JP5791863B2 - Granulated material transport method - Google Patents

Granulated material transport method Download PDF

Info

Publication number
JP5791863B2
JP5791863B2 JP2008308892A JP2008308892A JP5791863B2 JP 5791863 B2 JP5791863 B2 JP 5791863B2 JP 2008308892 A JP2008308892 A JP 2008308892A JP 2008308892 A JP2008308892 A JP 2008308892A JP 5791863 B2 JP5791863 B2 JP 5791863B2
Authority
JP
Japan
Prior art keywords
granulated
granulated product
conveying
less
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008308892A
Other languages
Japanese (ja)
Other versions
JP2010132956A (en
Inventor
淳治 長田
淳治 長田
八ケ代 健一
健一 八ケ代
木村 武
武 木村
兼井 玲
玲 兼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008308892A priority Critical patent/JP5791863B2/en
Publication of JP2010132956A publication Critical patent/JP2010132956A/en
Application granted granted Critical
Publication of JP5791863B2 publication Critical patent/JP5791863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、微粉を主体とする焼結原料で構成される造粒物の搬送方法に関する。 The present invention relates to a method for conveying a granulated material composed of a sintered raw material mainly composed of fine powder.

近年、焼結機においては、従来主流であった赤鉄鉱等の鉄鉱石の供給量が減少しており、ピソライト等のような、結晶含有率が高い(例えば、3質量%以上)多孔質の鉄鉱石や、マラマンバ等のような、結晶水が多く、多孔質かつ微粉が多い鉄鉱石、またペレットフィード等のような微粉の鉄鉱石の供給量が増加している。
このような鉄鉱石は、従来使用されてきた鉄鉱石と比較して、微粉成分が多いため(粒径500μmアンダーの粒子を60質量%以上含む)、事前処理を行うことなく焼結機に装入すると、焼結機の通風性を阻害して、良好な品質を有する焼結鉱を効率よく製造することが困難である。このため、このような鉄鉱石は、焼結機に装入する前に造粒する必要があった。
In recent years, in the sintering machine, the supply amount of iron ore such as hematite, which has been the mainstream in the past, has decreased, and porous content such as pisolite is high (for example, 3% by mass or more). The supply of iron ore, iron ore with a lot of crystal water, such as maramamba, porous and fine powder, and fine iron ore such as pellet feed is increasing.
Since such iron ore has more fine powder components than conventional iron ore (containing 60% by mass or more of particles having a particle diameter of 500 μm or less), it is installed in a sintering machine without pretreatment. If entered, it is difficult to efficiently produce sintered ore having good quality by inhibiting the air permeability of the sintering machine. For this reason, it was necessary to granulate such iron ore before charging it into the sintering machine.

高炉用原料として使用される焼結鉱は、従来、粉状の鉄鉱石に石灰石と粉コークスを混合し、更に適度な水分と生石灰等からなるバインダーを添加して造粒した後、焼結機に装入して製造していた。
特に、結晶水含有率が高い鉄鉱石や多孔質の鉄鉱石の場合には、粒径がより小さい微粉鉱石が多く、また多孔質の鉄鉱石の孔内部に造粒用の水分が吸収されてしまって造粒性が悪く、造粒した焼結原料の造粒物(擬似粒子ともいう)の強度が低くなっていた。そのため、造粒した焼結原料を、従来公知の流動層を用いて、水分が2〜4質量%になるまで乾燥し、平均粒径が1mm以上20mm以下の造粒物の圧壊強度を上げて、焼結機に装入していた。
Conventionally, sintered ore used as a raw material for blast furnaces is a mixture of powdered iron ore mixed with limestone and powdered coke, and further granulated by adding a binder composed of appropriate moisture and quick lime, etc. It was charged and manufactured.
In particular, in the case of iron ores with a high content of crystal water and porous iron ores, there are many fine ores with smaller particle sizes, and moisture for granulation is absorbed inside the pores of the porous iron ore. Therefore, the granulation property was poor, and the strength of the granulated sintered raw material (also referred to as pseudo particles) was low. Therefore, the granulated sintered raw material is dried using a conventionally known fluidized bed until the water content becomes 2 to 4% by mass to increase the crushing strength of the granulated product having an average particle size of 1 mm or more and 20 mm or less. , Was charged into the sintering machine.

一方、流動層と焼結機の間には、ベルトコンベアからベルトコンベアへの乗継ぎ部や、一時的なトラブルで造粒工程が停止した場合に、焼結機の停止を防ぐために造粒物を貯留するホッパーが設けられている。そのため、造粒物が、上記した乗継ぎ部を通過したり、またホッパーに投入される際には、ベルトコンベアに設けられた落鉱回収装置や、ホッパーの大きさ等の設備制約等により、造粒物の落下高さが高くなる(例えば、2〜10m程度)。このため、乾燥した造粒物が崩壊する現象が生じ、これらを焼結機へ供給した場合には、焼結機の通気性を阻害して、良好な品質を有する焼結鉱を、効率よく製造することが困難となる問題があった。 On the other hand, between the fluidized bed and the sintering machine, the granulated material is used to prevent the sintering machine from stopping when the granulation process is stopped due to a transition from the belt conveyor to the belt conveyor or due to a temporary trouble. Is provided. Therefore, when the granulated material passes through the above-mentioned connecting part or is put into the hopper, due to the falling ore recovery device provided in the belt conveyor, equipment restrictions such as the size of the hopper, etc. The fall height of the granulated product increases (for example, about 2 to 10 m). For this reason, the phenomenon that the dried granulated material collapses occurs, and when these are supplied to the sintering machine, the air permeability of the sintering machine is hindered and the sintered ore having good quality can be efficiently obtained. There was a problem that it was difficult to manufacture.

そこで、例えば、特許文献1には、図7に示すように、原料ホッパー80からロールフィーダ81を介して払い出された焼結原料(造粒物を含む)を、スローピングシュート82に落下させる際に、角度可変(α:例えば、0〜30度)のシュート83を介在させ、擬似粒子の破壊を防止する方法が開示されている。このように、シュート83を介在させることにより、スローピングシュート82へ擬似粒子が落下する衝撃を緩和している。なお、図7において、番号84は鉱層、番号85はパレットである。
また、造粒物の崩壊を防止する方法ではないが、焼結鉱の粉化を防止する方法として、特許文献2には、図8に示すように、ベルトコンベア90の第1プーリ91と第2プーリ92の間に、キャリアプーリ93を設置することにより、ベルトコンベア90の先端高さ位置をベルト94に形成された頂部よりも低くし、更に、階段状のガイド部95を設けることで、焼結鉱の落下距離を低減し、焼結鉱の粉化を防止する方法が開示されている。なお、図8において、番号96は搬送物、番号97は搬送物の乗継ぎを行う他のベルトである。
Therefore, for example, in Patent Document 1, as shown in FIG. 7, when the sintered raw material (including the granulated material) discharged from the raw material hopper 80 through the roll feeder 81 is dropped onto the slowing chute 82. Discloses a method for preventing the destruction of pseudo particles by interposing a chute 83 having a variable angle (α: 0 to 30 degrees, for example). Thus, the impact of the pseudo particles falling on the sloping chute 82 is mitigated by interposing the chute 83. In FIG. 7, reference numeral 84 is a mineral formation, and reference numeral 85 is a pallet.
Further, although not a method for preventing the granulated material from collapsing, as a method for preventing the sinter ore from being pulverized, Patent Document 2 discloses a first pulley 91 and a first pulley 91 of a belt conveyor 90 as shown in FIG. By installing the carrier pulley 93 between the two pulleys 92, the tip height position of the belt conveyor 90 is made lower than the top part formed on the belt 94, and further, by providing a stepped guide part 95, A method for reducing the falling distance of the sinter and preventing the sinter from being pulverized is disclosed. In FIG. 8, reference numeral 96 denotes a conveyed product, and reference numeral 97 denotes another belt for connecting the conveyed product.

