JP6005436B2 - Light water reactor valve - Google Patents

Light water reactor valve Download PDF

Info

Publication number
JP6005436B2
JP6005436B2 JP2012175416A JP2012175416A JP6005436B2 JP 6005436 B2 JP6005436 B2 JP 6005436B2 JP 2012175416 A JP2012175416 A JP 2012175416A JP 2012175416 A JP2012175416 A JP 2012175416A JP 6005436 B2 JP6005436 B2 JP 6005436B2
Authority
JP
Japan
Prior art keywords
valve
based alloy
light water
water reactor
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012175416A
Other languages
Japanese (ja)
Other versions
JP2014034998A (en
Inventor
信夫 小島
信夫 小島
浩二 西野
浩二 西野
康雄 森島
康雄 森島
俊幸 田澤
俊幸 田澤
正弘 齊藤
正弘 齊藤
善宏 藤田
善宏 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012175416A priority Critical patent/JP6005436B2/en
Publication of JP2014034998A publication Critical patent/JP2014034998A/en
Application granted granted Critical
Publication of JP6005436B2 publication Critical patent/JP6005436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Sliding Valves (AREA)

Description

本発明の実施形態は軽水炉に使用される軽水炉用弁に関する。   Embodiments described herein relate generally to a light water reactor valve used in a light water reactor.

従来、軽水炉用弁の弁箱や弁体の弁座部には、耐摩耗性および耐エロージョン性の付与を目的として、Co基合金からなる肉盛部が設けられている。しかし、Co基合金からなる肉盛部は軽水炉の高温高圧水に接していることから、表面からCoが炉水中に溶出しやすい。また、軽水炉用弁の開閉時の摺動によってCo基合金が摩耗し、この摩耗分が炉水中に混入しやすい。これらのCoは炉心中に入りCo60となり、配管、タービン、その他の機器に循環付着して、軽水炉プラント定検作業中の被爆量が下らない原因になると考えられている。 Conventionally, a built-up portion made of a Co-based alloy has been provided in a valve box of a light water reactor valve or a valve seat portion of a valve body for the purpose of imparting wear resistance and erosion resistance. However, since the built-up portion made of the Co-based alloy is in contact with the high-temperature high-pressure water of the light water reactor, Co is likely to be eluted from the surface into the reactor water. Further, the Co-base alloy is worn by sliding when the light water reactor valve is opened and closed, and this wear is easily mixed into the reactor water. These Cos enter the core and become Co 60 , which circulates and adheres to pipes, turbines, and other equipment, and is considered to cause a decrease in the amount of exposure during the light water reactor plant regular inspection work.

炉水中に入るCo量を低減するために、Coを含有しないコバルトフリー材の使用が検討されている。例えば、弁箱側の弁座部の肉盛部および弁体側の弁座部の肉盛部の組合せとして、Cr−Ni−Fe系のFe基析出型合金とCr−Nb−Mo−Ni系のNi基合金との組合せが検討されている(例えば、特許文献1参照)。しかし、このようなものについては、肉盛部の溶接後の析出硬化熱処理が非常に難しい。   In order to reduce the amount of Co entering the reactor water, the use of a cobalt-free material containing no Co has been studied. For example, as a combination of a built-up portion of the valve seat portion on the valve box side and a built-up portion of the valve seat portion on the valve body side, a Cr-Ni-Fe-based Fe-based precipitation type alloy and a Cr-Nb-Mo-Ni-based alloy Combinations with Ni-based alloys have been studied (see, for example, Patent Document 1). However, for such materials, precipitation hardening heat treatment after welding of the overlay is extremely difficult.

また、弁箱側の弁座部の肉盛部および弁体側の弁座部の肉盛部の組合せとして、Co基合金とNi基合金との組合せが検討されている(例えば、特許文献2参照)。このようなものによれば、一方の弁座部がコバルトフリー材であるNi基合金からなることから、Coの溶出を抑制しやすい。しかし、Co基合金とNi基合金との組合せについては、Ni基合金の硬度が必ずしも十分に小さくないことから、Co基合金の摺動摩耗を十分に抑制できず、この摩耗分が炉水中に混入しやすい。   Further, as a combination of the built-up portion of the valve seat portion on the valve box side and the built-up portion of the valve seat portion on the valve body side, a combination of a Co-based alloy and a Ni-based alloy has been studied (for example, see Patent Document 2). ). According to such a thing, since one valve-seat part consists of Ni base alloy which is a cobalt free material, it is easy to suppress elution of Co. However, with regard to the combination of the Co-base alloy and the Ni-base alloy, the hardness of the Ni-base alloy is not necessarily small enough, so that the sliding wear of the Co-base alloy cannot be sufficiently suppressed. Easy to mix.

さらに、既にプラントに設置されている軽水炉用弁の場合、弁箱側の弁座部の肉盛部を交換するには弁箱を含めた軽水炉用弁全体の一式交換が必要となる。一式交換の場合、軽水炉用弁とこれに接続された配管との切断および溶接等の大作業が必要となるおそれがある。このため、大作業を必要とせずに、被爆量を低減させて安全性を向上させることが求められている。   Furthermore, in the case of a light water reactor valve already installed in a plant, the entire light water reactor valve including the valve box needs to be replaced in order to replace the built-up portion of the valve seat on the valve box side. In the case of complete replacement, a large work such as cutting and welding between the light water reactor valve and the pipe connected thereto may be required. For this reason, it is required to reduce the amount of exposure and improve safety without requiring a large work.

特開昭62−1837号公報Japanese Patent Laid-Open No. 62-1837 特開平8−247302号公報JP-A-8-247302

本発明の実施形態は、上記課題を解決するためになされたものであって、炉水中に溶出するCo量を低減して安全性を向上させるとともに、耐摩耗性等も良好な軽水炉用弁の提供を目的とする。   Embodiments of the present invention have been made to solve the above-described problems, and reduce the amount of Co eluting into the reactor water to improve safety and improve the wear resistance and the like of the light water reactor valve. For the purpose of provision.

