JP5787576B2 - Indentation fixture and fastening structure using the same - Google Patents

Indentation fixture and fastening structure using the same Download PDF

Info

Publication number
JP5787576B2
JP5787576B2 JP2011081561A JP2011081561A JP5787576B2 JP 5787576 B2 JP5787576 B2 JP 5787576B2 JP 2011081561 A JP2011081561 A JP 2011081561A JP 2011081561 A JP2011081561 A JP 2011081561A JP 5787576 B2 JP5787576 B2 JP 5787576B2
Authority
JP
Japan
Prior art keywords
synthetic resin
resin plate
foamed synthetic
fastening
fixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011081561A
Other languages
Japanese (ja)
Other versions
JP2012062745A (en
JP2012062745A5 (en
Inventor
保 河合
保 河合
Original Assignee
保 河合
保 河合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保 河合, 保 河合 filed Critical 保 河合
Priority to JP2011081561A priority Critical patent/JP5787576B2/en
Publication of JP2012062745A publication Critical patent/JP2012062745A/en
Publication of JP2012062745A5 publication Critical patent/JP2012062745A5/ja
Application granted granted Critical
Publication of JP5787576B2 publication Critical patent/JP5787576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Description

本発明は発泡合成樹脂板体を建物等の構造躯体に良好に止着するための押込固定具及びそれを用いた止着構造、並びに、これら止着構造を用いた建物構造に関する。   The present invention relates to a push-in fixture for securing a foamed synthetic resin plate to a structural housing such as a building, a fastening structure using the same, and a building structure using these fastening structures.

発泡合成樹脂板体を建物等の基本的な骨格と強度を支える屋根、壁面、床、天井、開口部等からなる構造躯体に固着することは、最も一般的には、外張り断熱構造の建物において多用されてきた。従来の外張り断熱構造(以下、外断熱又は外断熱構造又は外断熱壁構造と称す箇所あり。)の建物においては、構造躯体自体(構造用面材からなる耐力壁を含む)で所定の耐震強度を確保させ、その外壁面側には、発泡合成樹脂板体を、室内側には、内装材を張設する構造とすることにより、高断熱・高気密による省エネ性、快適性を発揮させる。この際、発泡合成樹脂板体は、構造躯体の耐力壁面を構成する土台、柱、間柱、横架材(胴差し、桁、梁等を含む。)、構造用面材、筋交い等や、屋根、天井を構成する垂木等の架材に丸釘で固着され、更に、当該発泡合成樹脂板体の外周面に、柱や間柱や垂木に沿って設けられる通気胴縁の外側から、特殊な螺子構造を有する螺子釘(例えば、Xポイントビス:若井産業(株)製の商品名。)(以下、特殊螺子釘と称す)で当該発泡合成樹脂板体を挟み込んだ形で固着、固定させている。   The most commonly used foam synthetic resin board is fixed to a structural frame consisting of a roof, wall, floor, ceiling, opening, etc. that supports the basic skeleton and strength of the building, etc. Has been used extensively. In a building with a conventional outer heat insulation structure (hereinafter referred to as an outer heat insulation or an outer heat insulation structure or an outer heat insulation wall structure), the structure body itself (including a load-bearing wall made of a structural face material) is used for a predetermined earthquake resistance. Strength is ensured, and a foamed synthetic resin plate body is provided on the outer wall surface, and interior materials are stretched on the indoor side, thereby demonstrating energy saving and comfort through high heat insulation and high airtightness. . At this time, the foamed synthetic resin plate is composed of a base, pillars, studs, horizontal members (including trunk, girders, beams, etc.), structural face materials, braces, etc. A special screw from the outside of the ventilator edge provided along the pillars, studs and rafters on the outer peripheral surface of the foamed synthetic resin plate. Screwed nails having a structure (for example, X Point Screw: trade name manufactured by Wakai Sangyo Co., Ltd.) (hereinafter referred to as special screw nails) are fixed and fixed in such a manner that the foamed synthetic resin plate is sandwiched between them. .

これらの発泡合成樹脂板体は、断熱性能を確保するため、樹脂種類にもよるが比較的高発泡倍率(例えば、20倍〜100倍程度)で、肉厚(例えば、20mm〜200mm程度)に設定されている。これら発泡合成樹脂板体は、発泡合成樹脂板体としての弾性変形性を有している反面、局部的には、脆く、欠け易い等の機械的強度が極端に弱くなるという2面性を持った建築材料である。外断熱住宅に於いて、この発泡合成樹脂板体は、一部既述したごとく、例えば、構造躯体の外側に張設される構造用面材からなる外周壁面の全面に丸釘を用いてピンポイント状に固着、固定される。さらに、その発泡合成樹脂板体の全外周面を透湿防水シートで被覆し、その上から、柱、間柱等に沿って通気胴縁を配し、通気胴縁を介して特殊螺子釘でピンポイント状に構造躯体に固着、固定する固着構造によって構成されている。こうしてなされる外断熱住宅の完成検査時の気密測定では、例えば、相当隙間面積:1cm/m以下の良好な高気密性と高断熱性を発揮出来ている。しかし、完成引渡し以降、経年と共に様々な課題が顕在化してくる。 These foamed synthetic resin plates have a relatively high expansion ratio (for example, about 20 to 100 times) and a wall thickness (for example, about 20 mm to 200 mm) depending on the type of resin in order to ensure heat insulation performance. Is set. These foamed synthetic resin plates have elastic deformability as the foamed synthetic resin plates, but on the other hand, they have a two-sided property that mechanical strength such as brittleness and easy chipping becomes extremely weak. Building material. In an external heat insulating house, as described above, this foamed synthetic resin plate is, for example, a pin using round nails on the entire outer peripheral wall surface made of a structural face material stretched outside the structural housing. Fixed and fixed in a point shape. Furthermore, the entire outer peripheral surface of the foamed synthetic resin plate is covered with a moisture permeable waterproof sheet, and a ventilation cylinder edge is arranged along the pillar, the inter-column, etc. from above, and a pin is inserted with a special screw nail through the ventilation cylinder edge. It is composed of a fixed structure that is fixed and fixed to the structural frame in a point shape. In the airtight measurement at the time of completion inspection of the outer heat insulation house made in this way, for example, it is possible to exhibit good high airtightness and high heat insulation with an equivalent gap area of 1 cm 2 / m 2 or less. However, after the completion of delivery, various issues become apparent as time passes.

すなわち、特に集中荷重(局部圧縮)に弱い発泡合成樹脂板体を、丸釘や、通気胴縁を介して特殊螺子釘等でピンポイント状に固着するため、例えば、日常的な振動や劣化や膨張、収縮等の変化や、台風や地震の大きな外力により釘穴の拡大や裂断が発生し、さらに、発泡合成樹脂板体と構造用面材との間や、発泡合成樹脂板体と透湿防水シートと通気胴縁との間に、滑り、縦ズレ、横ズレなどが発生し、発泡合成樹脂板体同士の接続部に隙間や浮上りが生じて、気密、断熱ラインが容易に破壊されるという欠陥が指摘されている。特に、耐力壁材である構造用面材(例えば、シージングボード、構造用合板等)や、透湿防水シートの表面摩擦係数は低くて滑り易く、これらの材料で発泡合成樹脂板体をサンドイッチ状に固着する外断熱構造においては、固着面の滑り防止は今後の重要な課題の一つである。(以下の説明や図面においては、複雑化を避けるため、構造用面材や透湿防水シートを省略して説明する場合がある。)
通常、耐震住宅は、建築基準法における耐震等級1級(震度6程度ので倒壊しない)で設計されるが、一般的に、構造躯体の水平方向の層間変位角度が1/30radを超えると柱、横架材、土台や耐力壁や筋交い等の仕口や軸組み部(以下、仕口部と表現する場合あり)、及び、耐力壁(構造用面材)の止着材である釘や固着部自体が修復、復元不能に破損、損壊し倒壊の恐れがあるとされる。(この現象は、一般的には安全限界と称され本発明では以下、安全限界と称する。)しかし、発泡合成樹脂板体に至っては、構造躯体の層間変位角度1/30rad以下の僅かな層間変位角度の変形であっても、殆んど追従変形出来ず、それらの小さな変形や震動の繰り返しでも固着部の損傷が累積、拡大し、剥離や浮上りに進行する恐れがあるにもかかわらず、外断熱住宅の構造上、発泡合成樹脂板体は、外壁材や水切りや庇等で覆われ、外部から完全に遮蔽されて施工されており、突発的な外壁材の剥離、脱落等で内部が露見される時以外には外観から発泡合成樹脂板体の損傷や断熱欠損や浮上り等の不都合は確認出来ず課題を潜在化させているのである。
In other words, a foamed synthetic resin plate that is particularly vulnerable to concentrated loads (local compression) is fixed in a pinpoint shape with a round nail or a special screw nail via a ventilation trunk edge. Nail hole expansion and tearing occur due to changes in expansion, contraction, etc., as well as large external forces from typhoons and earthquakes, and between the foamed synthetic resin plate and the structural surface material, and between the foamed synthetic resin plate and the transparent surface. Sliding, vertical misalignment, lateral misalignment, etc. occur between the moisture waterproof sheet and the ventilator rim, creating gaps and lifts at the joints between the foamed synthetic resin plates, easily breaking the airtight and heat insulation lines It has been pointed out that this is a defect. In particular, structural face materials (such as shearing boards and structural plywood) that are load-bearing walls, and moisture-permeable waterproof sheets have a low surface friction coefficient and are easy to slide. In the outer heat insulating structure that is fixed to the surface, prevention of slipping of the fixed surface is one of important issues in the future. (In the following description and drawings, the structural face material and the moisture-permeable waterproof sheet may be omitted to avoid complication.)
Normally, earthquake-resistant houses are designed with the earthquake resistance class 1 in the Building Standard Law (the seismic intensity is about 6 so that they do not collapse), but in general, when the horizontal interlayer displacement angle of the structural frame exceeds 1/30 rad, Joints such as horizontal members, foundations, bearing walls, bracing, and framed parts (hereinafter sometimes referred to as joints), and nails and fixings for bearing walls (structural surface materials) It is said that the part itself could be repaired, damaged irreparably, damaged or destroyed. (This phenomenon is generally referred to as a safety limit and is hereinafter referred to as a safety limit in the present invention.) However, in the case of a foamed synthetic resin plate, a slight interlayer having an interlayer displacement angle of 1/30 rad or less of the structural housing is used. Even if the displacement angle is deformed, almost no follow-up deformation is possible, and even with these small deformations and repeated vibrations, the damage to the fixed part accumulates and expands, and may progress to peeling or rising. Due to the structure of the outer heat insulating house, the foamed synthetic resin plate is covered with the outer wall material, drainer, firewood, etc., and is completely shielded from the outside. Except for the time when it is exposed, problems such as damage to the foamed synthetic resin plate body, heat insulation defects, and floating cannot be confirmed from the appearance.

本来、発泡合成樹脂板体自体は、これら構造躯体の層間変位角度1/30rad以上の層間変位角度にも、十分、追従一体化して弾性変形できる性能を有し、更には、追従して元形状に復元できる弾性復元性や、衝撃、外力、衝撃、震動に対する緩衝性等の材料特性をも有している。にもかかわらず、現状では、地盤から構造躯体に伝達される変形力や地震エネルギー力(元来、地震を家屋の変形や震動のみで表現し得ないのであるが本発明では単純に、変形(又は、変形力、又は、外力)、震動、揺れ等と表現することがある。)は、発泡合成樹脂板体の固着に用いている細い丸釘や特殊螺子釘の固着部に集中負荷され、発泡合成樹脂板体の固着部のみが局部破壊される結果に終ってしまっている。このため、これらの外力は、発泡合成樹脂板体の板全体には殆ど伝達されず、構造躯体の層間変位角度1/30rad以下の小さな変位量であっても、構造躯体の変形に柔軟に追従して変形できず、ましてや復元力を発揮するには至らないというミスマッチ現象を起こしている。   Originally, the foamed synthetic resin plate itself has a performance that can sufficiently follow and integrate and elastically deform an interlayer displacement angle of 1/30 rad or more of these structural housings. It also has material properties such as elastic resilience that can be restored to high speed and shock-absorbing, external force, shock, and shock-absorbing properties. Nevertheless, at present, the deformation force and the seismic energy force transmitted from the ground to the structural frame (originally, it is impossible to express an earthquake only with the deformation or vibration of a house, but in the present invention, the deformation ( Or, it may be expressed as deformation force or external force), vibration, shaking, etc.)) is concentrated on the fixed part of the thin round nail or special screw nail used for fixing the foamed synthetic resin plate, Only the fixed part of the foamed synthetic resin plate has been locally destroyed. For this reason, these external forces are hardly transmitted to the entire foamed synthetic resin plate, and flexibly follow the deformation of the structural housing even with a small displacement of an interlayer displacement angle of 1/30 rad or less of the structural housing. As a result, a mismatch phenomenon occurs that cannot be deformed and, moreover, cannot be restored.

このミスマッチ現象は、前記した表面滑性の高い構造用面材と透湿防水シートに挟まれた発泡合成樹脂板体と構造躯体と通気胴縁とが、本来、高度に一体化される構造であるべき外断熱構造において、発泡合成樹脂板体の固着部のみが局部破損して、目的が達せられなくなり、高断熱、高気密性を逸損、損壊させる主たる原因となっている。また、既述のミスマッチ現象は、断熱、気密性能の劣化のみならず結露現象による構造躯体の腐朽等を発生させ、耐久性低下の懸念の元でもある。   This mismatch phenomenon is essentially a structure in which the structural surface material with high surface smoothness, the foamed synthetic resin plate sandwiched between the moisture permeable waterproof sheets, the structural housing, and the ventilator edge are highly integrated. In the outer heat insulating structure that should be, only the fixed portion of the foamed synthetic resin plate body is locally damaged, and the purpose cannot be achieved, which is a major cause of loss or damage of high heat insulation and high airtightness. In addition, the aforementioned mismatch phenomenon causes not only the deterioration of heat insulation and airtight performance but also the decay of the structural frame due to the dew condensation phenomenon, which is a cause of concern about the deterioration of durability.

こうした課題が解消されれば、構造躯体から伝達される様々な変形力や震動に対し、構造躯体と発泡合成樹脂板体が一体化構造をなすことにより、発泡合成樹脂板体自体が本来有する粘弾性や可撓性や高い緩衝性(震動、衝撃、変形エネルギーの吸収・復元性)等の特性が充分に生かされ、本来、構造躯体が有する耐震性に加えて、新たに発泡合成樹脂板体が有する弾性変形や弾性復元することで発現される耐震性と緩衝性(以下、制震性と表現することがある。)が付加され、地震による建物躯体の揺れや変形を吸収、抑制、緩和し得て損壊や倒壊の危険性を大幅に軽減できることが期待されるのである。   If these problems are resolved, the foamed synthetic resin plate itself has the inherent viscosity by forming the integrated structure of the structural case and the foamed synthetic resin plate against various deformation forces and vibrations transmitted from the structural case. Properties such as elasticity, flexibility and high shock-absorbing properties (vibration, impact, deformation energy absorption / restoration) are fully utilized, and in addition to the earthquake resistance inherent in the structural frame, a new foamed synthetic resin plate Seismic resistance and shock-absorbing properties (hereinafter referred to as “seismic control”) that are manifested by elastic deformation and elastic restoration of the building are added to absorb, suppress, and mitigate shaking and deformation of the building's building due to the earthquake. It is expected that the risk of damage and collapse can be greatly reduced.

制震とは、地震動をエネルギーとして捉え、耐震性を有する構造躯体に特別に組み込んだ制震装置といわれるエネルギー吸収機構により、地震エネルギーが入力されても揺れや変形を抑制する技術である。これらは、建物の揺れと損傷を抑制することから、数次の中地震(震度5〜7程度)にも有効であるとされていることから戸建住宅への普及が強く望まれている。   Seismic control is a technology that suppresses shaking and deformation even if seismic energy is input by an energy absorption mechanism called seismic control device that is specially incorporated in a seismic structure that captures seismic motion as energy. Since these suppress the shaking and damage of the building, and are considered to be effective for several middle earthquakes (seismic intensity of about 5 to 7), the spread to detached houses is strongly desired.

こうした現状の中、断熱材(以下、発泡合成樹脂板体と称す)の表面を加熱し熱収縮させることにより複数の円錐窪みを形成して、この円錐窪みに凹球面座を埋設した後、この発泡合成樹脂板体の外壁面側に、外装壁としての構成材を兼ねるメッシュ体とこれに絡めたモルタル材とを接着して、固化、一体化させてなる外壁面体(以下、パネルと称す)を用いることにより、施工容易で、工期短縮等を計ろうとする技術が開示されている。(特許文献1参照。)この技術では、木ネジを用い、当該パネルを壁体に捻じ込み固着するための小孔を除いて、発泡合成樹脂板体と凹球面座とメッシュ体とこれに絡めたモルタル材とは、全面に亘って接着されて、固化、一体化された構成を取るため、剛性の高いパネルになっている。又、このパネルは、厚さが、10mm〜15mm程度と薄いため、断熱性能が不足するので、高断熱性が要求される近時の外断熱住宅の壁面には採用できない。更には、前記したように剛性が高いパネルであることから、発泡合成樹脂板体が本来的に有する粘弾性や緩衝性(外力や震動エネルギーの吸収性や復元性)を生かすような利用は出来ない。この発明は、該パネルを壁体に施工容易で、工期短縮ができ、平滑、かつ強固に固着させるという目的を達成するものである。しかも、定尺寸法(例:1820mm高×910mm幅)に形成されたパネルは、現場で様々な形状、寸法に裁断して使用されることが多いため、予め、固定化された凹球面座の位置だけでは必要な固着箇所に凹球面座が不足したり、逆に、不必要な固着箇所に凹球面座が偏在するといった不都合が多発する。又、パネルの切断ロスや接続部の雨仕舞や最終仕上げ塗装等の余分な作業が発生する。さらに木ネジの締付け力が強過ぎると発泡合成樹脂板体と凹球面座とメッシュ体に絡めたモルタル材との接着部が局部剥離し、パネルの平滑性が損なわれ、固着力が低下する等の問題が発生して、この発明の目的が達成できなくなる。こうした問題点は、従来の施工方法に比較しても大き過ぎることから、現に、この先行技術による実施は全くなされていないのが実態である。   Under such circumstances, a plurality of conical depressions are formed by heating and heat-shrinking the surface of a heat insulating material (hereinafter referred to as a foamed synthetic resin plate), and a concave spherical seat is embedded in the conical depressions. An outer wall surface (hereinafter referred to as a panel) formed by adhering a mesh body that also serves as a structural material as an exterior wall and a mortar material entangled with this to the outer wall surface of the foamed synthetic resin plate, solidifying and integrating. A technique is disclosed that is easy to construct and shortens the construction period and the like by using. (See Patent Document 1.) In this technology, wood screws are used and the panel is screwed into the wall body, except for small holes for fixing, the foamed synthetic resin plate body, the concave spherical seat, the mesh body, and the entanglement. The mortar material is bonded to the entire surface, solidified, and integrated to form a highly rigid panel. Moreover, since this panel is as thin as about 10 mm to 15 mm, its thermal insulation performance is insufficient, so it cannot be used as a wall surface of a recent outer thermal insulation house where high thermal insulation is required. Furthermore, as described above, since the panel is highly rigid, it can be used to take advantage of the inherent viscoelasticity and cushioning (absorbing and restoring properties of external force and vibration energy) of the foamed synthetic resin plate. Absent. The present invention achieves the object that the panel can be easily applied to the wall, the work period can be shortened, and the panel can be firmly and firmly fixed. In addition, since the panel formed in a standard size (example: 1820 mm high x 910 mm wide) is often cut into various shapes and dimensions on the site, it is often used for the concave spherical seat fixed in advance. There are many inconveniences that the concave spherical seat is insufficient at the required fixing location only by the position, or that the concave spherical seat is unevenly distributed at the unnecessary fixing location. In addition, extra work such as panel cutting loss, rain at the connection, and final finish painting occurs. Furthermore, if the tightening force of the wood screw is too strong, the bonded portion of the foamed synthetic resin plate, the concave spherical seat, and the mortar material entangled with the mesh body will be locally peeled, the smoothness of the panel will be impaired, and the fixing force will be reduced. Therefore, the object of the present invention cannot be achieved. Since these problems are too large compared with the conventional construction method, the actual situation is that the prior art has not been implemented at all.

特開2004−263450号公報JP 2004-263450 A

発泡合成樹脂板体の構造躯体への止着は、木造住宅や鋼製住宅においてなされるが、本出願ではもっぱら、木造住宅を代表として説明する。その内でも外断熱構造を有する外断熱住宅での事例を主として引用して以降の説明をする。しかし、こうした、外断熱構造や外断熱住宅での説明により本発明が限定して解釈されることはない。   Fastening of the foamed synthetic resin plate to the structural housing is performed in a wooden house or a steel house, but in this application, the wooden house will be described as a representative. Among them, the following explanation will be given mainly with reference to an example of an outer heat insulating house having an outer heat insulating structure. However, the present invention is not construed as being limited by the description of the outer heat insulating structure or the outer heat insulating house.

建物、特に外断熱住宅(木造住宅,鉄骨系住宅、これに類する建造物等)は、日本の厳しい気候風土に適する。この外断熱住宅の高断熱・高気密性は、省エネルギー、温熱バリアフリーや結露抑制等の効果が高く、快適な住環境、省エネルギー性、および、高耐久性等、住宅に求められる多くの性能を有する建築構造として、広く採用されている。   Buildings, especially exterior heat-insulated houses (wooden houses, steel-framed houses, and similar structures) are suitable for the harsh climate of Japan. The high thermal insulation and high airtightness of this outer heat insulation house are highly effective in energy saving, thermal barrier free and condensation control, and provide many performances required for the house such as comfortable living environment, energy saving and high durability. Widely adopted as an architectural structure.

そして、これら外断熱構造は、剛性の高い木、鉄等の構造材からなる構造躯体の外周壁面側(外周面、あるいは、外壁面や外壁面側ともいう。)に沿って、軽く、柔らかく集中荷重に弱く、脆い発泡合成樹脂板体を釘や螺子釘で固着、配設して、発泡合成樹脂板体同士の連接部に気密テープ等の気密材を貼設して透湿防水シートで被覆した後、これらの上に、柱、間柱に沿って、外気の通気層を形成する目的で、木製の通気胴縁(例:40mm幅×18mm厚程度)を配し、特殊螺子釘等を用いて、通気胴縁の一部が発泡合成樹脂板体中に陥没して不陸が生じない程度の弱い面圧にて構造躯体に固着する。そして、該通気胴縁の外周面にはサイディング等の重い外壁材を懸架、固着して外断熱構造を完成する。   These outer heat insulating structures are light, soft and concentrated along the outer peripheral wall surface side (also referred to as the outer peripheral surface, or the outer wall surface or outer wall surface side) of a structural frame made of a structural material such as highly rigid wood or iron. A foamed synthetic resin plate that is weak against load is fixed and arranged with nails or screw nails, and an airtight material such as an airtight tape is attached to the joint between the foamed synthetic resin plates and covered with a moisture-permeable waterproof sheet. After that, for the purpose of forming a ventilation layer of outside air along the pillars and the studs, a wooden ventilation trunk edge (example: about 40 mm width × 18 mm thickness) is arranged on these, and a special screw nail or the like is used. Then, a part of the ventilator rim is fixed to the structural housing at a weak surface pressure that does not cause unevenness by sinking into the foamed synthetic resin plate. Then, a heavy outer wall material such as siding is suspended and fixed on the outer peripheral surface of the ventilator rim to complete the outer heat insulating structure.

