture, which is actually easy to attach scale and has a relatively high water quality. Driving was carried out. Table 1 below shows the results of water quality analysis of Hadano City water used for evaluation.

Figure 0005792088
Figure 0005792088

市販のエコキュートはタンクユニットとヒートポンプユニットに分かれているが、評価には水道水をタンクユニットに通さずにヒートポンプユニットに直接配管し、ヒートポンプユニットから流量1L/minで常に90℃の高温水が出湯されるよう、コンピューター制御により運転条件を設定した。   Commercially available EcoCute is divided into a tank unit and a heat pump unit. For evaluation, tap water is not directly passed through the tank unit, but piped directly to the heat pump unit. The operating conditions were set by computer control.

熱交換器部分には自作の2重管式熱交換器を製作し、ヒートポンプユニット本体の外部に熱交換器を配置できるように、通水及び冷媒配管を変更した。また、試験毎に熱交換器を交換できるように、機械式継手により通水及び冷媒配管を接続し、必要な個所には高気密高耐圧バルブを設けた。   A self-made double pipe heat exchanger was manufactured in the heat exchanger part, and water flow and refrigerant piping were changed so that a heat exchanger could be arranged outside the heat pump unit body. In addition, water and refrigerant pipes were connected by mechanical joints so that the heat exchanger could be replaced for each test, and high airtight and high pressure resistant valves were provided where necessary.

熱交換器は、外径が15.88mm、肉厚が1.0mmの外管内に、外径が12.7mm、肉厚が1.5mmの内管を挿入した全長15mの2重管構造をなす2重管式熱交換器である。この2重管式熱交換器の外管と内管との間の環状部に、冷媒を通流させ、内管の内部に、試験水を通流させた。スケールが付着する接水部となる内管を、実施例及び比較例の供試材として、その特性を評価した。   The heat exchanger has a double-pipe structure with a total length of 15 m in which an inner tube with an outer diameter of 12.7 mm and a wall thickness of 1.5 mm is inserted into an outer tube with an outer diameter of 15.88 mm and a wall thickness of 1.0 mm. This is a double pipe heat exchanger. The refrigerant was passed through the annular part between the outer pipe and the inner pipe of the double pipe heat exchanger, and the test water was passed through the inner pipe. The characteristics of the inner tube, which becomes the wetted part to which the scale adheres, were evaluated as test materials for Examples and Comparative Examples.

運転パターンはタイマーにより制御した。1日8時間だけ決まった時間に連続運転させ、これを180日間(6か月)継続した。   The driving pattern was controlled by a timer. The operation was continued for a fixed time of 8 hours per day and continued for 180 days (6 months).

スケール付着量の評価方法は、2重管式熱交換器の試験前後の重量測定により行った。試験前に、ヒートポンプユニットに接続する前の状態で重量を計測し、接続して試験を実施した後、取り外し、十分に乾燥させた後、再度重量を計測した。試験前後の重量の差を、試験中に付着したスケールの量として評価した。   The evaluation method of the amount of scale adhesion was performed by weight measurement before and after the test of the double pipe heat exchanger. Before the test, the weight was measured in a state before being connected to the heat pump unit, and after connecting and carrying out the test, the weight was measured again after being removed and sufficiently dried. The difference in weight before and after the test was evaluated as the amount of scale attached during the test.

通水部には、りん脱酸銅管(JIS H3300 C1220)焼鈍材を使用して、2重管式熱交換器を製作したものを使用して、上述の試験を実施し、試験終了後のスケール付着量を測定したところ、約300gであった。この通水部との比較において、本発明の実施例及び比較例の銅合金管のスケール付着量を評価し、スケール付着量が通水部の100g以下(1/3以下)であった場合を効果あり(○)とし、100gを超える(1/3を超える)場合を効果不十分(×)とした。   For the water flow part, the above test was carried out using a pipe heat exchanger manufactured using a phosphorus deoxidized copper pipe (JIS H3300 C1220) annealed material. When the amount of scale attached was measured, it was about 300 g. In comparison with this water flow part, the scale adhesion amount of the copper alloy pipe of the example of the present invention and the comparative example was evaluated, and the case where the scale adhesion quantity was 100 g or less (1/3 or less) of the water flow part. Effective (O), and the case of exceeding 100 g (exceeding 1/3) was regarded as insufficient effect (x).