実施形態の軽水炉用弁は、弁箱と前記弁箱内に配置された弁体とを有する。前記弁箱は、その弁座表面にCo基合金からなる肉盛部を有する。前記弁体は、その弁座表面に、質量百分率表示で、Cr:23.0〜26.0%、Mo:1.8〜2.2%、Si:3.1〜3.5%、C:1.10〜1.35%、Ni:3.7〜5.0%、Mn:4.0〜5.0%、残部が主としてFeからなる化学組成を有するFe基合金からなり、かつビッカース硬度Hvが380〜400である肉盛部を有する。   The light water reactor valve of the embodiment includes a valve box and a valve body disposed in the valve box. The valve box has a built-up portion made of a Co-based alloy on the valve seat surface. The valve body has a mass percentage display on the valve seat surface, Cr: 23.0-26.0%, Mo: 1.8-2.2%, Si: 3.1-3.5%, C : 1.10 to 1.35%, Ni: 3.7 to 5.0%, Mn: 4.0 to 5.0%, the balance being made of an Fe-based alloy having a chemical composition mainly composed of Fe, and Vickers It has a built-up part whose hardness Hv is 380-400.

実施形態の軽水炉用弁は、弁箱側の弁座部分および弁体側の弁座部分から選ばれる一方の弁座部分の表面にCo基合金からなる肉盛部を有するとともに、他方の弁座部分の表面に所定の組成およびビッカース硬度Hvを有するFe基合金からなる肉盛部を有する。このような肉盛部の組み合わせによれば、炉水中に溶出するCoを低減して安全性を向上できるとともに、耐摩耗性等も良好にできる。   The valve for the light water reactor according to the embodiment has a built-up portion made of a Co-based alloy on the surface of one valve seat portion selected from the valve seat portion on the valve box side and the valve seat portion on the valve body side, and the other valve seat portion Has a built-up portion made of an Fe-based alloy having a predetermined composition and Vickers hardness Hv. According to such a combination of the built-up portions, it is possible to improve safety by reducing Co eluted in the reactor water, and to improve wear resistance and the like.

軽水炉用弁の一実施形態を示す一部断面図。The partial cross section figure which shows one Embodiment of the valve for light water reactors. 軽水炉用弁における弁箱と弁体とを拡大して示す断面図。Sectional drawing which expands and shows the valve case and valve body in the valve for light water reactors. 摺動試験における摺動回数と漏洩量との関係を示す図。The figure which shows the relationship between the frequency | count of sliding and the amount of leaks in a sliding test. 摺動試験における摺動回数と摩擦係数との関係を示す図。The figure which shows the relationship between the frequency | count of sliding in a sliding test, and a friction coefficient. 耐エロージョン試験における試験時間と減重量との結果を示す図。The figure which shows the result of the test time and weight loss in an erosion test.

以下、軽水炉用弁の実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a light water reactor valve will be described with reference to the drawings.

図1は、軽水炉用弁の第1の実施形態を示す一部断面図である。
軽水炉用弁10は、例えば、弁箱11、弁体12、弁棒13、弁蓋14、ハンドル15、およびモータ16等を有する。弁体12は、弁箱11の内部に摺動可能に配置されている。弁体12には、弁棒13を介してハンドル15やモータ16が接続されている。この軽水炉用弁10では、ハンドル15やモータ16によって弁棒13を介して弁体12を上下に移動させることで、弁箱11内の流路の開閉が可能となっている。
FIG. 1 is a partial cross-sectional view showing a first embodiment of a light water reactor valve.
The light water reactor valve 10 includes, for example, a valve box 11, a valve body 12, a valve rod 13, a valve lid 14, a handle 15, a motor 16, and the like. The valve body 12 is slidably disposed inside the valve box 11. A handle 15 and a motor 16 are connected to the valve body 12 via a valve rod 13. In this light water reactor valve 10, the flow path in the valve box 11 can be opened and closed by moving the valve body 12 up and down via the valve rod 13 by the handle 15 and the motor 16.

図2は、弁箱11および弁体12を拡大して示す断面図である。弁箱11の上下一対の環状の弁座部分の表面には、それぞれ弁箱シートとしての肉盛部111が環状に設けられている。ここで、本実施形態の軽水炉用弁10では、環状部材112の内面に肉盛部111を設けて、この肉盛部111が設けられた環状部材112を弁箱11の内部に固定する構造としている。このような構造によれば、弁箱11の内部に直に肉盛部111を設ける場合に比べて、肉盛部111の形成が容易となることから、弁箱11の生産性を良好にできる。なお、肉盛部111は、必ずしも環状部材112に形成されている必要はなく、弁箱11の内部に直に形成されていてもよい。また、弁箱11の弁座部分に対向する弁体12の弁座部分の表面には、それぞれ弁体シートとしての環状の肉盛部121が設けられている。   FIG. 2 is an enlarged cross-sectional view showing the valve box 11 and the valve body 12. On the surface of a pair of upper and lower annular valve seat portions of the valve box 11, a built-up portion 111 as a valve box sheet is provided in an annular shape. Here, in the light water reactor valve 10 of the present embodiment, a built-up portion 111 is provided on the inner surface of the annular member 112, and the annular member 112 provided with the built-up portion 111 is fixed inside the valve box 11. Yes. According to such a structure, compared with the case where the built-up portion 111 is provided directly inside the valve box 11, the formation of the built-up portion 111 is facilitated, so that the productivity of the valve box 11 can be improved. . Note that the built-up portion 111 is not necessarily formed on the annular member 112, and may be formed directly inside the valve box 11. In addition, on the surface of the valve seat portion of the valve body 12 facing the valve seat portion of the valve box 11, annular build-up portions 121 are provided as valve body seats, respectively.

本実施形態の軽水炉用弁10では、弁箱11の肉盛部111は、Co基合金から構成されている。また、本実施形態の軽水炉用弁10では、弁体12の肉盛部121は、質量百分率表示で、Cr:23.0〜26.0%、Mo:1.8〜2.2%、Si:3.1〜3.5%、C:1.10〜1.35%、Ni:3.7〜5.0%、Mn:4.0〜5.0%、残部が主としてFeからなる化学組成を有するFe基合金からなり、かつビッカース硬度Hvが380〜400のものから構成されている。   In the light water reactor valve 10 of the present embodiment, the built-up portion 111 of the valve box 11 is made of a Co-based alloy. Moreover, in the light water reactor valve 10 of this embodiment, the build-up part 121 of the valve body 12 is a mass percentage display, Cr: 23.0-26.0%, Mo: 1.8-2.2%, Si : 3.1-3.5%, C: 1.10-1.35%, Ni: 3.7-5.0%, Mn: 4.0-5.0%, the balance is mainly composed of Fe It is made of an Fe-based alloy having a composition and having a Vickers hardness Hv of 380 to 400.