上述のごとく、構造躯体を構成する剛性、靭性の高い木材と、柔らかく脆い発泡合成樹脂板体とは、夫々、釘や特殊螺子釘で固着することにより、釘や特殊螺子釘の胴部の締付け力と、小さな釘頭面積の面圧でもって一応止めつけられた形となっている。しかし、木材同志の固着の場合にあっては、これらの釘や螺子釘の胴部分の大きな締付け応力と釘頭部の大きな圧縮応力で堅固に固着できるので固着に関する懸念は小さい。一方、発泡合成樹脂板体を固着する場合においては、釘や特殊螺子釘の胴部が発泡合成樹脂板体を貫通して形成する釘穴は、固着時に該板体の固着部を局部圧縮、局部破壊させて形成された貫通穴であり、この状態では、釘や特殊螺子釘の胴部の締付け応力は非常に小さい。そして、釘頭による固着面も、釘の胴部を除く釘頭面積からなる僅かな圧縮応力で支えられているに過ぎない。このため、釘頭で圧縮されている方向と逆向きの方向、すなわち、発泡合成樹脂板体の表裏面に略直交する方向(以下、略垂直方向と称することあり)である釘頭抜けの方向に力を加えると、容易に発泡合成樹脂板体の厚み方向を貫通して釘頭抜けをしてしまう。又、発泡合成樹脂板体の表裏面に略沿った方向(以下、略平行方向と称することあり)の力を加えると、釘の貫通穴の拡大や裂断が容易に発生する。   As described above, the rigid and tough wood that constitutes the structural frame and the soft and brittle foamed synthetic resin plate are fixed with nails and special screw nails, respectively, thereby tightening the body of the nails and special screw nails. It has a shape that is temporarily stopped by force and surface pressure with a small nail head area. However, in the case of fixing between the woods, there is little concern about the fixing because it can be firmly fixed by the large tightening stress of the trunk portion of these nails and screw nails and the large compressive stress of the nail head. On the other hand, in the case of fixing the foam synthetic resin plate body, the nail hole formed by the body portion of the nail or the special screw nail penetrating the foam synthetic resin plate body is locally compressed at the time of fixing, This is a through hole formed by local destruction. In this state, the tightening stress of the body of the nail or special screw nail is very small. The fixing surface by the nail head is also supported only by a slight compressive stress consisting of the nail head area excluding the nail body. For this reason, the direction of the nail head removal which is the direction opposite to the direction compressed by the nail head, that is, the direction substantially orthogonal to the front and back surfaces of the foamed synthetic resin plate (hereinafter may be referred to as a substantially vertical direction). When a force is applied to the nail head, it easily penetrates the thickness direction of the foamed synthetic resin plate and the nail head is removed. Further, when a force in a direction substantially along the front and rear surfaces of the foamed synthetic resin plate (hereinafter, also referred to as a substantially parallel direction) is applied, expansion and tearing of the through hole of the nail easily occur.

このように、発泡合成樹脂板体を丸釘や特殊螺子釘で固着しても、構造躯体側や外壁材側から丸釘や特殊螺子釘に伝達される地震や台風等による発泡合成樹脂板体への略垂直方向や略平行方向を含む多次元方向から働く大きな外力や震動等によって、これら発泡合成樹脂板体の局部破損(裂断等)、ずれ、ガタツキ、歪み、浮き上がり等が簡単に発生してしまう。従って、現在での発泡合成樹脂板体の固着方法は、上述の各種の力に充分耐えられる固着方法には全くなっていないのが現状である。しかし、現実には、他に方法がなく、仕方なく従来からのこれら固着方法を採用せざるを得ないのが実態である。とは言え、従来も、今後も住宅に求められる多数の優れた特徴を有する外断熱住宅において、さらに、その優秀性と高耐久性を謳った長期優良住宅を指向するためには、例えば、地震に遭遇し、層間変位角度が1/30radと同等以上になった場合であっても、発泡合成樹脂板体が構造躯体の変形に柔軟に追従一体化して、弾性変形、弾性復元(以下、弾性変形、復元と称する場合あり)し、高気密、高断熱性を維持することが可能な止着構造である必要があり、併せて、発泡合成樹脂板体の優れた緩衝性(制震性)を活かし、地震の揺れや損傷を抑制、緩和できることが今後の外断熱住宅の必須要件であると考えられる。   In this way, even if the foamed synthetic resin plate is fixed with a round nail or special screw nail, the foamed synthetic resin plate due to an earthquake or typhoon transmitted to the round nail or special screw nail from the structural housing side or outer wall material side Due to large external forces and vibrations that act from multi-dimensional directions including almost perpendicular to and parallel to the surface, local damage (breaking, etc.), displacement, rattle, distortion, and lifting of these foamed synthetic resin plates can easily occur. Resulting in. Therefore, the present fixing method of the foamed synthetic resin plate is not a fixing method that can sufficiently withstand the above-described various forces. However, in reality, there is no other method, and the actual situation is that these conventional fixing methods are unavoidably adopted. However, in the past, in order to aim at long-term excellent houses that excelled in excellence and durability in the outer heat insulation houses having many excellent characteristics that will be required for houses in the future, for example, earthquake Even if the interlayer displacement angle is equal to or greater than 1/30 rad, the foamed synthetic resin plate flexibly integrates with the deformation of the structural housing, and is elastically deformed and elastically restored (hereinafter referred to as elastic It is necessary to have a fastened structure capable of maintaining high airtightness and high heat insulation, and in addition, excellent cushioning (damping) of the foamed synthetic resin plate It is considered that the future requirement for an outer heat-insulated house is to be able to control and mitigate earthquake shaking and damage.

因みに、図1は、一般的な外断熱住宅における外壁材を懸架・固着させる前の施工立面模式図であって、外断熱住宅の建物躯体50が地震で水平方向に変形、振幅する場合、木造住宅の安全限界とされる層間変位角度51が1/30radの時の層間変位量52(正負の変形量)を示す。発泡合成樹脂板体1を建物躯体50の開口部53(窓、出入り口)を除く全外壁面に丸釘16aで固着し、通気胴縁14を発泡合成樹脂板体上に載置して、特殊螺子釘2(図示せず)を貫通させて固着した状態を表し、その通気胴縁14にサイディング等の外壁材を懸架、固着させる前の施工立面模式図である。例えば、本図の1階の階高を3000mmとした場合、水平方向の層間変位角度51(1/30rad)の時の層間変位量52は、±100mmに相当する。   Incidentally, FIG. 1 is a construction elevation schematic diagram before suspending and fixing the outer wall material in a general outer heat insulating house, and when the building housing 50 of the outer heat insulating house is deformed in the horizontal direction due to an earthquake, and swings, The interlayer displacement 52 (positive and negative deformation) when the interlayer displacement angle 51, which is regarded as a safety limit of a wooden house, is 1/30 rad is shown. The foamed synthetic resin plate 1 is fixed to the entire outer wall surface except for the opening 53 (window, doorway) of the building housing 50 with a round nail 16a, and the ventilator edge 14 is placed on the foamed synthetic resin plate body. FIG. 4 is a schematic elevational view of a construction before a threaded nail 2 (not shown) is penetrated and fixed, and an outer wall material such as siding is suspended and fixed to the ventilation trunk edge 14. For example, when the floor height of the first floor in this figure is 3000 mm, the interlayer displacement amount 52 at the horizontal interlayer displacement angle 51 (1/30 rad) corresponds to ± 100 mm.

理想的な外断熱住宅に最小限望まれる機能としては、建物躯体50の安全限界の目安とされる層間変位角度51(1/30rad)の層間変位量52と同等以上に発泡合成樹脂板体1が構造躯体4に一体化して追従し、正負方向を含む多次元方向に弾性変形、弾性復元することが要件となる。もし、発泡合成樹脂板体が弾性変形できず、追従、復元できなかった場合には、構造躯体や耐力壁の損壊以前(例:震度3〜5程度)に、発泡合成樹脂板体1の固着部や断熱、気密ラインが集中的に破損、損壊され、外断熱住宅としての断熱、気密性が逸損されてしまうという致命的欠陥が生じてしまう。   As a minimum desired function for an ideal heat-insulated house, the foamed synthetic resin plate 1 is equal to or more than the interlayer displacement 52 of the interlayer displacement angle 51 (1/30 rad), which is a standard of safety limits of the building housing 50. Is required to be integrated with the structural housing 4 and to be elastically deformed and elastically restored in a multidimensional direction including positive and negative directions. If the foamed synthetic resin plate cannot be elastically deformed and cannot be followed or restored, the foamed synthetic resin plate 1 is fixed before the structural casing or bearing wall is damaged (eg, seismic intensity is about 3 to 5). This causes a fatal defect that the parts, heat insulation, and airtight lines are intensively damaged and damaged, and the heat insulation and airtightness of the outer heat insulating house are lost.

ここに、こうした課題が解消されるならば、発泡合成樹脂板体1が本来的に有している高い弾性変形性と緩衝性(変形力や震動の吸収性と復元性)が活かされ、構造躯体4から伝達される変形力や地震の揺れを、止着部を含む発泡合成樹脂板体全体が吸収、抑制、復元(一般的には地震にブレーキをかける、又は、制震する、とも表現されている)することで、従来の高断熱性能のみをよりどころとする外断熱構造から、耐震性と制震性を有する耐、制震外断熱構造にグレードアップすることが可能となり、建物躯体50の揺れや衝撃の抑制、緩和と倒壊の危険性を大幅に軽減できることが期待される。   If such a problem is solved here, the highly elastic deformability and buffering property (absorbing and restoring properties of deformation force and vibration) inherent to the foamed synthetic resin plate 1 are utilized, and the structure The deformation force transmitted from the frame 4 and the shaking of the earthquake are absorbed, suppressed and restored by the entire foamed synthetic resin plate body including the fastening part (generally, the brake is applied to the earthquake or the vibration is controlled). As a result, it is possible to upgrade from a conventional outer heat insulation structure based solely on high heat insulation performance to an anti-seismic and anti-seismic heat insulation structure that has seismic resistance and vibration control. It is expected that the risk of 50 swings and impacts can be suppressed, mitigated and collapsed.

又、構造用面材や筋交い等の耐力壁からなる従来の耐震住宅は、通常、層間変位角度51が1/30radを超えた場合、丸釘や特殊螺子釘等の止着材自体の切断や、塑性材料である構造用面材の固着部の裂断、損壊(剥がれ)が生じ、また、構造躯体自体の軸組み部の損壊が起こることにより、特に、家屋の1階部分から一気に倒壊するとされている。しかし、粘弾性を有する発泡合成樹脂板体の長所が最大限に活かされて、その弾性変形性(抗張力)と、緩衝性を活用できる止着構造が提供できれば、想定される揺れや変形や損傷、損壊が抑制されるのみならず、例えば、揺れが、層間変位角度51(1/30rad)より大きな層間変位角度(例:1/20rad)となったと仮定しても、本発明の止着構造、及び、粘弾性や抗張力等を有する発泡合成樹脂板体が、各種の軸組み部や、耐震金物類や耐力壁材(構造用面材)の固着部位等の浮き上がりや剥離を保護して、破損、損壊を抑制、軽減させ得ることから、想定される多数の止着材、固着部、軸組み部、耐力壁材等の裂断、損壊が輻輳して発生するところの家屋の一気倒壊という危険性が著しく緩和されるものと期待される。   In addition, conventional earthquake-resistant houses consisting of bearing walls such as structural face materials and braces usually cut the fastening material itself such as round nails and special screw nails when the interlayer displacement angle 51 exceeds 1/30 rad. When the structural face material, which is a plastic material, breaks and breaks (peels), and the structural frame itself is damaged, particularly when it collapses from the first floor of the house at once. Has been. However, if the advantages of the foamed synthetic resin plate with viscoelasticity can be maximized to provide a fastening structure that can take advantage of its elastic deformability (tensile strength) and shock-absorbing properties, it can be expected to shake, deform, and damage. Even if it is assumed that not only the damage is suppressed but also the swing becomes an interlayer displacement angle (for example, 1/20 rad) larger than the interlayer displacement angle 51 (1/30 rad), the fastening structure of the present invention. And the foamed synthetic resin plate having viscoelasticity, tensile strength, etc. protects the lifting and peeling of various shaft assembly parts, seismic hardware and load-bearing wall materials (structural face materials), etc. Because it is possible to suppress and reduce damage and breakage, it is said that a large number of assumed fastening materials, fixing parts, shaft assembly parts, load-bearing wall materials, etc., breakage of houses where damage occurs due to congestion The risk is expected to be significantly mitigated.

上記した解決の糸口を簡単な実験により表したので、模式的な図2を用いて次に説明する。同図(a)(イ)は、通気胴縁14で発泡合成樹脂板体1を固着させてなる従来の固着方法の横断面図である。予め発泡合成樹脂板体1を丸釘16aで土台10や柱8や間柱9等に固着させ、その表面側から通気胴縁14を介し特殊螺子釘2で柱8、間柱9、土台10等からなる構造躯体4にねじ込み固着させている。15は構造用面材、17は外壁材、22は透湿防水シートである。   The clue of the above solution has been expressed by a simple experiment, and will be described next with reference to the schematic FIG. FIGS. 2A and 2B are cross-sectional views of a conventional fixing method in which the foamed synthetic resin plate 1 is fixed by the ventilating cylinder edge 14. The foamed synthetic resin plate 1 is fixed in advance to the base 10, the pillar 8, the interposition pillar 9 and the like with a round nail 16a, and from the surface 8, from the pillar 8, the interposition pillar 9, the base 10 and the like with the special screw nail 2 through the ventilation trunk edge 14. The structural housing 4 is fixed by screwing. 15 is a structural surface material, 17 is an outer wall material, and 22 is a moisture-permeable waterproof sheet.

これらに用いる止着材の一つである特殊螺子釘2により、1)発泡合成樹脂板体1を直接構造躯体4に固着した場合、2)通気胴縁を介し発泡合成樹脂板体1を構造躯体4に固着した場合の2つの形態につき説明する。図2では、前記、1)の形態において、発泡合成樹脂板体1と特種螺子釘2で形成される固着部に対して、略平行方向や略垂直方向の外力が負荷された時に、その外力に抗し得るそれぞれの固着力を測定した。一方、前記、2)の形態の場合、すなわち、通気胴縁を介し発泡合成樹脂板体1と特殊螺子釘2で構成される固着部に対し、略平行方向や略垂直方向の外力が負荷された時に、その外力に抗し得るそれぞれの固着部の挙動や固着力の測定結果は、実施態様2(図9(b))に示す。   1) When the foamed synthetic resin plate 1 is directly fixed to the structural housing 4 by the special screw nail 2 which is one of the fastening materials used for these, and 2) The foamed synthetic resin plate 1 is structured through the ventilating trunk edge. Two forms when fixed to the housing 4 will be described. In FIG. 2, in the form of 1), when an external force in a substantially parallel direction or a substantially vertical direction is applied to the fixed portion formed by the foamed synthetic resin plate 1 and the special thread nail 2, the external force is applied. Each sticking force that can withstand was measured. On the other hand, in the case of the above 2), that is, an external force in a substantially parallel direction or a substantially vertical direction is applied to the fixing portion formed of the foamed synthetic resin plate 1 and the special screw nail 2 via the ventilating trunk edge. The behavior of each fixing part that can resist the external force and the measurement result of the fixing force are shown in Embodiment 2 (FIG. 9B).

ここに、発泡合成樹脂板体1としては、ビーズ法発泡ポリスチレン(商品名:カネパール(株)カネカ製)(発泡倍率:35倍、板厚:40mm、300mm幅×300mm長)を用い、特殊螺子釘2としては、最も普通に使用されている釘頭2a径:11.5mmΦ、釘胴部2b径:6mmΦ、長さ100mm(符号は図2(a)(ニ)等を参照)を用いて固着させた。   Here, as the foamed synthetic resin plate 1, a bead method expanded polystyrene (trade name: manufactured by Kanepal Co., Ltd.) (foaming magnification: 35 times, plate thickness: 40 mm, 300 mm width × 300 mm length) is used, and a special screw is used. As the nail 2, the most commonly used nail head 2a diameter: 11.5 mmΦ, nail body 2b diameter: 6 mmΦ, and length 100 mm (see FIG. 2 (a) (d) and the like for signs) It was fixed.

次いで、従来の固着方法が破壊する状態を示す。図2(a)(イ)のA−A断面における土台10近傍の拡大図である同図(a)(ロ)に示すごとく、特殊螺子釘2を用いて発泡合成樹脂板体1を、構造用面材15を介して土台10に固着した状態である。そして、図2(a)(ハ)において、地震時に最も発生しやすい発泡合成樹脂板体1の略平行方向からの外力や震動を模し、この発泡合成樹脂板体1の略平行方向である上方(図中の矢印の方向)に押し上げた結果、同図にしめすごとく、特殊螺子釘2の胴部2bの止着貫通穴1dに局部荷重が働いて、発泡合成樹脂板体1に略胴部径の幅で長さ約20mm程度の裂断部25が形成され、さらに押し下げた結果、該発泡合成樹脂板体1の下端部近傍が発泡合成樹脂の破断塊26を伴って固着部は分離、破断した。   Next, a state in which the conventional fixing method is broken is shown. As shown in FIGS. 2A and 2B, which are enlarged views of the vicinity of the base 10 in the AA cross section in FIGS. 2A and 2A, the foamed synthetic resin plate 1 is structured using a special screw nail 2. It is in a state of being fixed to the base 10 via the face material 15. 2 (a) and 2 (c), the external force and vibration from the substantially parallel direction of the foamed synthetic resin plate 1 that is most likely to occur during an earthquake are imitated, and this is the substantially parallel direction of the foamed synthetic resin plate 1. As a result of pushing upward (in the direction of the arrow in the figure), a local load is applied to the fastening through hole 1d of the body 2b of the special screw nail 2 as shown in FIG. As a result of forming a tearing portion 25 having a diameter of about 20 mm in length and further pushing down, the vicinity of the lower end portion of the foamed synthetic resin plate 1 is separated with a broken lump 26 of the foamed synthetic resin, and the fixing portion is separated. Ruptured.

この裂断中に要した力は約7Kg程度、破断時の力の最大荷重は約11Kg程度であった。比較のため発泡フェノール板(ネオマフォーム:旭化成建材(株)製の商品名)を用いた同様の試験では、裂断中の力は約5Kg程度、破断時の力は約9Kg程度であった。ここで注目すべきは、特殊螺子釘2の固着部では、構造用面材との摩擦力も含む1本当り僅か5〜7Kg程度の力で裂断現象(裂断長さ約20mm)が発生してしまっており、この状態で外力を取り除いたとしても、発泡合成樹脂板体1を元の固着位置へ復帰させるための弾性復元力は既に逸損してしまっており、固着部は全くの破損状態にある。   The force required during the breaking was about 7 kg, and the maximum load of the force at the time of breaking was about 11 kg. For comparison, in a similar test using a foamed phenol plate (neomafoam: trade name manufactured by Asahi Kasei Construction Materials Co., Ltd.), the force during breaking was about 5 kg and the force at break was about 9 kg. It should be noted here that at the fixing portion of the special screw nail 2, a breaking phenomenon (breaking length of about 20 mm) occurs with a force of only about 5 to 7 kg per piece including frictional force with the structural face material. Even if the external force is removed in this state, the elastic restoring force for returning the foamed synthetic resin plate body 1 to the original fixing position has already been lost, and the fixing portion is completely damaged. It is in.

又、これらは、静的荷重時の固着力であって、実際の地震時の動的荷重(震動、衝撃荷重)時における固着力は、さらに著しく低下することは避け得ない。そのため、これら静的荷重時の1本あたり5〜7Kg相当の固着力では、発泡合成樹脂板体1の構造躯体4への固着箇所の数を増大させても、構造躯体4が地震で正負の略水平方向に変形した時、発泡合成樹脂板体1が保有する板体としての剛性強度を上回り、該発泡合成樹脂板体を弾性変形させるだけの固着力とはなりえず、結果として、構造躯体4の変形に追従、一体化して弾性変形できず、固着部の局部破損が容易に発生してしまうことを証している。   In addition, these are fixing forces at the time of static load, and it is inevitable that the fixing force at the time of actual dynamic load (seismic vibration, impact load) is further reduced significantly. Therefore, with the fixing force equivalent to 5 to 7 kg per one at the time of these static loads, even if the number of locations where the foamed synthetic resin plate 1 is fixed to the structural casing 4 is increased, the structural casing 4 is positive or negative in an earthquake. When deformed in a substantially horizontal direction, it exceeds the rigidity and strength of the foamed synthetic resin plate 1 as a plate, and cannot be fixed enough to elastically deform the foamed synthetic resin plate. It is proved that local deformation of the fixing portion easily occurs because it cannot follow the deformation of the housing 4 and integrate and elastically deform.

図2(a)(ニ)は、発泡合成樹脂板体1(前記のビーズ法発泡ポリスチレンに同じ)を特殊螺子釘2で構造躯体4(図示せず)に固着させる状態を示す。本固着構造において、地震時に矢印に示す発泡合成樹脂板体1の略垂直方向の外力が負荷されることを模し、略垂直方向に引き抜く力を加える釘頭抜けの実験をした結果、同図(a)(ホ)のように、特殊螺子釘2の胴部2bのせん断貫通穴1bから釘頭2aがすっぽりと抜け落ちて固着部は破壊された。この時に要した釘頭の引き抜き力は、5.8Kgであった。このように、本実験では、通常用いられる丸釘16a(例:頭径、6mmΦ、胴径2.8mmΦ、長さ65mm)よりも頭径や胴径の大きな前記の特殊螺子釘2を用いて、発泡合成樹脂板体1を構造躯体4に固着したにもかかわらず、既述の実験でわかるように、その固着力は、小さく、簡単に固着箇所が破壊される。従って、発泡合成樹脂板体1を構造躯体4に固着している従来の固着方法では、地震等の大きな略平行方向や略垂直方向等の多次元方向からなる外力に対しては、抗し得るレベルに遠いことが明らである。   FIGS. 2A and 2D show a state in which the foamed synthetic resin plate 1 (same as the above-mentioned beaded polystyrene foam) is fixed to the structural housing 4 (not shown) with the special screw nail 2. FIG. In the present fixing structure, as a result of an experiment of pulling out a nail head that imitates an external force in a substantially vertical direction of the foamed synthetic resin plate 1 indicated by an arrow during an earthquake and applies a pulling force in a substantially vertical direction. (A) As shown in (e), the nail head 2a completely fell out of the shear through hole 1b of the body 2b of the special screw nail 2, and the fixing portion was destroyed. The pulling force of the nail head required at this time was 5.8 kg. Thus, in this experiment, the above-described special screw nail 2 having a head diameter and a trunk diameter larger than the round nail 16a (eg, head diameter, 6 mmΦ, trunk diameter 2.8 mmΦ, length 65 mm) that is usually used is used. Although the foamed synthetic resin plate 1 is fixed to the structural housing 4, as shown in the above-described experiment, the fixing force is small and the fixing portion is easily broken. Therefore, the conventional fixing method in which the foamed synthetic resin plate 1 is fixed to the structural housing 4 can resist an external force composed of a multidimensional direction such as a large substantially parallel direction or a substantially vertical direction such as an earthquake. Clearly far from the level.

一方、上記の実験に対し、同図(b)(イ)のごとく、特殊螺子釘2の釘頭部2aを逆さに発泡合成樹脂板体1に当接させ、発泡合成樹脂板体1に釘穴が全く存在しない状態、すなわち、予め、釘穴が貫通されていない状態で、この特殊螺子釘2に力を加えて、同図(b)(ロ)のごとく、釘頭抜けをさせるためのせん断力の実験に要する力は18.5Kgであった。すなわち、同図(a)と同じ釘頭径であり、同じ厚みの発泡合成樹脂板体1であるにもかかわらず、予め釘胴部2bが先述した同図(a)(ニ)の如く貫通して局部破壊が存在しているか否かの差により、釘頭部2aが発泡合成樹脂板体1をせん断貫通させるに要する荷重は、通常の固着構造に比べ、約3倍の差が生じるのである。これは、厚さ方向に加わる荷重に抗して、柔らかく脆いとされる発泡合成樹脂板体1が有する粘弾性作用で受圧面積(例:釘頭径)への荷重の増大に伴い、図3等で後述するところの圧縮応力分散領域31が初期の受圧面積(例:釘頭径)を基点に発泡合成樹脂板体の厚み方向に概円錐柱状に拡大し、それに伴ってせん断力が増大し、貫通時には釘頭径(11,5mmΦ)を基点に、さらに、拡大、形成される概円錐柱状の略外周面積分をせん断させる高いせん断力を伴って多量の発泡樹脂の破断塊26がせん断して打ち抜かれたのである。   On the other hand, as shown in FIGS. 2B and 2A, the nail head 2a of the special screw nail 2 is brought into contact with the foamed synthetic resin plate 1 upside down, and the foamed synthetic resin plate 1 is nailed. In the state where there is no hole at all, that is, in the state where the nail hole is not penetrated in advance, a force is applied to the special screw nail 2 so that the nail head can be removed as shown in FIG. The force required for the shear force experiment was 18.5 kg. That is, the nail head portion 2b penetrates through the nail body portion 2b in advance as shown in FIGS. 1A and 1D in spite of the foamed synthetic resin plate 1 having the same nail head diameter and the same thickness as FIG. The load required for the nail head 2a to shear and penetrate the foamed synthetic resin plate 1 due to the difference in whether or not local fracture exists is about three times as large as that of the normal fixing structure. is there. This is due to the increase in the load on the pressure receiving area (eg, nail head diameter) due to the viscoelastic action of the foamed synthetic resin plate 1 that is soft and brittle against the load applied in the thickness direction. The compressive stress dispersion region 31 described later in the above description expands into a substantially conical column shape in the thickness direction of the foamed synthetic resin plate from the initial pressure receiving area (eg, nail head diameter), and the shear force increases accordingly. When penetrating, a large amount of the rupture mass 26 of the foamed resin shears with a high shearing force that shears the substantially outer peripheral area of the substantially conical columnar shape, which is enlarged and formed, starting from the nail head diameter (11.5 mmΦ). It was punched out.

