JP5789328B1 - Alloys and equipment for sliding members - Google Patents

Alloys and equipment for sliding members Download PDF

Info

Publication number
JP5789328B1
JP5789328B1 JP2014121208A JP2014121208A JP5789328B1 JP 5789328 B1 JP5789328 B1 JP 5789328B1 JP 2014121208 A JP2014121208 A JP 2014121208A JP 2014121208 A JP2014121208 A JP 2014121208A JP 5789328 B1 JP5789328 B1 JP 5789328B1
Authority
JP
Japan
Prior art keywords
mass
alloy
valve seat
valve
seat surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014121208A
Other languages
Japanese (ja)
Other versions
JP2016000852A (en
Inventor
岡野 正紀
正紀 岡野
友輔 河野
友輔 河野
雄太 松田
雄太 松田
慶一朗 永岩
慶一朗 永岩
信一 西村
信一 西村
幸隆 濱田
幸隆 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Okano Valve Mfg Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Okano Valve Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, Okano Valve Mfg Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2014121208A priority Critical patent/JP5789328B1/en
Application granted granted Critical
Publication of JP5789328B1 publication Critical patent/JP5789328B1/en
Publication of JP2016000852A publication Critical patent/JP2016000852A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】高面圧・高温環境の下でも、十分な耐摩耗性と耐食性を有するする摺動部材用合金及び、機器の提供。【解決手段】クロムを7〜17質量%、タングステンを1〜4質量%、ケイ素を3〜7質量%、ホウ素を1質量%以下、炭素を1質量%以下、鉄を3〜15質量%、及び銅を10〜20質量%、それぞれ含有するとともに、残部がニッケルで構成されている摺動部材用合金。少なくとも1組の弁座面を有する仕切弁1において、一方の弁座面を前記摺動部材用合金で形成されている機器。【選択図】図1The present invention provides an alloy for a sliding member and a device having sufficient wear resistance and corrosion resistance even under a high surface pressure and high temperature environment. SOLUTION: 7-17% by mass of chromium, 1-4% by mass of tungsten, 3-7% by mass of silicon, 1% by mass or less of boron, 1% by mass or less of carbon, 3-15% by mass of iron, And the alloy for sliding members which contains 10-20 mass% of copper, respectively, and the remainder is comprised with nickel. In the gate valve 1 having at least one set of valve seat surfaces, one of the valve seat surfaces is formed of the sliding member alloy. [Selection] Figure 1

Description

本発明は、コバルトフリー合金、即ちコバルト(Co)を含まない摺動部材用合金及び摺動部材を有する機器に関する。   The present invention relates to a cobalt-free alloy, that is, an alloy for a sliding member that does not contain cobalt (Co) and a device having the sliding member.

一の構成部材と当該一の構成部材に対して相対的に摺動する構成部材の組を、本明細書では、1組の摺動部材と呼ぶことにする。さて、かかる摺動部材は、十分な耐摩耗性と耐食性が要求される。そのために、摺動部材を備える機器では、当該機器の本体部分(母材)に、耐摩耗性と耐食性に優れた合金を肉盛溶接して、摺動部材を形成している。例えば弁類の弁座面は典型的な摺動部材であり、各種弁類は摺動部材を備える機器の代表例である。   A set of constituent members that slide relative to the one constituent member is referred to as a pair of sliding members in this specification. Such a sliding member is required to have sufficient wear resistance and corrosion resistance. Therefore, in a device including a sliding member, a sliding member is formed by overlay welding an alloy having excellent wear resistance and corrosion resistance on a main body portion (base material) of the device. For example, the valve seat surface of the valves is a typical sliding member, and the various valves are typical examples of devices provided with the sliding member.

摺動部材を形成する材料として、ステライト(登録商標)合金に代表されるような、コバルト(Co)、クロム(Cr)及びタングステン(W)を基材とするCo−Cr−W合金(以下、「Co基合金」と言う)が広く知られている。   As a material for forming the sliding member, a Co—Cr—W alloy based on cobalt (Co), chromium (Cr), and tungsten (W) as represented by Stellite (registered trademark) alloy (hereinafter, "Co-based alloy" is widely known.

さて、原子力発電プラントには、多数の弁類が使用されているが、Co基合金をかかる弁類に使用すると、時間の経過とともに弁座面が摩耗あるいは腐食して、その結果、コバルト(Co)の粒子が冷却水中に混入する。このコバルト(Co)粒子が冷却水とともに、炉心に達すると、冷却水中のコバルト(Co)は核燃料から放出される中性子の照射を受けて、原子核反応を起こし、放射性同位元素コバルト60(Co60)となる。コバルト60(Co60)は、冷却水とともにプラント内を循環する間にプラントの構成部材の内表面(接液表面)に付着して、原子力発電プラント全体の放射能レベルを増大させる。この現象は、定期検査時等における作業員の放射線被曝の大きな原因となっている。そのために、Co基合金の代替材料が強く求められている。また、コバルト(Co)は工業資源として貴重な希少金属であり、その使用を節約することが望まれている。 Numerous valves are used in nuclear power plants, but when a Co-based alloy is used for such valves, the valve seat surface wears or corrodes over time, resulting in cobalt (Co ) Particles in the cooling water. When the cobalt (Co) particles reach the core together with the cooling water, the cobalt (Co) in the cooling water is irradiated with neutrons emitted from the nuclear fuel to cause a nuclear reaction, and the radioisotope cobalt 60 (Co 60 ). It becomes. Cobalt 60 (Co 60 ) adheres to the inner surfaces (wetted surfaces) of the components of the plant while circulating in the plant together with the cooling water, and increases the radioactivity level of the entire nuclear power plant. This phenomenon is a major cause of worker radiation exposure during periodic inspections. Therefore, there is a strong demand for alternative materials for Co-based alloys. Further, cobalt (Co) is a rare metal valuable as an industrial resource, and it is desired to save its use.