本実施形態の軽水炉用弁10では、弁箱11の肉盛部111と、弁体12の肉盛部121との組合せを、Co基合金と、所定の化学組成およびビッカース硬度Hvを有するFe基合金との組合せとすることで、弁開閉時に主としてFe基合金側を摩耗させて、Co基合金の摩耗を抑制できる。これにより、Co基合金の摩耗分が炉水中に混入することを抑制でき、軽水炉プラント定検作業中等の被爆量を低減して安全性を向上できる。また、このような組合せによれば、従来のCo基合金どうしの組合せと同様に耐摩耗性等を良好にできる。   In the light water reactor valve 10 of the present embodiment, a combination of the built-up portion 111 of the valve box 11 and the built-up portion 121 of the valve body 12 is made of a Co-based alloy, a Fe-based material having a predetermined chemical composition and Vickers hardness Hv. By using a combination with the alloy, it is possible to wear the Fe-based alloy side mainly when the valve is opened and closed, thereby suppressing the wear of the Co-based alloy. Thereby, it is possible to suppress the wear of the Co-based alloy from being mixed into the reactor water, and to reduce the amount of exposure during the light water reactor plant regular inspection work or the like, thereby improving safety. Also, according to such a combination, the wear resistance and the like can be improved as in the case of the conventional combination of Co-based alloys.

さらに、このような組合せによれば、既に軽水炉プラントに設置されている軽水炉用弁についても、容易に改修を行うことができる。すなわち、既に軽水炉プラントに設置されている軽水炉用弁における弁箱の肉盛部と弁体の肉盛部とがCo基合金どうしの組合せである場合、弁箱の肉盛部はそのままにして、弁体の肉盛部のみを所定の化学組成およびビッカース硬度Hvを有するFe基合金に変更すればよい。   Furthermore, according to such a combination, it is possible to easily repair the light water reactor valve already installed in the light water reactor plant. That is, when the build-up part of the valve box and the build-up part of the valve body in the light water reactor valve already installed in the light water reactor plant is a combination of Co-based alloys, the build-up part of the valve box is left as it is, What is necessary is just to change only the build-up part of a valve body into the Fe-based alloy which has predetermined | prescribed chemical composition and Vickers hardness Hv.

弁箱を交換する場合、弁箱の両側に溶接等によって接続された配管を切断して切り離す必要があるために多大な作業が必要となる。弁箱の構成を従来の構成のままにすることで、このような多大な作業を不要とすることができる。また、弁体は、一般的に点検等のために定期的に弁箱から取り外されることから、このような点検等に合わせて弁体の肉盛部を改修することで、改修のための特別な分解等の作業を不要にすることができる。   When exchanging the valve box, it is necessary to cut and disconnect the pipes connected to both sides of the valve box by welding or the like, so that a great deal of work is required. By leaving the configuration of the valve box as the conventional configuration, such a large amount of work can be eliminated. In addition, the valve body is generally periodically removed from the valve box for inspection, etc. Therefore, by remodeling the built-up part of the valve body in accordance with such inspection, special repairs are required. It is possible to eliminate the need for work such as simple disassembly.

以下、Fe基合金の主要化学成分について説明する。
Crは、耐食性を維持するために必要な成分である。一方、含有量が過度に多くなると耐摩耗性の低下が生じるおそれがある。従って、Cr含有量は、23.0〜26.0%の範囲とする。
Hereinafter, main chemical components of the Fe-based alloy will be described.
Cr is a component necessary for maintaining corrosion resistance. On the other hand, if the content is excessively large, wear resistance may be lowered. Therefore, the Cr content is in the range of 23.0 to 26.0%.

Siは、硬さや耐摩耗性向上のために添加される。一方、含有量が過度に多くなると溶接割れが発生するおそれがある。従って、Si含有量は、3.1〜3.5%の範囲とする。   Si is added to improve hardness and wear resistance. On the other hand, if the content is excessively large, weld cracks may occur. Therefore, the Si content is in the range of 3.1 to 3.5%.

Cは、硬さや耐摩耗性向上およびオーステナイト安定化のために添加される。一方、含有量が過度に多くなると溶接割れ感受性が高くなるおそれがある。従って、C含有量は、1.10〜1.35%の範囲とする。   C is added for improving hardness and wear resistance and stabilizing austenite. On the other hand, if the content is excessively high, the weld cracking sensitivity may be increased. Therefore, the C content is in the range of 1.10 to 1.35%.

Niは、オーステナイト安定化元素として添加されており、溶接性等の改善の効果もみられる。一方、含有量が過度に多くなると、硬さ、および耐摩耗性の低下が生じるおそれがある。従って、Ni含有量は3.7〜5.0%の範囲とする。   Ni is added as an austenite stabilizing element, and an effect of improving weldability and the like is also observed. On the other hand, if the content is excessively large, the hardness and wear resistance may be lowered. Therefore, the Ni content is in the range of 3.7 to 5.0%.

Mnは、オーステナイト安定化元素として添加される。一方、含有量が過度に多くなると溶接割れ感受性が発現するおそれがある。従って、Mn含有量は4.0〜5.0%の範囲とする。   Mn is added as an austenite stabilizing element. On the other hand, when the content is excessively large, there is a risk that the weld cracking sensitivity is developed. Therefore, the Mn content is in the range of 4.0 to 5.0%.

Fe基合金は、質量百分率表示で、Cr:23.0〜26.0%、Mo:1.8〜2.2%、Si:3.1〜3.5%、C:1.10〜1.35%、Ni:3.7〜5.0%、Mn:4.0〜5.0%、B:0〜0.002%(但し0.002%を含まず)、S:0〜0.01%(但し0.01%を含まず)、P:0〜0.020%(但し0.020%を含まず)、N:0〜0.18%(但し0.18%を含まず)、残部Feおよび不可避的不純物からなる化学組成を有することが好ましい。   Fe-based alloys are expressed in mass percentage, Cr: 23.0 to 26.0%, Mo: 1.8 to 2.2%, Si: 3.1 to 3.5%, C: 1.10 to 1 .35%, Ni: 3.7 to 5.0%, Mn: 4.0 to 5.0%, B: 0 to 0.002% (excluding 0.002%), S: 0 to 0 0.01% (excluding 0.01%), P: 0 to 0.020% (excluding 0.020%), N: 0 to 0.18% (excluding 0.18%) ), And a chemical composition comprising the balance Fe and inevitable impurities.