この傾向は、圧縮応力分散領域31をより増大させる止着構造や止着方法を採用することによって、その効果はさらに大きく改善される。又、さらに、発泡合成樹脂板体の樹脂種類を変更することによっても顕著となる。例えば、発泡ポリスチレン等の硬質発泡合成樹脂板体を、粘弾性の高いポリオレフィン系等の半硬質発泡樹脂板体に代替すること、又、これらの発泡合成樹脂板体の発泡倍率や、厚みを変えること、あるいは、補強用の表面補強材を展着一体化させた発泡合成樹脂板体を用いること等によっても、当該現象がさらに増幅、増大される。   This tendency can be further improved by adopting a fastening structure or a fastening method that further increases the compressive stress dispersion region 31. Furthermore, it becomes remarkable by changing the resin type of the foamed synthetic resin plate. For example, replacing rigid foam synthetic resin plates such as foamed polystyrene with semi-rigid foam resin plates such as polyolefins with high viscoelasticity, and changing the expansion ratio and thickness of these foam synthetic resin plates This phenomenon is further amplified and increased by using a foamed synthetic resin plate in which a reinforcing surface reinforcing material is spread and integrated.

これらの現象は、粘弾性材料である発泡合成樹脂板体特有の材料力学的な現象や、性状によるものであるからして、現在の耐力壁を構成している塑性材料である構造用面材が有する材料特性を変化させたり、構造用面材を固着する固着構造を変更させるのとは、現象を異にしているので、こうした塑性材料への手当てでは前記の効果の増幅を期待することはできない。   These phenomena are due to the material dynamics and properties unique to the foamed synthetic resin plate, which is a viscoelastic material. Therefore, the structural face material is a plastic material that constitutes the current bearing wall. Since the phenomenon is different from changing the material properties of the material or changing the fixing structure for fixing the structural face material, it is expected that the above effects will be amplified in the treatment of plastic materials. Can not.

本発明者は、上記した事情を斟酌した結果、断熱材料であって、かつ、弾性材料である発泡合成樹脂板体の止着部において、地震等の外力や変形や震動や衝撃等が負荷された時に発現される上述の発泡合成樹脂特有の材料力学的な現象や挙動や効果に着目し、これらの止着構造や、止着方法に改良を加えることにより、発泡合成樹脂板体が有する粘弾性(弾性変形性や弾性復元性)や緩衝性(震動エネルギーや衝撃の吸収性)や抗張力等を最大限に活用することを可能にする解決策を見出し、本発明をなすに至ったのである。   As a result of taking the above circumstances into consideration, the present inventor is subjected to external forces such as earthquakes, deformations, vibrations, impacts, etc. at the fastening portion of the foamed synthetic resin plate that is a heat insulating material and is an elastic material. Focusing on the material mechanical phenomena, behaviors and effects unique to the above-mentioned foamed synthetic resin, and improving the fastening structure and fastening method, We have found a solution that makes it possible to make maximum use of elasticity (elastic deformation and resilience), shock-absorbing properties (vibration energy and shock absorption), tensile strength, etc., and have made the present invention. .

現在の外断熱住宅における発泡合成樹脂板体は、丸釘や螺子釘による締め付け力や、通気胴縁の上から特殊螺子釘の弱い締め付け力による固着面圧で構造躯体に固着されているだけである。このため、日常的な厳しい寒暖、乾湿変化により、構造躯体の構成材料や発泡合成樹脂板体等の経時的な歪、変形、劣化、痩せ現象、また、日常的な風、微振動等の小さな外力や、突発的な台風による外壁面側(壁、屋根、開口部)の風圧力、地震による地盤面からの上下震動を含む略水平方向の大きな変形力や震動等の様々な力が加わっても、構造躯体の変形や震動に対して、一体化して追従できない状態にある発泡合成樹脂板体は、これら多次元方向の変形、歪、捩れ、ガタツキ等をもろに受けることになり、これらの変形や歪や捩れやガタツキ等は経時的、経年的に蓄積、増幅され、特に、構造躯体や構造用面材と、発泡合成樹脂板体との固着部にその現象は顕著に集中する結果となる。   The foamed synthetic resin plate in the current outer heat insulation house is only fixed to the structural housing with the fastening surface pressure due to the tightening force of round nails and screw nails and the weak tightening force of special screw nails from above the ventilator edge. is there. For this reason, due to daily severe changes in temperature and humidity, the structural materials of the structural frame and the foamed synthetic resin plate, etc., distortion, deformation, deterioration, thinning over time, as well as small daily winds, slight vibrations, etc. Various external forces, wind pressure on the outer wall surface (walls, roofs, openings) due to sudden typhoons, and large horizontal deformation forces and vibrations, including vertical vibrations from the ground due to earthquakes, are added. However, the foamed synthetic resin plate that is in a state where it cannot integrally follow the deformation and vibration of the structural frame is subject to these multi-dimensional deformation, distortion, twisting, rattling, etc. Deformation, distortion, torsion, rattling, etc. are accumulated and amplified over time and over time.In particular, the phenomenon is conspicuously concentrated at the fixing part between the structural housing and structural face material and the foamed synthetic resin plate. Become.

又、耐震面から外壁材(サイディン材)の固着強度の計算に当っては、外壁材の固着基盤となる通気胴縁は、発泡合成樹脂板体1を介して特殊螺子釘で構造躯体に固着させている多層構造となっているが、この通気胴縁の固着部に於いて、発泡合成樹脂板体1の存在は、構造力学的に中空部(オーバーハング状)とみなされる。この中空部を介して、特殊螺子釘のみで連結される通気胴縁と構造躯体との固着強度は弱く、多次元方向のズレや変形が発生しやすい構造となっている。更に、この通気胴縁の外周面には重い外壁材(サイディング材等)が懸架され、先述した図2(a)に示すごとき不安定な固着断面構造で構成されている。こうした構造であるため、台風や地震時には、大きな外力や震動が構造躯体側や外壁材側の両面から増幅、加震され、これらの複合負荷が特殊螺子釘の固着部に集中し、発泡合成樹脂板体のみならず、外壁材の垂れ下がりや脱落の危険性を常に孕んでおり、この改善、改良が強く求められている。   In addition, when calculating the fixing strength of the outer wall material (saidin material) from the seismic surface, the ventilator edge, which is the fixing base of the outer wall material, is fixed to the structural housing with a special screw nail via the foamed synthetic resin plate 1 However, the presence of the foamed synthetic resin plate 1 is regarded as a hollow portion (overhang shape) in terms of structural mechanics. Through this hollow portion, the fixing strength between the ventilator edge and the structural housing connected only by the special screw nail is weak, and a structure in which displacement and deformation in a multidimensional direction are likely to occur. Further, a heavy outer wall material (siding material or the like) is suspended on the outer peripheral surface of the ventilator rim, and has an unstable fixing cross-sectional structure as shown in FIG. Because of this structure, during typhoons and earthquakes, large external forces and vibrations are amplified and shaken from both sides of the structural frame and outer wall material, and these combined loads are concentrated on the special screw nails where they are fixed. There is always a risk of not only the plate but also the hanging and dropping of the outer wall material, and there is a strong demand for this improvement and improvement.

因みに、特殊螺子釘で木材同士を重合わせて固着させた場合の静止荷重での曲げ強度(曲り始め強度)は約20Kg/本以上であるにもかかわらず、前記のオーバーハング構造で、かつ、通気胴縁の固着面の弱い面圧で固着した場合の曲げ強度は、メーカー保証値約2〜3Kg程度しか見込めないとされる。このため、外壁材の重量を含む発泡合成樹脂板体の最低限の固着強度を確保するためには、発泡合成樹脂板体の最大厚み(オーバーハング距離に相当)は、最大50mm厚み(例:押出ポリスチレン、種別:F3、商品名:カネライトフォーム、(株)カネカ製)以内とされ、規定の断熱材厚みが50mmを上回る1〜2地区(寒冷地)では、2層張り外断熱構造(1層目:50mm、2層目:50mmを超えた厚み)による外断熱構造とすることが業界の常識として運用されている。   By the way, despite the fact that the bending strength at the static load (strength at the beginning of bending) when woods are overlapped and fixed with special screw nails is about 20 kg / piece or more, the above-mentioned overhang structure, and The bending strength when it is fixed with a weak surface pressure on the fixing surface of the ventilator rim is expected to be only about 2 to 3 kg guaranteed by the manufacturer. For this reason, in order to ensure the minimum fixing strength of the foamed synthetic resin plate including the weight of the outer wall material, the maximum thickness (corresponding to the overhang distance) of the foamed synthetic resin plate is 50 mm at the maximum (example: Extruded polystyrene, type: F3, trade name: Kanelite foam, manufactured by Kaneka Co., Ltd.), and in the 1-2 districts (cold districts) where the prescribed insulation thickness exceeds 50 mm (2) It is used as a common sense in the industry to provide an outer heat insulating structure with a layer: 50 mm, a second layer: a thickness exceeding 50 mm.

こうした現状の外断熱住宅では、耐震基準(耐震等級1以上)をクリアーした構造躯体でありながら、築後の経年劣化や、台風、地震等の大小様々な外力や震動などにより、発泡合成樹脂板体を固着している釘の頭抜けや釘穴の裂断や、通気胴縁を固着している特殊螺子釘部の裂断や通気胴縁の面圧保持力の低下や該発泡合成樹脂板体自体の横ズレや浮き上がり等の発生が懸念される。さらには、こうした現象を原因とする高断熱、高気密性能の逸損や結露の発生(腐朽の原因)等が実際的な問題として認識されている。   In these current exterior insulation houses, the foamed synthetic resin plate is a structural enclosure that has cleared the earthquake resistance standards (earthquake resistance grade 1 or higher), but due to aged deterioration after construction, typhoons, earthquakes, and other external forces and vibrations. The head of the nail that fixes the body, the tearing of the nail hole, the tearing of the special screw nail that fixes the ventilator rim, the decrease in the surface pressure holding force of the ventilator rim, and the foamed synthetic resin plate There are concerns about the occurrence of lateral displacement and lifting of the body itself. Furthermore, high heat insulation and loss of high airtightness due to these phenomena and the occurrence of condensation (cause of decay) are recognized as practical problems.

こうした現状に鑑み、従来の外断熱住宅は、本格的な長期優良住宅化の指向に沿って、想定される数次の中、大地震に備え、より高い耐震等級(例:耐震等級2又は3)の構造躯体を採用する方法以外に打つ手がなかった。しかし、これらの耐震等級の向上策は、論理的には、構造躯体の剛性強度(耐力壁量又は、耐震等級)を高める分、力学的には、構造躯体自体の損傷や損壊は抑制されるものの、その分、逆比例的に建物全体(付帯設備や家具や家族等を含む)の加震度や衝撃度の大幅な増幅は避けえず、その結果、逆に、本質的な課題を抱えている発泡合成樹脂板体や外壁材の固着部への震動、衝撃の負荷、負担を増大せしめ、従来にも増して、損壊、ガタツキ、垂れ下がり、脱落等の懸念をさらに増長させるという新たな因果関係を招くことになってしまっており、これらの課題の適切な解決策こそが強く望まれている。   In view of the current situation, conventional heat-insulated houses have higher earthquake resistance grades (eg, earthquake resistance grades 2 and 3) in preparation for large-scale earthquakes of several expected levels in line with the trend toward full-fledged long-term excellent housing. ) There was no other way to hit except the method of adopting the structural frame. However, these seismic grade improvement measures logically increase the rigidity strength (bearing wall amount or seismic grade) of the structural frame, and mechanically, damage and damage to the structural frame itself are suppressed. However, a significant increase in the degree of shock and impact of the entire building (including incidental facilities, furniture, and family) is inevitably inversely proportional to that, and as a result, it has inherent problems. New causal relationship that increases vibration, impact load and load on the fixed part of foamed synthetic resin plate and outer wall material, and further increases concerns about damage, rattling, drooping, dropping, etc. There is a strong demand for an appropriate solution to these issues.

これら外断熱住宅の弱点とされる経時的な断熱・気密性の劣化、欠損対策と地震対策の重要性に注目しつつある建築業者の一部では、耐震等級の向上を唯一の地震対策とする外断熱住宅の弊害の反省に立って、地震の揺れを40%〜50%吸収(制震、又は、抑制)するとされる粘弾性ダンパーやオイルダンパー構造等からなる市販の制震装置を導入し、構造躯体(耐力壁)が有する耐震強度(耐震性)に加えて、制震性の機能を新たに付加して、地震の揺れを吸収、緩和させる耐震性(耐震性能とも言う)と制震性(耐震性能とも言う)とを併せ有する外断熱住宅(以下、本発明では、耐震性と制震性を併せ有することを耐・制震、又は、耐・制震性と略称することがある。)を指向しつつあることは望ましい傾向ではある。しかし、これらの制震装置は、高価であるという価格面や、制震メカニズムの制約上、構造躯体の各柱間空間毎に形成される外壁面や屋内の間仕切り壁面等からなる多数の壁面で形成される構造躯体の平面方向から見たX、Y軸方向の全壁面の内、わずか(2〜10+α)壁面/戸の壁面にのみ制震装置を設置せざるを得ず、結果として、該制震装置の設置の有無による壁面間や部屋間に生じる制震性能の差や応答精度のバラツキやタイムラグの弊害等を解消するには至っていない。特に、外断熱構造においては、先述の台風や地震に弱い本質的な課題が解消できていないため、制震効果はさらに限定的にならざるを得ず、そのため制震装置の普及が進んでいないのが現実である。   For some contractors who are paying attention to the importance of time-lapse insulation and air-tightness deterioration, loss countermeasures and earthquake countermeasures, which are the weaknesses of these externally insulated houses, the improvement of earthquake resistance grade is the only earthquake countermeasure In view of the negative effects of external insulation houses, we introduced commercial vibration control devices that consist of viscoelastic dampers and oil damper structures that absorb (shake or suppress) 40% to 50% of earthquake vibrations. In addition to the seismic strength (earthquake resistance) of the structural frame (bearing wall), a new seismic control function is added to absorb and mitigate earthquake vibration (also called seismic performance) and seismic control. Outer heat insulation house (hereinafter referred to as seismic resistance and seismic resistance) in the present invention. )) Is a desirable trend. However, these seismic control devices are expensive and have many wall surfaces consisting of outer wall surfaces and interior partition walls formed for each inter-column space of the structural frame due to the limitations of the seismic control mechanism. Of all the wall surfaces in the X and Y axis directions as seen from the plane direction of the structural casing to be formed, only a few (2 to 10 + α) wall surfaces / door wall surfaces must be installed, and as a result, It has not yet been possible to eliminate the difference in the vibration control performance caused by the presence or absence of the installation of the vibration control device or between the rooms, the variation in response accuracy, the adverse effects of time lag, and the like. In particular, in the outer heat insulation structure, since the essential problems weak against typhoons and earthquakes described above have not been solved, the vibration control effect has to be further limited, and therefore the spread of vibration control devices has not progressed. Is the reality.

さらに、最近の地球環境問題から、長期優良住宅に見られる次世代省エネルギー基準と同等以上の高省エネルギー化や、高耐久化や、安心・安全、快適性がより高度に求められてきており、今後に向け、さらに外断熱住宅への依存度、期待度、指向性が高まりつつある。しかし、一方では、長期優良住宅化に伴い、既述した現状の外断熱住宅が有する未解決の課題が、より一層顕在化してくることが予想されている。しかるに、現状では既述の課題に対する適切な解決策が何ら提示出来ないままである。   Furthermore, due to recent global environmental issues, energy savings equivalent to or higher than the next-generation energy saving standards found in long-term excellent homes, higher durability, security, safety, and comfort have been increasingly demanded. In addition, the degree of dependence, expectation, and directivity on outer heat-insulated houses are increasing. However, on the other hand, it is anticipated that the unsolved problems of the above-described current heat-insulated houses will become even more apparent with the long-term excellent housing. However, at present, no suitable solution for the above-mentioned problems remains available.

しかも、今後、現状の概30年寿命と言われる木造住宅から長期優良住宅(100〜200年住宅)を指向しなければならない状況下にある。すなわち、統計上、30年に一度の確率で被災する中地震(震度6強)で全倒壊しない程度(修復不能に損壊)の耐震強度で設計されている現状の耐震住宅が概30年寿命であるのに対し、長期優良住宅に至っては、今後起きうるであろう数次の中地震に被災し、さらには、100年に一度と言われる大地震(震度7)に1回以上被災することを前提とする構造躯体自体の高耐震化(又は、高耐・制震化)が求められるのみならず、従来の耐震住宅の性能保証の対象からは、除外(軽視)されていた外断熱構造や、その外壁材の固着構造を含む建物全体の高耐震性、高制震性、高耐久性がより高度に求められているのである。   Moreover, in the future, it is in a situation where a long-term excellent house (100-200-year house) must be oriented from a wooden house, which is said to have a life span of about 30 years. In other words, the current earthquake-resistant houses that are designed with a seismic strength that does not collapse in a moderate earthquake (with a seismic intensity of 6+) that will be damaged once every 30 years, have a life span of approximately 30 years. On the other hand, when it comes to long-term excellent housing, it will be damaged by the several medium earthquakes that may occur in the future, and further, it will be damaged more than once by a large earthquake (seismic intensity 7) once in 100 years. As well as requiring high seismic resistance (or high seismic resistance and seismic control) for the structural frame itself, the outer thermal insulation structure that was excluded (lightly disregarded) from the target of performance guarantee for conventional earthquake-resistant houses In addition, there is a high demand for high earthquake resistance, high vibration control, and high durability of the entire building including the fixed structure of the outer wall material.

よって、外断熱住宅にあって、構造躯体の外周壁面に固着される発泡合成樹脂板体は、上述した過酷な条件下でも、長期優良住宅に見合った高耐久、高断熱、高気密性が安定的に維持され、かつ、メンテナンス性に優れた外断熱構造とすることが不可欠となる。にもかかわらず、現状では、外断熱住宅の高省エネ性と快適性等のセールスポイントのみが一人歩きする反面、法的には、構造躯体だけが一定の耐震等級(例:1級、2級、3級)をクリアーしていれば、その構造躯体の外周壁面に固着される発泡合成樹脂板体の固着構造や固着強度や、断熱、気密劣化の抑制、抑止に関わる法的な規定や規制は不問とされており、その具体的な解決方法も未開発であることから、業界はこの問題を看過、諦観せざるを得ないのが実態である。従って、真に長期優良住宅に値する耐・制震外断熱住宅を実現させるため、発泡合成樹脂板体の止着構造や止着方法、及び、長期的な外断熱構造のメンテナンス方法の開発が火急に望まれているのである。   Therefore, the foamed synthetic resin plate that is fixed to the outer peripheral wall of the structural housing in the outer heat-insulated housing is stable with high durability, high heat insulation, and high airtightness suitable for long-term excellent housing even under the severe conditions described above. Therefore, it is indispensable to have an external heat insulating structure that is maintained and has excellent maintainability. Nonetheless, at present, only sales points such as high energy saving and comfort of the outside heat insulation house walk alone, but legally, only the structural frame has a certain seismic grade (eg, 1st grade, 2nd grade). If it is clear, the legal structure and regulations regarding the fixing structure and strength of the foamed synthetic resin plate that is fixed to the outer peripheral wall surface of the structural frame, as well as the suppression and suppression of heat insulation and airtight deterioration The actual situation is that the industry has to overlook and overlook this problem because its specific solution has not been developed yet. Therefore, in order to realize a truly long-term and excellent anti-seismic insulated thermal insulation house, the development of a foamed synthetic resin plate fastening structure and fastening method and a long-term maintenance method for the outer thermal insulation structure are urgently needed. It is hoped for.

ここに、本発明は、外断熱構造で多用される発泡合成樹脂板体の止着構造を抜本的に改良し、発泡合成樹脂板体が本来有する緩衝性(圧縮、振動、衝撃エネルギーの吸収性、復元性)、粘弾性、応力分散性(厚み方向の圧縮応力の拡大分散性)等の長所を最大限に発揮させる止着構造とすることを目的とする。すなわち、地震時に構造躯体が受ける略水平方向(横揺れ)の変形や震動に対し、発泡合成樹脂板体が追従一体化して弾性変形、弾性復元することにより、構造躯体(建物躯体)全体の地震の揺れや、軸組み部等の耐震劣化や損壊を抑制し得て、市販の制震装置の導入に依存することなく、従来の外断熱住宅自体が未だ成しえていない耐震性と制震性を兼ね備えた発泡合成樹脂板体の止着構造からなる耐・制震壁構造を提供すると共に、該耐・制震壁構造からなる耐・制震外断熱住宅の提供を目的とする。   Here, the present invention drastically improves the fixing structure of the foamed synthetic resin plate that is frequently used in the outer heat insulating structure, and the buffering property (compression, vibration, impact energy absorption property) inherent to the foamed synthetic resin plate. , Restoring property), viscoelasticity, stress dispersibility (expanding dispersibility of compressive stress in the thickness direction), and the like, and an object is to provide a fastening structure that maximizes the advantages. In other words, the foamed synthetic resin plate is integrated and elastically deformed and elastically restored following the deformation and vibration in the substantially horizontal direction (rolling) that the structural frame receives during an earthquake. Earthquake resistance, seismic deterioration and breakage of shafts, etc., and without relying on the introduction of commercially available seismic control devices It is an object to provide a heat-resistant / damping wall structure comprising a fixed structure of a foamed synthetic resin plate having both of the above and a heat-resistant / quake-resistant outside heat insulating house comprising the wall structure.