特開昭58−71341号公報Japanese Patent Laid-Open No. 58-71341 特開2001−233428号公報JP 2001-233428 A

しかしながら、前記従来の方法には、未だ解決すべき以下のような問題があった。
特許文献1の方法は、角度可変のシュート上を転がすことで、擬似粒子の落下時の衝撃を和らげ、その崩壊を低減させる思想であるが、本願発明者の実験の結果、シュートの勾配を60度以上にすると擬似粒子がシュート上を滑り落ち、衝撃緩和効果が低減されて、シュートがない状態とほぼ同様の崩壊状態になることが判明した。
また、特許文献1に記載された擬似粒子とは、核粒子の周りに微粉がまぶりついたものであり、粒径500μmアンダーの粒子を60質量%以上含む微粉の多い焼結原料を造粒した造粒物とは、その崩壊形態が異なるため、同じ強度でも造粒物の方が崩壊率が大きくなってしまう問題もある。図9には、微粉から構成される核粒子のない造粒物(P型造粒物ともいう)と、核粒子の周囲に微粉が付着した擬似粒子(S型造粒物ともいう)の崩壊率を示しているが、例え擬似粒子と造粒物が同じ強度であっても、同じ高さから落下させた場合の崩壊率が大きく異なることが分かる。ここで、崩壊率とは、落下後の造粒物中に含まれるφ500μm以下の粒子量の増加率である(以下、同様)。
However, the conventional method still has the following problems to be solved.
The method of Patent Document 1 is an idea of reducing the collapse of a pseudo particle by rolling on a variable angle chute and reducing the collapse thereof. It was found that the pseudo particles slipped down on the chute when the temperature is higher than that, and the impact mitigation effect is reduced, resulting in a collapsed state almost the same as when there is no chute.
In addition, the pseudo particles described in Patent Document 1 are those in which fine powder is scattered around the core particles, and a sintered raw material with a large amount of fine powder containing 60% by mass or more of particles having a particle diameter of 500 μm or less is granulated. Since the disintegration form is different from the granulated product, there is a problem that the disintegration rate of the granulated product is increased even with the same strength. FIG. 9 shows the collapse of a granulated product (also referred to as a P-type granulated product) composed of fine powder and a pseudo particle (also referred to as an S-type granulated product) having fine particles attached around the core particle. Although the rate is shown, it can be seen that even if the pseudo particle and the granulated product have the same strength, the collapse rate when dropped from the same height is greatly different. Here, the decay rate is the rate of increase in the amount of particles of φ500 μm or less contained in the granulated product after dropping (hereinafter the same).

また、特許文献2は、キャリアプーリを設けることにより、焼結鉱の落下高さを従来よりも低くし、落下の際の衝撃を緩和して、焼結鉱の粉化を低減する思想であるが、設備制約上、落下高さが決まっている場合には適用することができない。また、焼結鉱のように、5MPa(50kgf/cm)以上の高い強度を有し、一度焼成され粒同士が融着されている場合には、落下崩壊時に微粉(φ500μm以下の粒子)の発生はほとんどなく、本願発明が対象とするような乾燥造粒物とは、崩壊現象が異なる。
また、階段状のガイドを設けたとしても、使用している間に焼結鉱が堆積し、デッドスペースができるため、結果的に特許文献1に示したスローピングシュートと同様の働きとなる。このため、焼結鉱はシュート上を滑り落ちてしまい、粉化抑制効果が低減してしまう問題がある。
Further, Patent Document 2 is an idea that, by providing a carrier pulley, the falling height of the sintered ore is made lower than before, the impact at the time of dropping is alleviated, and the powder of the sintered ore is reduced. However, it cannot be applied when the drop height is fixed due to equipment restrictions. In addition, like sintered ore, it has a high strength of 5 MPa (50 kgf / cm 2 ) or more, and when it is fired once and the grains are fused together, There is almost no generation | occurrence | production and a disintegration phenomenon differs from the dry granulated material which this invention makes object.
Even if the step-like guide is provided, sintered ore accumulates during use and a dead space is formed, resulting in the same function as the slowing chute shown in Patent Document 1. For this reason, there is a problem that the sintered ore slides down on the chute and the powdering suppression effect is reduced.

本発明はかかる事情に鑑みてなされたもので、微粉を主体として造粒され平均粒径と強度が規定された造粒物の崩壊を抑制し、良好な品質を有する焼結鉱を効率よく製造可能な造粒物の搬送方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and suppresses the collapse of a granulated product that is granulated mainly with fine powder and has an average particle size and strength, and efficiently produces a sintered ore having good quality. It aims at providing the conveyance method of a possible granulated material.

前記目的に沿う本発明に係る造粒物の搬送方法は、粒径500μmアンダーの粒子を60質量%以上含む焼結原料にバインダーを添加し造粒した後、流動層を用いて乾燥し、平均粒径を1mm以上20mm以下、強度を0.1MPa以上1.5MPa以下とした造粒物を、搬送用シュートを介して落下させる造粒物の搬送方法であって、
前記搬送用シュートの内側対向面には、前記造粒物の落下衝撃緩衝部材が、該造粒物の落下方向に間隔を有して交互に突出して設けられ、しかも上下隣り合う前記落下衝撃緩衝部材間の前記造粒物の落下高さを0.1m以上0.4m以下の範囲内とし、上下隣り合う前記落下衝撃緩衝部材の平面視した際の重複距離を、0又は0を超え前記落下衝撃緩衝部材の突出長さの半分以下の範囲内とする。
The method for conveying a granulated product according to the present invention in accordance with the above object is to granulate by adding a binder to a sintering raw material containing 60% by mass or more of particles having a particle size of 500 μm or less , and then drying using a fluidized bed. A granulated material transport method for dropping a granulated material having an average particle size of 1 mm or more and 20 mm or less and a strength of 0.1 MPa or more and 1.5 MPa or less through a transport chute,
On the inner facing surface of the conveying chute, a drop impact buffering member for the granulated material is provided so as to protrude alternately with an interval in the dropping direction of the granulated product, and the drop impact buffer adjacent to each other in the vertical direction. The fall height of the granulated material between the members is within a range of 0.1 m or more and 0.4 m or less, and an overlap distance when the drop impact buffer members adjacent to each other in a plan view are 0 or more than 0 and the fall It should be within the range of half or less of the protruding length of the shock absorbing member.

本発明に係る造粒物の搬送方法において、前記各落下衝撃緩衝部材は平板であって、該平板を、前記搬送用シュートの内側対向面に、基側から先側へかけて下方へ傾斜させて取付け、しかも水平位置に対する傾斜角度を30度以上45度以下の範囲内とすることが好ましい。
本発明に係る造粒物の搬送方法において、前記各落下衝撃緩衝部材は平板であって、該平板を、前記搬送用シュートの内側対向面に、水平に取付けることが好ましい。
本発明に係る造粒物の搬送方法において、前記各落下衝撃緩衝部材は、前記造粒物の落下方向に等ピッチで取付けられていることが好ましい。
In the method for transporting a granulated product according to the present invention, each of the drop impact buffering members is a flat plate, and the flat plate is inclined downward from the base side to the front side on the inner facing surface of the transport chute. It is preferable that the inclination angle with respect to the horizontal position is within a range of 30 degrees or more and 45 degrees or less.
In the method for transporting a granulated product according to the present invention, it is preferable that each of the drop impact buffering members is a flat plate, and the flat plate is horizontally attached to the inner facing surface of the transport chute.
In the method for conveying a granulated product according to the present invention, it is preferable that the drop impact buffer members are attached at equal pitches in the dropping direction of the granulated product.