そこで、弁座の材料として、コバルト(Co)を含まない(コバルトフリー)合金が求められていて、既に実用化されている。例えば、COLMONOY(登録商標)合金に代表されるような、AWS(アメリカ溶接学会)の仕様(A5.11−54)に規定されているNi基の肉盛材であるRNiCrBは、炭素(C)を0.4〜0.8質量%、ケイ素(Si)を3〜5質量%、クロム(Cr)を10〜16質量%、ホウ素(B)を2〜4質量%、及び鉄(Fe)を3〜5質量%、それぞれ含有するとともに、残部がニッケル(Ni)で構成されていて、コバルト(Co)を含有していない。   Therefore, an alloy that does not contain cobalt (Co) is required as a material for the valve seat, and has already been put into practical use. For example, RNiCrB, which is a Ni-based cladding material defined in AWS (American Welding Society) specification (A5.11-54), as represented by COLMONOY® alloy, is carbon (C). 0.4 to 0.8 mass%, silicon (Si) 3 to 5 mass%, chromium (Cr) 10 to 16 mass%, boron (B) 2 to 4 mass%, and iron (Fe). While containing 3 to 5% by mass, the balance is made of nickel (Ni) and does not contain cobalt (Co).

前記RNiCrBはホウ素(B)の含有比率が比較的大きいので、肉盛溶接の際に肉盛層に割れが生じやすいとして、コバルトフリーのニッケル(Ni)基合金において、ホウ素(B)の含有比率を小さくすることも提案されている。例えば、特許文献1に記載の合金は、ホウ素(B)を0.05〜1.5質量%、ケイ素(Si)を3〜7質量%、クロム(Cr)を10〜15質量%、炭素(C)を0.05〜1.5質量%、それぞれ含有し、残部がニッケル(Ni)で構成されている。   Since the content ratio of boron (B) is relatively large in RNiCrB, the content ratio of boron (B) in a cobalt-free nickel (Ni) -based alloy is considered as being easily cracked during overlay welding. It has also been proposed to reduce. For example, the alloy described in Patent Document 1 has boron (B) of 0.05 to 1.5 mass%, silicon (Si) of 3 to 7 mass%, chromium (Cr) of 10 to 15 mass%, carbon ( C) is contained in an amount of 0.05 to 1.5% by mass, and the balance is made of nickel (Ni).

特許文献1に記載の合金は、溶接時の割れは減少したが、耐摩耗性において難点があるとして、本願の出願人の一人は、摺動部材の一方を、クロム(Cr)を5〜15質量%、ケイ素(Si)を3〜7質量%、鉄(Fe)を10〜40質量%、タングステン(W)を1〜4質量%、ホウ素(B)を1質量%以下、及び炭素(C)を1質量%以下、それぞれ含有するとともに、残部がニッケル(Ni)からなる第1合金材料で形成し、他方をクロム(Cr)を15〜20質量%、ケイ素(Si)を3〜7質量%、鉄(Fe)を35質量%以下、タングステン(W)を1〜4質量%、錫(Sn)を0.5〜1.0質量%、ホウ素(B)を1質量%以下、炭素(C)を1質量%以下、それぞれ含有するとともに、残部がニッケル(Ni)からなる第2合金材料で形成した機器の発明について、特許を受けている(特許文献2)。   Although the alloy described in Patent Document 1 has reduced cracking during welding, one of the applicants of the present application suppose that one of the sliding members is made of chromium (Cr) in an amount of 5-15. 3% by mass, silicon (Si) 3-7% by mass, iron (Fe) 10-40% by mass, tungsten (W) 1-4% by mass, boron (B) 1% by mass or less, and carbon (C ) 1% by mass or less, and the remainder is made of a first alloy material made of nickel (Ni), the other being 15-20% by mass of chromium (Cr) and 3-7% by mass of silicon (Si). %, Iron (Fe) 35 mass% or less, tungsten (W) 1-4 mass%, tin (Sn) 0.5-1.0 mass%, boron (B) 1 mass% or less, carbon ( C) is contained in an amount of 1% by mass or less, and the remainder is made of nickel (Ni). The invention of a device formed of gold material, a patent has been granted (Patent Document 2).

また、前記出願人は、前記第1合金材料に代えて、クロム(Cr)を6.5〜20質量%、タングステン(W)を1〜4質量%、ケイ素(Si)を2〜7質量%、ホウ素(B)を1質量%以下、炭素(C)を1質量%以下、及び鉄(Fe)を40〜50質量%、それぞれ含有するとともに、残部がニッケル(Ni)からなる合金材料で摺動部材の一方を形成してなる機器の発明について、特許を受けている(特許文献3)。特許文献3に係る合金材料は、摺動部材の他方の素材が前記第2合金材料には限定されないという利点を有する。つまり、前記合金材料は前記第2合金材料以外と組み合わせても、優れた耐摩耗性と耐食性が発揮される。   Moreover, the said applicant replaced with the said 1st alloy material, 6.5-20 mass% of chromium (Cr), 1-4 mass% of tungsten (W), and 2-7 mass% of silicon (Si). 1% by mass or less of boron (B), 1% by mass or less of carbon (C), and 40 to 50% by mass of iron (Fe), respectively, and the rest is made of an alloy material made of nickel (Ni). A patent has been received for an invention of a device formed with one of the moving members (Patent Document 3). The alloy material according to Patent Document 3 has an advantage that the other material of the sliding member is not limited to the second alloy material. That is, even when the alloy material is combined with other than the second alloy material, excellent wear resistance and corrosion resistance are exhibited.

特開昭55−31127号公報JP 55-31127 A 特許第2840191号公報Japanese Patent No. 2840191 特許第2955506号公報Japanese Patent No. 2955506

一般に、大口径の弁の弁座面は高い面圧を受けるので、弁座面の摩耗が激しい。また、温度が高くなると、弁座面の摩耗が激しくなる。確かに、特許文献2,3に開示されたコバルトフリー合金(第1合金材料、摺動部材用合金材料)は、優れた耐摩耗性と耐食性を有するが、600mmを超えるような大口径の弁であって、300℃を超える高温の冷却水を通過させる弁の弁座面に使用する場合は、耐摩耗性と耐食性について満足できなかった。つまり、従来のコバルトフリー合金はCo基合金に比べて見劣りがした。そのため、前記コバルトフリー合金を弁座面の素材に使用して、高面圧・高温環境の下で弁の開閉を繰り返すと、弁座面の粗度が増してシール性が損なわれるという問題があった。   In general, since the valve seat surface of a large-diameter valve is subjected to a high surface pressure, the valve seat surface is heavily worn. In addition, when the temperature increases, the wear of the valve seat surface becomes severe. Certainly, the cobalt-free alloys (first alloy material, sliding member alloy material) disclosed in Patent Documents 2 and 3 have excellent wear resistance and corrosion resistance, but have a large diameter valve exceeding 600 mm. However, when it was used for the valve seat surface of a valve through which high-temperature cooling water exceeding 300 ° C. was passed, the wear resistance and corrosion resistance could not be satisfied. In other words, conventional cobalt-free alloys were inferior to Co-based alloys. Therefore, if the cobalt-free alloy is used as a material for the valve seat surface and the valve is repeatedly opened and closed under a high surface pressure and high temperature environment, the roughness of the valve seat surface increases and the sealing performance is impaired. there were.