更には、外壁面を構成する構造躯体の柱間空間内に、繊維系断熱材(ガラス繊維やロックウール等)や現場発泡断熱材(例:発泡ウレタン)や発泡合成樹脂板体等を充填してなる一般的な内断熱(又は、充填断熱)の住宅において、充填断熱材が繊維系断熱材や現場発泡断熱材である住宅においては、例えば、1柱間小空間や1柱間大空間の内周面の全部、あるいは、これらの上部仕口部や下部仕口部、更には、特に変形や損傷が発生しやすい入隅、出隅、間仕切り壁等の部位における上部仕口部や下部仕口部等に、制震枠体や嵌溝を設け、本発明の止着方法や止着構造からなる半硬質発泡合成樹脂板体、及び/又は、ゴム状弾性板体(以下、両者を緩衝用板体と略称することがある。)を配設させることにより、耐・制震壁構造からなる耐・制震内断熱住宅を提供する。(詳細は、実施態様8、図17及び実施態様9、図18に示す)
又、充填断熱材が発泡合成樹脂板体であって、発泡合成樹脂板体が構造躯体の柱間空間内に無固着、無拘束の状態で充填されてなる内断熱住宅においては、1柱間空間の内周面の全部、あるいは、変形や損傷が発生しやすい一部の内周面に制震枠体を新たに設け、充填断熱材(発泡合成樹脂板体)を充填された状態にて、本発明の止着方法や止着構造で止着することにより、容易に耐・制震性を有する耐・制震内断熱住宅にグレードアップすることが出来る。
Furthermore, the space between the columns of the structural frame constituting the outer wall surface is filled with fiber-based heat insulating material (glass fiber, rock wool, etc.), in-situ foam heat insulating material (eg, foamed urethane), foamed synthetic resin plate, etc. In a general interior thermal insulation (or filled thermal insulation) house, the filled thermal insulation material is a fiber-based thermal insulation material or an in-situ foam thermal insulation material. The upper and lower joints on the entire inner peripheral surface, or on these upper and lower joints, and particularly on the entrance corner, exit corner, and partition wall where deformation and damage are likely to occur. A seismic frame or fitting groove is provided in the mouth and the like, and the semi-rigid foam synthetic resin plate and / or rubber-like elastic plate (hereinafter, both are buffered) comprising the fastening method and fastening structure of the present invention. A plate-type body). To provide a vibration control in insulated houses. (Details are shown in Embodiment 8, FIG. 17 and Embodiment 9, FIG. 18)
Further, in an internally insulated house in which the filled heat insulating material is a foamed synthetic resin plate, and the foamed synthetic resin plate is filled in a space between the columns of the structural housing in a non-fixed and unconstrained state, between one column In a state where a new damping frame is provided on the entire inner peripheral surface of the space, or on a part of the inner peripheral surface where deformation and damage are likely to occur, and filled with a heat insulating material (foamed synthetic resin plate) By fastening with the fastening method and the fastening structure of the present invention, it is possible to easily upgrade to a heat-resistant / seismic heat-insulated house having earthquake-resistant properties.

更に、又、上述した本発明の耐・制震壁構造の別の実施態様であるところの、例えば、構造躯体の1柱間空間の上部仕口部、及び/又は、下部仕口部等の内周面の一部に、本発明の止着構造を用いた嵌溝(又は、制震枠体)と発泡合成樹脂板体を設けてなる耐・制震壁構造を形成させ、さらに、同一壁面における残余の柱間空間には、構造用面材からなる従来の耐力壁構造を形成させる態様については、該発泡合成樹脂板体と該構造用面材とを面一にして連接するか、又は、非連接状に配設し、発泡合成樹脂板体からなる耐・制震壁構造と、構造用面材からなる耐力壁構造を併存させることにより、夫々の利点を同一壁面上で複合化させてなる全く新しい構造からなる弾性耐力壁構造(詳細は、実施態様10、図19に示す。)が構成できる。   Furthermore, another embodiment of the above-described anti-seismic wall structure of the present invention, such as an upper joint portion and / or a lower joint portion in the space between one pillar of the structural frame, etc. A part of the inner peripheral surface is formed with an anti-damping wall structure provided with a fitting groove (or a damping frame body) using the fastening structure of the present invention and a foamed synthetic resin plate, and the same. In the remaining inter-column space on the wall surface, the foamed synthetic resin plate body and the structural face material are connected to be flush with each other for an aspect of forming a conventional bearing wall structure made of a structural face material, Or, disposing them in a disjoint manner, and combining the strength / damping wall structure made of foamed synthetic resin plate and the load-bearing wall structure made of structural face material, both advantages can be combined on the same wall surface. An elastic bearing wall structure (details are shown in Embodiment 10 and FIG. 19) can be constructed.

上記した弾性耐力壁構造の特徴は、従来の構造用面材単体からなる耐力壁構造の欠点(例:1柱間空間の変形や損傷の激しい上、下の仕口部等での損傷、損壊易性と、制震性能の欠如)を発泡合成樹脂板体が代替(弾性変形、弾性復元)することにより、耐力壁構造部が保護され、長期に亘り安定した高い耐・制震性を発揮することができるのである。さらに、該弾性耐力壁の外壁面側に直接、透湿防水シート、通気胴縁、外壁材を設ければ、容易、かつ、安価に、耐・制震内断熱住宅とすることができる。又、上記の弾性耐力壁構造は、説明した内断熱構造のみならず、外断熱、及び、その他の木造、鋼製等からなる日本の各種の新築、リフォーム等の耐震住宅に広く採用されている構造用面材からなる耐震壁の全部、あるいは、一部の壁面に代替させることによって、従来の耐震住宅の安心、安全、高耐久性を一段と向上させることが期待される。   The above-mentioned elastic load-bearing wall structure is characterized by the disadvantages of the conventional load-bearing wall structure consisting of a single structural surface material (eg: severe deformation and damage of the inter-column space, and damage and damage at the lower joint, etc.) By replacing the foamed synthetic resin plate (easiness and lack of seismic control performance) with a foamed synthetic resin plate (elastic deformation, elastic recovery), the bearing wall structure is protected, and stable and high seismic resistance is demonstrated over a long period of time. It can be done. Furthermore, if a moisture permeable waterproof sheet, a ventilator rim, and an outer wall material are provided directly on the outer wall surface side of the elastic bearing wall, it can be easily and inexpensively made a heat-resistant / damped interior heat-insulated house. In addition, the above-mentioned elastic bearing wall structure is widely adopted not only for the inner heat insulating structure described but also for outer heat insulating and other earthquake-resistant houses such as various new constructions and renovations made of wood, steel, etc. By replacing all or a part of the seismic walls made of structural face materials, it is expected to further improve the safety, safety and high durability of conventional seismic houses.

更に、又、この改良された本止着方法及び本止着構造を有する制震パネルを外断熱住宅のみならず、それ以外の一般住宅や既築の住宅の耐・制震リフォーム分野等にも広く適用することが本発明の目的である。   Furthermore, this improved fastening method and the damping panel having this fastening structure are applied not only to the outer heat-insulated housing, but also to other areas such as general houses and existing houses in the field of anti-seismic and earthquake-resistant reform. It is an object of the present invention to apply widely.

尚、本発明で称する柱間空間とは、構造躯体を構成する柱、間柱、土台木、横架材(梁)や筋交い等からなり、構造上、1)柱―間柱―柱間からなるそれぞれの柱間空間を柱間小空間4bと称し、2)柱−柱間からなるそれぞれの柱間空間(柱−柱間に間柱を設けない構造)を柱間大空間4aと称し、これら2者を総称して、柱間空間(4x)と称する。又、窓や出入り口等の開口部を形成する垂れ壁や腰壁にも、これらの用語を適用する。   In addition, the inter-column space referred to in the present invention is composed of columns, inter-columns, foundations, horizontal members (beams), braces, etc. constituting the structural frame. The inter-column space is referred to as a small inter-column space 4b. 2) Each inter-column space consisting of a column and a column (a structure in which no inter-column is provided between the columns) is referred to as a large inter-column space 4a. Are collectively referred to as inter-column spaces (4x). These terms are also applied to a hanging wall and a waist wall that form openings such as windows and doorways.

通常、外断熱壁構造における柱間空間の内壁面側には、内装材(プラスターボード等)、外壁面側には、構造用面材と発泡合成樹脂板体、又は、発泡合成樹脂板体単体が夫々配設され、柱間空間内には、断熱材は充填されていない。一方、内断熱壁構造における柱間空間の内壁面側には、内装材(プラスターボード等)、外壁面側には、構造用面材が夫々配設され、これらの柱間空間内には、充填断熱材が夫々充填されている。   Usually, the inner wall surface side of the inter-column space in the outer heat insulating wall structure is an interior material (plaster board, etc.), and the outer wall surface side is a structural surface material and a foamed synthetic resin plate, or a foamed synthetic resin plate alone. Each is disposed, and the space between the pillars is not filled with a heat insulating material. On the other hand, interior material (plaster board, etc.) is arranged on the inner wall surface side of the inter-column space in the inner heat insulating wall structure, and structural surface material is arranged on the outer wall surface side, and the space between these columns is filled. Each is filled with insulation.

本発明は、前記課題を解決するものであって、
(1)、発泡合成樹脂板体の外壁面側に外装壁構成材を配設させる前に、発泡合成樹脂板体を構造躯体に止着するための固定具であって、基端部から突出した突起部を有し、該基端部の略中央から貫通させる止着材で該突起部を該発泡合成樹脂板体中に押込み、埋没させて、該発泡合成樹脂板体を該構造躯体に螺着により止着することを特徴とする押込固定具。
The present invention solves the above problems,
(1) A fixing tool for fixing the foamed synthetic resin plate body to the structural housing before the exterior wall constituting material is disposed on the outer wall surface side of the foamed synthetic resin plate body, which protrudes from the base end portion The projecting portion is pushed into the foamed synthetic resin plate body with a fastening material penetrating from substantially the center of the base end portion and buried, and the foamed synthetic resin plate body is attached to the structural housing. An indentation fixture characterized by being fastened by screwing.

(2)、該基端部の略中央に止着材を貫通させる貫通孔を有することを特徴とする(1)記載の押込固定具である。   (2) The push-fixing device according to (1), which has a through-hole through which the fastening material penetrates substantially at the center of the base end portion.

(3)、構造躯体方向に突起部を有する前記押込固定具の略中央と、発泡合成樹脂板体とを貫通する止着材を用いて、構造躯体に螺着させることにより、該突起部を、該発泡合成樹脂板体中に押込み、埋没させることを特徴とする発泡合成樹脂板体の構造躯体への止着構造である。   (3) By using a fastening material penetrating through the substantially center of the indentation fixture having a protrusion in the direction of the structural body and the foamed synthetic resin plate, the protrusion is attached to the structural body. A structure for fastening the foamed synthetic resin plate to the structural casing is characterized by being pushed into and buried in the foamed synthetic resin plate.

(4)、構造躯体上に、発泡合成樹脂板体を配し、該発泡合成樹脂板体上に、ゴム状弾性板体を重ね、更にその上に、基端部の直径が該ゴム状弾性板体と同一か、又はより小であって、突起部を有する前記押込固定具、又は突起部を有しない押込固定具を重ね、該押込固定具の略中央と、該ゴム状弾性板体、該発泡合成樹脂板体とを貫通する止着材を用いて、構造躯体に螺着することにより、該押込固定具と共に、該ゴム状弾性板体の少なくとも一部を該発泡合成樹脂板体中に押込み、埋没させることを特徴とする発泡合成樹脂板体の構造躯体への止着構造である。   (4) A foamed synthetic resin plate is disposed on the structural housing, a rubber-like elastic plate is overlaid on the foamed synthetic resin plate, and the diameter of the base end portion is further on the rubber-like elastic. The same or smaller than the plate body, the push fixture having a protrusion, or the push fixture without a protrusion is stacked, the substantially center of the push fixture, the rubber-like elastic plate, By using a fastening material that penetrates the foamed synthetic resin plate, and screwing it to the structural housing, at least a part of the rubber-like elastic plate together with the push-in fixture is contained in the foamed synthetic resin plate. This is a structure for fixing a foamed synthetic resin plate body to a structural housing, which is characterized by being pushed into and buried in.

(5)、発泡合成樹脂板体の少なくとも一表面が表面補強材を有するものであることを特徴とする(3)又は(4)に記載の止着構造である。   (5) The fastening structure according to (3) or (4), wherein at least one surface of the foamed synthetic resin plate has a surface reinforcing material.

(6)、突起部を有する前記押込固定具の基端部が発泡合成樹脂板体の表面と面一になるように止着されてなる(3)〜(5)のいずれか1に記載の止着構造である。   (6) The fixing device according to any one of (3) to (5), wherein a base end portion of the indentation fixture having a protrusion is fixed so as to be flush with a surface of the foamed synthetic resin plate. It is a fastening structure.

(7)、突起部を有する前記押込固定具が中空体又は中実体である(3)〜(6)のいずれか1に記載の止着構造である。   (7) The fastening structure according to any one of (3) to (6), wherein the indentation fixture having a protrusion is a hollow body or a solid body.

(8)、突起部を有する前記押込固定具に、埋没深さを規定する固定脚部を設けてなる(3)〜(7)のいずれか1に記載の止着構造である。   (8) The fastening structure according to any one of (3) to (7), wherein a fixed leg portion that defines a buried depth is provided in the indentation fixture having a protrusion.

(9)、固定脚部の先端部が建物躯体に達してなる(8)に記載の止着構造である。   (9) The fastening structure according to (8), wherein the distal end portion of the fixed leg portion reaches the building frame.

(10)、前記押込固定具が、金属、木、発泡又は非発泡の合成樹脂、及びゴム、エラストマー等のゴム状弾性体から選ばれる1以上の素材により形成されてなる(3)〜(9)のいずれか1に記載の止着構造である。   (10) The indentation fixture is formed of one or more materials selected from metal, wood, foamed or non-foamed synthetic resin, and rubber-like elastic bodies such as rubber and elastomer (3) to (9 The fastening structure according to any one of 1).

(11)、1)発泡合成樹脂板体を貫通している止着材の胴部の径を、建物躯体にねじ込まれた胴部の径より大とするか、又は、2)発泡合成樹脂板体を貫通している止着材の胴部に補助脚部を挿嵌してなることを特徴とする(3)〜(7)又は、(10)のいずれか1に記載の止着構造である。   (11) 1) The diameter of the body part of the fastening material penetrating the foamed synthetic resin plate is made larger than the diameter of the body part screwed into the building frame, or 2) the foamed synthetic resin board The fastening structure according to any one of (3) to (7) or (10), wherein an auxiliary leg portion is inserted into a body portion of a fastening material penetrating the body. is there.

(12)、突起部を有する前記押込固定具の基端部の周縁が、押込固定具表面に対して90度より小の曲面及び/又は平面を有する(3)〜(11)のいずれか1項に記載の止着構造である。   (12) Any one of (3) to (11), wherein the peripheral edge of the proximal end portion of the push fixture having a protrusion has a curved surface and / or plane smaller than 90 degrees with respect to the push fixture surface. The fastening structure according to the item.

(13)、突起部を有する前記押込固定具、又は突起部を有しない押込固定具と、発泡合成樹脂板体との間に、接着剤層を介在させてなる(3)〜(12)のいずれか1に記載の止着構造である。   (13) An adhesive layer is interposed between the indentation fixture having a projection or the indentation fixture having no projection and a foamed synthetic resin plate, (3) to (12) The fastening structure according to any one of the above.

(14)、発泡合成樹脂板体と建物躯体との間に構造用面材が存在し、(1)〜(13)のいずれか1に記載された押込固定具を用いて、発泡合成樹脂板体を構造用面材及び/又は建物躯体に止着したことを特徴とする(1)〜(13)のいずれか1に記載の止着構造である。   (14) There is a structural face material between the foamed synthetic resin plate and the building frame, and the foamed synthetic resin plate using the indentation fixture described in any one of (1) to (13) The fastening structure according to any one of (1) to (13), wherein the body is fastened to a structural surface material and / or a building frame.

(15)、発泡合成樹脂板体の一部を半硬質発泡合成樹脂板体及び/又はゴム状弾性板体に置換したことを特徴とする(3)〜(14)のいずれか1に記載の止着構造である。   (15) According to any one of (3) to (14), a part of the foamed synthetic resin plate is replaced with a semi-rigid foamed synthetic resin plate and / or a rubber-like elastic plate. It is a fastening structure.

(16)、半硬質発泡合成樹脂板体、又はゴム状弾性板体に置換した部位が仕口部を含むものであることを特徴とする(15)に記載の止着構造である。   (16) The fastening structure according to (15), characterized in that the portion replaced with a semi-rigid foam synthetic resin plate or a rubber-like elastic plate includes a joint.

(17)、前記止着構造を壁、屋根、および天井、床から選ばれる一以上の建物部位に採用してなる(3)〜(16)のいずれか1に記載の止着構造である。   (17) The fastening structure according to any one of (3) to (16), wherein the fastening structure is adopted in one or more building parts selected from a wall, a roof, a ceiling, and a floor.

(18)、(3)〜(17)のいずれか1に記載された止着構造の発泡合成樹脂板体上に通気胴縁を止着してなる止着構造である。   (18) It is a fastening structure formed by fastening the ventilator edge on the foamed synthetic resin plate having the fastening structure described in any one of (3) to (17).

(19)、通気胴縁が押込突起付通気胴縁である(18)に記載の止着構造である。   (19) The fastening structure according to (18), wherein the ventilation cylinder edge is a ventilation cylinder edge with a pushing projection.

(20)、構造躯体上に、必要により構造用面材、次いで、発泡合成樹脂板体、次いで、透湿防水シートを敷設した上から、押込突起付通気胴縁を配し、止着材により、押込突起を発泡合成樹脂板体中に押込み、埋没させる状態にてこれらを構造躯体に螺着することを特徴とする(19)に記載の止着構造である。   (20) On the structural housing, if necessary, a structural face material, then a foamed synthetic resin plate, and then a moisture permeable waterproof sheet, and then a ventilator edge with a push-in projection are arranged, The fastening structure according to (19), wherein the pushing projections are pushed into the foamed synthetic resin plate body and screwed into the structural housing in a state of being buried.

(21)、(18)〜(20)のいずれか1に記載された止着構造からなる通気胴縁上に、更に外壁材を設けてなる外張断熱構造である。   (21) An outer heat insulating structure in which an outer wall material is further provided on the ventilator edge having the fastening structure described in any one of (18) to (20).

(22)、建物躯体の柱間空間に断熱材を充填するについて、1つの柱間空間の全部、または一部の内周面に、配設して、固着させる変形可能な制震枠体に、前記押込固定具を用いて発泡合成樹脂板体を螺着により止着してなる内断熱構造である。   (22) About filling a space between pillars of a building frame with a heat insulating material, a deformable damping frame that is arranged and fixed to all or a part of the inner peripheral surface of one pillar space. , An inner heat insulating structure formed by fastening a foamed synthetic resin plate by screwing using the indentation fixture.

(23)、建物躯体の柱間空間に断熱材を充填するについて、1つの柱間空間の全部、または、一部の内周面に、発泡合成樹脂板体を止着させるための発泡合成樹脂板体厚み寸法深さの嵌溝を彫設し、前記押込固定具を用いて該発泡合成樹脂板体を該嵌溝に螺着により止着してなる内断熱構造である。   (23) About filling a space between pillars of a building frame with a heat insulating material, a foamed synthetic resin for fixing a foamed synthetic resin plate to the whole or a part of the inner peripheral surface of one pillar space This is an internal heat insulating structure in which a fitting groove having a thickness of a plate body thickness is carved and the foamed synthetic resin plate body is screwed into the fitting groove by using the push-in fixture.

(24)、1つの柱間空間の全部、または、一部の内周面が、上部仕口部内周面、及び/又は、下部仕口部内周面、あるいは、上部仕口部内周面、及び、下部仕口部内周面を含む、柱間空間の全内周面である(22)又は(23)に記載の内断熱構造である。   (24) All or a part of the inner peripheral surface of one inter-column space is an upper peripheral portion inner peripheral surface and / or a lower peripheral portion inner peripheral surface, or an upper peripheral portion inner peripheral surface, and The inner heat insulating structure according to (22) or (23), which is the entire inner peripheral surface of the inter-column space including the inner peripheral surface of the lower joint portion.

(25)、発泡合成樹脂板体の一部、又は、全部を半硬質発泡合成樹脂板体、及び/又は、ゴム状弾性板体に置換したことを特徴とする(22)〜(24)のいずれか1項に記載の内断熱構造である。   (25) A part or all of the foamed synthetic resin plate is replaced with a semi-rigid foamed synthetic resin plate and / or a rubber-like elastic plate. (22) to (24) It is an inner heat insulation structure given in any 1 paragraph.

(26)、建物躯体の1つの柱間空間の上部仕口部、及び/又は、下部仕口部等の外壁面側内周面に配設する発泡合成樹脂板体が、構造用面材の厚み寸法分だけ突出する深さの嵌溝を彫設し、前記押込固定具を用いて該発泡合成樹脂板体を螺着により該嵌溝に止着させると共に、該発泡合成樹脂板体が止着された部位を除く残余の柱間空間に構造用面材を配設し、固着させてなる弾性耐力壁構造である。   (26) The foamed synthetic resin plate disposed on the inner peripheral surface of the outer wall surface such as the upper joint portion and / or the lower joint portion of one inter-column space of the building housing is a structural face material. A fitting groove having a depth projecting by the thickness dimension is engraved, and the foamed synthetic resin plate is fixed to the fitting groove by screwing using the push-in fixture, and the foamed synthetic resin plate is fixed. This is an elastic load-bearing wall structure in which structural face materials are disposed and fixed in the remaining inter-column spaces excluding the worn portions.

(27)、発泡合成樹脂板体の一部、又は、全部を半硬質発泡合成樹脂板体、及び/又は、ゴム状弾性板体に置換したことを特徴とする請求項26に記載の弾性耐力壁構造である。   27. The elastic yield strength according to claim 26, wherein a part or all of the foamed synthetic resin plate is replaced with a semi-rigid foamed synthetic resin plate and / or a rubber-like elastic plate. It is a wall structure.

(28)、矩形の発泡合成樹脂板体を、縦フレーム及び横フレームに止着するにつき、該発泡合成樹脂板体の表裏両面上に前記押込固定具、次いで該フレームの順に配し、該フレーム、該押込固定具、該発泡合成樹脂板体を貫通する止着材により螺着して、該押込固定具の突起部を該発泡合成樹脂板体中に押込み、埋没させることにより、これら3者を止着してなる長尺制震パネルである。   (28) When the rectangular foam synthetic resin plate is fixed to the vertical frame and the horizontal frame, the pressing fixture and then the frame are arranged on the front and back surfaces of the foam synthetic resin plate, These three members are screwed with a fixing material penetrating the indentation fixture and the foamed synthetic resin plate, and the protrusions of the indentation fixture are pushed into and embedded in the synthetic foam resin plate. This is a long seismic control panel.

(29)、一対の前記押込固定具を該発泡合成樹脂板体の表裏両面上にそれぞれ相対向するように配し、該相対抗する一対の押込固定具を貫通する一つの止着材にて螺着し、該一対の押込固定具の突起部を、該発泡合成樹脂板体の表裏両面の対向する位置で該発泡合成樹脂板体中に押込み、埋没させたことを特徴とする(28)記載の長尺制震パネルである。   (29) A pair of the pressing fixtures are arranged so as to face each other on both the front and back surfaces of the foamed synthetic resin plate body, and one fastening material penetrating the opposing pressing fixtures is used. The protrusions of the pair of pressing fixtures are screwed and pressed into the foamed synthetic resin plate at positions opposed to each other on the front and back surfaces of the foamed synthetic resin plate (28). This is a long seismic control panel.

(30)、発泡合成樹脂板体の一部又は全部を半硬質発泡合成樹脂板体、及び/又はゴム状弾性板体に置換したことを特徴とする(28)又は(29)に記載の長尺制震パネルである。   (30) The length described in (28) or (29), wherein a part or all of the foamed synthetic resin plate is replaced with a semi-rigid foamed synthetic resin plate and / or a rubber-like elastic plate. It is a shake control panel.

(31)、(28)〜(30)のいずれか1に記載の長尺制震パネルを構造躯体の柱間大空間又は柱間小空間に装着してなる建物構造である。   (31) A building structure in which the long vibration control panel according to any one of (28) to (30) is attached to a large space between columns or a small space between columns of a structural frame.

(32)、略3角形状の発泡合成樹脂板体を縦フレーム及び横フレームに止着するにつき、該発泡合成樹脂板体の表裏両面上に前記押込固定具、次いで、該フレームの順に配し、該フレーム、該押込固定具、該発泡合成樹脂板体を貫通する止着材により螺着して、該押込固定具の突起部を該発泡合成樹脂板体中に押込み、埋没させることにより、これら3者を止着してなる仕口制震パネルである。   (32) When fixing the substantially triangular foamed synthetic resin plate to the vertical frame and the horizontal frame, the pressing fixture is arranged on the front and back surfaces of the foamed synthetic resin plate, and then the frame. By screwing the frame, the pressing fixture, a fastening material penetrating the foamed synthetic resin plate, and pushing the protrusion of the pressing fixture into the foamed synthetic resin plate, This is a seismic control panel with these three members fixed.