Fe基合金部分のビッカース硬度Hvは380〜400である。Fe基合金部分のビッカース硬度Hvが380未満の場合、Fe基合金部分が過度に摩耗しやすくなり、全体として耐摩耗性の低下が生じるおそれがある。一方、Fe基合金部分のビッカース硬度Hvが400を超える場合、Co基合金部分が摩耗しやすくなり、Co基合金の摩耗分が炉水中に混入するおそれがある。また、Fe基合金部分のビッカース硬度Hvが上記範囲外となる場合、Fe基合金部分の形成時に溶接割れなどが発生するおそれがある。   The Vickers hardness Hv of the Fe-based alloy part is 380 to 400. When the Vickers hardness Hv of the Fe-based alloy part is less than 380, the Fe-based alloy part tends to be excessively worn, and the wear resistance as a whole may be reduced. On the other hand, when the Vickers hardness Hv of the Fe-based alloy part exceeds 400, the Co-based alloy part is likely to be worn, and the wear of the Co-based alloy may be mixed into the reactor water. Further, when the Vickers hardness Hv of the Fe-based alloy part is out of the above range, there is a possibility that weld cracking or the like may occur when the Fe-based alloy part is formed.

弁体12の肉盛部121、すなわち所定の化学組成およびビッカース硬度Hvを有するFe基合金からなる肉盛部121は、例えば、弁体12の弁座部分の表面に、上記したような所定の化学組成を有する合金粉末を用いて肉盛施工を行うことで得ることができる。肉盛施工としては、特に粉体プラズマ溶接(PTA溶接)または熱間等方圧加圧法(HIP法)が好ましい。このような方法を適用することで、ビッカース硬度Hvが380〜400であるものを好適に得ることができる。   The build-up portion 121 of the valve body 12, that is, the build-up portion 121 made of an Fe-based alloy having a predetermined chemical composition and Vickers hardness Hv is formed on the surface of the valve seat portion of the valve body 12, for example. It can be obtained by overlaying using an alloy powder having a chemical composition. As the overlay construction, powder plasma welding (PTA welding) or hot isostatic pressing (HIP method) is particularly preferable. By applying such a method, one having a Vickers hardness Hv of 380 to 400 can be suitably obtained.

一方、Co基合金は、特に制限されるものではなく、公知の軽水炉用弁において弁座部分の表面に形成される肉盛部に使用されるCo基合金を適用できる。このようなCo基合金としては、例えばステライトと称されるものなどを使用できる。具体的には、質量百分率表示で、Cr:25.0〜32.0%、Mo:0〜1.0%、Si:0〜2.0%、C:0.70〜1.40%、Ni:0〜3.0%、Fe:0〜5.0%、Mn:0〜2.0%、W:3.0〜6.0%、残部が主としてCoからなる化学組成を有するCo基合金が好ましい。   On the other hand, the Co-based alloy is not particularly limited, and a Co-based alloy used for a built-up portion formed on the surface of the valve seat portion in a known light water reactor valve can be applied. As such a Co-based alloy, for example, what is called stellite can be used. Specifically, in terms of mass percentage, Cr: 25.0 to 32.0%, Mo: 0 to 1.0%, Si: 0 to 2.0%, C: 0.70 to 1.40%, Ni: 0 to 3.0%, Fe: 0 to 5.0%, Mn: 0 to 2.0%, W: 3.0 to 6.0%, Co group having a chemical composition mainly composed of Co. Alloys are preferred.

Co基合金は、質量百分率表示で、Cr:25.0〜32.0%、Mo:0〜1.0%、Si:0〜2.0%、C:0.70〜1.40%、Ni:0〜3.0%、Fe:0〜5.0%、Mn:0〜2.0%、W:3.0〜6.0%、S:0〜0.03%、P:0〜0.03%、残部Coおよび不可避的不純物からなる化学組成を有することがより好ましい。   The Co-based alloy is expressed in mass percentage, Cr: 25.0 to 32.0%, Mo: 0 to 1.0%, Si: 0 to 2.0%, C: 0.70 to 1.40%, Ni: 0 to 3.0%, Fe: 0 to 5.0%, Mn: 0 to 2.0%, W: 3.0 to 6.0%, S: 0 to 0.03%, P: 0 It is more preferable to have a chemical composition consisting of ˜0.03%, the balance Co and inevitable impurities.

弁箱11の肉盛部111、すなわちCo基合金からなる肉盛部111の形成方法は特に制限されず、公知の軽水炉用弁において弁箱11の弁座部分の表面に肉盛部を形成するために用いられている形成方法を適用できる。例えば、弁箱11の弁座部分の表面に、上記したような所定の化学組成を有する合金粉末を用いて肉盛施工を行うことで得ることができる。肉盛施工としては、例えばガス盛溶接法が好ましい。このような方法を適用することで、上記したビッカース硬度Hvを有するものを好適に得ることができる。   The formation method of the build-up part 111 of the valve box 11, that is, the build-up part 111 made of a Co-based alloy is not particularly limited, and the build-up part is formed on the surface of the valve seat part of the valve box 11 in a known light water reactor valve. Therefore, the forming method used for the purpose can be applied. For example, it can be obtained by performing overlaying on the surface of the valve seat portion of the valve box 11 using the alloy powder having the predetermined chemical composition as described above. As the overlay construction, for example, a gas overlay welding method is preferable. By applying such a method, a material having the above-mentioned Vickers hardness Hv can be suitably obtained.

次に、軽水炉用弁10の第2の実施形態について説明する。
第2の実施形態の軽水炉用弁10は、弁箱11の肉盛部111の構成材料と弁体12の肉盛部121の構成材料とを入れ替えた以外は、基本的に第1の実施形態の軽水炉用弁10と同様の構成を有する。すなわち、図1に示されるように、弁箱11、弁体12、弁棒13、弁蓋14、ハンドル15、およびモータ16等を有する。さらに、図2に示すように、弁箱11の環状の弁座部分の表面には弁箱シートとしての肉盛部111が環状に設けられ、弁体12の弁座部分の表面には弁体シートとしての肉盛部121が設けられている。
Next, a second embodiment of the light water reactor valve 10 will be described.
The light water reactor valve 10 of the second embodiment is basically the same as that of the first embodiment except that the constituent material of the built-up portion 111 of the valve box 11 and the constituent material of the built-up portion 121 of the valve body 12 are replaced. The light water reactor valve 10 has the same configuration. That is, as shown in FIG. 1, it has a valve box 11, a valve body 12, a valve rod 13, a valve lid 14, a handle 15, a motor 16, and the like. Further, as shown in FIG. 2, the surface of the annular valve seat portion of the valve box 11 is annularly provided as a valve box seat, and the valve body 12 has a valve body on the surface of the valve seat portion. A built-up portion 121 as a sheet is provided.