本発明に係る造粒物の搬送方法は、平均粒径を1mm以上20mm以下、強度を0.1MPa以上1.5MPa以下とした造粒物を落下させる搬送用シュートの内側対向面に、落下衝撃緩衝部材を、造粒物の落下方向に間隔を有して交互に突出して設け、しかも上下隣り合う落下衝撃緩衝部材間の造粒物の落下高さを0.1m以上0.4m以下の範囲内とするので、造粒物の落下時における造粒物の崩壊を抑制できる。これは、平均粒径と強度が上記のように規定された造粒物を落下させるに際し、1回あたりの造粒物の落下高さを規定することで、造粒物が崩壊する最小衝撃、即ち落下しても崩壊しにくくなる限界衝撃以下に調整できることによる。
ここで、上下隣り合う落下衝撃緩衝部材の平面視した際の重複距離を、0又は0を超え落下衝撃緩衝部材の突出長さの半分以下の範囲内とするので、造粒物は、各落下衝撃緩衝部材を通過しながら(全ての落下衝撃緩衝部材を介して)落下できる。
従って、このようにして搬送された造粒物を焼結機へ供給することで、焼結機の通気性を阻害することなく、良好な品質を有する焼結鉱を、効率よく製造できる。
The method for conveying a granulated product according to the present invention includes a drop impact on an inner facing surface of a transport chute for dropping a granulated product having an average particle size of 1 mm to 20 mm and a strength of 0.1 MPa to 1.5 MPa. The buffer member is provided so as to protrude alternately with a gap in the falling direction of the granulated material, and the fall height of the granulated material between the upper and lower adjacent drop impact buffer members is in the range of 0.1 m to 0.4 m. Since it is inside, the collapse of the granulated product when the granulated product falls can be suppressed. This is the minimum impact at which the granulated product collapses by prescribing the drop height of the granulated product per time when dropping the granulated product whose average particle size and strength are defined as described above, That is, it can be adjusted below the critical impact that is difficult to collapse even when dropped.
Here, since the overlap distance when the top and bottom adjacent drop impact buffer members are viewed in plan is within the range of 0 or more than 0 and less than half of the projection length of the drop impact buffer member, It can drop while passing through the shock absorbing member (through all the drop shock absorbing members).
Therefore, by supplying the granulated material thus conveyed to the sintering machine, a sintered ore having good quality can be efficiently produced without impairing the air permeability of the sintering machine.

また、各落下衝撃緩衝部材を平板とし、これを搬送用シュートの内側対向面に、下方へ所定の傾斜角度で傾斜させて取付ける場合は、造粒物が各落下衝撃緩衝部材に堆積することなく、造粒物を連続的に安定に落下させることができる。
そして、各落下衝撃緩衝部材を平板とし、これを搬送用シュートの内側対向面に、水平に取付ける場合は、造粒物が各落下衝撃緩衝部材の上面に堆積して所定角度の傾斜面を形成する。これにより、造粒物は、各落下衝撃緩衝部材に衝突することなく、堆積した造粒物で形成される傾斜面上に落下して転がり落ちるので、各落下衝撃緩衝部材の摩耗や損耗を抑制でき、各落下衝撃緩衝部材のメンテナンス頻度やランニングコストを低減できる。
更に、各落下衝撃緩衝部材を、造粒物の落下方向に等ピッチで取付ける場合、搬送用シュートの構成を簡単にできる。
In addition, when each drop impact buffer member is a flat plate and attached to the inner facing surface of the transport chute at a predetermined inclination angle downward, the granulated material does not accumulate on each drop impact buffer member. The granulated product can be continuously and stably dropped.
If each drop impact buffer member is a flat plate and is mounted horizontally on the inner facing surface of the conveying chute, the granulated material is deposited on the upper surface of each drop impact buffer member to form an inclined surface of a predetermined angle. To do. As a result, the granulated material falls and rolls down on the inclined surface formed by the accumulated granulated material without colliding with each of the drop impact buffer members, thereby suppressing the wear and wear of each drop impact buffer member. This can reduce the maintenance frequency and running cost of each drop impact buffer member.
Furthermore, when each drop impact buffer member is attached at an equal pitch in the dropping direction of the granulated product, the configuration of the conveying chute can be simplified.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る造粒物の搬送方法に使用する搬送用シュートの説明図、図2は造粒物の崩壊率と落下高さとの関係を示す説明図、図3は造粒物の崩壊メカニズムの説明図、図4(A)、(B)はそれぞれ本発明の他の実施の形態に係る造粒物の搬送方法に使用する搬送用シュートの説明図、使用状態の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a transport chute used in the method for transporting a granulated product according to one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between the collapse rate of the granulated product and the drop height. FIG. 3 is an explanatory view of the disintegration mechanism of the granulated product, and FIGS. 4 (A) and 4 (B) are explanatory views of a transport chute used in the method of transporting the granulated product according to another embodiment of the present invention. It is explanatory drawing of a use condition.

図1に示すように、本発明の一実施の形態に係る造粒物の搬送方法は、粒径500μmアンダーの粒子を60質量%以上含む焼結原料にバインダーを添加し、造粒して乾燥し、平均粒径を1mm以上20mm以下、強度を0.1MPa以上1.5MPa以下とした造粒物10を、搬送用シュート11を介して落下させる搬送方法である。この搬送用シュート11は、造粒物10を搬送するベルトコンベア12と、一時的なトラブルで造粒工程が停止した場合に、焼結機(図示しない)の停止を防ぐために造粒物10を貯留するホッパー13との間に設けられている。なお、ベルトコンベア12の上面(搬送面)位置からホッパー13の底面位置までの距離は、例えば、3m以上10m以下程度である。 As shown in FIG. 1, the method for conveying a granulated product according to an embodiment of the present invention includes adding a binder to a sintering raw material containing 60% by mass or more of particles having a particle size of 500 μm or less, granulating and drying the material. In this method, the granulated product 10 having an average particle diameter of 1 mm to 20 mm and a strength of 0.1 MPa to 1.5 MPa is dropped via a transport chute 11. The conveying chute 11 is configured to convey the granulated product 10 in order to prevent the sintering machine (not shown) from stopping when the granulation process is stopped due to a temporary trouble with the belt conveyor 12. It is provided between the hopper 13 to store. In addition, the distance from the upper surface (conveyance surface) position of the belt conveyor 12 to the bottom surface position of the hopper 13 is, for example, about 3 m or more and 10 m or less.

本願発明者らは、前記した課題を解決するために検討を重ね、同じ造粒物であっても、核粒子の周囲に微粉を付着させることによって造粒される擬似粒子(S型造粒物)と、核粒子がない造粒物(P型造粒物)とでは、破壊形態が異なることに着目した。
前記したように、図9には、擬似粒子と造粒物の落下衝撃に対する崩壊率を示しているが、擬似粒子と造粒物が同じ強度であっても、造粒物は擬似粒子と比較して崩壊率が高い。
これは、擬似粒子や造粒物を構成する粒子の大きさによって破壊形態が異なるためである。具体的には、粒子の構成具合によって、擬似粒子や造粒物が崩壊するための最小衝撃が決定し、限界衝撃(ここでは、限界落下高さに相当)以下になると、擬似粒子や造粒物が崩壊しなくなるためである。
The inventors of the present application have studied in order to solve the above-mentioned problems, and even if the same granulated product, pseudo particles (S-type granulated product) are granulated by attaching fine powder around the core particles. ) And a granulated product without a core particle (P-type granulated product), attention was paid to the fact that the fracture mode is different.
As described above, FIG. 9 shows the disintegration rate with respect to the drop impact of the pseudo particles and the granulated product. Even if the pseudo particles and the granulated product have the same strength, the granulated product is compared with the pseudo particles. And the collapse rate is high.
This is because the fracture mode differs depending on the size of the particles constituting the pseudo particles and the granulated product. Specifically, the minimum impact for disintegrating the pseudo particles and the granulated material is determined depending on the composition of the particles, and when the impact is below the critical impact (here, equivalent to the critical drop height), This is because things do not collapse.