(33)、一対の前記押込固定具を該発泡合成樹脂板体の表裏両面上にそれぞれ相対向するように配し、該相対向する一対の押込固定具を貫通する止着材にて螺着し、該相対向する一対の押込固定具の突起部が該発泡合成樹脂板体中の表裏面の対向する位置で該発泡合成樹脂板体中に押込み、埋没させたことを特徴とする(32)記載の仕口制震パネルである。   (33) A pair of the pressing fixtures are arranged on the front and back surfaces of the foamed synthetic resin plate so as to face each other, and are screwed with a fastening material penetrating the pair of pressing fixtures facing each other. The protrusions of the pair of pressing fixtures opposed to each other are pressed into the foamed synthetic resin plate at the positions facing the front and back surfaces of the foamed synthetic resin plate and buried (32). ) The seismic control panel described.

(34)、発泡合成樹脂板体の一部又は全部を半硬質発泡合成樹脂板体、及び/又はゴム状弾性板体に置換したことを特徴とする(32)又は(33)に記載の仕口制震パネルである。   (34) The process described in (32) or (33), wherein a part or all of the foamed synthetic resin plate is replaced with a semi-rigid foamed synthetic resin plate and / or a rubber-like elastic plate. It is a mouth vibration control panel.

(35)、(32)〜(34)のいずれか1に記載の仕口制震パネルを構造躯体の仕口部に装着してなる建物構造である。   (35) A building structure in which the joint damping panel according to any one of (32) to (34) is mounted on a joint portion of a structural frame.

(36)、矩形の発泡合成樹脂板体の対向する2辺を、縦フレーム及び/又は横フレームに止着するにつき、該発泡合成樹脂板体の表裏両面上に前記押込固定具、次いで該フレームの順に配し、該フレーム、該押込固定具、該発泡合成樹脂板体を貫通する止着材により螺着して、該押込固定具の突起部を該板体中に押込み、埋没させることにより、これら3者を止着してなる汎用制震パネルである。   (36) When the two opposing sides of the rectangular foamed synthetic resin plate are fixed to the vertical frame and / or the horizontal frame, the pressing fixtures on both the front and back surfaces of the foamed synthetic resin plate, and then the frame By screwing with a fastening material penetrating the frame, the push fixture, and the foamed synthetic resin plate body, and pushing the protrusion of the push fixture into the plate body and burying This is a general-purpose seismic control panel that attaches these three members.

(37)、一対の前記押込固定具を該発泡合成樹脂板体の表裏両面上にそれぞれ相対向するように配し、該相対向する一対の押込固定具を貫通する止着材にて螺着し、該相対向する一対の押込固定具の突起部が、該発泡合成樹脂板体の表裏両面の対向する位置で該発泡合成樹脂板体中に押込み、埋没させたことを特徴とする(36)に記載の汎用制震パネルである。   (37) A pair of the pressing fixtures are arranged so as to face each other on both the front and back surfaces of the foamed synthetic resin plate, and are screwed together with a fastening material penetrating the pair of pressing fixtures facing each other. The protrusions of the pair of pressing fixtures opposite to each other are pressed into the foamed synthetic resin plate body and buried at opposite positions on the front and back surfaces of the foamed synthetic resin plate body (36). ) General-purpose seismic control panel as described in).

(38)、発泡合成樹脂板体の一部又は全部を半硬質発泡合成樹脂板体、及び/又はゴム状弾性板体に置換したことを特徴とする(36)又は(37)に記載の汎用制震パネルである。   (38) The general purpose according to (36) or (37), wherein a part or all of the foamed synthetic resin plate is replaced with a semi-rigid foamed synthetic resin plate and / or a rubber-like elastic plate. It is a vibration control panel.

(39)、(36)〜(38)のいずれか1に記載の汎用制震パネルを構造躯体の柱間小空間又は柱間大空間に装着してなる建物構造である。   (39) A building structure in which the general-purpose vibration control panel according to any one of (36) to (38) is mounted in a small space between columns or a large space between columns in a structural frame.

押込固定具を用いた本発明の止着構造により、発泡合成樹脂板体を構造躯体に強固に止着できることで、発泡合成樹脂板体が本来的に有する緩衝性、粘弾性、応力分散性等の長所を最大限に活用させ得ることができる。すなわち、発泡合成樹脂板体が柔らかく、集中荷重に弱く、局部破損し易いという材料力学的な欠陥を封印しつつ克服することが出来ることになる。このように本発明の止着構造により、構造躯体の外周壁面全体が良好な断熱性能を持つだけでなく、地震エネルギーの吸収母体として、かつ、変形時の弾性復元母体として機能することが出来る。これらの止着構造を、例えば、建物の外周壁面として構成した例により説明すれば、次のような効果が得られる。   With the fastening structure of the present invention using an indentation fixture, the foamed synthetic resin plate can be firmly fastened to the structural housing, so that the foamed synthetic resin plate inherently has buffering properties, viscoelasticity, stress dispersibility, etc. You can make the most of the advantages of. That is, it is possible to overcome the material mechanical defect that the foamed synthetic resin plate is soft, weak against concentrated load, and easily damaged locally. Thus, by the fastening structure of the present invention, not only the entire outer peripheral wall surface of the structural housing has a good heat insulating performance, but also can function as an earthquake energy absorbing matrix and an elastic restoring matrix during deformation. If these fastening structures are described as an example of an outer peripheral wall surface of a building, for example, the following effects can be obtained.

この押込固定具や押込突起付通気胴縁等で止着された外断熱構造の壁面には、地震エネルギー等の外力、すなわち、主に略平行方向や略垂直方向を中心とする多次元方向の変形力や震動等が加えられるが、構造躯体の外周壁面には、粘弾性や緩衝性の高い発泡合成樹脂板体が、多数の押込固定具や通気胴縁により堅固に止着、一体化されているため、構造躯体の変形や震動に追従一体化して個々の止着部、及び、周縁部に多数箇所の該止着部を配設された発泡合成樹脂板体の全体が、弾性変形、弾性復元の挙動を示すことによって外力や変形や衝撃に対抗する。これら一連の構造躯体が受ける多次元方向の変形力や震動等は、該止着部を基軸として、リアルタイムにこれら多数の止着部から発泡合成樹脂板体内全般に伝達され、吸収(弾性変形、弾性復元)されて発泡合成樹脂板体自体の局部的な変形、損傷をも長期に抑制、緩和、保護することが出来る。   On the wall of the outer heat insulation structure fastened by this indentation fixture or the ventilator edge with indentation protrusion, external forces such as seismic energy, that is, multidimensional direction mainly centering on the substantially parallel direction or the substantially vertical direction. Although deformation force, vibration, etc. are applied, a foamed synthetic resin plate with high viscoelasticity and shock-absorbing property is firmly fixed and integrated on the outer peripheral wall surface of the structural frame by a large number of indenters and ventilator edges. Therefore, the whole of the foamed synthetic resin plate body that is integrated with the individual fastening parts and the peripheral parts at the peripheral part by elastically deforming, following the deformation and vibration of the structural housing, Resist external force, deformation and impact by showing the behavior of elastic recovery. The multidimensional deformation forces and vibrations received by these series of structural enclosures are transmitted from these many fastening parts to the entire foamed synthetic resin board in real time with the fastening parts as a base, and absorbed (elastic deformation, It is possible to suppress, alleviate, and protect local deformation and damage of the foamed synthetic resin plate itself for a long period of time.

そして、上述の効果は、壁面に限らず、例えば、本止着構造からなる発泡合成樹脂板体を屋根や床等に採用すれば、壁面とほぼ同様の効果を採用箇所で発揮させることが出来るのである。   And the above-mentioned effect is not restricted to a wall surface, For example, if the foaming synthetic resin board which consists of this fixed structure is employ | adopted for a roof, a floor, etc., the effect substantially the same as a wall surface can be exhibited at an employ | adopted location. It is.

即ち、本発明は、建築基準法の耐震基準(例:耐震等級1,2,3)をクリアーしていることを基本として、構造躯体自体が有する耐震強度(壁倍率)と、本発明の止着構造からなる発泡合成樹脂板体を併用してなる施工部位(外断熱壁面や間仕切り壁面等)が発現するところの耐・制震性を付加(複合化)させ、これらの総和でもって数次の中地震にも耐え、かつ、揺れや衝撃や損傷を抑制(減衰)、緩和し、最も危険な家屋が一気に倒壊する危険性を低減し、安心、安全性の向上と、高断熱、高気密性を長期に発揮できる独自の耐・制震外断熱住宅を提供することを可能とするのである。   That is, the present invention is based on the fact that the seismic standards (eg, seismic grades 1, 2, and 3) of the Building Standards Act are cleared, and the seismic strength (wall magnification) of the structural frame itself and the Addition (combination) resistance and seismic resistance where construction sites (outer heat insulation wall surfaces, partition wall surfaces, etc.) formed by using foamed synthetic resin plates composed of wearing structures are developed, and these are summed up to several orders Withstands moderate earthquakes, suppresses (damps) and mitigates shaking, shocks and damage, reduces the risk of the most dangerous homes collapsing at once, improves safety and security, and provides high insulation and high airtightness This makes it possible to provide a unique anti-seismic and non-seismic heat-insulated housing that can demonstrate its properties over a long period of time.

また、地震時に観察される縦揺れ(上、下震動)に対して、従来は、基礎と構造躯体をアンカーボルトで強固に緊結して耐震する方法以外に無かったが、本発明では、これらの従来の方法に加え、構造躯体の外周壁面に制震材料(又は、緩衝材料)として機能できる発泡合成樹脂板体を壁面全面に本発明の止着構造で強固に止着させることにより、上、下震動に抗しえる緩衝性を有する支承壁(緩衝壁)の構造が形成される。この支承壁が、耐震構造上、最も厄介であるとされる上、下震動で発生する縦方向の変形や歪みに対する吸収・緩衝壁体(制震壁体)として作用することが期待される。   In addition, with respect to pitching (upper and lower vibrations) observed during an earthquake, there has been no method other than a method in which the foundation and the structural frame are tightly coupled with anchor bolts for earthquake resistance. In addition to the conventional method, a foamed synthetic resin plate that can function as a damping material (or a buffer material) on the outer peripheral wall surface of the structural housing is firmly fixed to the entire wall surface with the fixing structure of the present invention. A structure of a support wall (buffer wall) having a buffering property capable of resisting the downward vibration is formed. This bearing wall is said to be the most troublesome in terms of seismic structure, and is expected to act as an absorption / buffer wall body (damping wall body) against vertical deformation and distortion generated by the bottom vibration.

又、先述した従来法の外断熱に供する発泡合成樹脂板体の厚みは、止着強度や脱落防止上の制約から、最大限50mm厚み/層に制限されている。これに対し、本発明では、押込固定具による止着力の向上効果が大きく、さらに、押込固定具の埋没深さ分(例えば、突起部高さ)が止着材のオーバーハング距離を減殺(厚みに加算)でき、その上に、本発明の止着構造が通気胴縁の止着強度をも向上させ、その分、前記の最大限50mm厚み/層を、さらに増厚させ得て、寒冷地における外断熱構造を容易にし、かつ、高い止着力が確保されることから、外壁材の垂れ下がりや脱落をも抑制、防止することが出来るのである。   In addition, the thickness of the foamed synthetic resin plate used for the above-described conventional heat insulation is limited to a maximum thickness of 50 mm / layer due to fastening strength and restrictions on prevention of falling off. On the other hand, in the present invention, the effect of improving the fastening force by the push-in fixing tool is great, and further, the buried depth (for example, the protrusion height) of the push-in fixing tool reduces the overhang distance of the fastening material (thickness). In addition, the fastening structure of the present invention also improves the fastening strength of the ventilator rim, and accordingly, the maximum thickness of 50 mm / layer can be further increased. Since the outer heat insulating structure is made easy and a high fastening force is secured, it is possible to suppress or prevent the outer wall material from drooping or falling off.

一方、市場では、予め、構造用面材(又は、セメント板やプラスターボード等の塑性材料)と発泡合成樹脂板体を一体化させてなる耐力壁用の断熱パネルが実用化されている。例えば、発泡合成樹脂板体の両面に構造用面材を接着一体化させた断熱パネル(商品名:SIP、三井ホーム(株)製)や、発泡合成樹脂板体の片面に構造用面材を接着一体化させた断熱パネル(商品名:NPパネル、ナイス(株)製)等である。しかし、これらのパネルは、耐震性(壁倍率)、断熱性、施工簡易性等は十分に確保されているものの、本発明で言うところの発泡合成樹脂板体が有する耐・制震性能を発揮する固着構造にはさせ得ないのである。   On the other hand, in the market, a heat insulating panel for a load bearing wall in which a structural face material (or a plastic material such as a cement board or a plaster board) and a foamed synthetic resin board are integrated has been put into practical use. For example, a heat insulating panel (trade name: SIP, manufactured by Mitsui Home Co., Ltd.) in which structural face materials are bonded and integrated on both surfaces of a foamed synthetic resin plate, or a structural face material on one side of a foamed synthetic resin plate. A heat-insulating panel (trade name: NP panel, manufactured by Nice Co., Ltd.) and the like that are bonded and integrated. However, these panels have sufficient seismic resistance (wall magnification), heat insulation, ease of construction, etc., but exhibit the anti-seismic performance possessed by the foamed synthetic resin plate according to the present invention. It cannot be made into a fixed structure.

なぜなら、塑性材料である構造用面材と弾性材料である発泡合成樹脂板体とが接着剤で一体化されているものの、パネルと構造躯体との固着方法は、発泡合成樹脂板体部を除く構造用面材部分と構造躯体とが通常の固着方法(丸釘等)でなされるため、本来、弾性変形、復元性を有する発泡合成樹脂板体の特性は全く生かされず、単に断熱性能を奏するだけであって、パネルの構造上、耐震強度は一方的に構造用面材が負う構造となっており、これらのパネルが有する耐震性の課題(止着部の損壊や釘の裂断等)は、通常の構造用面材単体からなる耐力壁となんら変わらないのである。   This is because, although the structural face material, which is a plastic material, and the foamed synthetic resin plate, which is an elastic material, are integrated with an adhesive, the method for fixing the panel and the structural casing excludes the foamed synthetic resin plate Since the structural face material portion and the structural housing are made by a normal fixing method (round nails, etc.), the properties of the foamed synthetic resin plate having inherently elastic deformation and resilience are not utilized at all. However, due to the structure of the panel, the seismic strength is unilaterally borne by the structural surface material, and these panels have seismic issues (breakage of the fastening part, tearing of the nail, etc.) Is no different from a bearing wall made of a single structural face material.

これに対し、本発明では、例えば、予め、耐力壁材である構造用面材を配設させていない構造躯体(耐震金物や筋交い等を含む)の外周面に、直接、発泡合成樹脂板体(所定の耐・制震性を発揮させ得る樹脂種類、発泡倍率、厚みからなる該板体)を本発明の押込固定具を用いて止着させれば、構造躯体自体が有する耐震強度に加えて、さらに、本発明の止着構造からなる発泡合成樹脂板体からなる外断熱壁構造により発揮させる耐・制震性が付加、複合化されて、実質的に建物躯体が必要とする耐・制震性能、あるいは、建築基準法に示す耐震等級1、又は、2、又は3に匹敵するところの耐震性を有する耐・制震外断熱構造が形成されるのである。   On the other hand, in the present invention, for example, a foamed synthetic resin plate directly on the outer peripheral surface of a structural housing (including seismic hardware and bracing) in which a structural face material that is a load-bearing wall material is not previously disposed. If the plate body made of the resin type, foaming magnification and thickness capable of exhibiting the prescribed anti-seismic properties is fixed using the indentation fixture of the present invention, in addition to the seismic strength of the structural frame itself In addition, the anti-vibration resistance exerted by the outer heat insulating wall structure made of the foamed synthetic resin plate having the fastening structure of the present invention is added and combined, and the resistance required by the building frame is substantially required. An anti-seismic and non-seismic heat-insulating structure having seismic performance equivalent to the seismic performance, or the seismic class 1 or 2 or 3 shown in the Building Standard Law is formed.

この結果、法的には、本発明の耐・制震外断熱壁構造単独からなる耐力壁量(壁倍率)等を、別途、測定し公的認定を取得する必要はあるものの、本発明の止着構造からなる発泡合成樹脂板体の耐・制震性等の強度は充分であることから構造用面材の削減が可能となる場合がある。そして、耐・制震性、施工性、耐久性等にも優れることから、早急な実用化が望まれるところの優れた構造が提供できる。(実施態様4、図12参照)
さらに又、地震等の被災時に、構造躯体の中でも、特に、変形や外力や損傷が特に集中しやすい部位(例;入隅、出隅、通り柱近傍、上部仕口部、下部仕口部等)に硬質発泡合成樹脂板体の代替品として、緩衝性能に優れた半硬質発泡合成樹脂板体を配設すれば、構造躯体全体の地震の揺れや変形を抑制、緩和させ得ると共に、その他の部位の硬質発泡合成樹脂板体の損傷をも抑制、保護することが出来、長期に安定した高断熱、高気密性を保持させ得る耐・制震外断熱住宅を提供し得る(図14、図15、図16参照)。
As a result, legally, it is necessary to separately measure the amount of the load-bearing wall (wall magnification) made up of the heat-resistant and anti-seismic heat-insulating wall structure of the present invention separately, and to obtain official certification, Since the foamed synthetic resin plate having a fixed structure has sufficient strength such as anti-seismic and vibration control properties, it may be possible to reduce the structural face material. And since it is excellent also in anti-seismic property, workability, durability, etc., it can provide an excellent structure where immediate practical application is desired. (See Embodiment 4, FIG. 12)
In addition, parts of the structural body that are particularly prone to deformation, external force, and damage during disasters such as earthquakes (eg, entry corners, exit corners, near street columns, upper joints, lower joints, etc.) If a semi-rigid foam synthetic resin plate with excellent cushioning performance is provided as an alternative to the rigid foam synthetic resin plate, the earthquake shaking and deformation of the entire structural frame can be suppressed and alleviated. It is possible to provide a heat-resistant and anti-seismic heat-insulated house that can suppress and protect damage to the rigid foamed synthetic resin plate at the site, and can maintain stable high heat insulation and high airtightness for a long period of time (FIG. 14, FIG. 15, see FIG.

さらに、柱間空間に断熱材を充填する内断熱構造の外周壁面や間仕切り壁面を問わず、1つの柱間空間の内周面の全部あるいは、特に変形や損傷が集中しやすい上部仕口部や下部仕口部等に、1)予め、柱間空間に変形可能な制震枠体を設け、該制震枠体に前記押込固定具を用いて発泡合成樹脂板体を止着させる方法。
2)予め、本発明の止着方法や止着構造を用い、発泡合成樹脂板体と制震枠体をパネル構造化したものを用い、1つの柱間空間の所定の位置に配設、固着させる方法。等によって、耐・制震内断熱住宅を提供しえる(図17参照)。又、上述の間仕切り壁面への適用例は、内断熱住宅にとどまらず、外断熱住宅にも、又、広く一般の住宅の耐・制震リフォームにも容易に適用が可能で、安価で、施工性に優れ、バランスの取れた耐・制震性能が得やすく望ましい。
Furthermore, regardless of the outer peripheral wall surface or partition wall surface of the inner heat insulating structure in which the inter-column space is filled with the heat insulating material, the entire inner peripheral surface of one inter-column space or the upper joint portion where deformation or damage is particularly likely to concentrate. 1) A method in which a deformable vibration control frame body is provided in advance in a space between columns in a lower joint portion or the like, and a foamed synthetic resin plate is fixed to the vibration control frame body by using the pushing fixture.
2) Using the fastening method and fastening structure of the present invention, and using a foamed synthetic resin plate and a damping frame made into a panel structure, it is arranged and fixed at a predetermined position in one inter-column space. How to make. It is possible to provide a heat-resistant / seismic insulated thermal insulation house (see Fig. 17). In addition, the above-mentioned application example to the partition wall surface is not limited to the inner heat insulating house, but can be easily applied to the outer heat insulating house, and also to a wide range of general houses for anti-seismic and seismic reform. It is desirable to have excellent balance and seismic performance that is well balanced.

又、さらに、上記した内断熱(充填断熱)住宅に用いる発泡合成樹脂板体を止着させる制震枠体に替えて、例えば、発泡合成樹脂板体を止着させる1柱間空間を構成する構造躯体の内周面の全部、あるいは、上部仕口部及び/又は、下部仕口部等の一部の内周面に、予め、発泡合成樹脂板体を配設、止着させるための深さからなる嵌溝をプレカット工場で彫設しておき、現場では、該嵌溝に発泡合成樹脂板体を配設し押込固定具で止着すれば、施工性、コストに優れた内断熱住宅の耐・制震壁構造とすることができる(図18参照)。   Further, instead of the above-mentioned seismic frame for fixing the foamed synthetic resin plate used for the inner heat insulation (filled heat insulation) house, for example, a space between one pillar for fixing the foamed synthetic resin plate is configured. Depth for placing and fixing a foamed synthetic resin plate in advance on the entire inner peripheral surface of the structural housing or on a part of the inner peripheral surface of the upper and / or lower joints. An internal insulation house with excellent workability and cost can be obtained by engraving a fitting groove made of this at a pre-cut factory and installing a foamed synthetic resin plate in the fitting groove and fastening it with a pressing fixture. The seismic resistant and vibration-damping wall structure can be obtained (see FIG. 18).

又、さらに、本発明の耐・制震壁構造の別の実施態様として下記のものがある。内断熱住宅において、大きな揺れや変形が想定される1柱間空間の同一壁面の上部仕口部、及び/又は、下部仕口部等の内周面の一部の外壁面側に発泡合成樹脂板体(特に、緩衝用板体が望ましい。)の厚さ方向の一部が構造用面材の厚み寸法分だけ突出する深さ及び幅からなる嵌溝(又は制震枠体)を設けて、該発泡合成樹脂板体を配設し、押込固定具で止着させるとともに、残余の柱間空間(例えば、階高方向の略中央部等)の外壁面側には、構造用面材を該発泡合成樹脂板体と面一に配設し、固着する構造とすれば、同一の柱間空間において、発泡合成樹脂板体(耐・制震壁構造)が有する耐・制震性能と、構造用面材(耐力壁構造)が有する耐震性能とが共存することになり、これらの効果が複合化して発揮される最も望ましい構造からなる弾性耐力壁構造を提供することが出来る。(図19参照)
本発明の弾性耐力壁構造は、塑性材料(構造用面材)からなる従来の耐力壁の本質的な課題(板面方向の弾性変形、復元性に劣り、固着部が容易に損壊する。)を解消すると共に、該耐力壁が本来有する耐震性能に加えて、新たに制震性能を付加させてなる壁構造からなり、長期優良住宅の安心、安全、高耐久の課題を高度に実現するに相応しい全く新しい壁構造として活用が期待される。
Furthermore, another embodiment of the earthquake-resistant wall structure according to the present invention is as follows. In an inner heat insulating house, foamed synthetic resin on the outer wall surface of a part of the inner peripheral surface of the same wall surface of the space between one pillar and / or lower joint portion, where large shaking and deformation are assumed A fitting groove (or a vibration control frame) having a depth and a width in which a part in the thickness direction of the plate body (especially a buffer plate body is desirable) protrudes by the thickness dimension of the structural face material is provided. The foamed synthetic resin plate is disposed and fixed with a pressing fixture, and a structural surface material is provided on the outer wall surface side of the remaining inter-column space (for example, a substantially central portion in the floor height direction). If the foamed synthetic resin plate is disposed flush with and fixed to the structure, the foamed synthetic resin plate (anti-seismic wall structure) has the anti-seismic performance in the same inter-column space, The most desirable structure in which the seismic performance of the structural face material (bearing wall structure) coexists and these effects are combined. It is possible to provide a Ranaru elastic load-bearing wall structure. (See Figure 19)
The elastic load-bearing wall structure of the present invention is an essential problem of a conventional load-bearing wall made of a plastic material (structural face material) (it is inferior in elastic deformation and restoration in the plate direction, and the fixing part is easily damaged). In addition to the inherent seismic performance of the load bearing wall, it has a wall structure that has been newly added with seismic control performance, so that it can realize highly secure, safe and highly durable issues for long-term excellent homes. It is expected to be used as an appropriate completely new wall structure.