第2の実施形態の軽水炉用弁10では、弁箱11の肉盛部111は、質量百分率表示で、Cr:23.0〜26.0%、Mo:1.8〜2.2%、Si:3.1〜3.5%、C:1.10〜1.35%、Ni:3.7〜5.0%、Mn:4.0〜5.0%、残部が主としてFeからなる化学組成を有するFe基合金からなり、かつビッカース硬度Hvが380〜400のものから構成されている。また、第2の実施形態の軽水炉用弁10では、弁体12の肉盛部121は、Co基合金から構成されている。   In the light water reactor valve 10 of the second embodiment, the built-up portion 111 of the valve box 11 is expressed by mass percentage, Cr: 23.0 to 26.0%, Mo: 1.8 to 2.2%, Si : 3.1-3.5%, C: 1.10-1.35%, Ni: 3.7-5.0%, Mn: 4.0-5.0%, the balance is mainly composed of Fe It is made of an Fe-based alloy having a composition and having a Vickers hardness Hv of 380 to 400. Moreover, in the light water reactor valve 10 of the second embodiment, the built-up portion 121 of the valve body 12 is made of a Co-based alloy.

このような組合せとしても、弁開閉時に主としてFe基合金側を摩耗させて、Co基合金の摩耗を抑制できる。これにより、Co基合金の摩耗分が炉水中に混入することを抑制でき、軽水炉プラント定検作業中等の被爆量を低減して安全性を良好にできる。また、このような組合せによれば、従来のCo基合金どうしの組合せと同様に耐摩耗性等を良好にできる。   Even in such a combination, the wear of the Co-based alloy can be suppressed by mainly wearing the Fe-based alloy side when the valve is opened and closed. As a result, it is possible to suppress the wear of the Co-based alloy from being mixed into the reactor water, and to reduce the exposure amount during the light water reactor plant regular inspection work, etc., and to improve the safety. Also, according to such a combination, the wear resistance and the like can be improved as in the case of the conventional combination of Co-based alloys.

上記Fe基合金は、質量百分率表示で、Cr:23.0〜26.0%、Mo:1.8〜2.2%、Si:3.1〜3.5%、C:1.10〜1.35%、Ni:3.7〜5.0%、Mn:4.0〜5.0%、B:0〜0.002%(但し0.002%を含まず)、S:0〜0.01%(但し0.01%を含まず)、P:0〜0.020%(但し0.020%を含まず)、N:0〜0.18%(但し0.18%を含まず)、残部Feおよび不可避的不純物からなる化学組成を有することが好ましい。   The Fe-based alloy is expressed in terms of mass percentage, Cr: 23.0 to 26.0%, Mo: 1.8 to 2.2%, Si: 3.1 to 3.5%, C: 1.10. 1.35%, Ni: 3.7-5.0%, Mn: 4.0-5.0%, B: 0-0.002% (excluding 0.002%), S: 0 0.01% (excluding 0.01%), P: 0 to 0.020% (excluding 0.020%), N: 0 to 0.18% (excluding 0.18%) It is preferable to have a chemical composition consisting of the balance Fe and inevitable impurities.

上記Co基合金は、特に制限されるものではなく、公知の軽水炉用弁において弁座部分の表面に形成される肉盛部に使用されるCo基合金を適用できる。このようなCo基合金としては、例えばステライトと称されるものなどを使用できる。具体的には、質量百分率表示で、Cr:25.0〜32.0%、Mo:0〜1.0%、Si:0〜2.0%、C:0.70〜1.40%、Ni:0〜3.0%、Fe:0〜5.0%、Mn:0〜2.0%、W:3.0〜6.0%、残部が主としてCoからなる化学組成を有するCo基合金が好ましい。   The Co-based alloy is not particularly limited, and a Co-based alloy used for a built-up portion formed on the surface of a valve seat portion in a known light water reactor valve can be applied. As such a Co-based alloy, for example, what is called stellite can be used. Specifically, in terms of mass percentage, Cr: 25.0 to 32.0%, Mo: 0 to 1.0%, Si: 0 to 2.0%, C: 0.70 to 1.40%, Ni: 0 to 3.0%, Fe: 0 to 5.0%, Mn: 0 to 2.0%, W: 3.0 to 6.0%, Co group having a chemical composition mainly composed of Co. Alloys are preferred.

Co基合金は、質量百分率表示で、Cr:25.0〜32.0%、Mo:0〜1.0%、Si:0〜2.0%、C:0.70〜1.40%、Ni:0〜3.0%、Fe:0〜5.0%、Mn:0〜2.0%、W:3.0〜6.0%、S:0〜0.03%、P:0〜0.03%、残部Coおよび不可避的不純物からなる化学組成を有することがより好ましい。   The Co-based alloy is expressed in mass percentage, Cr: 25.0 to 32.0%, Mo: 0 to 1.0%, Si: 0 to 2.0%, C: 0.70 to 1.40%, Ni: 0 to 3.0%, Fe: 0 to 5.0%, Mn: 0 to 2.0%, W: 3.0 to 6.0%, S: 0 to 0.03%, P: 0 It is more preferable to have a chemical composition consisting of ˜0.03%, the balance Co and inevitable impurities.

第2の実施形態における弁箱11の肉盛部111、すなわち所定の化学組成およびビッカース硬度Hvを有するFe基合金からなる肉盛部111についても、例えば、弁箱11の弁座部分の表面、具体的には環状部材112の内面等に、上記したような所定の化学組成を有する合金粉末を用いて肉盛施工を行って得ることができる。肉盛施工としては、特に粉体プラズマ溶接(PTA溶接)または熱間等方圧加圧法(HIP法)が好ましい。このような方法を適用することで、ビッカース硬度Hvが380〜400であるものを好適に得ることができる。   For the built-up portion 111 of the valve box 11 in the second embodiment, that is, the built-up portion 111 made of an Fe-based alloy having a predetermined chemical composition and Vickers hardness Hv, for example, the surface of the valve seat portion of the valve box 11, Specifically, it can be obtained by overlaying the inner surface of the annular member 112 using an alloy powder having a predetermined chemical composition as described above. As the overlay construction, powder plasma welding (PTA welding) or hot isostatic pressing (HIP method) is particularly preferable. By applying such a method, one having a Vickers hardness Hv of 380 to 400 can be suitably obtained.