<加工性評価試験1>
実施例及び比較例の銅合金管供試材(外径12.7mm、肉厚0.8mm、長さ3000mm)を使用してコルゲート加工を実施し、その加工性を評価した。転造加工工程において、回転する供試材が、過度に変形して管の潰れ又はうねりを発生させ、バタつき、アバレを起こして加工が継続不可となった場合は×の判定とした。転造加工工程が最後まで行えた場合、形状調査により管内面側のコルゲート加工山高さが規定通り出ているかどうかで判断した。製作するコルゲート管の仕様は、下記表2のとおりとした。加工後の供試材を管軸方向に半割し、樹脂で埋め込んでエメリー紙で#2000まで研磨して、管軸平行断面を観察し、コルゲート加工部の寸法を光学顕微鏡を用いて測定した。加工工程作業において、調整により仕様に示す寸法公差の範囲内に収まった場合は○の判定、どのように調整しても仕様に示す寸法公差範囲内に収まらない場合は×の判定とした。
<Workability evaluation test 1>
Corrugation processing was performed using the copper alloy tube test materials (outer diameter 12.7 mm, wall thickness 0.8 mm, length 3000 mm) of Examples and Comparative Examples, and the workability was evaluated. In the rolling process, the rotating specimen was excessively deformed to cause crushing or undulation of the tube, causing fluttering and sag, and the processing could not be continued. When the rolling process was completed to the end, it was judged by the shape survey whether the corrugated peak on the inner surface of the pipe had come out as specified. The specifications of the corrugated pipe to be manufactured are as shown in Table 2 below. The processed specimen was halved in the tube axis direction, embedded in resin, polished to # 2000 with emery paper, the tube axis parallel section was observed, and the dimensions of the corrugated portion were measured using an optical microscope. . In the machining process work, when the adjustment was within the range of the dimensional tolerance shown in the specification, a “good” judgment was made, and when the adjustment was not made within the dimensional tolerance range shown in the specification, a “poor” judgment was made.

Figure 0005792088
Figure 0005792088

<加工性評価試験2>
加工評価試験1と同じ実施例及び比較例の銅合金管供試材(外径12.7mm、肉厚0.8mm、長さ3000mm)を使用して、コルゲート加工した。コルゲート加工を始める前に、供試材の中に、太さが10.1mm、S45C鋼材製の芯金を入れで内径を制限した状態でコルゲート加工を実施した。供試材が過度の変形を受けない程度に力を印加する範囲で、芯金が抜ければ○、供試材が変形してしまうほど力を印加しないと芯金が抜けなかった場合を×と判定した。
<Workability evaluation test 2>
Corrugation processing was performed using the copper alloy tube test materials (outer diameter 12.7 mm, wall thickness 0.8 mm, length 3000 mm) of the same example and comparative example as the processing evaluation test 1. Before starting corrugating, corrugating was performed in a state where the inner diameter was limited by putting a core metal made of S45C steel with a thickness of 10.1 mm into the test material. In the range where force is applied to the extent that the test material is not subject to excessive deformation, ○ if the metal core is pulled out, x if the metal core is not pulled out if force is not applied to the extent that the test material is deformed. Judged.

「試験例1」
先ず、本願第1発明の試験結果について説明する。下記表3は銅合金管の組成と焼鈍条件を示す。また、下記表4は、この銅合金管のGD−OES分析結果と、平均結晶粒径と、引張強度と、スケール付着試験結果と、コルゲート加工試験結果とを示す。なお、加熱手段のIHは誘導加熱により加熱焼鈍したもの、RHは雰囲気加熱により加熱焼鈍したものである。
“Test Example 1”
First, the test results of the first invention will be described. Table 3 below shows the composition and annealing conditions of the copper alloy tube. Table 4 below shows the GD-OES analysis results, average crystal grain size, tensile strength, scale adhesion test results, and corrugation processing test results of this copper alloy tube. Note that IH of the heating means is heat-annealed by induction heating, and RH is heat-annealed by atmosphere heating.