図2に、造粒物の落下高さと崩壊率の関係を示す。なお、造粒物には、粒径500μmアンダーの粒子を65質量%含む焼結原料を造粒して乾燥し、平均粒径が5mm、強度が0.6MPaとしたものを用いた。
図2から明らかなように、造粒物の落下高さが高くなれば、造粒物の崩壊率も大きくなることが分かる。これは、衝撃エネルギーが造粒物の落下高さに比例するためと考えられ、このことから、1回あたりの造粒物の落下高さを低減したとしても、トータルの落下高さが同じであれば、同じ崩壊率になると考えられていた。
しかしながら、本願発明者らは、検討を重ねた結果、造粒物が崩壊しなくなる限界の落下高さが存在することを見出した。そして、限界落下高さが、造粒物の強度や造粒物の粒度構成により推定可能であることが分かった。
これらを基に、造粒物の崩壊を抑制できる搬送方法を発明した。以下、詳しく説明する。
In FIG. 2, the relationship between the fall height of a granulated material and a disintegration rate is shown. As the granulated product, a sintered raw material containing 65% by mass of particles having a particle size of less than 500 μm was granulated and dried to obtain an average particle size of 5 mm and a strength of 0.6 MPa.
As can be seen from FIG. 2, it can be seen that the fall rate of the granulated product increases as the drop height of the granulated product increases. This is thought to be because the impact energy is proportional to the fall height of the granulated product. From this, even if the fall height of the granulated product per time is reduced, the total fall height is the same. If there was, it was thought that it would be the same collapse rate.
However, as a result of repeated studies, the present inventors have found that there is a limit drop height at which the granulated material does not collapse. And it turned out that limit fall height can be estimated by the intensity | strength of a granulated material, and the particle size structure of a granulated material.
Based on these, the invented conveying method that can suppress the collapse of the granulated product. This will be described in detail below.

造粒物を構成する焼結原料には、粒径500μmアンダーの粒子を60質量%以上含む、例えば微粉を多量に含む原料、篩選別により前記構成に調整した原料、微粉のみを篩選別により分離した原料、更には粉砕した原料を使用できる。
この焼結原料は、例えば、褐鉄鉱(Fe・nHO)、磁鉄鉱(Fe)、及び赤鉄鉱(Fe)、蛇紋岩、石灰石、粉コークス、返し鉱、及び混練ダストのいずれか1又は2以上である。なお、褐鉄鉱としては、例えば、マラマンバ鉱石(産地銘柄:ウエストアンジェラス)、ピソライト鉱石(産地銘柄:ヤンディー、ローブリバー)、及び高燐ブロックマン鉱石がある。
Sintered raw materials that make up the granulated material contain 60% by mass or more of particles having a particle size of 500 μm or less, for example, raw materials that contain a large amount of fine powder, raw materials that have been adjusted to the above-mentioned configuration by screening, and only fine powder is separated by screening. Raw materials, and further pulverized raw materials can be used.
This sintering raw material is, for example, limonite (Fe 2 O 3 .nH 2 O), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ), serpentine, limestone, powder coke, reverse ore, and Any one or more of the kneaded dust. The limonite includes, for example, maramamba ore (local brand: West Angelus), pisolite ore (local brand: Yandhi, Loeb River), and high phosphorus block man ore.

焼結原料として、粒径が0μmを超え500μmアンダーの粒子を60質量%以上含む原料を対象としたのは、このような構成の原料は、従来の方法で造粒し乾燥して、強度を高めた造粒物であっても、前記したように、落下時の崩壊が著しく、焼結性の低下を招くためである。
このことから、本実施の形態では、粒子が500μmアンダーの粒子を、60質量%以上、好ましくは70質量%以上、更に好ましくは80質量%以上含む焼結原料の造粒を対象とする。なお、微粉の粒子量の上限を規定していないのは、全て微粉であってもよいためである。
As a raw material for sintering, a raw material containing particles having a particle size of more than 0 μm and under 500 μm in an amount of 60% by mass or more is used. This is because even an enhanced granulated product is significantly collapsed when dropped as described above, resulting in a decrease in sinterability.
For this reason, the present embodiment is intended for granulation of a sintering raw material containing particles having a particle size of 500 μm or less, 60 mass% or more, preferably 70 mass% or more, and more preferably 80 mass% or more. The reason why the upper limit of the amount of fine powder is not specified is that all fine powder may be used.

バインダーは、造粒物の強度向上に寄与させるため、従来から使用している例えば生石灰又は石灰岩のような、無機系のバインダーを使用できる。また、バインダーとして、パルプ廃液又はコンスターチ(水溶液又はコロイド状になったもの)を含む有機系のバインダー、及び固体架橋を促進する分散剤(分散剤を添加した水溶液又はコロイドを含む)のいずれか1又は2を使用することが好ましいが、これと無機系のバインダーを併用して使用してもよい。
なお、バインダー添加量は、焼結原料に対して1質量%以下程度でよい。
Since the binder contributes to the improvement of the strength of the granulated product, an inorganic binder such as quick lime or limestone conventionally used can be used. In addition, as a binder, any one of an organic binder containing pulp waste liquor or starch (aqueous solution or colloidal form), and a dispersant (including an aqueous solution or a colloid added with a dispersing agent) that promotes solid crosslinking. Alternatively, it is preferable to use 2, but it may be used in combination with an inorganic binder.
The amount of binder added may be about 1% by mass or less with respect to the sintered raw material.

これらを造粒機(例えば、ドラム型造粒機)に入れて造粒した後に乾燥する。
なお、造粒物を乾燥する方法としては、静置状態で通気するバンド乾燥機が、造粒物の崩壊を抑制できてベストであるが、より効率的に乾燥する方法として流動層がよい。これは、ガスクッション効果により、造粒物の崩壊を十分に抑制できるためである。ここで、キルン等の機械的な衝撃が加わる方法は、崩壊が著しく適用が困難である。
これにより、造粒物の平均粒径を1mm以上20mm以下、強度を0.1MPa(1kgf/cm)以上1.5MPa(15kgf/cm)以下とする。
These are put into a granulator (for example, drum type granulator), granulated, and then dried.
In addition, as a method of drying a granulated material, the band dryer which ventilates in a stationary state can suppress the collapse of the granulated material, and is the best, but a fluidized bed is preferable as a method of drying more efficiently. This is because the collapse of the granulated product can be sufficiently suppressed by the gas cushion effect. Here, the method of applying a mechanical impact such as a kiln is remarkably collapsed and is difficult to apply.
Thereby, the average particle diameter of the granulated product is 1 mm or more and 20 mm or less, and the strength is 0.1 MPa (1 kgf / cm 2 ) or more and 1.5 MPa (15 kgf / cm 2 ) or less.

ここで、造粒物の平均粒径を1mm以上20mm以下に規定したのは、1mm未満の造粒物は、焼結機の焼結ベッド内の通気性を阻害する懸念があり、一方、20mmを超える造粒物は、粒径が大き過ぎて、造粒物が焼成不足になる懸念があるためである。
以上のことから、造粒物の平均粒径を1mm以上20mm以下としたが、下限を3mm、更には5mm、上限を17mm、更には15mmとすることが好ましい。
Here, the average particle size of the granulated product is defined to be 1 mm or more and 20 mm or less because the granulated product of less than 1 mm has a concern of impairing the air permeability in the sintering bed of the sintering machine, while 20 mm This is because a granulated product having a particle size exceeding 1 is so large that the granulated product may be insufficiently fired.
From the above, the average particle diameter of the granulated product is set to 1 mm or more and 20 mm or less, but the lower limit is preferably 3 mm, more preferably 5 mm, and the upper limit is preferably 17 mm, more preferably 15 mm.