また、第2の実施形態における弁体12の肉盛部121、すなわちCo基合金からなる肉盛部121の形成方法は特に制限されず、公知の軽水炉用弁において弁体12の弁座部分の表面に肉盛部を形成するために用いられている形成方法を適用できる。例えば、弁体12の弁座部分の表面に、上記したような所定の化学組成を有する合金粉末を用いて肉盛施工を行うことで得ることができる。肉盛施工としては、例えばガス盛溶接法が好ましい。このような方法を適用することで、上記したビッカース硬度Hvを有するものを好適に得ることができる。   Moreover, the formation method in particular of the build-up part 121 of the valve body 12 in 2nd Embodiment, ie, the build-up part 121 which consists of Co base alloys, is not restrict | limited, In the valve for a well-known light water reactor, the valve seat part of the valve body 12 is provided. A forming method used for forming a built-up portion on the surface can be applied. For example, it can be obtained by performing overlaying on the surface of the valve seat portion of the valve body 12 using the alloy powder having the predetermined chemical composition as described above. As the overlay construction, for example, a gas overlay welding method is preferable. By applying such a method, a material having the above-mentioned Vickers hardness Hv can be suitably obtained.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

以下、実施例を参照して具体的に説明する。なお、本発明の実施形態は、以下の実施例に限定されない。   Hereinafter, specific description will be given with reference to examples. The embodiments of the present invention are not limited to the following examples.

(摺動試験片の作製)
摺動試験片として、以下の2種の摺動試験片を作製した。
(Preparation of sliding test piece)
The following two types of sliding test pieces were prepared as the sliding test pieces.

[摺動試験片1]
Fe基合金として、質量百分率表示で、Cr:25.1%、Mo:2.1%、Si:3.3%、C:1.20%、Ni:4.1%、Mn:4.4%、N:0.13、残部Feおよび不可避的不純物からなる化学組成を有するものを用意した。このFe基合金を真空もしくは不活性ガス環境下で溶解し、その後、ガスアトマイズ法によりFe基合金粉末を製造した。Fe基合金粉末の粒径は+80/−325メッシュである。このFe基合金粉末を用いて、プラズマ粉体肉盛溶接法により弁体および弁座に一般的に使用されるS25Cの上に3層肉盛溶接を行ったものから、150Aの摺動試験片1を製作した。なお、摺動試験片1におけるFe基合金からなる肉盛部のビッカース硬度Hvは380〜400の範囲内であった。ビッカース硬度Hvは、ダイヤモンドアッシの負荷荷重は、10kgにより測定を行った。
[Sliding specimen 1]
As an Fe-based alloy, Cr: 25.1%, Mo: 2.1%, Si: 3.3%, C: 1.20%, Ni: 4.1%, Mn: 4.4 in terms of mass percentage %, N: 0.13, balance Fe and a chemical composition consisting of inevitable impurities were prepared. This Fe-based alloy was melted in a vacuum or in an inert gas environment, and then an Fe-based alloy powder was produced by a gas atomization method. The particle size of the Fe-based alloy powder is + 80 / -325 mesh. Using this Fe-based alloy powder, a 150 A sliding test piece was obtained by performing three-layer overlay welding on S25C generally used for valve bodies and valve seats by plasma powder overlay welding. 1 was made. In addition, the Vickers hardness Hv of the built-up portion made of the Fe-based alloy in the sliding test piece 1 was in the range of 380 to 400. The Vickers hardness Hv was measured with a load applied to the diamond assembly of 10 kg.

[摺動試験片2]
Co基合金として、質量百分率表示で、Cr:28.0%、C:1.00%、Ni:3.0%、Fe:3.0%以下、W:4.0%、残部Coおよび不可避的不純物からなる化学組成を有するものを用意した。このCo基合金を真空もしくは不活性ガス環境下で溶解し、その後、ガスアトマイズ法によりCo基合金粉末を製造した。Co基合金粉末の粒径は+80/−325メッシュである。このCo基合金粉末を用いて、ガス盛溶接法により弁体および弁座に一般的に使用されるS25Cの上に3層肉盛溶接を行ったものから、150Aの摺動試験片2を製作した。なお、摺動試験片1におけるFe基合金からなる肉盛部のビッカース硬度Hvは448であった。
[Sliding specimen 2]
As a Co-based alloy, Cr: 28.0%, C: 1.00%, Ni: 3.0%, Fe: 3.0% or less, W: 4.0%, balance Co and inevitable in terms of mass percentage Those having a chemical composition consisting of mechanical impurities were prepared. This Co-based alloy was melted in a vacuum or an inert gas environment, and then a Co-based alloy powder was produced by a gas atomization method. The particle size of the Co-based alloy powder is + 80 / -325 mesh. Using this Co-based alloy powder, a 150A sliding test piece 2 was manufactured from three-layer overlay welding on S25C generally used for valve bodies and valve seats by gas deposition welding. did. In addition, the Vickers hardness Hv of the built-up portion made of the Fe-based alloy in the sliding test piece 1 was 448.

(実施例1、比較例1)
上記摺動試験1、2を表1に示すような組合せで使用して、摺動試験装置により摺動試験を実施し、試験中および試験終了後の漏洩量、摩擦係数、および表面粗さを評価した。ここで、実施例1は、弁体の弁座部分として摺動試験片1(肉盛部がFe基合金であるもの)を用い、弁箱の弁座部分として摺動試験片2(肉盛部がCo基合金であるもの)を用いる組合せとした。また、比較例1は、弁体の弁座部分および弁箱の弁座部分の双方として摺動試験片2(肉盛部がCo基合金であるもの)を用いる組合せとした。また、摺動試験の条件は、面圧200MPa、摺動回数(弁開閉回数)100回、288℃飽和蒸気中とした。
(Example 1, Comparative Example 1)
Using the above-mentioned sliding tests 1 and 2 in combinations as shown in Table 1, the sliding test is performed with a sliding test device, and the leakage amount, friction coefficient, and surface roughness during and after the test are determined. evaluated. Here, Example 1 uses the sliding test piece 1 (the build-up part is an Fe-based alloy) as the valve seat part of the valve body, and the sliding test piece 2 (the build-up) as the valve seat part of the valve box. In which the part is a Co-based alloy). Moreover, the comparative example 1 was set as the combination which uses the sliding test piece 2 (what a build-up part is a Co base alloy) as both the valve seat part of a valve body, and the valve seat part of a valve box. The sliding test conditions were as follows: surface pressure 200 MPa, sliding frequency (valve opening / closing frequency) 100 times, 288 ° C. saturated steam.