本発明は、このような事情に鑑みてなされたものであり、高面圧・高温環境の下でも、十分な耐摩耗性と耐食性を発揮する摺動部材用合金及び、摺動部材を有する機器であって、耐久性及び信頼性の高い機器を提供することを目的とする。   The present invention has been made in view of such circumstances, and an alloy for a sliding member that exhibits sufficient wear resistance and corrosion resistance even under a high surface pressure and high temperature environment, and an apparatus having the sliding member Then, it aims at providing a durable and reliable apparatus.

上記課題を解決するために、本発明に係る摺動部材用合金は、クロムを7〜17質量%、タングステンを1〜4質量%、ケイ素を3〜7質量%、ホウ素を1質量%以下、炭素を1質量%以下、鉄を3〜15質量%、及び銅を10〜20質量%、それぞれ含有するとともに、残部がニッケルで構成されている。   In order to solve the above problems, the alloy for a sliding member according to the present invention is composed of 7 to 17% by mass of chromium, 1 to 4% by mass of tungsten, 3 to 7% by mass of silicon, and 1% by mass or less of boron. While containing 1 mass% or less of carbon, 3-15 mass% of iron, and 10-20 mass% of copper, the remainder is made of nickel.

本発明に係る機器は、少なくとも1組の摺動部材を有する機器において、前記摺動部材の一方が前記摺動部材用合金で形成されるものである。   The apparatus according to the present invention is an apparatus having at least one set of sliding members, wherein one of the sliding members is formed of the alloy for sliding members.

前記摺動部材の他方は、クロムを15〜20質量%、タングステンを1〜4質量%、ケイ素を3〜7質量%、ホウ素を1質量%以下、炭素を1質量%以下、鉄を35質量%以下、及び錫を0.5〜1.0質量%、それぞれ含有するとともに、残部がニッケルで構成されている摺動部材用合金で形成されていても良い。   The other of the sliding members is 15-20% by mass of chromium, 1-4% by mass of tungsten, 3-7% by mass of silicon, 1% by mass or less of boron, 1% by mass or less of carbon, and 35% by mass of iron. %, And 0.5 to 1.0% by mass of tin, respectively, and the balance may be formed of an alloy for a sliding member made of nickel.

前記摺動部材の一方は弁座面であり、前記摺動部材の他方は前記弁座面に対して相対的に摺動する相手方の弁座面であっても良い。   One of the sliding members may be a valve seat surface, and the other of the sliding members may be a counterpart valve seat surface that slides relative to the valve seat surface.

クロムを7〜17質量%、タングステンを1〜4質量%、ケイ素を3〜7質量%、ホウ素を1質量%以下、炭素を1質量%以下、鉄を3〜15質量%、及び銅を10〜20質量%、それぞれ含有するとともに、残部がニッケルで構成されている摺動部材用合金は、耐摩耗性及び耐食性に優れている。   7-17% by mass of chromium, 1-4% by mass of tungsten, 3-7% by mass of silicon, 1% by mass or less of boron, 1% by mass or less of carbon, 3-15% by mass of iron, and 10% of copper The alloy for a sliding member containing ˜20% by mass, each of which is composed of nickel, is excellent in wear resistance and corrosion resistance.

少なくとも1組の摺動部材を有する機器において、前記摺動部材の一方を前述の合金で形成すれば、耐摩耗性、耐食性が優れるとともに、摺動部材の摺動面において優れたシール性能を発揮する。   In an apparatus having at least one pair of sliding members, if one of the sliding members is formed of the aforementioned alloy, the wear resistance and corrosion resistance are excellent, and excellent sealing performance is exhibited on the sliding surface of the sliding member. To do.

前記摺動部材の他方を、クロムを15〜20質量%、タングステンを1〜4質量%、ケイ素を3〜7質量%、ホウ素を1質量%以下、炭素を1質量%以下、鉄を35質量%以下、及び錫を0.5〜1.0質量%、それぞれ含有するとともに、残部がニッケルで構成されている摺動部材用合金で形成すれば、前記摺動部材の摺動面におけるシール性能がさらに向上する。   The other of the sliding members is 15-20% by mass of chromium, 1-4% by mass of tungsten, 3-7% by mass of silicon, 1% by mass or less of boron, 1% by mass or less of carbon, and 35% by mass of iron. %, And 0.5 to 1.0% by mass of tin, respectively, and if the balance is formed of an alloy for a sliding member made of nickel, the sealing performance on the sliding surface of the sliding member Is further improved.

弁座面を前述の合金で形成すれば、耐摩耗性及び耐食性が優れた弁であって、優れたシール性能を有する弁が実現される。   If the valve seat surface is formed of the aforementioned alloy, a valve having excellent wear resistance and corrosion resistance and having excellent sealing performance can be realized.

本発明の実施形態を例示する仕切弁の断面図であって、(A)は流路に平行な平面で切断した断面図であり、(B)は(A)のX−X’線で切断した横断面図である。It is sectional drawing of the gate valve which illustrates embodiment of this invention, Comprising: (A) is sectional drawing cut | disconnected by the plane parallel to a flow path, (B) is cut | disconnected by the XX 'line | wire of (A). FIG. 仕切弁の弁体回りの部分拡大図である。It is the elements on larger scale around the valve body of a gate valve.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1に示した仕切弁1は、本発明の具体的実施態様の例示である。すなわち、仕切弁1は1組の摺動部材を有する機器であって、摺動部材は後述するような合金で形成されている。以下、仕切弁1の構成及び、摺動部材を形成する合金の成分組成について説明する。   The gate valve 1 shown in FIG. 1 is an illustration of a specific embodiment of the present invention. That is, the gate valve 1 is a device having a set of sliding members, and the sliding members are made of an alloy as will be described later. Hereinafter, the composition of the gate valve 1 and the component composition of the alloy forming the sliding member will be described.