上記した本発明の止着方法や止着構造を用いた発泡合成樹脂板体からなる耐・制震壁構造(含む:弾性耐力壁構造)が発現するところの耐震性能や、制震性能に関して、これらの両性能は、地震時には複合して同時に発現されることから、夫々の性能を明確に分離して、測定、表記することは出来難い。しかし、例えば、静的試験法である柱頭柱脚固定式・面内せん断試験法(壁倍率測定法)において、耐震性と制震性が付加、複合された強度であるところの耐力壁量(壁倍率)(例:壁倍率=1,0)として測定、表記することが出来る。   With regard to the seismic performance and the seismic performance of the above-described fastening method and fastening structure of the present invention, where the anti-seismic wall structure (including: elastic bearing wall structure) composed of the foamed synthetic resin plate is developed, Both of these performances are compounded and expressed at the same time in the event of an earthquake, so it is difficult to measure and describe each performance clearly. However, for example, in the stigma-type fixed in-plane shear test method (wall magnification measurement method), which is a static test method, the amount of load-bearing wall is a combined strength with the addition of earthquake resistance and vibration control ( Wall magnification) (e.g., wall magnification = 1, 0).

さらに、上記の静的試験法で、数次の繰り返し測定(例:層間変位角度1/30radの正負の繰り返し試験)をした場合、例えば、従来の構造用面材からなる耐力壁構造では、回次に従って、初期値の耐力壁量(例:壁倍率=1,0)は、暫時、低下、逸損する傾向を示すが、本発明の耐・制震壁構造(例:壁倍率=1,0)、又は、弾性耐力壁構造(例:壁倍率=1,0)は、繰り返し試験によっても、低下傾向を示すことなく、回次毎にほぼ同等の耐力壁量を維持することが出来る。(市販の高価な制震装置もほぼ同様の傾向を示すことから、自社の制震装置が有する耐・制震性能を、耐力壁量、又は、壁倍率として表記しているメーカーもある。)
しかし、従来の構造用面材からなる耐力壁の性能と、本発明の耐・制震壁構造、又は、弾性耐力壁構造の性能を、上記の静的試験法で測定した耐力壁量(壁倍率)のみで、夫々の耐・制震性能を評価されるべきものでははく、その性能をより明確に、測定、比較できる動的評価方法(新エネルギー法)である加振試験法によって、さらに詳しく評価、比較されることがより望ましい。実際の被災時には、静的試験法による性能より、動的評価法による性能の方が、より実態的で、リニアーに反映されるといわれている。
Furthermore, when the above-described static test method is used for repeated measurement of several orders (eg, positive / negative repeat test with an interlayer displacement angle of 1/30 rad), for example, in a load bearing wall structure made of a conventional structural face material, According to the following, the initial load bearing wall amount (eg, wall magnification = 1, 0) tends to decrease or lose for a while, but the anti-seismic wall structure (eg: wall magnification = 1, 0) of the present invention. ) Or an elastic bearing wall structure (for example, wall magnification = 1, 0), even in repeated tests, it is possible to maintain almost the same amount of bearing wall for each turn without showing a tendency to decrease. (Since expensive commercial vibration control devices show almost the same trend, some manufacturers indicate their anti-seismic performance as the amount of bearing wall or wall magnification.)
However, the amount of the load-bearing wall (wall) obtained by measuring the performance of the conventional load-bearing wall made of the structural face material and the performance of the anti-seismic wall structure or elastic load-bearing wall structure of the present invention by the static test method described above. (Magnification) is not the only thing that should be evaluated for their anti-seismic and seismic performance, but the vibration test method, which is a dynamic evaluation method (new energy method) that can measure and compare the performance more clearly, It is more desirable to evaluate and compare in more detail. In actual disasters, it is said that the performance of the dynamic evaluation method is more realistic and linearly reflected than the performance of the static test method.

例えば、動的評価法による比較においては、1)従来の耐力壁(例:壁倍率=1,0)と
2)本発明の耐・制震壁構造、又は、弾性耐力壁構造(例:壁倍率=1,0)を用いて、動的評価法(新エネルギー法に準拠)である加震試験法により比較すれば、前記1)と2)の加震時の動的挙動差(変形量、揺れ、衝撃の抑制(減衰)効果を表すエネルギー吸収特性)は一目瞭然で、1)従来の耐力壁が有する耐震性と、2)本発明の耐・制震壁構造、又は、弾性耐力壁構造が有する耐・制震性との違いがより明確に立証されるものと期待される(市販の高価な制震装置においてもほぼ同様の傾向を示し、これらを明示しているメーカーもある)。
For example, in the comparison by the dynamic evaluation method, 1) a conventional bearing wall (example: wall magnification = 1, 0) and 2) the seismic resistant wall structure or elastic bearing wall structure of the present invention (example: wall) If the comparison is made using the dynamic test method (based on the new energy method), the difference in dynamic behavior (deformation amount) between 1) and 2) The energy absorption characteristics that represent the effect of suppressing (damping) shaking and shock are obvious at a glance: 1) the earthquake resistance of the conventional bearing wall, and 2) the anti-seismic wall structure or elastic bearing wall structure of the present invention. It is expected that the difference from the anti-seismic and vibration-proofing characteristics will be proved more clearly (there is also a similar tendency in commercially available expensive vibration control devices, and some manufacturers clearly indicate this).

因みに、本発明で定義した従来の耐力壁が有する耐震等級1〜3からなる耐震住宅が、実大の加震試験法(加振評価方法とも言う)において、所定の耐震等級を有する耐力壁が、想定した耐震性能を発揮できず、止着材や構造用面材の固着部に予測以上の損傷、損壊が発生したという多くの報告があることを念のため付記しておく。   Incidentally, an earthquake-resistant house consisting of earthquake-resistant grades 1 to 3 of the conventional bearing wall defined in the present invention is a full-scale earthquake test method (also called excitation evaluation method). It should be noted that there are many reports that the expected seismic performance could not be achieved, and that damage and damage occurred more than expected in the fixed parts of the fastening materials and structural face materials.

さらに又、本発明の止着方法や止着構造を用い、発泡合成樹脂板体と、制震フレームとで構成する各種の制震パネル(長尺制震パネル、仕口制震パネル、汎用制震パネル)(図20、図21、図22参照)を採用することによって、従来の市販の複雑で、高価な制震装置に代替できると共に、既築のリフォームや新築の一般住宅において、安価で信頼性の高い耐・制震性能の付与が可能となる。   Furthermore, using the fastening method and fastening structure of the present invention, various types of vibration control panels (long type vibration control panel, joint control panel, general purpose control panel) composed of a foamed synthetic resin plate and a vibration control frame. By adopting seismic panels (see Fig. 20, Fig. 21, Fig. 22), it is possible to replace conventional commercially available complex and expensive seismic control devices, and at low cost in existing renovations and newly built general homes. Highly reliable anti-seismic performance can be imparted.

従来法による外断熱住宅であって、外壁材を懸架・止着させる前の施工立面模式図である。It is an outside heat insulation house by the conventional method, Comprising: It is a construction elevation schematic diagram before suspending and fixing an outer wall material. (a)は、従来の発泡合成樹脂板体の止着法及び止着材における負荷(外力)に対する挙動を示す断面模式図である。(b)は、発泡合成樹脂板体に対する止着材による別の釘頭抜けの挙動を示す断面模式図である。(A) is a cross-sectional schematic diagram which shows the behavior with respect to the load (external force) in the fixing method of a conventional foaming synthetic resin board, and a fixing material. (B) is a cross-sectional schematic diagram which shows the behavior of another nail head omission by the fastening material with respect to a foamed synthetic resin board. 本発明の止着構造で発現される圧縮応力の挙動を示す断面模式図である。It is a cross-sectional schematic diagram which shows the behavior of the compressive stress expressed with the fastening structure of this invention. (a)〜(f)は本発明で用いる押込固定具の例を示す断面模式図及び片側断面模式図である。(A)-(f) is a cross-sectional schematic diagram and the one-side cross-sectional schematic diagram which show the example of the pressing fixture used by this invention. (a)〜(d)は本発明で用いる種々の形状の押込固定具のさらに別の例を示す断面模式図である。(A)-(d) is a cross-sectional schematic diagram which shows another example of the pressing fixture of the various shapes used by this invention. (a)及び(b)は、本発明で用いる押込固定具の別の使用例で発現される圧縮応力の挙動を示す断面模式図である。(A) And (b) is a cross-sectional schematic diagram which shows the behavior of the compressive stress expressed by another example of use of the indentation fixing tool used by this invention. (a)は、本発明の押込固定具を通気胴縁の止着面に用いた止着構造の例を示す部分断面模式図である。(b)は、本発明で用いる通気胴縁の止着面に押込用突起を設けた例を示す部分断面模式図である。(A) is a partial cross-sectional schematic diagram which shows the example of the fastening structure which used the pressing fixture of this invention for the fastening surface of the ventilation trunk | rim edge. (B) is a partial cross-sectional schematic diagram which shows the example which provided the processus | protrusion for pressing in the fastening surface of the ventilation trunk edge used by this invention. (a)〜(c)は、本発明における通気胴縁の各種の止着構造の例を示す断面模式図である。(A)-(c) is a cross-sectional schematic diagram which shows the example of the various fastening structure of the ventilation trunk | drum edge in this invention. (a)及び(b)は、従来法の止着構造における負荷(外力)に対する挙動を示す模式図である。(c)は、本発明の止着構造における負荷(外力)に対する挙動を示す模式図である。(A) And (b) is a schematic diagram which shows the behavior with respect to the load (external force) in the fastening structure of the conventional method. (C) is a schematic diagram which shows the behavior with respect to the load (external force) in the fixation structure of this invention. (a)は、従来法の止着構造について止着強度を簡易的に測定するためのミニモデル実験に用いた試験躯体を示す立面正面模式図である。(b)は、本発明の止着構造について止着強度を簡易的に測定するためのミニモデル実験に用いた試験躯体を示す立面正面模式図である。(A) is an elevation front schematic diagram showing a test case used for a mini-model experiment for simply measuring the fastening strength of the fastening structure of the conventional method. (B) is an elevational front schematic view showing a test case used in a mini-model experiment for simply measuring the fastening strength of the fastening structure of the present invention. (c)は、図10に示す試験躯体の従来法と本発明のそれぞれのミニモデル実験の際の発泡合成樹脂板体と試験躯体との止着部を示す断面模式図である。(d)は、従来法と本発明のミニモデル実験を行った際における、それぞれの試験躯体で共通する軸組み部を示す立面模式図である。(C) is a cross-sectional schematic diagram showing a fastening portion between the foamed synthetic resin plate body and the test casing in the conventional method of the test casing shown in FIG. 10 and each mini-model experiment of the present invention. (D) is an elevation schematic diagram showing a shaft assembly common to each test case when the mini model experiment of the conventional method and the present invention is performed. 本発明の外断熱構造からなる外壁面の実施態様の例を表す一部切欠き斜視図である。It is a partially notched perspective view showing the example of the embodiment of the outer wall surface which consists of an outer heat insulation structure of this invention. (a)は、本発明の外断熱構造からなる外壁面の実施態様の他の例を表す一部切欠き斜視図である。(b)は、発泡合成樹脂板体の相差継手構造を示す断面模式図である。(A) is a partially cutaway perspective view showing another example of the embodiment of the outer wall surface comprising the outer heat insulating structure of the present invention. (B) is a cross-sectional schematic diagram showing a phase difference joint structure of a foamed synthetic resin plate. (a)は、通気胴縁を止着する前の状態であって、一部に半硬質発泡合成樹脂板体を用いた本発明の建物の実施態様を示す施工平面模式図である。(b)は、(a)に於ける出隅部の拡大断面模式図である。図(c)は、(a)に於ける入隅部の拡大断面模式図である。(A) is a construction plan view showing an embodiment of the building of the present invention in which the semi-rigid foam synthetic resin plate is used in part, before the ventilator edge is fastened. (B) is an enlarged cross-sectional schematic diagram of the protrusion corner part in (a). FIG. 3C is an enlarged schematic cross-sectional view of the corner portion in FIG. (イ)〜(ニ)は、通気胴縁を止着する前の状態であって、一部に半硬質発泡合成樹脂板体を用いた本発明の外断熱構造のそれぞれ別の実施態様を示す立面模式図である。(A)-(d) are the states before fastening the ventilator edge, and show different embodiments of the outer heat insulating structure of the present invention using a semi-rigid foam synthetic resin plate part in part. It is an elevation schematic diagram. (イ)は、図15(ロ)のA矢視部を示す部分正面模式図である。(ロ)は、(イ)のB−B断面模式図である。(ハ)は、(イ)のC−C断面模式図である。(A) is a partial front schematic diagram which shows the A arrow part of FIG.15 (b). (B) is a schematic cross-sectional view taken along the line B-B in (A). (C) is a CC cross-sectional schematic diagram of (A). (a)は、構造用面材を止着する前の状態であって、本発明の止着構造を有する半硬質発泡合成樹脂板体と変形可能な制震枠体を内断熱構造の柱間空間内に用いた実施態様の一例を示す部分立面模式図である。(b)は、(a)のA−A断面模式図である。(A) is a state before fastening the structural face material, and the semi-rigid foam synthetic resin plate having the fastening structure of the present invention and the deformable vibration control frame between the columns of the inner heat insulating structure It is a partial elevation schematic diagram which shows an example of the embodiment used in the space. (B) is an AA cross-sectional schematic diagram of (a). (a)は、構造用面材を止着する前の状態であって、本発明の止着構造を有する発泡合成樹脂板体を内断熱構造の柱間空間内に用いた実施態様の別の例を示す部分立面模式図である。(b)は、(a)のA−A断面模式図である。(c)は、(a)のB−B断面模式図である。(d)は、押込固定具付発泡合成樹脂板体の実施態様の一例を示す断面模式図である。(A) is a state before fixing the structural face material, and is another embodiment of the embodiment in which the foamed synthetic resin plate body having the fixing structure of the present invention is used in the inter-column space of the inner heat insulating structure. It is a partial elevation schematic diagram showing an example. (B) is an AA cross-sectional schematic diagram of (a). (C) is a BB cross-sectional schematic diagram of (a). (D) is a cross-sectional schematic diagram which shows an example of the embodiment of a foaming synthetic resin board body with a pressing fixture. (a)は、建物躯体の柱間空間の上部仕口部及び/又は下部仕口部の外壁面側内周面に本発明の止着構造からなる発泡合成樹脂板体を止着し、残余の柱間空間に構造用面材を配設してなる弾性耐力壁構造の実施態様の一例を示す部分立面模式図である。(b)は、(a)のA−A断面模式図である。(c)は、(a)のB−B断面模式図である。(A) attaches the foamed synthetic resin plate comprising the fastening structure of the present invention to the inner peripheral surface of the outer wall surface of the upper joint part and / or the lower joint part of the inter-column space of the building frame, and the remainder It is a partial elevation schematic diagram which shows an example of the embodiment of the elastic load-bearing wall structure which arrange | positions the structural surface material in the space between pillars. (B) is an AA cross-sectional schematic diagram of (a). (C) is a BB cross-sectional schematic diagram of (a). (a)は本発明の止着構造を有する長尺制震パネルの実施態様の一例を示す正面立面模式図である。(b)は、(a)のA−A断面模式図である。(c)は、(a)の上部仕口部及びその近傍を示す本発明の長尺制震パネルの部分正面模式図である。(A) is a front elevation schematic diagram which shows an example of the embodiment of the long seismic control panel which has the fixation structure of this invention. (B) is an AA cross-sectional schematic diagram of (a). (C) is the partial front schematic diagram of the long seismic control panel of this invention which shows the upper joint part of (a), and its vicinity. (a)は本発明の止着構造を有する仕口制震パネル及び汎用制震パネルの実施態様の一例を示す正面立面模式図である。(b)は、(a)の上部仕口部に示された仕口制震パネルの部分正面模式図である。(c)は、(b)のA−A断面模式図である。(A) is a front elevation schematic diagram showing an example of an embodiment of a joint damping panel and a general-purpose damping panel having a fastening structure of the present invention. (B) is the partial front schematic diagram of the joint damping control panel shown by the upper joint part of (a). (C) is an AA cross-sectional schematic diagram of (b). (d)は、図21(a)の中央部に示された汎用制震パネルの正面立面模式図である。(e)は、図21(a)のB−B部分断面模式図である。(D) is a front elevation schematic diagram of the general-purpose vibration control panel shown in the center of FIG. 21 (a). (E) is a BB partial section schematic diagram of Drawing 21 (a).

本発明を分かり易く説明するにつき、まず、既述の従来法での発泡合成樹脂板体の止着構造との対比でもって、本発明による止着構造で発現される押込力や圧縮応力等の挙動を示す突起部を有する押込固定具の一例を示した断面模式図である図3を用いて説明する。   In describing the present invention in an easy-to-understand manner, first, in comparison with the fastening structure of the foamed synthetic resin plate in the conventional method described above, the indentation force and compressive stress, etc. expressed in the fastening structure according to the present invention are described. A description will be given with reference to FIG. 3, which is a schematic cross-sectional view illustrating an example of a push-in fixture having a protruding portion that exhibits behavior.

図3では、本発明に用いる突起部を有する押込固定具5は、構造躯体4方向に径が減少する凸状の突起部5aを有しており、この押込固定具5の略中央を貫通する貫通孔5dから、止着材であるところの、例えば、特殊螺子釘2を貫通させて、発泡合成樹脂板体1を介して構造躯体4にねじ込み止着する。そうすると、押込固定具5の突起部5aの一部又は全部は、発泡合成樹脂板体中に埋没することになる。   In FIG. 3, the push fixture 5 having a projection used in the present invention has a convex projection 5 a whose diameter decreases in the direction of the structural housing 4, and penetrates the approximate center of the push fixture 5. For example, a special screw nail 2, which is a fastening material, is passed through the through-hole 5 d and screwed to the structural housing 4 via the foamed synthetic resin plate 1. If it does so, a part or all of projection part 5a of indentation fixture 5 will be buried in a foaming synthetic resin board.

この際、螺着される押込固定具5の突起部5aが発泡合成樹脂板対中に押込まれ、埋没される際に生じる高い押圧力32に対抗して、発泡合成樹脂板体が有する高い粘弾性や抗張力が働き、図中に示す押込固定具5の基端部5bの外周辺部には、押込み、押圧されるに従い、緩やかな引き込み応力曲面36を伴って押込固定具5の面積(基端部5bの平面積)より拡大された有効押圧面積35が形成される。これに連動して、その厚み方向には押圧された押圧樹脂領域30と概円錐柱状からなる圧縮応力分散領域31が周囲に向かって拡大した形で形成される。   At this time, the projecting portion 5a of the push-in fixing tool 5 to be screwed is pushed into the foamed synthetic resin plate pair and resists the high pressing force 32 generated when the foamed synthetic resin plate is buried. The outer peripheral portion of the base end portion 5b of the push-in fixture 5 shown in the drawing has an area (base) of the push-in fixture 5 with a gentle retraction stress curved surface 36 as it is pushed and pressed. An effective pressing area 35 enlarged from the flat area of the end 5b is formed. In conjunction with this, in the thickness direction, a pressed resin region 30 and a compressive stress dispersion region 31 having a substantially conical column shape are formed in an enlarged shape toward the periphery.

これら有効押圧面積35や押圧樹脂領域30や圧縮応力分散領域31の形成に伴って発現される大きな応力が、すなわち、押込固定具5で発泡合成樹脂板体を構造躯体に強固に止着させる止着力(又は押圧力)に略相当し、該円錐柱状を呈する圧縮応力分散領域31が、構造躯体側や外装壁構成材側から伝達される多次元方向からの様々な変形力や震動エネルギー等を吸収、復元させる吸収エリア、復元エリアとして作用すると共に、該板体の板面方向に拡大して伝達させる伝達エリアとしても機能することになるのである。   The large stress expressed with the formation of the effective pressing area 35, the pressing resin region 30, and the compressive stress dispersion region 31, that is, the pressing and fixing tool 5 is used to firmly fix the foamed synthetic resin plate to the structural housing. The compressive stress distribution region 31 that is substantially equivalent to the applied force (or pressing force) and has a conical columnar shape generates various deformation forces, vibration energy, and the like from a multi-dimensional direction transmitted from the structural housing side or the exterior wall constituent material side. It acts as an absorption area to be absorbed and restored, and a restoration area, and also functions as a transmission area that is enlarged and transmitted in the direction of the plate surface of the plate.

特に、半硬質発泡合成樹脂板体は、この傾向が顕著である。樹脂種類や発泡倍率や厚みや押込固定具の形状等にもよるが、押込固定具5の外径面積(基端部平面積)に対し、大きく拡大した有効押圧面積35を形成させることが容易である。例えば、ある外径の基端部5bを持つ押込固定具の突起部5aの高さを低くして、その形状を後述するように工夫等すれば、止着部に大きな負担(局部圧縮や圧縮クリープ現象)をかけることなく、大きく拡大した有効押圧面積35が発現し、その結果、極めて大きな圧縮応力分散領域31が形成され、必要とする大きな止着力が容易に得られる。   In particular, this tendency is remarkable in the semi-rigid foam synthetic resin plate. Although it depends on the resin type, expansion ratio, thickness, shape of the push fixture, etc., it is easy to form a greatly expanded effective press area 35 with respect to the outer diameter area (base end flat area) of the push fixture 5. It is. For example, if the height of the protrusion 5a of the push fixture having a base end 5b having a certain outer diameter is lowered and the shape thereof is devised as will be described later, a large burden (local compression or compression) is applied to the fastening portion. The effective pressing area 35 that is greatly enlarged is developed without applying a creep phenomenon. As a result, a very large compressive stress dispersion region 31 is formed, and the required large fastening force can be easily obtained.

本発明において、押込固定具5を用い、止着材を用いて螺着により止着するという表現には、押込固定具5の突起部5aが発泡合成樹脂板体中に押込まれ、埋没されることによって大きな圧縮応力分散領域31が形成され、外力や震動に対し弾性変形や弾性復元等の様々な作用効果を発揮することを意味している。   In the present invention, the expression of using the push-in fixing tool 5 and screwing in with a fastening material is used to push the protrusion 5a of the push-in fixing tool 5 into the foamed synthetic resin plate and be buried. This means that a large compressive stress dispersion region 31 is formed, and exhibits various effects such as elastic deformation and elastic recovery against external force and vibration.

この本発明の押込固定具5を用いた場合の挙動は、概ね、次の(1)〜(7)に列記できる。又、後述する図7に示す通気胴縁の止着面側に押込固定具5や押込用突起3´を設けた押込突起付通気胴縁14aや、図8に示す通気胴縁の止着断面構造例や図12、13に示す押込補助突起3や、図18、19に示す押込固定具付発泡合成樹脂板体や、図20、図21、図22に示す相対向する一の押込固定具5を用いた止着断面構造も、概ね、類似の挙動を示すのである。   The behavior when the push-in fixture 5 of the present invention is used can be generally listed in the following (1) to (7). Further, a ventilation cylinder edge 14a with a pushing projection provided with a pushing fixture 5 and a pushing projection 3 'on the fastening surface side of the ventilation cylinder edge shown in FIG. 7 to be described later, and a fastening cross section of the ventilation cylinder edge shown in FIG. Examples of structure, push-in auxiliary projection 3 shown in FIGS. 12 and 13, foamed synthetic resin plate with push-in fixture shown in FIGS. 18 and 19, and one opposed push-in fixture shown in FIGS. 20, 21, and 22. The fastening cross-sectional structure using 5 generally shows a similar behavior.

(1):押込固定具5の平面積より大の凸状の表面積を有する突起部5aに接触し、凹状に押し広げられ圧縮されて形成される発泡合成樹脂板体の凹状部(以下、単に凹部29と呼ぶ)の周辺部には、凹部29面と略直角方向をなす押圧力32に対抗する粘弾性や抗張力により高い圧縮応力を発生させる押圧樹脂領域30が拡大形成される。   (1): A concave portion (hereinafter simply referred to as a foamed synthetic resin plate body) formed in contact with a protrusion 5a having a convex surface area larger than the plane area of the indentation fixture 5 and pressed and compressed into a concave shape. A pressing resin region 30 that generates a high compressive stress by viscoelasticity and tensile strength against the pressing force 32 that is substantially perpendicular to the surface of the concave portion 29 is formed on the periphery of the concave portion 29).