Figure 0005792088
Figure 0005792088

Figure 0005792088
Figure 0005792088

この表3及び表4に示すように、比較例1は従来のJIS H3300C1220合金であり、スケール付着量が多いものであった。比較例2は結晶粒径が大きく、引張強度が低いものであった。また、比較例3〜5は成分組成が本発明の範囲から外れるので、スケール付着量が多く、比較例8は結晶粒が粗大化したためコルゲート加工試験結果が×であり、比較例9は成分の濃縮が不足してスケール付着量が多いものであった。比較例11、14,15は、結晶粒が粗大化したため、コルゲート加工試験結果が×であった。比較例16は引張強度が高すぎたため、コルゲート加工において、所定の形状を得ることができなかった。   As shown in Tables 3 and 4, Comparative Example 1 is a conventional JIS H3300C1220 alloy, which has a large amount of scale adhesion. In Comparative Example 2, the crystal grain size was large and the tensile strength was low. Moreover, since the component composition of Comparative Examples 3 to 5 deviates from the scope of the present invention, the amount of scale adhesion is large, and Comparative Example 8 has a corrugated processing test result because the crystal grains are coarsened. Concentration was insufficient and the amount of scale adhered was large. In Comparative Examples 11, 14, and 15, since the crystal grains became coarse, the corrugation processing test result was x. Since the comparative example 16 was too high in tensile strength, a predetermined shape could not be obtained in corrugating.

これに対し、本発明の実施例6,7,10,12,13は、スケールの付着量が少ないと共に、コルゲート加工試験の結果も○であった。   On the other hand, in Examples 6, 7, 10, 12, and 13 of the present invention, the adhesion amount of the scale was small and the result of the corrugation processing test was also good.

次に、本願第2発明の試験結果について説明する。下記表5は銅合金管の組成と焼鈍条件を示す。また、下記表6は、この銅合金管のGD−OES分析結果と、平均結晶粒径と、引張強度と、スケール付着試験結果と、コルゲート加工試験結果とを示す。   Next, the test results of the second invention of the present application will be described. Table 5 below shows the composition and annealing conditions of the copper alloy tube. Table 6 below shows the GD-OES analysis results, average crystal grain size, tensile strength, scale adhesion test results, and corrugation processing test results of this copper alloy tube.

Figure 0005792088
Figure 0005792088

Figure 0005792088
Figure 0005792088

この表5及び表6に示すように、本願請求項2の条件を満たす実施例17〜28は、いずれも、スケール付着量が少なく、コルゲート加工試験の結果も良好(○)であった。なお、表5及び表6には、表3及び表4の本願第1発明の実施例7,10,12,13も比較のために示した。   As shown in Tables 5 and 6, all of Examples 17 to 28 that satisfy the condition of claim 2 of the present application had a small amount of scale adhesion, and the result of the corrugation processing test was also good (◯). In Tables 5 and 6, Examples 7, 10, 12, and 13 of the first invention of Table 3 and Table 4 are also shown for comparison.