図1から明らかなように、仕切弁1は、弁箱2と弁体3とから構成される。弁箱2は、全体として中空筒状に形成された筐体であって、その内部に流路4が形成されていて、弁開時には流体が流路4のA端からB端に向けて流れる。弁体3は弁箱2の中に配置されて流路4を開閉する仕切り板である。全閉状態(図1に示す状態)において、弁箱2の弁体3と当接する部位には弁座5が配置されている。また、弁体3の上方には弁棒6があって、弁棒6は弁体3と連結されている。また、弁棒6の上方には図示しない電動昇降機器があって、弁棒6に連結されている。このように構成されているので、弁体3は前記電動昇降機器で駆動されて、弁箱2内を上下に移動する。なお、本図は弁体3が最低位置まで下降して、流路4を完全に塞いだ状態、つまり全閉状態を示している。前記電動昇降機器を動作させて、弁体3を上方に移動させれば、流路4は開放される(弁開状態になる)。   As is clear from FIG. 1, the gate valve 1 includes a valve box 2 and a valve body 3. The valve box 2 is a housing formed in a hollow cylindrical shape as a whole, and a flow path 4 is formed therein, and fluid flows from the A end to the B end of the flow path 4 when the valve is opened. . The valve body 3 is a partition plate that is disposed in the valve box 2 and opens and closes the flow path 4. In the fully closed state (the state shown in FIG. 1), a valve seat 5 is disposed at a portion of the valve box 2 that contacts the valve body 3. Further, a valve stem 6 is provided above the valve body 3, and the valve stem 6 is connected to the valve body 3. In addition, there is an electric lifting device (not shown) above the valve stem 6 and connected to the valve stem 6. Since it is comprised in this way, the valve body 3 is driven by the said electric raising / lowering apparatus, and moves the inside of the valve box 2 up and down. This figure shows a state in which the valve body 3 is lowered to the lowest position and the flow path 4 is completely closed, that is, a fully closed state. When the electric lifting device is operated to move the valve body 3 upward, the flow path 4 is opened (valve open).

図2は弁座5と弁体3の取り合い部の詳細を示す拡大図である。弁座5及び弁体3において弁閉時に互いに密着する面を一般に弁座面と呼ぶが、ここでは、弁座5の弁座面を弁座面7と呼び、弁体3の弁座面を弁座面8と呼ぶことにする。図2に示すように、全閉時には弁座面7と弁座面8は互いに密着して、流路4(図1参照)を流体密に閉鎖している。また、この状態から弁開状態に移行する過程、あるいは弁開状態から弁閉状態に移行する過程では弁座面7と弁座面8は相対的に摺動する。したがって、弁座面7と弁座面8は、仕切弁1において、摺動部材の組に相当する。なお、弁体3の上下の弁座面8の中間の領域は弁座面8に対して凹んでいて、弁体3を上下に移動させる過程で、該領域が弁座面7に対して摺動することはない。また、流路4内を流れる流体の圧力は弁体3に負荷され、該圧力は弁座面8を介して、弁座面7に伝えられる。つまり、弁座面7と弁座面8は該圧力の作用によって、互いに押圧しあうように構成されている。   FIG. 2 is an enlarged view showing details of a joint portion between the valve seat 5 and the valve body 3. The surfaces of the valve seat 5 and the valve body 3 that are in close contact with each other when the valve is closed are generally called valve seat surfaces. Here, the valve seat surface of the valve seat 5 is called the valve seat surface 7 and the valve seat surface of the valve body 3 is called the valve seat surface. It will be called the valve seat surface 8. As shown in FIG. 2, when fully closed, the valve seat surface 7 and the valve seat surface 8 are in close contact with each other to close the flow path 4 (see FIG. 1) in a fluid-tight manner. Further, in the process of shifting from this state to the valve open state, or in the process of shifting from the valve open state to the valve closed state, the valve seat surface 7 and the valve seat surface 8 slide relative to each other. Therefore, the valve seat surface 7 and the valve seat surface 8 correspond to a set of sliding members in the gate valve 1. An intermediate region between the upper and lower valve seat surfaces 8 of the valve body 3 is recessed with respect to the valve seat surface 8, and the region slides with respect to the valve seat surface 7 in the process of moving the valve body 3 up and down. It doesn't move. The pressure of the fluid flowing in the flow path 4 is applied to the valve body 3, and the pressure is transmitted to the valve seat surface 7 via the valve seat surface 8. That is, the valve seat surface 7 and the valve seat surface 8 are configured to press each other by the action of the pressure.

前述したように、摺動部材には高度の耐摩耗性と耐食性が要求される。また、耐摩耗性と耐食性が不十分であれば、開閉動作を繰り返すにつれて、弁座面7及び弁座面8の表面が荒れて、その結果シール性が損なわれる(漏れが生じる)からである。そこで、弁座面7の素材として、クロム(Cr)を7〜17質量%、タングステン(W)を1〜4質量%、ケイ素(Si)を3〜7質量%、ホウ素(B)を1質量%以下、炭素(C)を1質量%以下、鉄(Fe)を3〜15質量%、及び銅(Cu)を10〜20質量%、それぞれ含有するとともに、残部がニッケル(Ni)で構成されている合金(以下、「合金A」と呼ぶ)を選んだ。また、弁座面8の素材として、クロム(Cr)を15〜20質量%、タングステン(W)を1〜4質量%、ケイ素(Si)を3〜7質量%、ホウ素(B)を1質量%以下、炭素(C)を1質量%以下、鉄(Fe)を35質量%以下、及び錫(Sn)を0.5〜1.0質量%、それぞれ含有するとともに、残部がニッケル(Ni)で構成されている合金(以下、「合金B」と呼ぶ)を選んだ。   As described above, the sliding member is required to have high wear resistance and corrosion resistance. Further, if the wear resistance and the corrosion resistance are insufficient, the surfaces of the valve seat surface 7 and the valve seat surface 8 are roughened as the opening / closing operation is repeated, and as a result, the sealing performance is impaired (leakage occurs). . Therefore, the material of the valve seat surface 7 is 7 to 17% by mass of chromium (Cr), 1 to 4% by mass of tungsten (W), 3 to 7% by mass of silicon (Si), and 1 mass of boron (B). % (%) Or less, carbon (C) 1 mass% or less, iron (Fe) 3-15 mass%, and copper (Cu) 10-20 mass%, respectively, with the remainder being nickel (Ni). Alloy (hereinafter referred to as “alloy A”) was selected. Moreover, 15-20 mass% of chromium (Cr), 1-4 mass% of tungsten (W), 3-7 mass% of silicon (Si), and 1 mass of boron (B) as materials for the valve seat surface 8 % Or less, carbon (C) 1 mass% or less, iron (Fe) 35 mass% or less, and tin (Sn) 0.5 to 1.0 mass%, respectively, with the balance being nickel (Ni) (Hereinafter referred to as “alloy B”).