また、造粒物の強度を1.5MPa以下に規定したのは、例えば、流動層で乾燥した造粒物に2〜4質量%程度の水分が残存しているためである。このように、造粒物中に水分が残存すると、1.5MPaを超える強度を実現するのが難しく、その結果、落下部での崩壊が顕著になり易く、焼結機内の通気性を阻害する問題があるためである。一方、強度を0.1MPa以上としたのは、0.1MPa未満の場合、流動層の乾燥途中で崩壊してしまい、流動層から排出できなくなるためである。
以上のことから、造粒物の強度を、0.1MPa以上1.5MPa以下としたが、下限を0.3MPa、更には0.5MPaとすることが好ましい。
The reason why the strength of the granulated product is regulated to 1.5 MPa or less is that, for example, about 2 to 4% by mass of water remains in the granulated product dried in the fluidized bed. As described above, when moisture remains in the granulated product, it is difficult to achieve a strength exceeding 1.5 MPa, and as a result, the collapse at the falling part tends to be remarkable, and the air permeability in the sintering machine is hindered. This is because there is a problem. On the other hand, the reason why the strength is set to 0.1 MPa or more is that when the strength is less than 0.1 MPa, the fluidized bed collapses during drying and cannot be discharged from the fluidized bed.
From the above, the strength of the granulated product is set to 0.1 MPa or more and 1.5 MPa or less, but the lower limit is preferably 0.3 MPa, and more preferably 0.5 MPa.

このようにして製造した造粒物10を、ベルトコンベア12から、搬送用シュート11を介してホッパー13へ搬送する。
搬送用シュート11は、ホッパー13に立設配置された中空状のものであり、この搬送用シュート11の内側対向面14、15に、造粒物10の落下衝撃を和らげる平板(落下衝撃緩衝部材の一例)16が、造粒物の落下方向に間隔を有して交互に突出して設けられている。この平板16は、造粒物の落下方向に、同一間隔(同一ピッチ)で設けられているが、部分的に異なる間隔で設けてもよい。
The granulated product 10 thus manufactured is transported from the belt conveyor 12 to the hopper 13 via the transport chute 11.
The transport chute 11 is a hollow one placed upright on the hopper 13, and a flat plate (drop impact buffer member) that softens the drop impact of the granulated product 10 on the inner facing surfaces 14 and 15 of the transport chute 11. An example) 16 is provided to protrude alternately with an interval in the dropping direction of the granulated material. The flat plates 16 are provided at the same interval (same pitch) in the dropping direction of the granulated material, but may be provided at partially different intervals.

また、平板16は、搬送用シュート11の内側対向面14、15に、基側から先側へかけて下方へ傾斜させて取付けられている。この傾斜角度θは、特に限定されるものではないが、水平位置に対する傾斜角度θを30度以上45度以下の範囲内とするのがよい。この各平板16の傾斜角度θは、全て同一角度であることが好ましいが、部分的に異なる角度にしてもよい。
このように、各平板16の傾斜角度θを30度以上45度以下とすることで、平板16上に落下した造粒物を、各平板16上に滞留させることなく、下方へ安定に落下させることができる。
The flat plate 16 is attached to the inner facing surfaces 14 and 15 of the conveying chute 11 so as to be inclined downward from the base side to the front side. The inclination angle θ is not particularly limited, but the inclination angle θ with respect to the horizontal position is preferably in the range of 30 degrees to 45 degrees. The inclination angles θ of the flat plates 16 are preferably all the same, but may be partially different.
As described above, by setting the inclination angle θ of each flat plate 16 to 30 degrees or more and 45 degrees or less, the granulated material dropped on the flat plate 16 is stably dropped downward without staying on each flat plate 16. be able to.

また、造粒物の落下方向に上下隣り合う平板16間の造粒物の落下高さHは、0.1m以上0.4m以下の範囲内である。
ここで、造粒物の1回あたりの落下高さHを0.4m以下とすることで、限界落下高さによる崩壊抑制効果が得られる。一方、落下高さHが0.1m未満の場合、隣り合う平板間の間隔が狭過ぎて閉塞し、造粒物の物流を安定に実施できなくなるためである。
この限界落下高さについて、その概念を示す図3を参照しながら、詳しく説明する。
造粒物の崩壊は、落下による衝撃(落下エネルギー)に支配される。一方、造粒物の強度は、崩壊を抑制する耐性(耐性エネルギー)として働き、実際には、両者(落下エネルギーと耐性エネルギー)の差が有効破壊指数(有効破壊エネルギー)となる。
Moreover, the fall height H of the granulated product between the flat plates 16 adjacent to each other in the falling direction of the granulated product is in the range of 0.1 m or more and 0.4 m or less.
Here, the fall suppression effect by limit fall height is acquired by making fall height H per granulation into 0.4 m or less. On the other hand, when the drop height H is less than 0.1 m, the interval between adjacent flat plates is too narrow and closed, and the distribution of the granulated material cannot be performed stably.
The limit drop height will be described in detail with reference to FIG. 3 showing the concept.
The collapse of the granulated material is governed by the impact (drop energy) due to the fall. On the other hand, the strength of the granulated material acts as resistance (resistance energy) that suppresses collapse, and in fact, the difference between the two (fall energy and resistance energy) becomes the effective fracture index (effective fracture energy).

ここで、水分が2〜4質量%残存した1.5MPa以下の強度の造粒物の場合、一般的なベルトコンベアの乗継ぎ高さ(例えば、2m程度)やホッパーへの投入高さ(例えば、5m程度)では、前記した両者の差は無視できるほど小さく、造粒物の崩壊抑制にはほとんど寄与しない。しかし、造粒物の落下高さを低くしていくと、図3に示すように、造粒物の耐性が無視できなくなり、最終的には崩壊しなくなる。
このときの落下高さを、限界落下高さHcと定義した。
本願発明者らの実験により、限界落下高さは、造粒物の強度や、造粒物を構成する粒度に影響されることが明らかになっており、擬似粒子と造粒物とでは大きく異なる。なお、本願発明が対象とする粒径500μmアンダーの粒子を60質量%以上含み、平均粒径が1mm以上20mm以下、強度が0.1MPa以上1.5MPa以下の造粒物では、図2に示すように、0.4mであった。
Here, in the case of a granulated material having a strength of 1.5 MPa or less in which 2 to 4% by mass of water remains, a connecting height of a general belt conveyor (for example, about 2 m) and a feeding height to a hopper (for example, 5m), the difference between the two is negligibly small and hardly contributes to the suppression of the collapse of the granulated product. However, if the fall height of the granulated material is lowered, the resistance of the granulated material cannot be ignored as shown in FIG.
The drop height at this time was defined as the limit drop height Hc.
According to the experiments by the inventors of the present application, it has been clarified that the limit drop height is influenced by the strength of the granulated product and the particle size constituting the granulated product, and the pseudo particles and the granulated product are greatly different. . In addition, in the granulated product containing 60% by mass or more of particles having a particle size of 500 μm or less, the average particle size of which is 1 mm to 20 mm, and the strength is 0.1 MPa to 1.5 MPa, shown in FIG. Thus, it was 0.4 m.