次に、本願請求項3の降伏比の実施例、比較例について説明する。下記表7は銅合金管の組成と焼鈍条件を示す。また、下記表8は、この銅合金管のGD−OES分析結果と、平均結晶粒径と、引張強度と、スケール付着試験結果と、コルゲート加工試験結果とを示す。これらの表7及び表8には、表3及び表4の比較例2,16と実施例6,7、10,12,13も降伏比の比較のために合わせて示す。比較例34は、比較例2と同一組成であって、焼鈍条件を表1の条件から変更したものである。比較例2、34、実施例6,実施例29〜33は、降伏比が本発明の請求項3で規定する範囲から外れるため、コルゲート加工試験で、芯金が抜けないという問題があった。実施例6,7,10,12,13は、降伏比が請求項3を満たしているため、コルゲート加工試験の結果も良好であった。これに対し、実施例29〜33は請求項1を満たすものの、請求項3の降伏比を満たさないため、芯金入りのコルゲート加工試験の結果は×であった。但し、実施例29〜33も、スケールの付着量は少なく、本願請求項1の効果を満足する。   Next, examples and comparative examples of the yield ratio of claim 3 of the present application will be described. Table 7 below shows the composition and annealing conditions of the copper alloy tube. Table 8 below shows GD-OES analysis results, average crystal grain size, tensile strength, scale adhesion test results, and corrugation processing test results of this copper alloy tube. In Tables 7 and 8, Comparative Examples 2 and 16 and Examples 6, 7, 10, 12, and 13 in Tables 3 and 4 are also shown for comparison of the yield ratio. The comparative example 34 is the same composition as the comparative example 2, Comprising: The annealing conditions were changed from the conditions of Table 1. In Comparative Examples 2 and 34, Example 6 and Examples 29 to 33, the yield ratio deviated from the range defined in claim 3 of the present invention, so that there was a problem that the cored bar could not be removed in the corrugating test. In Examples 6, 7, 10, 12, and 13, the yield ratio satisfied Claim 3, so the results of the corrugating test were also good. On the other hand, although Examples 29-33 satisfy | filled Claim 1, since the yield ratio of Claim 3 was not satisfy | filled, the result of the corrugation processing test containing a metal core was x. However, Examples 29 to 33 also have a small amount of scale and satisfy the effect of claim 1 of the present application.

Figure 0005792088
Figure 0005792088

Figure 0005792088
Figure 0005792088

以上のように、本発明の請求項1,2,又は3を満たす実施例の銅合金管は、耐スケール付着性が優れており、水流管用の銅合金性伝熱管として優れた特性を有する。また、降伏比が所定の範囲にある場合は、芯金入りのコルゲート加工においても、良好な加工特性を有する。   As described above, the copper alloy tube of the example satisfying the first, second, or third aspect of the present invention has excellent resistance to scale adhesion, and has excellent characteristics as a copper alloy heat transfer tube for a water flow tube. In addition, when the yield ratio is in a predetermined range, good processing characteristics are obtained even in corrugated processing with a cored bar.

Claims (4)