前述の合金Aと合金Bは、周知の高周波真空溶解炉を用いて溶解後、水或はガスアトマイズ法で微粉化され、弁座5あるいは弁体3に粉体プラズマ(PTA)溶接によって肉盛溶接されて、弁座面7及び弁座面8が形成される。なお、合金Aと合金Bの粉末の粒径は+70〜+210メッシュの範囲にすると良い。また弁座5及び弁体3の弁座面7及び弁座面8以外の部分、つまり弁座5及び弁体3の本体(母材)は炭素鋼で構成される。   The above-mentioned alloys A and B are melted by using a well-known high-frequency vacuum melting furnace, then pulverized by water or gas atomization method, and overlay welding is performed on the valve seat 5 or the valve body 3 by powder plasma (PTA) welding. Thus, the valve seat surface 7 and the valve seat surface 8 are formed. The particle size of the powders of alloy A and alloy B is preferably in the range of +70 to +210 mesh. Further, parts other than the valve seat surface 7 and the valve seat surface 8 of the valve seat 5 and the valve body 3, that is, the main body (base material) of the valve seat 5 and the valve body 3 are made of carbon steel.

ここで、合金Aと合金Bについて、上記の成分組成を選択した理由を簡単に説明する。   Here, the reason for selecting the above component composition for the alloys A and B will be briefly described.

クロム(Cr)は、耐食性を向上させる成分として従来から慣用的に用いられている。例えば、アメリカ材料試験学会(ASTM)によれば、Type D−3のニレジストは、ニッケル(Ni)を28〜32質量%、ケイ素(Si)を1.5〜3質量%、及びクロム(Cr)を2.5〜3質量%、それぞれ含有するとともに、残部が実質的に鉄(Fe)で構成されているFe基合金であるが、原子力発電プラントの133〜221℃の蒸気中において、0.025mm/年以下の腐食量を示し、SUS304や、SUS403とほぼ同等の耐食性を示している。この事実から類推すれば、合金中にクロム(Cr)を5質量%以上含有させれば、原子力発電プラント用の弁座材としても十分な耐食性を発揮すると考えられる。また、クロム(Cr)は合金の硬さと靭性を高めることが知られているが、過度に含有させると、逆に靭性が低下する。そこで、合金Aにおいてはクロム(Cr)の含有量の範囲を7〜17質量%とした。合金Bにおいては、クロム(Cr)の含有量の範囲を15〜20質量%として硬度を高めている。   Chromium (Cr) has been conventionally used conventionally as a component for improving the corrosion resistance. For example, according to the American Society for Testing and Materials (ASTM), Type D-3 Ni-resist is nickel (Ni) 28-32 mass%, silicon (Si) 1.5-3 mass%, and chromium (Cr). In an steam of 133 to 221 ° C. in a nuclear power plant, but is made of Fe (Fe), the balance being substantially composed of iron (Fe). The amount of corrosion is 025 mm / year or less, and the corrosion resistance is almost equivalent to SUS304 or SUS403. By analogy with this fact, it is considered that if chromium (Cr) is contained in the alloy in an amount of 5% by mass or more, sufficient corrosion resistance is exhibited as a valve seat material for a nuclear power plant. Chromium (Cr) is known to increase the hardness and toughness of the alloy. However, if it is excessively contained, the toughness decreases. Therefore, in the alloy A, the content range of chromium (Cr) is 7 to 17% by mass. In the alloy B, the hardness is increased by setting the content range of chromium (Cr) to 15 to 20% by mass.

ケイ素(Si)は、硬度と耐摩耗性を維持するために必要であるが、過度に含有させると、靱性が低下し溶接施工性が劣化するので、合金A及び合金Bにおいて、含有量の範囲を3〜7質量%とした。   Silicon (Si) is necessary to maintain hardness and wear resistance, but if contained excessively, toughness is reduced and welding workability is deteriorated. Was 3-7 mass%.

鉄(Fe)は、肉盛材の硬度を下げて溶接性を向上させる成分である。また、鉄(Fe)の摩耗粉は容易に酸化して、焼き付きやかじりの発生を抑制するが、過度に含有させると、合金の耐食性を低下させる。そこで、合金Aにおいては、含有量の範囲を3〜15質量%とした。合金Bにおいては、含有量の範囲を35質量%以下とした。   Iron (Fe) is a component that lowers the hardness of the overlay and improves weldability. In addition, the iron (Fe) wear powder is easily oxidized and suppresses the occurrence of seizure and galling. However, if it is excessively contained, the corrosion resistance of the alloy is lowered. Therefore, in the alloy A, the content range is 3 to 15% by mass. In the alloy B, the content range was set to 35% by mass or less.

タングステン(W)は、硬度を高くして耐摩耗性を維持すると共に、摺動の際に潤滑性のある酸化タングステンを生成して焼き付きやかじりを防止するので、合金A及び合金Bにおいて、含有量の範囲を1〜4質量%とした。   Tungsten (W) maintains hardness by increasing the hardness and generates tungsten oxide having lubricity during sliding to prevent seizure and galling. Therefore, tungsten (W) is contained in alloy A and alloy B. The range of the amount was 1 to 4% by mass.