(2):押込固定具5の突起部5aは、90度より小の曲面及び/又は平面を有し押込固定具5の周辺部界面の発泡合成樹脂板体1には局部圧縮、局部破損させない緩やかな引き込み応力曲面36をなして押込固定具の基端部5bの面積より大きな有効押圧面積35が形成され、凹部29の断面方向には、凹部29面と略垂直方向をなす発泡合成樹脂板体1を押し広げる矢印に示す圧縮力(以下、押圧力32とも称す。)が加わる。このことにより、押圧樹脂領域30の押圧力32がさらに発泡樹脂固有の粘弾性力を引き出し、止着部を中心に、押圧力32と外力(震動や変形力)に略比例的に生じる応力が分散、吸収される領域(圧縮・変形・衝撃エネルギー吸収エリア)が増大して行く。本発明では、これら圧縮応力が分散される領域、すなわち圧縮エネルギー、変形エネルギー、衝撃エネルギー等が吸収される領域を概念的に単純化するため、以下、単に、圧縮応力分散領域31と略称する。   (2): The protrusion 5a of the indentation fixture 5 has a curved surface and / or plane smaller than 90 degrees, and the foamed synthetic resin plate 1 at the peripheral interface of the indentation fixture 5 is not locally compressed or damaged. A foamed synthetic resin plate that forms a gentle pulling stress curved surface 36 and has an effective pressing area 35 larger than the area of the base end portion 5b of the pressing fixture, and is substantially perpendicular to the surface of the recess 29 in the cross-sectional direction of the recess 29. A compression force (hereinafter also referred to as a pressing force 32) indicated by an arrow that pushes the body 1 is applied. As a result, the pressing force 32 of the pressing resin region 30 further draws the viscoelastic force inherent to the foamed resin, and the stress generated approximately proportionally to the pressing force 32 and the external force (vibration and deformation force) is centered on the fastening portion. The area of dispersion and absorption (compression, deformation, impact energy absorption area) increases. In the present invention, in order to conceptually simplify the region in which the compressive stress is dispersed, that is, the region in which the compression energy, deformation energy, impact energy, and the like are absorbed, the following is simply referred to as a compressive stress dispersion region 31.

しかし、この圧縮応力分散領域31は学術的、理論的に裏付けられたものではないが本発明を判り易くするためのものである。厳密には、先記した有効押圧面積35と、押圧樹脂領域30と圧縮応力分散領域31の3者の明確な線引きをすることは出来ないが力の伝達の仕方を説明するために分類した。さらに、凹部29が形成した押圧樹脂領域30と圧縮応力分散領域31に発泡合成樹脂板体と略平行方向の外力や震動が押込固定具5と特殊螺子釘2を介して加わった時、これに抗して押圧樹脂領域30と圧縮応力分散領域31の断面容積の樹脂分が新たに略平行方向に圧縮応力分散領域31を増大させて、その外力や震動を吸収し押込固定具5周辺の略平行方向の局部圧縮、圧縮クリープ現象を抑制できるのである。   However, the compressive stress dispersion region 31 is not supported by academic and theoretical means, but is intended to make the present invention easier to understand. Strictly speaking, the effective pressing area 35, the pressing resin region 30, and the compressive stress dispersion region 31 cannot be clearly drawn, but they are classified in order to explain how force is transmitted. Furthermore, when an external force or vibration in a direction substantially parallel to the foamed synthetic resin plate body is applied to the pressing resin region 30 and the compressive stress dispersion region 31 formed with the recess 29 via the pressing fixture 5 and the special screw nail 2, On the contrary, the resin content of the cross-sectional volume of the pressing resin region 30 and the compressive stress distribution region 31 newly increases the compressive stress distribution region 31 in a substantially parallel direction, absorbs the external force and vibration, and approximately the vicinity of the pressing fixture 5. It is possible to suppress the local compression and the compression creep phenomenon in the parallel direction.

これらの本発明の効果を発揮させるため、押込固定具5と発泡合成樹脂板体1に求められる好ましい条件は、1)押込固定具は個々に独立した押込固定具であって、押込固定具の外径は、少なくとも20mmΦ以上の大きさであることが望ましい。また、評価は後述するが、突起部は、発泡合成樹脂板体に対して局部圧縮をさせない形状であり、拡大した有効押圧面積35を生じさせることが必要である。   In order to exert the effects of the present invention, preferable conditions required for the indentation fixture 5 and the foamed synthetic resin plate 1 are 1) the indentation fixtures are independent indentation fixtures, The outer diameter is desirably at least 20 mmΦ or more. Although the evaluation will be described later, the protruding portion has a shape that does not cause local compression on the foamed synthetic resin plate, and it is necessary to generate an enlarged effective pressing area 35.

2)発泡合成樹脂板体の厚みは、省エネ法の地区別(1〜5地区)の断熱材厚みが基本となるが、少なくとも25mm以上、さらに望ましくは、30mm以上、さらに望ましくは35mm以上が望ましく、厚みが薄いと、押圧樹脂領域30や圧縮応力分散領域31等の形成が不足し、所定の止着強度や制震効果(外力や震動エネルギーの吸収)が得られず好ましくない。3)硬質発泡合成樹脂板体(特に、発泡ウレタン系や発泡フェノール系等)は、粘弾性や抗張力をカバーするために、少なくとも片面、好ましくは両面に表面補強材を展着一体化させることが望ましい。   2) The thickness of the foamed synthetic resin plate is basically the thickness of the heat insulating material by district (1-5 districts) of the Energy Conservation Law, but at least 25 mm or more, more preferably 30 mm or more, more preferably 35 mm or more. If the thickness is small, formation of the pressure resin region 30 and the compressive stress dispersion region 31 is insufficient, and a predetermined fastening strength and a vibration control effect (absorption of external force and vibration energy) cannot be obtained. 3) A rigid foam synthetic resin plate (especially foamed urethane or foamed phenol) may have a surface reinforcing material spread and integrated on at least one side, preferably both sides, in order to cover viscoelasticity and tensile strength. desirable.

又、単なる平板である座金等を用いて押込すると、座金の平面積に相当する垂直方向の単純な圧縮応力が発生する。そして、座金の外周の角部は略90度であるから、局部的に圧縮された発泡合成樹脂板体には、略押込み部外周に沿ってせん断や亀裂(局部破損)が発生し、その破損が経時的に拡大し圧縮クリープ現象が促進される。このため、座金等では圧縮応力の分散量は少なく、本発明の突起部5aを有する押込固定具5に生ずるがごとき押圧樹脂領域30の発生はほとんどなく、圧縮応力分散領域31の増大も大きく減殺される。すなわち、座金の存在で釘頭に比べ多少径が大きいという差はあるものの、図2(a)(ホ)に類似の局部破壊の現象が経時と共に進行し耐久性を低下させる。また、座金の略平行方向の外力に対しては、座金では、本発明の押込固定具5で生じたごとき押圧樹脂領域30と圧縮応力分散領域31の形成が期待できず、例えば、止着材である特殊螺子釘2の貫通穴(釘穴)の局部圧縮(拡大)、局部破壊(裂断)の原因となってしまう。従って、発泡合成樹脂板体と略平行方向の外力や震動への抗力が特に弱いのが欠点である現状の外断熱の止着構造が有する課題の解決策にはなりえない。   In addition, when a simple flat plate washer or the like is used for pushing, a vertical compressive stress corresponding to the flat area of the washer is generated. And since the corner | angular part of the outer periphery of a washer is about 90 degree | times, in the foamed synthetic resin board body compressed locally, a shear and a crack (local breakage) generate | occur | produced along the outer periphery of a substantially pressing part, and the damage Increases over time, and the compression creep phenomenon is promoted. For this reason, in the washer or the like, the amount of dispersion of the compressive stress is small, and there is almost no generation of the press resin region 30 as occurs in the push-in fixture 5 having the projection 5a of the present invention, and the increase in the compressive stress dispersion region 31 is greatly reduced. Is done. That is, although there is a difference that the diameter is somewhat larger than that of the nail head due to the presence of the washer, the phenomenon of local destruction similar to FIGS. Further, with respect to the external force in the substantially parallel direction of the washer, the washer cannot be expected to form the pressing resin region 30 and the compressive stress dispersion region 31 as generated by the pressing fixture 5 of the present invention. This causes local compression (enlargement) and local destruction (breaking) of the through hole (nail hole) of the special screw nail 2. Therefore, it cannot be a solution to the problem of the current outer heat insulation fastening structure, which has the disadvantage that the external force in the direction substantially parallel to the foamed synthetic resin plate and the resistance to vibration are particularly weak.

なお、上述の突起部5aを有する押込固定具5を用いる他、図6(b)(イ)に示す表面補強材1aを有する発泡合成樹脂板体1上にゴム状弾性板体20を重ね、更にその上に、大きさが該ゴム状弾性板体20と同一か、又はより小であるところの突起部を有さない押込固定具21を用いる実施態様がある。該押込固定具21の略中央から、該ゴム状弾性板体20と、該発泡合成樹脂板体1とを貫通する止着材としての特殊螺子釘2を用いて、構造躯体4にねじ込む。そうすると図6(b)(ロ)に示すように、該押込固定具21と共に、該ゴム状弾性板体20の少なくとも一部を該発泡合成樹脂板体1中に押込み、埋没させることになる。この場合は、突起部を有さない押込固定具21の外周の角部が略90度であったとしても、突起部を有さない押込固定具21の大きさと同じか、より大であるゴム状弾性板体20が押込固定具21の外周の角部を被覆する形になり鋭角を形成させないため、突起部5aを有する押込固定具5とほぼ同様に局部破壊が生ずることなくゴム状弾性板体20が有する弾性効果と併せて次に述べる良好な効果を発揮する。   In addition to using the indentation fixture 5 having the protrusions 5a described above, the rubber-like elastic plate 20 is stacked on the foamed synthetic resin plate 1 having the surface reinforcing material 1a shown in FIGS. Furthermore, there is an embodiment using a push-in fixture 21 having no protrusion, the size of which is the same as or smaller than that of the rubber-like elastic plate 20. From the approximate center of the push-in fixture 21, it is screwed into the structural housing 4 using a special screw nail 2 as a fastening material that penetrates the rubber-like elastic plate 20 and the foamed synthetic resin plate 1. Then, as shown in FIGS. 6B and 6B, at least a part of the rubber-like elastic plate 20 is pushed into the foamed synthetic resin plate 1 together with the push-in fixture 21 and buried. In this case, even if the corner of the outer periphery of the push fixture 21 having no protrusion is approximately 90 degrees, the rubber is the same as or larger than the size of the push fixture 21 having no protrusion. The elastic elastic plate 20 covers the corners of the outer periphery of the pressing fixture 21 and does not form an acute angle. Therefore, the rubber-like elastic plate does not cause local breakage in the same manner as the pressing fixture 5 having the protrusions 5a. Together with the elastic effect of the body 20, the following advantageous effects are exhibited.

すなわち、突起部を有さない押込固定具21を用いた図6(b)の実施態様においても、止着材と突起部を有さない押込固定具21等で発泡合成樹脂板体1を押圧して形成させる凹部29が、押圧力32を発生させ、押圧樹脂領域30と圧縮応力分散領域31を形成させる。従って、突起部を有さない押込み固定具21も突起部を有する押込固定具5と類似の効果を有することになる。図6(a)(イ)は、発泡合成樹脂板体1上にゴム状弾性板体20を重ね、その上に、突起部5aを有する押込固定具5を用いた例であり、止着材の一例である特殊螺子釘2(釘胴部2bに弾性復元用の凹凸部2dの形態例を図示)を用いて、構造躯体4にねじ込んだ状態を図6(a)(ロ)に示した。これら図6(a)、及び図6(b)で例示されるゴム状弾性板体20と発泡合成樹脂板体1の間には、粘性接着剤を塗布する(図面省略)ことができ、この実施態様は、施工性と止着強度を高めるのでさらに望ましい。また、ゴム状弾性板体20と発泡合成樹脂板体1の間に接着剤を用いたのと同様に、押込固定具5とゴム状弾性板体20との間にも接着剤を適宜採用することが出来る。   That is, also in the embodiment of FIG. 6B using the push fixture 21 having no projection, the foamed synthetic resin plate 1 is pushed by the fastening fixture 21 and the push fixture 21 having no projection. The recess 29 formed in this way generates a pressing force 32 and forms a pressing resin region 30 and a compressive stress dispersion region 31. Therefore, the push-in fixture 21 having no projection also has an effect similar to that of the push-in fixture 5 having a projection. FIGS. 6A and 6A are examples in which a rubber-like elastic plate 20 is stacked on the foamed synthetic resin plate 1 and a pressing fixture 5 having a protruding portion 5a thereon is used. FIG. 6A and FIG. 6B show a state of screwing into the structural housing 4 using the special screw nail 2 (an example of the shape of the uneven portion 2d for elastic restoration is shown in the nail body 2b) as an example. . A viscous adhesive can be applied between the rubber-like elastic plate 20 and the foamed synthetic resin plate 1 illustrated in FIGS. 6A and 6B (not shown). The embodiment is more desirable because it improves workability and fastening strength. Further, as in the case where an adhesive is used between the rubber-like elastic plate 20 and the foamed synthetic resin plate 1, an adhesive is appropriately employed between the pressing fixture 5 and the rubber-like elastic plate 20. I can do it.

(3):(1)、(2)で生じる広い有効押圧面積35と大きな容積からなる圧縮応力分散領域31の圧縮応力は、発泡合成樹脂板体1と構造躯体4との間の圧接力や止着力や摩擦力として有効に作用する。その効果は、押込固定具5を特殊螺子釘2等により構造躯体4に止着して形成する止着部において、発泡合成樹脂板体1の局部圧縮や局部破損が防止され、又、構造躯体4や通気胴縁14と発泡合成樹脂板体1との間で生じるズレ、スベリ等が防止されることになるため、外力や震動等による構造躯体4の正負の変形や復元(地震の振幅に相当)に対して発泡合成樹脂板体1が巧く追従一体化して弾性変形、弾性復元できるようになる。   (3): The compressive stress in the compressive stress dispersion region 31 having a large effective pressing area 35 and a large volume generated in (1) and (2) is the pressure contact force between the foamed synthetic resin plate 1 and the structural housing 4 It works effectively as a fastening force and frictional force. The effect is that local compression and local breakage of the foamed synthetic resin plate body 1 are prevented at the fastening portion formed by fastening the push fixture 5 to the structural housing 4 with the special screw nail 2 or the like. 4 and the ventilating body edge 14 and the foamed synthetic resin plate body 1 are prevented from being displaced, slipped, etc., so that the positive and negative deformation and restoration of the structural housing 4 due to external forces and vibrations etc. The foamed synthetic resin plate 1 can follow and integrate skillfully and can be elastically deformed and elastically restored.

(4):(1)、(2)、(3)が複合的に作用し、発泡合成樹脂板体1毎に、多数個の押込固定具5を用いた多数の止着部に働く多次元方向の大きな外力や震動は、そのまま止着部毎に形成される圧縮応力分散領域31から発泡合成樹脂板体1の全板面方向に伝達され、構造躯体4に追従一体化して弾性変形し吸収される。   (4): Multi-dimensions in which (1), (2), and (3) act in a complex manner and work on a number of fastening parts using a number of pressing fixtures 5 for each of the foamed synthetic resin plates 1 A large external force or vibration is transmitted as it is from the compressive stress distribution region 31 formed for each fastening part to the whole plate surface direction of the foamed synthetic resin plate body 1, and is elastically deformed and absorbed by following the structural housing 4. Is done.

(5):凹部29周辺に形成される押圧樹脂領域30や圧縮応力分散領域31の効果により、従来の略垂直方向や略平行方向の外力で発生する釘頭抜けや釘孔の拡大、裂断、欠けが抑制され、構造躯体4側や外壁材17側から伝達される大、小の多次元方向の外力や震動は、止着部を基軸にして発泡合成樹脂板体1内全体に伝達、分散され構造躯体4の変形や捩れにも追従一体化して、発泡合成樹脂板体1全体が緩やかに弾性変形することにより、吸収、減衰され、変形や震動の繰り返しや、これらの終焉に順応して多次元方向の復元力を発揮する。こうして耐震及び制震のメカニズムが形成される。   (5): Due to the effects of the pressure resin region 30 and the compressive stress dispersion region 31 formed around the recess 29, the nail head omission and the expansion and tearing of the nail hole which are generated by a conventional external force in a substantially vertical direction or a substantially parallel direction. The large and small multi-dimensional external forces and vibrations transmitted from the structural housing 4 side and the outer wall material 17 side are transmitted to the entire inside of the foamed synthetic resin plate 1 based on the fastening portion. Dispersed and integrated with the deformation and twisting of the structural housing 4, and the entire foamed synthetic resin plate body 1 is elastically deformed gently, so that it is absorbed and damped. To demonstrate multi-dimensional resilience. In this way, seismic and damping mechanisms are formed.

(6):このように、突起部を有する押込固定具5を用いた本発明の止着方法、止着構造は、発泡合成樹脂板体1が有する緩衝性(圧縮、衝撃エネルギーの吸収性、復元性)、粘弾性(可撓性)、応力分散性(厚み方向を中心とする圧縮応力拡大分散性)等の長所を最大限に活用させ得ると共に、軽く、柔らかく、集中荷重(局部圧縮)に弱く、局部破損(欠け、割れ、烈断、陥没、座屈)し易いという材料力学的に本来有する欠陥が封印されるため、地震対策上、もっとも望ましい数次の小・中地震に対する有効な耐震性と制震性と耐久性の課題が克服出来るのである。   (6): As described above, the fastening method and fastening structure of the present invention using the indentation fixture 5 having the protrusions are the buffering properties (compression, impact energy absorption, Restoration), viscoelasticity (flexibility), stress dispersibility (compressive stress expansion dispersibility centered in the thickness direction), etc. can be utilized to the maximum, and light, soft and concentrated load (local compression) It is weak against damage and is susceptible to local damage (chips, cracks, severe breaks, depressions, buckling), and is inherently mechanically effective. The problems of earthquake resistance, vibration control and durability can be overcome.

(7):(1)〜(6)に記載の押込固定具5で凹部29を形成させる目的と効果とは別の、もう一つの狙いは、発泡合成樹脂板体1毎に止着される多数の押込固定具5が多次元方向からの外力や震動を受けた時、押込固定具5と凹部29の断面構造が略球面状や略円錐状であるため、摺動可能な構造となっており、多次元方向からの外力を吸収し易い。さらに、個々の止着部が略垂直、略平行方向等のそれぞれ別々の動きや揺れや振動や浮き沈み等により、突起部5aと凹部29の間に多少の隙間やズレが生じたり、突起部5aが凹部29の底面より多少の浮上りが生じたとしても、個々の突起部5aが飛出したり、離脱してしまわない限り止着効果は維持され、外力や揺れが終焉すれば、略球面や略円錐状の摺動構造からなる止着点に復帰しやすく、経年的に被災が予測される数次の中地震に対しても、その効果を継続して発揮することが可能であることである。   (7): Another purpose different from the purpose and effect of forming the concave portion 29 with the push-in fixture 5 according to (1) to (6) is fixed to each foamed synthetic resin plate 1. When a large number of push fixtures 5 are subjected to external forces or vibrations from multidimensional directions, the cross-sectional structures of the push fixtures 5 and the recesses 29 are substantially spherical or substantially conical, so that they can slide. It is easy to absorb external force from multi-dimensional directions. Furthermore, a slight gap or misalignment may occur between the protrusions 5a and the recesses 29 due to individual movements, shaking, vibration, ups and downs, etc. of the individual fastening parts in substantially vertical and substantially parallel directions, or the protrusions 5a. Even if a slight rise occurs from the bottom surface of the recess 29, the fastening effect is maintained unless the individual protrusions 5a jump out or disengage, and if the external force or shaking ends, It is easy to return to the fixed point consisting of a substantially conical sliding structure, and it is possible to continue to exert its effects even against several moderate earthquakes that are predicted to be damaged over time. is there.

又、図3に記載の押込固定具の埋没深さ34は、押込固定具の一部又は全部を発泡合成樹脂板体中に押込み、埋没させる深さを指す。   Moreover, the embedment depth 34 of the push fixture shown in FIG. 3 indicates the depth at which a part or all of the push fixture is pushed into the foamed synthetic resin plate and buried.

以上のように、構造躯体4と発泡合成樹脂板体とが、高い圧接力と止着力と摩擦力で一体化されて発泡合成樹脂板体の止着部及び該板体の全体が弾性変形、復元する本発明の止着構造では、発泡合成樹脂板体1は、地震エネルギー等の外力や変形力を吸収(減衰)、蓄積し、復元させる母体として機能する。これは、従来の制震ダンパーが地震エネルギーを摩擦熱に変換するのに対して、一旦吸収した圧縮や変形エネルギーを発泡合成樹脂板体1が有する緩衝性と粘弾性と抗張力でもって復元エネルギーとして賦活することができ、構造躯体4が保有する耐震強度や変形復元力を補完すると共に、相乗効果を高めて、建物躯体50の地震の揺れの抑制や損傷、損壊等の被害を最小限にとどめる作用として働くことが可能となる。   As described above, the structural casing 4 and the foamed synthetic resin plate are integrated with high pressure contact force, fastening force, and frictional force, and the fastening portion of the foamed synthetic resin plate and the whole of the plate are elastically deformed. In the fastening structure of the present invention to be restored, the foamed synthetic resin plate 1 functions as a mother body that absorbs (damps), accumulates and restores external forces and deformation forces such as seismic energy. This is because the conventional damping damper converts the seismic energy into frictional heat, while the foamed synthetic resin plate 1 has the cushioning, viscoelasticity and tensile strength that once absorbed the compression and deformation energy. It can be activated, complements the seismic strength and deformation resilience possessed by the structural frame 4 and enhances the synergistic effect, minimizing the damage of the building frame 50, such as suppressing or damaging the earthquake. It becomes possible to work as an action.

つまり、発泡合成樹脂板体1が押込固定具で構造躯体に堅固に止着されることにより壁面全体が断熱性能を有するだけでなく、地震エネルギーによる変形、圧縮、衝撃エネルギーの緩衝・吸収母体として、更には、その復元母体として機能するところの発泡合成樹脂板体自体が、断熱性と耐震性と制震性を併せ有する複合材料(制震材料)として機能し、さらには、これらを用いた外断熱の壁面そのものが耐・制震壁になりうることを意味する。また、発泡合成樹脂板体1が構造躯体4面に堅固に密着して押圧、止着される別の効果として、構造躯体4に設けられる耐力壁(構造用面材15)や筋交いや各種の耐震金物が層間変位角度1/30rad程度の大きな変位を受けた時に発生するとされる釘頭抜け現象、釘の破断分離、構造用面材の止着部の裂断や剥離現象や、さらには、軸組み部のホゾ抜け等を2次的に保護、抑制するプロテクター的な機能を発揮することが期待され、構造躯体4の耐震劣化や損傷、損壊の抑制に寄与することが期待される。   In other words, the foamed synthetic resin plate 1 is firmly fixed to the structural frame with the indentation fixture, so that the entire wall surface has not only heat insulation performance, but also as a buffer / absorption base material for deformation, compression and impact energy due to seismic energy. Furthermore, the foamed synthetic resin plate itself that functions as the restoration matrix itself functions as a composite material (damping material) that has both heat insulation, earthquake resistance, and vibration control properties. This means that the wall surface of the outer insulation itself can be a proof / damping wall. Further, as another effect that the foamed synthetic resin plate 1 is firmly attached to the surface of the structural housing 4 and pressed and fixed, the bearing wall (structural surface material 15) provided in the structural housing 4 and braces Nail head drop phenomenon that occurs when the seismic hardware is subjected to a large displacement of about 1/30 rad between the interlayer displacements, fracture separation of the nail, tearing and peeling phenomenon of the fastening part of the structural face material, It is expected to exhibit a protector-like function that secondarily protects and suppresses the detachment of the shaft assembly part, and is expected to contribute to the suppression of seismic deterioration, damage, and breakage of the structural housing 4.