また、搬送用シュート11の内側対向面14、15に取付けられた上下に隣り合う平板16の平面視した際の重複距離Wは、0又は0を超え平板16の内側対向面14、15からの突出長さLの半分以下の範囲内とする。
重複距離Wの下限を0mとしたのは、上方の平板から落下する造粒物を、その下方に配置される平板上に必ず落下させるためである。一方、重複距離Wの上限を平板の突出長さLの半分以下としたのは、造粒物を、上下に隣り合う平板間に滞留させることなく、下方へ安定に落下させるためである。
以上のことから、平板16の重複距離Wを、0又は0を超え平板16の突出長さLの半分以下の範囲内としたが、下限を0.1×L、更には0.2×Lとし、上限を0.4×L、更には0.3×Lとするのが好ましい。
In addition, the overlapping distance W in the plan view of the upper and lower adjacent flat plates 16 attached to the inner facing surfaces 14 and 15 of the transport chute 11 exceeds 0 or 0, and is from the inner facing surfaces 14 and 15 of the flat plate 16. It is within the range of half or less of the protrusion length L.
The reason why the lower limit of the overlap distance W is set to 0 m is to make sure that the granulated material falling from the upper flat plate is dropped onto the flat plate arranged below. On the other hand, the reason why the upper limit of the overlap distance W is set to be equal to or less than half of the protrusion length L of the flat plate is to allow the granulated material to drop stably without being retained between the upper and lower adjacent flat plates.
From the above, the overlap distance W of the flat plate 16 is set to 0 or more than 0 and less than half of the protrusion length L of the flat plate 16, but the lower limit is 0.1 × L, and further 0.2 × L And the upper limit is preferably 0.4 × L, more preferably 0.3 × L.

次に、本発明の他の実施の形態に係る造粒物の搬送方法に使用される搬送用シュートについて説明する。
図4(A)に示す搬送用シュート17は、ホッパー13に立設配置された中空状のものであり、この搬送用シュート17の内側対向面18、19に、造粒物10の落下衝撃を和らげる平板(落下衝撃緩衝部材の一例)20が、造粒物の落下方向に同一間隔を有して(同一ピッチで)交互に突出して設けられている。なお、各平板20は、搬送用シュート17の内側対向面18、19に水平に取付けられている。ここで、水平とは、水平位置を基準として、±10度、更には±5度の範囲内を含む。
Next, a transport chute used in the method for transporting a granulated product according to another embodiment of the present invention will be described.
The conveying chute 17 shown in FIG. 4 (A) is a hollow one placed upright on the hopper 13, and a drop impact of the granulated product 10 is applied to the inner facing surfaces 18 and 19 of the conveying chute 17. Reducing flat plates (an example of a drop impact buffering member) 20 are provided so as to protrude alternately with the same interval (at the same pitch) in the dropping direction of the granulated product. Each flat plate 20 is horizontally attached to the inner facing surfaces 18 and 19 of the conveying chute 17. Here, the term “horizontal” includes within a range of ± 10 degrees and further ± 5 degrees with respect to the horizontal position.

この搬送用シュート17を使用して、造粒物を落下させるに際しては、各平板20が水平状態であるため、造粒物が各平板20の上面に堆積する。そして、各平板20上に堆積した造粒物が、所定の安息角(30〜40度)を有する傾斜面を形成する。
これにより、造粒物は、各平板20の表面に衝突することなく、堆積した造粒物で形成される傾斜面上に落下して転がり落ちるので、各平板20の摩耗や損耗を抑制でき、各平板20のメンテナンス頻度やランニングコストを低減できる。
以上のことから、本願発明の造粒物の搬送方法を使用することで、落下による造粒物の崩壊を抑制できるので、この造粒物を焼結機に供給することにより、良好な品質を有する焼結鉱を効率よく製造できる。
When the granulated product is dropped by using the transport chute 17, since each flat plate 20 is in a horizontal state, the granulated product is deposited on the upper surface of each flat plate 20. And the granulated material deposited on each flat plate 20 forms the inclined surface which has a predetermined angle of repose (30-40 degree | times).
Thereby, since the granulated material falls on the inclined surface formed by the accumulated granulated material and does not collide with the surface of each flat plate 20, it can suppress wear and wear of each flat plate 20, The maintenance frequency and running cost of each flat plate 20 can be reduced.
From the above, by using the method for conveying a granulated product of the present invention, it is possible to suppress the collapse of the granulated product due to falling, so by supplying this granulated product to a sintering machine, good quality can be obtained. It is possible to efficiently produce the sintered ore.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、粒径500μmアンダーの粒子を65質量%含む焼結原料をドラム型造粒機に入れ、これに水と有機系のバインダーを添加して造粒し、流動層を用いた乾燥を行って、得られた平均粒径5mm、強度0.4MPaの造粒物の搬送前後の崩壊率(φ500μm以下の増加量)を検討した。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, a sintering raw material containing 65% by mass of particles having a particle size of 500 μm or less is put into a drum granulator, and water and an organic binder are added thereto to granulate, followed by drying using a fluidized bed. Then, the collapse rate (increase amount of φ500 μm or less) before and after the conveyance of the obtained granulated product having an average particle diameter of 5 mm and a strength of 0.4 MPa was examined.

まず、搬送用シュートに設けた隣り合う平板間の造粒物の落下高さを検討した結果について、図5(A)、(B)を参照しながら説明する。なお、図5(A)には、造粒物の1回あたりの落下高さ(平板の設置間隔)を、6m(平板なし)、1m、0.6m、0.4m、及び0.3mとした場合の造粒物の落下時のイメージを図示しており、図5(B)には、造粒物が6m(6m×1回)落下したときの崩壊率と、造粒物がトータルで6m落下するに際しての1回あたりの落下高さを変えた場合の崩壊率との関係を示している。ここで、搬送用シュートに設ける平板は、傾斜させることなく水平状態で、しかも造粒物の落下方向に等ピッチで設けられている。なお、図5(B)には、図5(A)に示したイメージ以外の落下高さを変えた場合の崩壊率も、併せて示している。 First, the result of examining the drop height of the granulated material between adjacent flat plates provided on the conveyance chute will be described with reference to FIGS. 5 (A) and 5 (B). In addition, in FIG. 5 (A), the fall height per one time (gap of flat plates) of the granulated product is 6 m (no flat plate), 1 m, 0.6 m, 0.4 m, and 0.3 m. Fig. 5 (B) shows the image when the granulated product falls, and in Fig. 5 (B), the collapse rate when the granulated product falls 6m (6m x 1 time) and the total of the granulated product are shown. The relationship with the collapse rate at the time of changing the fall height per time when dropping 6 m is shown. Here, the flat plate provided in the conveyance chute is provided in a horizontal state without being inclined, and at an equal pitch in the dropping direction of the granulated product. FIG. 5B also shows the collapse rate when the fall height other than the image shown in FIG. 5A is changed.

図5(B)から明らかなように、造粒物を6m落下させる場合において、6mを1回、1mを6回、0.6mを10回というように、1回あたりの落下高さを低くすることで、1回あたりの崩壊率は低減されたが、合計6m落下したときの造粒物の崩壊率は同じであった。
しかし、図5(B)に示すように、1回あたりの落下高さを、0.4m(15回)、0.3m(20回)と更に低くすることで、合計6m落下したときの造粒物の崩壊率が減少することを確認できた。
これは、前記した造粒物の耐性の影響であり、落下高さを低くすることで、造粒物の耐性の影響が無視できなくなるためである。
As is clear from FIG. 5 (B), when dropping the granulated product for 6 m, the drop height per time is low, such as 6 m once, 1 m 6 times, and 0.6 m 10 times. By doing so, the disintegration rate per one time was reduced, but the disintegration rate of the granulated product when it dropped a total of 6 m was the same.
However, as shown in FIG. 5 (B), when the drop height per time is further lowered to 0.4 m (15 times) and 0.3 m (20 times), the structure when a total of 6 m is dropped. It was confirmed that the particle disintegration rate decreased.
This is because of the influence of the resistance of the granulated material described above, and the influence of the resistance of the granulated material cannot be ignored by reducing the drop height.