Sn:0.05〜3.0質量%、
P:0.004〜0.2質量%、
Zr(母相中に固溶体、単体及び/又は化合物として含有):0.005〜0.2質量%(化合物の場合はZr換算値)
を含有し、
残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、
グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのPの質量割合の最大値Ppeakと深さ1900〜2000nmのPの平均濃度P2000との差Ppeak−P2000が0.50質量%以上、25質量%以下であり、
前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのSnの質量割合の最大値Snpeakと深さ1900〜2000nmにおけるSnの平均濃度Sn2000との差Snpeak−Sn2000が0.30質量%以上、15質量%以下であり、
前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのZrの質量割合の最大値Zrpeakと深さ1900〜2000nmにおけるZrの平均濃度Zr2000との差Zrpeak−Zr2000が0.010質量%以上、3.0質量%以下であり、
平均結晶粒径が5〜25μmであり、
引張強度σが260〜450MPa
であることを特徴とする銅合金管。
Sn: 0.05 to 3.0% by mass,
P: 0.004 to 0.2% by mass,
Zr (contained as solid solution, simple substance and / or compound in matrix): 0.005 to 0.2% by mass (in the case of compound, converted to Zr)
Containing
A copper alloy tube having a composition in which the balance is made of Cu and inevitable impurities,
The difference P peak -P 2000 between the maximum value P peak of the mass ratio of P from the outermost surface of the copper alloy tube to a depth of 250 nm and the average concentration P 2000 of P at a depth of 1900 to 2000 nm is determined by glow discharge luminescence surface analysis. 0.50 mass% or more and 25 mass% or less,
Difference between the maximum value Sn peak of Sn mass from the outermost surface of the copper alloy tube to a depth of 250 nm and the average Sn concentration Sn 2000 at a depth of 1900 to 2000 nm by the glow discharge luminescence surface analysis Sn peak −Sn 2000 Is 0.30 mass% or more and 15 mass% or less,
Difference Zr peak -Zr 2000 the average density Zr 2000 of Zr in maximum Zr peak and depth 1900~2000nm the weight ratio of Zr to a depth of 250nm from the outermost surface of the copper alloy tube according to the glow discharge emission surface analysis Is 0.010 mass% or more and 3.0 mass% or less,
The average grain size is 5-25 μm,
Tensile strength σ is 260 to 450 MPa
A copper alloy tube characterized by
Snと、Zn及びAlからなる群から選択された少なくとも1種の元素:合計値で0.05〜3.0質量%であると共に、Sn、Zn及びAl中のSnの割合が77.5%以上、
P:0.004〜0.2質量%、
Zr(母相中に固溶体、単体及び/又は化合物として含有):0.005〜0.2質量%(化合物の場合はZr換算値)
を含有し、
残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、
グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのPの質量割合の最大値Ppeakと深さ1900〜2000nmのPの平均濃度P2000との差Ppeak−P2000が0.50質量%以上、25質量%以下であり、
前記Snと、Zn及びAlからなる群から選択された少なくとも1種の選択元素に関し、前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでの前記Snと選択元素の合計の質量割合の最大値SZApeakと深さ1900〜2000nmにおける前記Snと選択元素の合計の平均濃度SZA2000との差SZApeak−SZA2000が0.30質量%以上、15質量%以下であり、
前記グロー放電発光表面分析による前記銅合金管の最表面から深さ250nmまでのZrの質量割合の最大値Zrpeakと深さ1900〜2000nmにおけるZrの平均濃度Zr2000との差Zrpeak−Zr2000が0.010質量%以上、3.0質量%以下であり、
平均結晶粒径が5〜25μmであり、
引張強度σが260〜450MPa
であることを特徴とする銅合金管。
Sn and at least one element selected from the group consisting of Zn and Al: the total value is 0.05 to 3.0% by mass , and the ratio of Sn in Sn, Zn and Al is 77.5% that's all,
P: 0.004 to 0.2% by mass,
Zr (contained as solid solution, simple substance and / or compound in matrix): 0.005 to 0.2% by mass (in the case of compound, converted to Zr)
Containing
A copper alloy tube having a composition in which the balance is made of Cu and inevitable impurities,
The difference P peak -P 2000 between the maximum value P peak of the mass ratio of P from the outermost surface of the copper alloy tube to a depth of 250 nm and the average concentration P 2000 of P at a depth of 1900 to 2000 nm is determined by glow discharge luminescence surface analysis. 0.50 mass% or more and 25 mass% or less,
With respect to at least one selected element selected from the group consisting of Sn and Zn and Al, the total of the Sn and selected elements from the outermost surface of the copper alloy tube to a depth of 250 nm by the glow discharge luminescence surface analysis. The difference SZA peak -SZA 2000 between the maximum value SZA peak of the mass ratio and the average concentration SZA 2000 of the Sn and the selected element at a depth of 1900 to 2000 nm is 0.30% by mass or more and 15% by mass or less.
Difference Zr peak -Zr 2000 the average density Zr 2000 of Zr in maximum Zr peak and depth 1900~2000nm the weight ratio of Zr to a depth of 250nm from the outermost surface of the copper alloy tube according to the glow discharge emission surface analysis Is 0.010 mass% or more and 3.0 mass% or less,
The average grain size is 5-25 μm,
Tensile strength σ is 260 to 450 MPa
A copper alloy tube characterized by
耐力σ0.5と引張強度σとの比(降伏比)σ0.5/σが、0.850≦σ0.5/σ≦0.985であることを特徴とする請求項1又は2に記載の銅合金管。 The ratio (yield ratio) σ 0.5 / σ of the proof stress σ 0.5 and the tensile strength σ is 0.850 ≦ σ 0.5 /σ≦0.985, wherein: A copper alloy tube according to 1. 内面に複数の溝が形成された内面溝付管であることを特徴とする請求項1乃至3のいずれか1項に記載の銅合金管。 The copper alloy tube according to any one of claims 1 to 3, wherein the copper alloy tube is an internally grooved tube having a plurality of grooves formed on an inner surface.
JP2012021330A 2012-02-02 2012-02-02 Copper alloy tube Active JP5792088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021330A JP5792088B2 (en) 2012-02-02 2012-02-02 Copper alloy tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021330A JP5792088B2 (en) 2012-02-02 2012-02-02 Copper alloy tube