銅(Cu)は、焼き付きやかじりを防止し摺動特性を向上させるが、過度に含有させると、耐摩耗性と靱性が低下するので、合金Aにおいて、10〜20質量%を含有させた。   Copper (Cu) prevents seizure and galling and improves sliding characteristics. However, if it is excessively contained, wear resistance and toughness are lowered. Therefore, in alloy A, 10 to 20% by mass was contained.

錫(Sn)は、潤滑性の薄膜を形成して焼き付きやかじりを防止するが、過度に含有させると、靱性が低下して溶接施工性を劣化させるので、合金Bにおいて、0.5〜1質量%を含有させた。合金Aには含有させなかった。摺動部材の組のいずれか一方に錫(Sn)を含有させれば、両者の間に潤滑性の薄膜が形成されるからである。   Tin (Sn) forms a lubricious thin film to prevent seizure and galling. However, if contained excessively, toughness is reduced and welding workability is deteriorated. Mass% was contained. It was not contained in Alloy A. If tin (Sn) is contained in one of the sliding member groups, a lubricious thin film is formed between them.

ホウ素(B)及び炭素(C)は不純物であって、過度に含有させると、溶接時及び熱処理時に割れが生じるので、合金A及び合金Bにおいては、含有量を1質量%以下に制限した。なお、ホウ素(B)及び炭素(C)には、合金の硬度を高める効果があって、積極的に含有させる場合もあるが、前記の割れの問題があるので、本発明に係る合金では、含有量を上記のように制限している。   Boron (B) and carbon (C) are impurities, and if contained excessively, cracks occur during welding and heat treatment, so the contents of Alloy A and Alloy B are limited to 1% by mass or less. Note that boron (B) and carbon (C) have an effect of increasing the hardness of the alloy, and may be positively contained. However, because of the above-described cracking problem, in the alloy according to the present invention, The content is limited as described above.

本発明の効果を確認するために、流路4の口径が600mmの仕切弁1であって、弁座面7及び弁座面8の素材の成分組成が異なる3種類の仕切弁1(実施例1,2及び比較例)を製作した。実施例1,2及び比較例について、弁座面7及び弁座面8の素材の成分組成を表1に示す。   In order to confirm the effect of the present invention, there are three types of gate valves 1 in which the diameter of the flow path 4 is 600 mm and the component compositions of the materials of the valve seat surface 7 and the valve seat surface 8 are different (Examples) 1 and 2 and a comparative example). Table 1 shows the composition of the components of the valve seat surface 7 and the valve seat surface 8 for Examples 1 and 2 and the comparative example.

Figure 0005789328
Figure 0005789328

なお、表1に示した合金A1、A2の成分組成は、合金Aの成分組成の範囲に含まれ、合金B1は合金Bの成分組成の範囲に含まれる。つまり、合金A1、A2は合金Aの一種であり、合金B1は合金Bの一種である。なお、合金Cの成分組成は特許文献2に記載の第1合金の成分組成の範囲に含まれる。   The component compositions of Alloys A1 and A2 shown in Table 1 are included in the range of the component composition of Alloy A, and Alloy B1 is included in the range of the component composition of Alloy B. That is, alloys A1 and A2 are a kind of alloy A, and alloy B1 is a kind of alloy B. In addition, the component composition of the alloy C is included in the range of the component composition of the first alloy described in Patent Document 2.

実施例1、実施例2及び比較例に係る仕切弁1において、流路4に302℃、8.74MPaの蒸気を流した状態で、50回の開閉を行った。つまり、弁体3を弁座5に対して50回摺動させた。その後に、弁座面7,8の表面粗さを計測するとともに、仕切弁1を全閉状態にして、流路4のA端側を常温の水で満たして、弁体3に8.74MPaの水圧を加えて水の漏れ量を計測した結果を表2に示す。なお試験前の弁座面7,8の表面粗さは、0.09〜0.26μmRaの範囲にあった(つまり、仕切弁1の製造時に、弁座面7,8の表面粗さが前記範囲に収まるように仕上げた)。   In the gate valve 1 according to Example 1, Example 2, and Comparative Example, the channel 4 was opened and closed 50 times in a state where steam at 302 ° C. and 8.74 MPa was flowed. That is, the valve body 3 was slid 50 times with respect to the valve seat 5. Thereafter, the surface roughness of the valve seat surfaces 7 and 8 is measured, the gate valve 1 is fully closed, and the A end of the flow path 4 is filled with water at room temperature, so that the valve body 3 is 8.74 MPa. Table 2 shows the results of measuring the amount of water leakage by applying a water pressure of. The surface roughness of the valve seat surfaces 7 and 8 before the test was in the range of 0.09 to 0.26 μm Ra (that is, when the gate valve 1 was manufactured, the surface roughness of the valve seat surfaces 7 and 8 was Finished to fit within range).

Figure 0005789328
Figure 0005789328

一般に、仕切弁1のようなサイズ及び用途の弁では、摺動痕の深さが1μmRa以下であれば、良好と評価される。1μmRa以下であれば弁の保守作業における摺り合わせ作業で容易に弁座面を復旧できるからである。表2によれば、比較例における弁座面7の表面粗さは2.40μmRaに達し、1μmRaを大きく超えている。また、その結果25ml/minの漏洩が生じている。つまり、比較例においては、50回程度の開閉によってシール性が損なわれると言う問題がある。   Generally, a valve having a size and application such as the gate valve 1 is evaluated as good if the depth of the sliding trace is 1 μmRa or less. This is because if it is 1 μmRa or less, the valve seat surface can be easily restored by the sliding operation in the valve maintenance operation. According to Table 2, the surface roughness of the valve seat surface 7 in the comparative example reaches 2.40 μmRa and greatly exceeds 1 μmRa. As a result, leakage of 25 ml / min occurs. That is, in the comparative example, there is a problem that the sealing performance is impaired by opening and closing about 50 times.