Figure 0006005436
Figure 0006005436

図3は、摺動試験における摺動回数と漏洩量との関係を示したものである。Fe基合金とCo基合金との組合せとした実施例1は、最終的に漏洩量が40cc/min以下となり、Co基合金どうしの組合せとした比較例1と同等の漏洩特性を示すことが認められた。   FIG. 3 shows the relationship between the number of sliding times and the amount of leakage in the sliding test. It was confirmed that Example 1, which was a combination of an Fe-based alloy and a Co-based alloy, eventually had a leakage amount of 40 cc / min or less, and exhibited leakage characteristics equivalent to those of Comparative Example 1 which was a combination of Co-based alloys. It was.

図4は、摺動試験における摺動回数と摩擦係数との関係を示したものである。Fe基合金とCo基合金との組合せとした実施例1は、Co基合金どうしの組合せとした比較例1とほぼ同等の摩擦係数を示し、同等の摺動特性を有することが認められた。   FIG. 4 shows the relationship between the number of sliding times and the friction coefficient in the sliding test. Example 1, which was a combination of an Fe-based alloy and a Co-based alloy, showed a friction coefficient almost equivalent to that of Comparative Example 1, which was a combination of Co-based alloys, and was found to have equivalent sliding characteristics.

さらに、摺動試験後、分解点検を行って、摺動試験片における肉盛部の表面観察を行った。その結果、実施例1では、摺動試験片1(肉盛部がFe基合金であるもの)の肉盛部の表面の算術平均表面粗さRaは0.6μm以下であり、摺動試験片2(肉盛部がCo基合金であるもの)の肉盛部の表面の算術平均表面粗さRaは0.26μm以下であった。一方、比較例1では、いずれも摺動試験片2(肉盛部がCo基合金であるもの)の肉盛部の表面の算術平均表面粗さRaは1.00μm以下であった。   Furthermore, after the sliding test, an inspection for disassembly was performed, and the surface of the built-up portion of the sliding test piece was observed. As a result, in Example 1, the arithmetic average surface roughness Ra of the surface of the build-up portion of the slide test piece 1 (the build-up portion is an Fe-based alloy) is 0.6 μm or less. The arithmetic average surface roughness Ra of the surface of the built-up part 2 (the built-up part is a Co-based alloy) was 0.26 μm or less. On the other hand, in Comparative Example 1, the arithmetic average surface roughness Ra of the surface of the build-up portion of the sliding test piece 2 (the build-up portion is a Co-based alloy) was 1.00 μm or less.

実施例1のように摺動試験片1(肉盛部がFe基合金であるもの)と摺動試験片2(肉盛部がCo基合金であるもの)とを組み合わせた場合、両者に硬度差があることから、Fe基合金からなる肉盛部の表面が支配的に摩耗し、Co基合金からなる肉盛部の表面の摩耗を抑制することができる。   When the sliding test piece 1 (in which the build-up part is an Fe-based alloy) and the sliding test piece 2 (in which the build-up part is a Co-based alloy) are combined as in Example 1, the hardness of both Since there is a difference, the surface of the built-up portion made of the Fe-based alloy wears predominantly, and the wear of the surface of the built-up portion made of the Co-based alloy can be suppressed.

従って、炉内に向かう系統の弁に実施形態の軽水炉用弁を採用した場合、Co基合金の摩耗分が炉内へ入ることを抑制できる。結果として、軽水炉用弁、特に弁座部分に起因する軽水炉プラント定検作業等における被爆量を低減して、定検時の作業時間を大幅に確保でき、より安全な原子力プラントを製造できる。   Therefore, when the light water reactor valve of the embodiment is adopted as the valve of the system that goes into the furnace, it is possible to suppress the wear of the Co-based alloy from entering the furnace. As a result, the amount of exposure in the light water reactor plant, particularly the light water reactor plant regular inspection work caused by the valve seat portion, can be reduced, and the work time at the time of the regular inspection can be largely secured, thereby producing a safer nuclear power plant.

次に、上記摺動試験片1と同様にプラズマ粉体肉盛溶接法を行ってFe基合金のテストピースを製作し、機械加工でエロージョン試験片1を製作した。また、上記摺動試験片2と同様にガス盛溶接法によってCo基合金のテストピースを製作し、機械加工でエロージョン試験片2を製作した。これらのエロージョン試験片1、2を高圧流水中にさらして、エロージョンを発生させて、試験時間と試験片の重量変化を評価した。図5に、常温状態における試験時間と重量変化(減重量)との関係を示す。   Next, the plasma powder overlay welding method was performed in the same manner as the sliding test piece 1 to produce a Fe-based alloy test piece, and the erosion test piece 1 was produced by machining. Similarly to the sliding test piece 2, a Co-based alloy test piece was produced by gas welding, and an erosion test piece 2 was produced by machining. These erosion test pieces 1 and 2 were exposed to high-pressure flowing water to generate erosion, and the test time and the weight change of the test piece were evaluated. FIG. 5 shows the relationship between the test time and the change in weight (weight loss) at room temperature.

さらに、600Aの仕切り弁で摺動試験を実施した。弁体の肉盛部は、上記摺動試験片1と同様にしてプラズマ粉体肉盛溶接法によりFe基合金を肉盛溶接した。弁箱の肉盛部は、上記摺動試験片2と同様にしてガス盛溶接法によりCo基合金を肉盛溶接した。摺動試験の条件は、差圧7.13MPa、摺動回数50回、288℃飽和蒸気中とし、摺動試験装置を使用して行った。摺動試験後、常温水により、8.62MPaの試験圧力で、保持時間を3分間とした弁座漏えい試験を行って、漏洩の有無を確認した。この結果、無漏洩であることを確認した。   Furthermore, a sliding test was carried out with a 600 A gate valve. The built-up portion of the valve body was welded and welded with an Fe-based alloy by the plasma powder build-up welding method in the same manner as the sliding test piece 1. The overlay portion of the valve box was overlay welded with a Co-based alloy by gas overlay welding in the same manner as the sliding test piece 2 described above. The sliding test was performed under the conditions of a differential pressure of 7.13 MPa, a sliding frequency of 50 times, and 288 ° C. saturated steam, using a sliding test apparatus. After the sliding test, a valve seat leakage test was conducted with normal temperature water at a test pressure of 8.62 MPa and a holding time of 3 minutes to confirm the presence or absence of leakage. As a result, it was confirmed that there was no leakage.