なお、上記した現象は、粒径500μmアンダーの粒子を60質量%以上含み、平均粒径が1mm以上20mm以下、強度が0.1MPa以上1.5MPa以下の造粒物に、同様に現れていた。
また、焼結機においては、造粒物の崩壊率、即ち落下後の造粒物中に含まれるφ500μm以下の増加率が7質量%まで、操業に大きな影響をえない。
以上のことから、粒径500μmアンダーの粒子を60質量%以上含み、1mm以上20mm以下の平均粒径を備え、0.1MPa以上1.5MPa以下の強度の造粒物を落下させる場合、造粒物の1回あたりの落下高さが0.4m以下であれば、造粒物の崩壊抑制効果が顕著に得られることを確認できた。
The phenomenon described above appeared in the same manner in a granulated product containing particles having a particle size of less than 500 μm in an amount of 60% by mass or more, an average particle size of 1 mm to 20 mm, and a strength of 0.1 MPa to 1.5 MPa. .
In the sintering machine, decay rates of the granulated product, i.e. φ500μm following increase rate contained in the granulated product in after the drop until 7% by weight, Enoi given a significant impact on operations.
In view of the above, when dropping a granulated product having an average particle size of 1 mm or more and 20 mm or less, including particles having a particle size of 500 μm or less and having an average particle size of 1 mm or more and 20 mm or less, granulation If the fall height per time of a thing is 0.4 m or less, it has confirmed that the collapse inhibitory effect of a granulated thing was notably acquired.

次に、造粒物の落下方法と、そのときの造粒物の崩壊率を検討した結果について、図6(A)、(B)を参照しながら説明する。この図6(A)に示す搬送用シュートは、造粒物を搬送するベルトコンベアと、造粒物を貯留するホッパーとの間に設けられるものであり、その落下高さは5mである。ここで、従来例は、平板を使用することなく、造粒物を5m自由落下させた場合の結果であり、比較例は、搬送用シュート内に傾斜角度60度のシュートを設けて造粒物を落下させた場合の結果であり、実施例は、水平位置に対する傾斜角度を40度とした平板を、造粒物の落下方向に多段に設け、隣り合う平板間の造粒物の落下高さを0.3mとし、平面視した際の平板の重複距離を、平板の突出長さの0.1倍とした場合の結果である。 Next, the method of dropping the granulated product and the results of examining the collapse rate of the granulated product at that time will be described with reference to FIGS. 6 (A) and 6 (B). The conveying chute shown in FIG. 6 (A) is provided between a belt conveyor that conveys the granulated material and a hopper that stores the granulated material, and its drop height is 5 m. Here, the conventional example is a result when the granulated product is dropped freely by 5 m without using a flat plate, and the comparative example is a granulated product in which a chute having an inclination angle of 60 degrees is provided in the transport chute. In this example, flat plates with an inclination angle of 40 degrees with respect to the horizontal position are provided in multiple stages in the dropping direction of the granulated product, and the dropped height of the granulated product between adjacent flat plates Is the result when the overlapping distance of the flat plate when viewed in plan is 0.1 times the protruding length of the flat plate.

図6(B)から明らかなように、造粒物を5m自由落下させた従来例と比較して、1つのシュートを使用する比較例では、造粒物の崩壊抑制効果がほとんど得られなかった。
一方、実施例のように、造粒物の落下高さ等を、前記実施の形態に示した適正範囲内に設定することで、造粒物の崩壊率を2質量%まで低減でき、大きな崩壊抑制効果が得られることを確認できた。
以上のことから、本発明の造粒物の搬送方法を適用することで、微粉を主体として造粒された平均粒径と強度が規定された造粒物の崩壊を抑制し、良好な品質を有する焼結鉱を効率よく製造できることを確認できた。
As is clear from FIG. 6 (B), the comparative example using one chute compared with the conventional example in which the granulated product was allowed to fall freely by 5 m hardly obtained the granule collapse suppression effect. .
On the other hand, by setting the fall height of the granulated product within the appropriate range shown in the embodiment as in the examples, the disintegration rate of the granulated product can be reduced to 2% by mass, and the large collapse It was confirmed that an inhibitory effect was obtained.
From the above, by applying the method for conveying a granulated product of the present invention, it is possible to suppress the collapse of the granulated product having a defined average particle size and strength that are mainly composed of fine powder, and to achieve good quality. It was confirmed that the sintered ore having this could be produced efficiently.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の造粒物の搬送方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、搬送用シュートを、造粒物を搬送するベルトコンベアと、この造粒物を貯留するホッパーとの間に設けた場合について説明したが、造粒物が落下する場所であればこれに限定されるものではなく、例えば、造粒物を搬送するベルトコンベアからベルトコンベアへの乗継ぎ部に設けてもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the granulated product transport method of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the case where the conveyance chute was provided between the belt conveyor which conveys a granulated material, and the hopper which stores this granulated material was demonstrated, a granulated material falls It is not limited to this as long as it is a place, and for example, it may be provided at a connecting portion from a belt conveyor that conveys the granulated material to the belt conveyor.

本発明の一実施の形態に係る造粒物の搬送方法に使用する搬送用シュートの説明図である。It is explanatory drawing of the chute for conveyance used for the conveyance method of the granulated material which concerns on one embodiment of this invention. 造粒物の崩壊率と落下高さとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the collapse rate of a granulated material, and fall height. 造粒物の崩壊メカニズムの説明図である。It is explanatory drawing of the disintegration mechanism of a granulated material. (A)、(B)はそれぞれ本発明の他の実施の形態に係る造粒物の搬送方法に使用する搬送用シュートの説明図、使用状態の説明図である。(A), (B) is explanatory drawing of the chute for conveyance used for the conveying method of the granulated material which concerns on other embodiment of this invention, respectively, and explanatory drawing of a use state. (A)は造粒物の落下時のイメージの説明図、(B)は造粒物が6m落下する場合の1回あたりの落下高さとその崩壊率との関係を示す説明図である。(A) is explanatory drawing of the image at the time of fall of a granulated material, (B) is explanatory drawing which shows the relationship between the fall height per time when a granulated material falls 6m, and its collapse rate. (A)、(B)は実施例に係る造粒物の搬送方法と造粒物の崩壊率との関係を示す説明図である。(A), (B) is explanatory drawing which shows the relationship between the conveyance method of the granulated material which concerns on an Example, and the collapse rate of a granulated material. 従来例に係る擬似粒子の破壊防止方法を適用する装置の説明図である。It is explanatory drawing of the apparatus which applies the destruction prevention method of the pseudo particle which concerns on a prior art example. 従来例に係る焼結鉱の粉化防止方法を適用する装置の説明図である。It is explanatory drawing of the apparatus which applies the powdering prevention method of the sintered ore concerning a prior art example. 擬似粒子及び造粒物の落下高さと崩壊率の関係を比較した説明図である。It is explanatory drawing which compared the relationship between the fall height of a quasi-particle and granulated material, and a disintegration rate.