Publications (2)

Publication Number Publication Date
JP2013159803A JP2013159803A (en) 2013-08-19
JP5792088B2 true JP5792088B2 (en) 2015-10-07

Family

ID=49172323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021330A Active JP5792088B2 (en) 2012-02-02 2012-02-02 Copper alloy tube

Country Status (1)

Country Link
JP (1) JP5792088B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172726A (en) * 2017-03-31 2018-11-08 株式会社栗本鐵工所 Copper alloy for liquid-contacting member
CN110983100A (en) * 2019-12-30 2020-04-10 山东凯德菲节能技术股份有限公司 Alloy material, preparation and aqueous medium device with alloy material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694527B2 (en) * 2007-03-30 2011-06-08 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP5260109B2 (en) * 2007-03-31 2013-08-14 株式会社コベルコ マテリアル銅管 Copper alloy member and heat exchanger
JP2009235428A (en) * 2008-03-25 2009-10-15 Kobelco & Materials Copper Tube Inc Copper alloy member and heat-exchanger
JP2010156002A (en) * 2008-12-26 2010-07-15 Kobe Steel Ltd Copper alloy tube, method for manufacturing the same, and heat pump water heater
JP5404139B2 (en) * 2009-03-31 2014-01-29 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchanger
JP5534777B2 (en) * 2009-10-28 2014-07-02 株式会社Uacj Copper alloy seamless pipe

Also Published As

Publication number Publication date
JP2013159803A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5260109B2 (en) Copper alloy member and heat exchanger
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JPWO2019035329A1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP5145331B2 (en) High strength and high thermal conductivity copper alloy tube and method for producing the same
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP5105822B2 (en) Heat transfer material for heat collection and manufacturing method thereof
JP4921410B2 (en) Copper alloy member and heat exchanger
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP2014118580A (en) Corrosion resistant copper alloy tube
JP2006299413A (en) Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
WO2019035225A1 (en) High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
WO2011059030A1 (en) Duplex stainless steel having excellent alkali resistance
JP2013213235A (en) Aluminum alloy brazing sheet for heat exchanger
JP2013194266A (en) Aluminum alloy brazing sheet for heat exchanger
JP2009242837A (en) Tool-wearing reduced copper alloy cast billet and copper alloy tube
JP2009235428A (en) Copper alloy member and heat-exchanger
JP5792088B2 (en) Copper alloy tube
JP5534777B2 (en) Copper alloy seamless pipe
JP4963078B2 (en) Corrosion resistant copper alloy tube
JP5366498B2 (en) Cu-plated ferritic stainless steel sheet and multi-turn steel pipe
JP2010156002A (en) Copper alloy tube, method for manufacturing the same, and heat pump water heater
JP5990497B2 (en) Corrosion resistant oxygen-free copper alloy tube
JP2008240128A (en) Copper alloy tube
JP2009249650A (en) High fatigue service life quenching/tempering steel tube and manufacturing method therefor
JP5078410B2 (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R150 Certificate of patent or registration of utility model

Ref document number: 5792088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250