10…軽水炉用弁、11…弁箱、12…弁体、13…弁棒、14…弁蓋、15…ハンドル、16…モータ、111…肉盛部、112…環状部材、121…肉盛部   DESCRIPTION OF SYMBOLS 10 ... Light water reactor valve, 11 ... Valve box, 12 ... Valve body, 13 ... Valve rod, 14 ... Valve cover, 15 ... Handle, 16 ... Motor, 111 ... Overlay part, 112 ... Ring member, 121 ... Overlay part

Claims (2)

弁箱と前記弁箱内に配置された弁体とを有する軽水炉用弁であって、
前記弁箱は、その弁座表面にCo基合金からなる肉盛部を有し、
前記弁体は、その弁座表面に、質量百分率表示で、Cr:23.0〜26.0%、Mo:1.8〜2.2%、Si:3.1〜3.5%、C:1.10〜1.35%、Ni:3.7〜5.0%、Mn:4.0〜5.0%、残部が主としてFeからなる化学組成を有するFe基合金からなり、かつビッカース硬度Hvが380〜400である肉盛部を有する
ことを特徴とする軽水炉用弁。
A light water reactor valve having a valve box and a valve body disposed in the valve box,
The valve box has a built-up portion made of a Co-based alloy on the valve seat surface,
The valve body has a mass percentage display on the valve seat surface, Cr: 23.0-26.0%, Mo: 1.8-2.2%, Si: 3.1-3.5%, C : 1.10 to 1.35%, Ni: 3.7 to 5.0%, Mn: 4.0 to 5.0%, the balance being made of an Fe-based alloy having a chemical composition mainly composed of Fe, and Vickers A light water reactor valve having a built-up portion having a hardness Hv of 380 to 400.
前記Co基合金は、質量百分率表示で、Cr:25.0〜32.0%、Mo:0〜1.0%、Si:0〜2.0%、C:0.70〜1.40%、Ni:0〜3.0%、Fe:0〜5.0%、Mn:0〜2.0%、W:3.0〜6.0%、残部が主としてCoからなる化学組成を有することを特徴とする請求項1記載の軽水炉用弁。   The Co-based alloy is expressed by mass percentage, Cr: 25.0 to 32.0%, Mo: 0 to 1.0%, Si: 0 to 2.0%, C: 0.70 to 1.40% Ni: 0 to 3.0%, Fe: 0 to 5.0%, Mn: 0 to 2.0%, W: 3.0 to 6.0%, the balance having a chemical composition mainly composed of Co The light water reactor valve according to claim 1.
JP2012175416A 2012-08-07 2012-08-07 Light water reactor valve Active JP6005436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012175416A JP6005436B2 (en) 2012-08-07 2012-08-07 Light water reactor valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012175416A JP6005436B2 (en) 2012-08-07 2012-08-07 Light water reactor valve

Publications (2)

Publication Number Publication Date
JP2014034998A JP2014034998A (en) 2014-02-24
JP6005436B2 true JP6005436B2 (en) 2016-10-12

Family

ID=50284112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012175416A Active JP6005436B2 (en) 2012-08-07 2012-08-07 Light water reactor valve

Country Status (1)

Country Link
JP (1) JP6005436B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6960329B2 (en) * 2017-12-26 2021-11-05 日立Geニュークリア・エナジー株式会社 Method for forming corrosion and wear resistant metal fittings and method for manufacturing corrosion and wear resistant valves
JP7329923B2 (en) * 2018-12-25 2023-08-21 株式会社東芝 valve
CN111850388B (en) * 2019-04-26 2022-02-15 沈阳铸造研究所有限公司 Low-induction high-wear-resistance corrosion-resistant alloy for nuclear power station and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621837A (en) * 1985-06-26 1987-01-07 Toshiba Corp Valve
JPH07102916A (en) * 1993-10-07 1995-04-18 Aisan Ind Co Ltd Engine valve
JP2004134120A (en) * 2002-10-08 2004-04-30 Denso Corp Spark plug
JP5427674B2 (en) * 2010-04-01 2014-02-26 日立Geニュークリア・エナジー株式会社 Wear-resistant valve seat

Also Published As

Publication number Publication date
JP2014034998A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
Ocken The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt-and nickel-base alloys
JP6640752B2 (en) Cobalt-free, galling and abrasion resistant austenitic surface hardened stainless steel alloy
JP6005436B2 (en) Light water reactor valve
JP3458849B2 (en) Cobalt-based alloys and valves and reactor plants using these alloys
JP5947342B2 (en) Valve equipment for nuclear power plants
Jeng et al. The effects of Mn and Nb on the microstructure and mechanical properties of Alloy 152 welds
CN102534606B (en) Nickel-base alloy coating for sealing surface of nuclear power valve and preparing method for nickel-base alloy coating
JP2011190478A (en) Steam turbine member
US5633094A (en) Valve having facing layers of co-free Ni-base Alloy
JP7329923B2 (en) valve
JPH04224207A (en) Surface treatment method for steam turbine member
CN104024707A (en) Valve device, method for producing valve device, and method for repairing valve device
JP2014001702A (en) Steam valve device and manufacturing method of the same
Kim et al. Effects of temperature and contact stress on the sliding wear of Ni-base Deloro 50 hardfacing alloy
JP2840191B2 (en) Equipment using cobalt-free alloy material
JP5789328B1 (en) Alloys and equipment for sliding members
CN114131242B (en) Alloy material for valve seat sealing surface overlaying layer and welding process thereof
JP5554192B2 (en) Co-based hardfacing material and overlaying method
Bhaduri et al. Hardfacing of austenitic stainless steel with nickel-base NiCr alloy
Bohatch et al. Effect of track overlap on the microstructure and properties of the CoCrMoSi PTA coatings
JP2021055819A (en) valve
JPH08210525A (en) Valve device provided with valve element and valve casing
JP2637296B2 (en) Light water reactor valve
JP2664242B2 (en) Light water reactor piping valve
JP2014018836A (en) Ni-BASED WELDING MATERIAL AND DIFFERENT MATERIAL WELDED TURBINE ROTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R151 Written notification of patent or utility model registration

Ref document number: 6005436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151