符号の説明Explanation of symbols

10:造粒物、11:搬送用シュート、12:ベルトコンベア、13:ホッパー、14、15:内側対向面、16:平板(落下衝撃緩衝部材)、17:搬送用シュート、18、19:内側対向面、20:平板(落下衝撃緩衝部材) 10: Granulated product, 11: Transport chute, 12: Belt conveyor, 13: Hopper, 14, 15: Inside facing surface, 16: Flat plate (drop impact buffer member), 17: Transport chute, 18, 19: Inside Opposing surface, 20: flat plate (drop impact buffer member)

Claims (4)

粒径500μmアンダーの粒子を60質量%以上含む焼結原料にバインダーを添加し造粒した後、流動層を用いて乾燥し、平均粒径を1mm以上20mm以下、強度を0.1MPa以上1.5MPa以下とした造粒物を、搬送用シュートを介して落下させる造粒物の搬送方法であって、
前記搬送用シュートの内側対向面には、前記造粒物の落下衝撃緩衝部材が、該造粒物の落下方向に間隔を有して交互に突出して設けられ、しかも上下隣り合う前記落下衝撃緩衝部材間の前記造粒物の落下高さを0.1m以上0.4m以下の範囲内とし、上下隣り合う前記落下衝撃緩衝部材の平面視した際の重複距離を、0又は0を超え前記落下衝撃緩衝部材の突出長さの半分以下の範囲内とすることを特徴とする造粒物の搬送方法。
After granulated particles having a particle diameter of 500μm under the addition of a binder in a sintering raw material containing 60 mass% or more, fluidized bed and dried with an average particle diameter of 1mm or more 20mm or less, the strength more than 0.1MPa A granulated material transport method for dropping a granulated material having a pressure of 1.5 MPa or less through a transport chute,
On the inner facing surface of the conveying chute, a drop impact buffering member for the granulated material is provided so as to protrude alternately with an interval in the dropping direction of the granulated product, and the drop impact buffer adjacent to each other in the vertical direction. The fall height of the granulated material between the members is within a range of 0.1 m or more and 0.4 m or less, and an overlap distance when the drop impact buffer members adjacent to each other in a plan view are 0 or more than 0 and the fall A method for conveying a granulated product, characterized in that it is within a range of half or less of the protruding length of the impact buffering member.
請求項1記載の造粒物の搬送方法において、前記各落下衝撃緩衝部材は平板であって、該平板を、前記搬送用シュートの内側対向面に、基側から先側へかけて下方へ傾斜させて取付け、しかも水平位置に対する傾斜角度を30度以上45度以下の範囲内とすることを特徴とする造粒物の搬送方法。 2. The method for conveying a granulated product according to claim 1, wherein each of the drop impact buffering members is a flat plate, and the flat plate is inclined downward from the base side to the front side on the inner facing surface of the transfer chute. The method for conveying a granulated product is characterized in that it is attached and the inclination angle with respect to the horizontal position is in the range of 30 degrees to 45 degrees. 請求項1記載の造粒物の搬送方法において、前記各落下衝撃緩衝部材は平板であって、該平板を、前記搬送用シュートの内側対向面に、水平に取付けたことを特徴とする造粒物の搬送方法。 2. The granulated material conveying method according to claim 1, wherein each of the drop impact buffering members is a flat plate, and the flat plate is horizontally attached to the inner facing surface of the conveying chute. How to transport things. 請求項1〜3のいずれか1項に記載の造粒物の搬送方法において、前記各落下衝撃緩衝部材は、前記造粒物の落下方向に等ピッチで取付けられていることを特徴とする造粒物の搬送方法。 The method for conveying a granulated product according to any one of claims 1 to 3, wherein each of the drop impact buffer members is attached at an equal pitch in a dropping direction of the granulated product. Grain transport method.
JP2008308892A 2008-12-03 2008-12-03 Granulated material transport method Active JP5791863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308892A JP5791863B2 (en) 2008-12-03 2008-12-03 Granulated material transport method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308892A JP5791863B2 (en) 2008-12-03 2008-12-03 Granulated material transport method

Publications (2)

Publication Number Publication Date
JP2010132956A JP2010132956A (en) 2010-06-17
JP5791863B2 true JP5791863B2 (en) 2015-10-07

Family

ID=42344508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308892A Active JP5791863B2 (en) 2008-12-03 2008-12-03 Granulated material transport method

Country Status (1)

Country Link
JP (1) JP5791863B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173498B1 (en) * 2010-12-28 2012-08-14 재단법인 포항산업과학연구원 Apparatus for granulation and sensible heat collection of melting slag
KR101290473B1 (en) * 2011-09-28 2013-07-26 현대제철 주식회사 apparatus for prevention of breaking sintered ore of sintered ore storing bin
KR101360055B1 (en) 2012-11-19 2014-02-07 주식회사 포스코 A pulverization prevention device for sintered ore using zigzag type nets
JP5963716B2 (en) * 2013-07-16 2016-08-03 日本冶金工業株式会社 Briquette molded product collapse prevention device, steel by-product roasting reduction device, and steel by-product roasting reduction method
KR101656404B1 (en) * 2013-12-27 2016-09-12 (주)포스코켐텍 Apparatus for drawing out firebrick and method using the same
KR101909509B1 (en) * 2016-11-30 2018-10-18 주식회사 포스코 Apparatus for conveying pellet and method for conveying pellet
KR101773895B1 (en) * 2017-04-14 2017-09-04 주식회사 대신우레탄 Liner having the urethane material and shooter using the this
JP7252446B2 (en) * 2019-03-29 2023-04-05 日本製鉄株式会社 Conveyor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159082A (en) * 1974-06-15 1975-12-23
JPS54139474U (en) * 1978-03-22 1979-09-27
JPS56107723U (en) * 1980-01-17 1981-08-21
JP2000154971A (en) * 1998-11-19 2000-06-06 Kobe Steel Ltd Distributing apparatus for powder
JP4786508B2 (en) * 2004-05-13 2011-10-05 新日本製鐵株式会社 Pretreatment method of sintering raw material
JP5020501B2 (en) * 2005-11-17 2012-09-05 新日本製鐵株式会社 Pretreatment method of sintered raw material and method of manufacturing sintered ore
JP5343323B2 (en) * 2007-04-06 2013-11-13 新日鐵住金株式会社 Sintered raw material pellet drying equipment and sintered raw material pellet drying method

Also Published As

Publication number Publication date
JP2010132956A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5791863B2 (en) Granulated material transport method
JP3902629B2 (en) Pretreatment method of sintering raw materials
US8834596B2 (en) Method for pretreating sintering material
WO2012029862A1 (en) System for feeding reduced iron material
CN107282260A (en) A kind of pellet screening reuse method
CN102925676B (en) Novel energy-saving technology for producing pellets with fine-grained iron ore concentrates
JP4786508B2 (en) Pretreatment method of sintering raw material
JP5320833B2 (en) Vertical furnace operation method and vertical furnace charging coke in-furnace prevention equipment
JP5051317B1 (en) Method for manufacturing raw materials for sintering
JP2007138246A (en) Preliminary treatment method and preliminary treatment device for sintering raw material
JP5020501B2 (en) Pretreatment method of sintered raw material and method of manufacturing sintered ore
JP4786760B2 (en) Pretreatment method of sintering raw material
CN101857813A (en) Be used for producing method and apparatus with biological substance as the pellet of the fuel in the burner hearth at pelleting press
JP7107056B2 (en) Vibrating screen clogging prevention device and clogging prevention method
WO2012015066A1 (en) Method for producing starting material for sintering
JP2014201763A (en) Method for producing granulation raw material for sintering
JP4677040B2 (en) Granulation method of fine powder raw material
JP2018536837A (en) Raw material charging apparatus and method
CN105973008A (en) Sintering segregation anti-adhesion material distribution device and segregation material distribution method thereof
JP2006312786A (en) Method for pretreating raw material for sintering
JP7024649B2 (en) Granulation method of raw material for sintering
CN216063733U (en) Granular steel processing system
JP2018048360A (en) Sintering raw material charging device and sintering machine
LU100075B1 (en) Method of Operating a Pelletizing Plant
JP6693358B2 (en) Sintering raw material grain charging method and sintering raw material grain charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R151 Written notification of patent or utility model registration

Ref document number: 5791863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350