一方、実施例1においては、弁座面7の表面粗さは1.28μmRaに達し、やや粗いと考えられるが、漏洩量は比較例の1/4以下(6ml/min)に留まっている。また、実施例2においては、弁座面7の表面粗さは0.88μmRaに留まり、漏洩量も検出されない。このように、本発明によれば、耐摩耗性に優れていて、開閉を繰り返しても良好なシール性が維持される。   On the other hand, in Example 1, the surface roughness of the valve seat surface 7 reaches 1.28 μmRa, which is considered to be slightly rough, but the leakage amount is ¼ or less (6 ml / min) of the comparative example. Moreover, in Example 2, the surface roughness of the valve seat surface 7 remains at 0.88 μmRa, and the amount of leakage is not detected. Thus, according to this invention, it is excellent in abrasion resistance and a favorable sealing performance is maintained even if it repeats opening and closing.

以上のように、表2によれば、本発明(実施例1,2)に係る仕切弁1は、従来技術(比較例)に係る仕切弁1に比べて、耐摩耗性及び耐食性に優れていて、開閉動作を繰り返しても十分なシール性が維持されることが理解できる。本発明によれば、従来の合金に比べて耐摩耗性及び耐食性に優れた合金が得られることが理解できる。また、本発明にかかる合金で弁座を形成すれば、弁の開閉を繰り返しても、弁座の表面が粗くならないので、十分なシール性が維持されることが理解できる。つまり、本発明によれば、耐久性及び信頼性の高い、摺動部材を備える機器、例えば弁類が提供されることが理解できる。   As mentioned above, according to Table 2, the gate valve 1 which concerns on this invention (Example 1, 2) is excellent in abrasion resistance and corrosion resistance compared with the gate valve 1 which concerns on a prior art (comparative example). Thus, it can be understood that sufficient sealing performance is maintained even when the opening / closing operation is repeated. According to the present invention, it can be understood that an alloy excellent in wear resistance and corrosion resistance can be obtained as compared with a conventional alloy. Further, if the valve seat is formed of the alloy according to the present invention, it can be understood that sufficient sealing performance is maintained because the surface of the valve seat does not become rough even when the valve is repeatedly opened and closed. In other words, according to the present invention, it can be understood that a device having a sliding member having high durability and reliability, for example, valves is provided.

なお、上記の実施形態は本発明の具体的実施態様の一例を示すものであって、本発明の技術的範囲を画すものではない。本発明は特許請求の範囲に記述された技術的思想の限りにおいて、自由に変形、応用あるいは改良して実施することができる。   In addition, said embodiment shows an example of the specific embodiment of this invention, Comprising: The technical scope of this invention is not demarcated. The present invention can be freely modified, applied or improved within the scope of the technical idea described in the claims.

なお、上記の実施形態の説明においては、仕切弁1を、本発明に係る機器の具体例として例示したが、本発明が適用される機器は仕切弁1には限定されない。本発明に係る機器は、少なくとも1組の摺動部材を有する機器であれば、どのような機器であっても良い。本発明に係る機器が電動機で駆動される機器に限定されないことは言うまでもない。例えば、人力(手動)で操作される機器であっても良いし、油気圧で駆動される機器であっても良い。   In the above description of the embodiment, the gate valve 1 is illustrated as a specific example of the device according to the present invention, but the device to which the present invention is applied is not limited to the gate valve 1. The device according to the present invention may be any device as long as it has at least one pair of sliding members. Needless to say, the device according to the present invention is not limited to a device driven by an electric motor. For example, it may be a device operated manually (manually) or a device driven by oil pressure.

また、上記実施形態においては、粉体プラズマ(PTA)溶接によって、摺動部材(弁座面8,6)を形成することを例示したが、摺動部材を形成する手段は、PTA溶接には限定されない。他の溶接方法によって肉盛溶接しても良いし、母材と別個に形成された摺動部材を母材と接合するようにしても良い。あるいは、摺動部材を母材と別個に形成して、適宜の締結手段で母材と締結固定するようにしても良い。また母材が炭素鋼に限定されないことは言うまでもない。母材は例えば、低合金鋼やステンレス鋼であっても、その他の金属材料、あるいは非金属材料であっても良い。   In the above embodiment, the sliding member (valve seat surfaces 8 and 6) is exemplified by powder plasma (PTA) welding, but means for forming the sliding member is used for PTA welding. It is not limited. Overlay welding may be performed by other welding methods, or a sliding member formed separately from the base material may be joined to the base material. Alternatively, the sliding member may be formed separately from the base material and fastened and fixed to the base material by appropriate fastening means. Needless to say, the base material is not limited to carbon steel. The base material may be, for example, low alloy steel or stainless steel, other metal material, or non-metal material.

また、請求項1に係る合金の用途は、請求項2ないし請求項4に係る機器には限定されない。各種の機械器具の素材として有用である。   Further, the use of the alloy according to claim 1 is not limited to the device according to claims 2 to 4. It is useful as a material for various machinery.

また、上記実施形態においては、請求項1に記載の合金(合金A)で弁座面7を形成し、請求項3に記載の合金(合金B)で弁座面8を形成する例を示したが、合金Aと合金Bの配置を逆にしても良い。つまり、弁座面7を(合金B)で形成し、弁座面8を(合金A)で形成するようにしても良い。また、請求項1に記載の合金(合金A)と組み合わせる合金は、請求項3に記載の合金(合金B)には限定されない。他の成分組成を有する合金であっても良い。   Moreover, in the said embodiment, the example which forms the valve seat surface 7 with the alloy (alloy A) of Claim 1, and forms the valve seat surface 8 with the alloy (alloy B) of Claim 3 is shown. However, the arrangement of the alloy A and the alloy B may be reversed. That is, the valve seat surface 7 may be formed of (alloy B) and the valve seat surface 8 may be formed of (alloy A). The alloy combined with the alloy according to claim 1 (alloy A) is not limited to the alloy according to claim 3 (alloy B). An alloy having other composition may be used.

また、上記実施形態および特許請求の範囲の記載において、「残部がニッケルで構成」と記載したが、これは実質的に全ての残部をニッケル(Ni)で構成させることを意味していて、ニッケル(Ni)以外の成分が、厳密な意味で全く含まれないことを意味しない。つまり、技術的に除去が困難な微量の不純物、あるいは冶金学的な効果を有さない程度に微量の不純物の存在は許容される。   In the description of the embodiment and the claims, it is described that “the balance is made of nickel”, which means that substantially all the balance is made of nickel (Ni). It does not mean that components other than (Ni) are not included at all in a strict sense. In other words, the presence of a trace amount of impurities that are technically difficult to remove, or a trace amount of impurities that does not have a metallurgical effect is allowed.

1 仕切弁
2 弁箱
3 弁体
4 流路
5 弁座
6 弁棒
7 弁座面
8 弁座面
DESCRIPTION OF SYMBOLS 1 Gate valve 2 Valve box 3 Valve body 4 Flow path 5 Valve seat 6 Valve stick 7 Valve seat surface 8 Valve seat surface

Claims (4)

クロムを7〜17質量%、タングステンを1〜4質量%、ケイ素を3〜7質量%、ホウ素を1質量%以下、炭素を1質量%以下、鉄を3〜15質量%、及び銅を10〜20質量%、それぞれ含有するとともに、残部がニッケルで構成されている摺動部材用合金。   7-17% by mass of chromium, 1-4% by mass of tungsten, 3-7% by mass of silicon, 1% by mass or less of boron, 1% by mass or less of carbon, 3-15% by mass of iron, and 10% of copper An alloy for a sliding member containing ˜20% by mass, each of which is made of nickel. 少なくとも1組の摺動部材を有する機器において、
該摺動部材の一方が請求項1に記載の摺動部材用合金で形成されている
ことを特徴とする機器。
In an apparatus having at least one set of sliding members,
One side of this sliding member is formed with the alloy for sliding members of Claim 1. The apparatus characterized by the above-mentioned.
前記摺動部材の他方は、クロムを15〜20質量%、タングステンを1〜4質量%、ケイ素を3〜7質量%、ホウ素を1質量%以下、炭素を1質量%以下、鉄を35質量%以下、及び錫を0.5〜1.0質量%、それぞれ含有するとともに、残部がニッケルで構成されている摺動部材用合金で形成されている
ことを特徴とする請求項2に記載の機器。
The other of the sliding members is 15-20% by mass of chromium, 1-4% by mass of tungsten, 3-7% by mass of silicon, 1% by mass or less of boron, 1% by mass or less of carbon, and 35% by mass of iron. % Or less and 0.5 to 1.0% by mass of tin, respectively, and the balance is formed of an alloy for a sliding member made of nickel. machine.
前記摺動部材の一方は弁座面であり、前記摺動部材の他方は前記弁座面に対して相対的に摺動する相手方の弁座面である
ことを特徴とする請求項2又は請求項3に記載の機器。
The one of the sliding members is a valve seat surface, and the other of the sliding members is a counterpart valve seat surface that slides relative to the valve seat surface. Item 4. The device according to Item 3.
JP2014121208A 2014-06-12 2014-06-12 Alloys and equipment for sliding members Active JP5789328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121208A JP5789328B1 (en) 2014-06-12 2014-06-12 Alloys and equipment for sliding members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121208A JP5789328B1 (en) 2014-06-12 2014-06-12 Alloys and equipment for sliding members

Publications (2)

Publication Number Publication Date
JP5789328B1 true JP5789328B1 (en) 2015-10-07
JP2016000852A JP2016000852A (en) 2016-01-07

Family

ID=54346098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121208A Active JP5789328B1 (en) 2014-06-12 2014-06-12 Alloys and equipment for sliding members

Country Status (1)

Country Link
JP (1) JP5789328B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934885B1 (en) * 1969-06-20 1974-09-18
JPS62130792A (en) * 1979-11-28 1987-06-13 Fukuda Kinzoku Hakufun Kogyo Kk Nickel alloy for building up
JPH07305129A (en) * 1994-05-10 1995-11-21 Okano Valve Seizo Kk Device using cobalt-free alloy material
JPH08141728A (en) * 1994-11-17 1996-06-04 Okano Valve Seizo Kk Method for joining ni based alloy without containing cobalt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934885B1 (en) * 1969-06-20 1974-09-18
JPS62130792A (en) * 1979-11-28 1987-06-13 Fukuda Kinzoku Hakufun Kogyo Kk Nickel alloy for building up
JPH07305129A (en) * 1994-05-10 1995-11-21 Okano Valve Seizo Kk Device using cobalt-free alloy material
JPH08141728A (en) * 1994-11-17 1996-06-04 Okano Valve Seizo Kk Method for joining ni based alloy without containing cobalt

Also Published As

Publication number Publication date
JP2016000852A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
Gurumoorthy et al. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy
Lee et al. The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys
EP0181570A1 (en) Valve
JP2016509126A (en) New products and their use
CN104588963A (en) Break repair technology for universal connecting rod of universal coupling
JP5947342B2 (en) Valve equipment for nuclear power plants
CN103757550B (en) A kind of self-lubricating abrasion-resistant steel antifriction layer material and preparation method thereof
KR20160098305A (en) Double/triple-layer valve guide
JP6005436B2 (en) Light water reactor valve
JP5789328B1 (en) Alloys and equipment for sliding members
WO2021251423A1 (en) Wear-resistant member and mechanical device using same
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP7329923B2 (en) valve
JPWO2019189531A1 (en) Cr-Ni-based alloys, quench-solidified molded bodies made of Cr-Ni-based alloys, alloy powders, powder metallurgy molded bodies, cast molded bodies, methods for manufacturing Cr-Ni-based alloys, and machinery and equipment using Cr-Ni-based alloys. Piping member
KR100337714B1 (en) Ferrous Base Austenitic Alloys
JP2840191B2 (en) Equipment using cobalt-free alloy material
JPWO2014068662A1 (en) Engine valve
JP2021055819A (en) valve
JP3173998B2 (en) Alloy materials for sliding members and equipment parts
Lee et al. Effects of temperature and sliding distance on the wear behavior of austenitic Fe-Cr-C-Si hardfacing alloy
JPS58187663A (en) Valve
JP2637296B2 (en) Light water reactor valve
JP5632358B2 (en) Welding material for hardfacing and machine parts with overlay welded layers thereby
JP2955506B2 (en) Alloy material for sliding members and equipment for high temperature and high pressure
Tazawa et al. Development of Co-Reduced Valve Seat for Nuclear Power Plants

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150731

R150 Certificate of patent or registration of utility model

Ref document number: 5789328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250