これらの発泡合成樹脂板体1の止着構造からなる外断熱の壁面で働く変形と震動を伴う地震エネルギーの吸収挙動と復元挙動は、構造躯体4自体が有する耐震強度と相まって、地震対策の3大要素技術と言われる耐震(支承)、減衰、復元の3大機能を建物躯体50で発現させることが出来ることとなる。つまり、発泡合成樹脂板体1は、合成樹脂の種類、必要断熱性能、発泡合成樹脂板体厚み、表面補強材の有無、押込固定具の外径寸法や形状や止着箇所や数量等の選定・設計により、極めて良好な耐・制震外断熱住宅等、高耐久性の建物構造を提供し得る。   The absorption and restoration behavior of seismic energy accompanied by deformation and vibration acting on the wall surface of the outer heat insulation composed of the fixed structure of the foamed synthetic resin plate 1 is combined with the seismic strength of the structural frame 4 itself, and it is 3 The three major functions of earthquake resistance (support), damping, and restoration, which are said to be major elemental technologies, can be expressed in the building frame 50. In other words, the foamed synthetic resin plate 1 is selected from the type of synthetic resin, the required heat insulation performance, the thickness of the foamed synthetic resin plate, the presence / absence of a surface reinforcing material, the outer diameter size and shape of the pressing fixture, the fastening location, the quantity, and the like. -The design can provide a highly durable building structure such as an extremely good anti-seismic and non-seismic insulated house.

更には、後述する本発明の押込突起付通気胴縁14aや、外力や変形が集中しやすい軸組み部(仕口部)近傍等の壁面に、緩衝性の高い半硬質発泡合成樹脂板体1sあるいはゴム状弾性板体20などの緩衝用板体を配設して残余の壁面に硬質発泡合成樹脂板体1rを配設する耐・制震外断熱構造や、さらに又、内断熱住宅における外力や変形が集中し易い柱間空間の軸組み部(上、下仕口部)近傍や出隅、入隅部等の壁面全部や間仕切り壁等に、制震枠体を介し、半硬質発泡合成樹脂板体1sなどの緩衝用板体を配設、止着する耐・制震内断熱構造が可能となる。   Further, the semi-rigid foam synthetic resin plate 1s having a high buffering property is provided on a wall surface in the vicinity of a ventilator edge 14a with a push-in projection of the present invention, which will be described later, or a shaft assembly portion (joint portion) where external force and deformation tend to concentrate. Alternatively, a shock-proof and heat-resistant outer heat insulating structure in which a shock absorbing plate body such as a rubber-like elastic plate body 20 is disposed and a hard foam synthetic resin plate body 1r is disposed on the remaining wall surface, and also an external force in an inner heat insulating house Semi-rigid foam synthesis via a seismic control frame around the wall of the inter-column space (upper and lower joints), where all of the walls are prone to deformation and deformation, and all wall surfaces such as the protruding corners and entrance corners, and partition walls It is possible to provide an anti-seismic and anti-seismic heat insulating structure in which a buffer plate such as the resin plate 1s is disposed and fastened.

さらに又、上記の制震枠体の代替として、柱、間柱、梁、土台等からなる1つの柱間空間の内周面に発泡合成樹脂板体を配設する深さの嵌溝を予めプレカット工場で彫設しておけば、現場では制震枠体を新たに設ける必要が無く、該嵌溝に発泡合成樹脂板体を配設し押込固定具で止着すれば耐・制震内断熱構造が可能となる。(図18参照)
さらには、1柱間空間の上部仕口部及び/又は下部仕口部等に、発泡合成樹脂板体を構造用面材の厚み寸法分だけ突出させて配設できる深さの嵌溝(又は、制震枠体)を彫設しておき、発泡合成樹脂板体を配設後、押込固定具で発泡合成樹脂板体を止着させると共に、該発泡合成樹脂板体の止着部位を除く残余の柱間空間には、耐力壁材である構造用面材を発泡合成樹脂板体と面一に連接又は、非連接させて配設することにより、1柱間空間内に耐・制震性を有する発泡合成樹脂板体と、耐震性を有する構造用面材との両者が共存することにより、この両者が有する夫々の特性が複合化して発揮するので、極めて優れた耐・制震性能を有する全く新しい構造の弾性耐力壁構造の提供が可能となる。(図19参照)
上記の弾性耐力壁構造を採用すれば、変形や揺れや損傷の激しい上部仕口部及び/又は下部仕口部等において、発泡合成樹脂板体が長期に、かつ、安定して耐・制震性能を発揮し、家屋の変形や揺れを大幅に減衰、抑制させ得る。一方、変形や揺れが少ない柱間空間の略中央部においては、構造用面材からなる耐力壁が耐震性を発揮しながらも、構造用面材自体が損傷、損壊し易いという従来の耐力壁の課題が大幅に低減されるという効果も発揮する。このため耐・制震性は長期に維持され、構造躯体全体の耐久性と安全性が向上し、従来の耐震住宅では不可能とされた数次の中地震の繰り返し被災に対しても、長期に安定した耐・制震性能と耐久性を発揮することが期待できるのである。
Furthermore, as an alternative to the above-mentioned seismic control frame body, a fitting groove having a depth for disposing a foamed synthetic resin plate body on the inner peripheral surface of one inter-column space composed of columns, inter-columns, beams, foundations, etc. is pre-cut in advance. If it is sculpted at the factory, it is not necessary to install a new vibration control frame at the site. A structure is possible. (See Figure 18)
Furthermore, a fitting groove (or a depth) that allows the foamed synthetic resin plate body to be protruded by the thickness dimension of the structural face material in the upper joint portion and / or the lower joint portion of the space between the columns, or the like. , The vibration control frame body) is engraved, and after the foamed synthetic resin plate is disposed, the foamed synthetic resin plate is fastened with a pressing fixture, and the fastening portion of the foamed synthetic resin plate is removed. In the remaining inter-column space, a structural face material, which is a load-bearing wall material, is connected to the foamed synthetic resin plate in the same or non-connected manner, thereby providing resistance and vibration control within the space between the columns. The coexistence of a foamed synthetic resin plate body with structural properties and a structural face material with earthquake resistance allows the respective characteristics of both to be combined and exhibit extremely excellent anti-seismic performance It is possible to provide an elastic bearing wall structure having a completely new structure. (See Figure 19)
By adopting the above elastic bearing wall structure, the foamed synthetic resin plate body can be stably and withstand vibration and vibration for a long period of time in the upper and / or lower joints where deformation, shaking and damage are severe. Demonstrates performance and can greatly attenuate and suppress deformation and shaking of the house. On the other hand, in the almost central part of the inter-column space where there is little deformation or shaking, the conventional bearing wall in which the structural wall material itself is easily damaged or damaged while the structural wall material is seismic resistant. The effect of greatly reducing the problem is also demonstrated. For this reason, seismic resistance is maintained over a long period of time, and the durability and safety of the entire structural frame are improved. It is expected to exhibit stable and anti-seismic performance and durability.

耐震性能と制震性能を有する発泡合成樹脂板体と、従来の耐力壁材である構造用面材とを1壁面(1柱間空間)内で、面一状に適宜、適所で組み合せて共用してなるこの弾性耐力壁構造は、外断熱、内断熱構造の住宅を問わず、又、木製、鋼製の住宅を問わず、広く適用できる。この弾性耐力壁構造は、従来の耐震住宅において、各種の高価な制震装置を導入、付加させてなる耐・制震住宅の構造理論とは、原理を異にし、それらを超えた新しい理論による構造を提供するものであって、低コストであると共に、施工性や、耐久性や、リフォーム性に優れ、長期優良住宅に最も望ましい壁構造が提供し得るのである。これらの弾性耐力壁構造に供する発泡合成樹脂板体としては、半硬質発泡合成樹脂板体等からなる緩衝用板体が特に望ましいが、別段限定されるものではない。   A foamed synthetic resin plate with seismic performance and vibration control performance and a structural face material, which is a conventional load-bearing wall material, are combined in a single wall (space between one column) as appropriate in a suitable location and shared. The elastic load-bearing wall structure thus formed can be widely applied regardless of whether the house has an outer heat insulating structure or an inner heat insulating structure, or a wooden or steel house. This elastic load-bearing wall structure is based on a new theory that is different from the structural theory of a seismic-resistant house that has been introduced and added to various conventional seismic-resisting houses. It provides a structure, which is low in cost and excellent in workability, durability, and reformability, and can provide the most desirable wall structure for a long-term excellent house. As the foamed synthetic resin plate used for the elastic bearing wall structure, a buffer plate made of a semi-rigid foamed synthetic resin plate or the like is particularly desirable, but is not particularly limited.

又、後述の制震パネル40と、従来の構造躯体に採用されている耐力壁、筋交い、耐震金物等からなる在来の耐震構造とを適所で組合せて複合化し、耐震性と制震性とを併せ持つ最適化された耐・制震外断熱住宅等、高耐久性の建物構造とすることが可能となるのである。なお、本発明の押込固定具からなる止着構造においては、特殊螺子釘等の捻じ込みの止着構造が望ましく、螺着することにより、止着強度や耐久性や着脱性に優れ、長期優良住宅における断熱リフォームや耐・制震リフォーム等のメンテナンス性にも優れたものとなる。   In addition, the seismic control panel 40, which will be described later, and a conventional seismic structure composed of bearing walls, braces, seismic hardware, etc., used in the conventional structural frame, are combined and combined at appropriate locations. Therefore, it is possible to achieve a highly durable building structure such as an optimized anti-seismic and non-seismic insulated house. In the fastening structure comprising the push-in fixture of the present invention, a screwed fastening structure such as a special screw nail is desirable, and by screwing, it is excellent in fastening strength, durability and detachability, and excellent in long term. It also has excellent maintainability such as heat insulation reform and anti-seismic and seismic reform in the house.

上記した本発明の耐震や制震の機構や機能は、現状で実施し、確認した効果に加え、これらから推定しうる仮説をも含むものである。今後、より実用に近い試作モデルによる弾性変形/弾性復元試験や震動試験、及び止着部の局部破壊実験や経時劣化試験に加え、法規で定める実大モデルによる静的試験法(柱頭柱脚固定式・面内せん断試験法)や、更には、最近新たに建築基準法に導入された地震を地震エネルギーとして捉え、耐震性を建物躯体が有する必要エネルギー吸収量で評価する動的評価方法である「エネルギーの釣り合いに基く耐震設計法」(新エネルギー法とも称される)に基く実大モデルによる加震試験を行うことにより、その効果はより確実に証明されると共に理論的な解明も進展すると思われる。しかるに、本願で既述した仮説を含む記載でもって本発明を何ら制限するものでないことは当然である。また、本発明に記載した仮説や推察を含む記述は、本発明を判り易く説明するために、あえて踏み込んで記したものであるので、例え、それらに誤謬や誤解が有ったとしても、そのことによって本発明の価値を何ら損ねるものではない。   The above-described mechanisms and functions of earthquake resistance and damping of the present invention include hypotheses that can be estimated from these in addition to the effects that have been implemented and confirmed at present. In the future, in addition to the elastic deformation / elastic recovery test and vibration test using a prototype model that is closer to practical use, and the local fracture test and secular deterioration test of the fastening part, the static test method using the full-scale model specified by regulations This is a dynamic evaluation method that considers earthquakes newly introduced into the Building Standards Act as seismic energy and evaluates earthquake resistance with the required energy absorption amount of the building frame. By conducting an earthquake test using a full-scale model based on the “seismic design method based on energy balance” (also called the new energy method), the effect will be proved more reliably and theoretical elucidation will also progress. Seem. However, it is a matter of course that the present invention is not limited to the description including the hypothesis already described in the present application. In addition, the descriptions including hypotheses and inferences described in the present invention are intentionally written in order to explain the present invention in an easy-to-understand manner, so even if they have errors or misunderstandings, This does not detract from the value of the present invention.

本発明で構造躯体とは、建物等の構築物の屋根、壁面、床、天井、開口部、基礎部等からなる建物躯体を形成する基本的な骨格部とその強度を支える躯体部分の総称である。例えば、壁面は、土台や横架材、柱や間柱等の構造材と構造用面材や筋交いや内装材(プラスターボード)等の補強材で構成され、屋根や天井は、桁や母屋や垂木や下地面材やその他の架材や補強材で構成されている。本発明でいう構造躯体というのは、建物躯体をも含む概念として用いている。よって構造躯体に換え建物躯体と称することもある。又、本発明で柱間空間等の寸法の記載に際しては、尺モジュールを基本に記載する場合がある。   The structural frame in the present invention is a general term for a basic skeleton part that forms a building frame composed of a roof, a wall surface, a floor, a ceiling, an opening, a foundation, and the like of a structure such as a building and a frame part that supports the strength. . For example, the wall surface is composed of structural materials such as foundations, horizontal members, columns and studs, and structural materials such as struts and interior materials (plaster boards), and the roof and ceiling are made of girders, purlins, rafters, It consists of lower ground material and other frames and reinforcements. The structural frame in the present invention is used as a concept including a building frame. Therefore, it may be called a building frame instead of a structural frame. In the present invention, when describing the dimensions of the inter-column space or the like, the scale module may be used as the basis.

本発明で耐力壁とは、従来から最も一般的に採用されている塑性材料である構造用面材からなる耐力壁を言う。   In the present invention, the load-bearing wall refers to a load-bearing wall made of a structural face material, which is a plastic material that has been most commonly employed.

本発明で外装壁構成材とは、1)外断熱構造においては、構造躯体の外壁面側に発泡合成樹脂板体を配設し、本発明の押込固定具で止着させた後、その外周面に配設される構成材をいう。具体的には、透湿防水シート、通気胴縁、外壁材(サイディング等)等を総称したものである。   In the present invention, the exterior wall constituting material is 1) In the outer heat insulating structure, a foamed synthetic resin plate is disposed on the outer wall surface side of the structural housing, and is fixed by the pressing fixture of the present invention. A component disposed on a surface. Specifically, it is a collective term for moisture permeable waterproof sheets, ventilating rims, outer wall materials (siding, etc.), and the like.

2)内断熱構造においては、柱間空間の所定の内周面に設ける制震枠体又は嵌溝に発泡合成樹脂板体を配設し本発明の押込固定具で止着させ、さらに、断熱仕様に準じ充填断熱材(繊維系断熱材や発泡合成樹脂板体等)を充填後、その構造躯体の外周面に配設、固着させる構成材を言う。具体的には、構造用面材(耐力壁材)、透湿防水シート、通気胴縁、外壁材(サイディング等)等を総称したものである。   2) In the inner heat insulating structure, a foamed synthetic resin plate is disposed in a vibration control frame or fitting groove provided on a predetermined inner peripheral surface of the inter-column space, and is fixed by the pressing fixture of the present invention. It refers to a constituent material that is disposed and fixed on the outer peripheral surface of the structural housing after filling with a heat insulating material (such as a fiber-based heat insulating material or a foamed synthetic resin plate) according to specifications. Specifically, it is a collective term for structural face materials (bearing wall materials), moisture-permeable waterproof sheets, ventilating rims, outer wall materials (siding, etc.), and the like.

又、3)前記2)での内断熱構造とは、少し構造を異にするもので、例えば、通気胴縁や外壁材(サイディング等)を設けず、構造用面材の外周面に、直接、防水紙とラス網を配設し、モルタル材等で外装仕上げをする工法の防水紙、ラス網、モルタル材等も外装壁構成材である。   3) The inner heat insulating structure in 2) is slightly different from the inner heat insulating structure. Further, waterproof paper, lath net, mortar material, and the like of a construction method in which waterproof paper and a lath net are provided and exterior finishing is performed with a mortar material or the like are also exterior wall constituent materials.

本発明の押込固定具は、望ましくは、その略中央に止着材が貫通する貫通孔を有しており、止着材が押込固定具の貫通孔と発泡合成樹脂板体を貫通して構造躯体にねじ込まれる。押込固定具の略中央に貫通孔を有していない押込固定具の場合には、止着材でもって押込固定具の略中央を穿ち、発泡合成樹脂板体と共に貫通させて構造躯体にねじ込み止着させる。   The push-in fixture of the present invention desirably has a through-hole through which the fastening material penetrates at substantially the center thereof, and the fastening material passes through the through-hole of the push-in fixture and the foamed synthetic resin plate. Screwed into the housing. In the case of a push-in fixture that does not have a through hole at the approximate center of the push-in fixture, drill the approximate center of the push-in fixture with a fastening material and penetrate it with the foamed synthetic resin plate to stop screwing into the structural housing. Put on.

このように螺着させることにより、押込固定具の一部又は全部が発泡合成樹脂板体中に埋没し、発泡合成樹脂板体中に応力分散させて押圧力をかける役割を奏す。また、この押込固定具には、突起部を有する押込固定具と突起部を有さない押込固定具が存在する。突起部を有する押込固定具とは、構造躯体方向に径が減少する凸状の突起部を有している。   By screwing in this way, a part or all of the indentation fixture is buried in the foamed synthetic resin plate, and plays a role of applying stress by dispersing the stress in the foamed synthetic resin plate. In addition, the push fixture includes a push fixture having a projection and a push fixture having no projection. The push-in fixture having a protrusion has a convex protrusion whose diameter decreases in the direction of the structural housing.

そして、押込固定具の突起部の一部又は全部、あるいは押込固定具の全部が発泡合成樹脂板体中に埋没して発泡合成樹脂板体に押圧力をかけて、発泡合成樹脂板体を構造躯体に強力に止着する。   Then, a part or all of the protrusions of the indentation fixture, or all of the indentation fixtures are buried in the foamed synthetic resin plate, and a pressure is applied to the foamed synthetic resin plate to structure the foamed synthetic resin plate. Strongly attached to the frame.

一方、押込固定具と、発泡合成樹脂板体(樹脂種類や発泡倍率や厚み)との組合せによる止着力の関係で見た場合において、1)硬質発泡合成樹脂板体1rを使用する場合には、粘弾性や抗張力が比較的少ないので、該板体1rの表面に対し、比較的大きな径の基端部5bで、突起部高さ5aの低い押込固定具を用いて、面一になるように止着材を用いて螺着して押込み、埋没させることが良好な止着を達成するのに望ましい。因みに、硬質発泡合成樹脂板体1rの発泡倍率は、20倍〜80倍程度が好ましい。   On the other hand, when viewed in terms of the fastening force due to the combination of the indentation fixture and the foamed synthetic resin plate (resin type, foaming magnification and thickness), 1) When using the rigid foamed synthetic resin plate 1r Since the viscoelasticity and the tensile strength are relatively small, the base end portion 5b having a relatively large diameter is made flush with the surface of the plate 1r by using a pressing fixture having a low protrusion height 5a. In order to achieve good fastening, it is desirable to screw, press and bury them using a fastening material. Incidentally, the expansion ratio of the hard foam synthetic resin plate 1r is preferably about 20 to 80 times.

2)一方、高い粘弾性や抗張力を有する半硬質発泡合成樹脂板体1sは、主として、大きな外力や震動等が発生する箇所(仕口部等)に採用されることが多いことから、比較的低倍発泡品(例:15倍〜60倍)を選定するのが好ましい。そのため、押込固定具の外周部周辺には、大きな有効押圧面積35や押圧樹脂領域30や圧縮応力分散領域31等が得やすく、基端部5bが小さな外径であっても、あるいは、突起部5aの高さが低くても、又、少ない埋没深さであっても、大きな止着力が得られやすい傾向にある。例えば、大き過ぎる押込固定具(例:外径50mmΦ、突起部5a高さ30mmH 略半円球状)を用いて、半硬質発泡合成樹脂板体(例:ビーズ法発泡ポリプロピレン、20倍発泡品、厚み45mm)に面一にまで突起部5aを押込み、埋没させて螺着しようと試みたが、過大な有効押圧面積35や、押圧樹脂領域30や圧縮応力分散領域31が形成され、そのために、過大な応力(反力)が発生することになってしまい、構造躯体の螺着部が破損して止着不能となった。   2) On the other hand, the semi-rigid foam synthetic resin plate body 1s having high viscoelasticity and tensile strength is mainly employed in places where a large external force, vibration, etc. are generated (such as a joint portion). It is preferable to select a low-magnification foamed product (eg, 15 to 60 times). Therefore, it is easy to obtain a large effective pressing area 35, a pressing resin region 30, a compressive stress dispersion region 31 and the like around the outer peripheral portion of the pressing fixture, and even if the base end portion 5b has a small outer diameter, or a protruding portion Even if the height of 5a is low, or even if the depth of burial is small, a large fastening force tends to be obtained. For example, a semi-rigid foam synthetic resin plate (eg, bead-method foamed polypropylene, 20-fold foamed product, thickness) using an excessively large indentation fixture (eg: outer diameter 50 mmΦ, protrusion 5a height 30 mmH, substantially semispherical) 45 mm), the projection 5a was pushed to the same plane, and it was attempted to be buried and screwed. However, an excessive effective pressing area 35, a pressing resin region 30, and a compressive stress dispersion region 31 were formed. Stress (reaction force) is generated, and the screwed portion of the structural housing is damaged and cannot be fixed.

半硬質発泡合成樹脂板体を用いる場合には、このような特徴を利用し所定の止着力を得ると共に、押込固定具の止着の作業性を向上させるには、次のような工夫をすることが望ましい。すなわち、1)半硬質発泡合成樹脂板体に対する押込固定具は、外径に対する突起高さ5aを低くして、面一に埋没させるまでの距離を短くすることで、必要な止着力が得られる形状のものを選定する方法。   When a semi-rigid foam synthetic resin plate is used, the following measures are taken to obtain a predetermined fastening force using such characteristics and to improve the workability of fastening of the push-in fixture. It is desirable. That is, 1) The pressing fixture for the semi-rigid foam synthetic resin plate can obtain the necessary fastening force by reducing the projection height 5a with respect to the outer diameter and shortening the distance until it is flush with the surface. How to select the shape.

2)ビーズ法型内成形等で半硬質発泡合成樹脂板体を成形する際に、予め、止着部に装着凹部1wを付形しておき、該装着凹部1wに押込固定具の一部を止着面側に突出させ仮装着させた押込固定具付発泡合成樹脂板体1uを形成する。この押込固定具付発泡合成樹脂板体1uは、現場で配設し、仮装着した押込固定具を面一の埋没深さに止着させればよい(図18(d)、図18(b)、(c)参照)。3)上記以外であっても、施工性に優れ、必要な止着力が得られる方法であれば特に限定されるものではなく、適宜、選択実施すればよい。   2) When molding a semi-rigid foam synthetic resin plate by in-mold molding or the like, a mounting recess 1w is previously formed in the fastening portion, and a part of the pressing fixture is placed in the mounting recess 1w. A foamed synthetic resin plate 1u with a push-in fixture that is protruded to the fastening surface side and temporarily attached is formed. This foamed synthetic resin plate 1u with a push-in fixture is disposed on site, and the temporarily-installed push-in fixture may be fastened to the same buried depth (FIGS. 18D and 18B). ) And (c)). 3) Other than the above, the method is not particularly limited as long as it is excellent in workability and can provide a necessary fastening force, and may be appropriately selected and implemented.

本発明にいう有効押圧面積35とは、半硬質発泡合成樹脂板体(例えば、発泡ポリエチレン、発泡倍率30倍 厚み30mmH,商品名エペラン)を例にして説明すれば、押込固定具(例:外径35mmΦ 突起部高さ 10mmH、円皿状)を止着表面に面一に埋没させ、止着させる際、該押込固定具を該半硬質発泡合成樹脂板体中に押込み、埋没させるに従い、該板体が有する粘弾性や抗張力が作用して押込固定具の埋没量に略比例して、押込固定具の外周部周辺に、目視できる緩やかな引き込み応力曲面36を伴って有効押圧面積35が拡大して、形成される現象が起こる(図3参照)。   The effective pressing area 35 referred to in the present invention can be explained by taking a semi-rigid foam synthetic resin plate (for example, foamed polyethylene, foaming ratio 30 times thickness 30 mmH, trade name Eperan) as an example. Diameter 35 mmΦ protrusion height 10 mmH, disk-shaped) is flushed to the fastening surface and fastened, the push fixture is pushed into the semi-rigid foam synthetic resin plate and The effective pressing area 35 is enlarged around the outer peripheral portion of the pressing fixture with a visibly pulling stress curved surface 36 visible in the vicinity of the pressing fixture, due to the viscoelasticity and tensile strength of the plate. Thus, the phenomenon that is formed occurs (see FIG. 3).

この引き込み応力曲面36を含む有効押圧面積35の外周の境界線は厳密には特定できないが、この実験例では、概ね、約55mmΦの外径からなる有効押圧面積35(該押込固定具の約2.5倍の面積)が形成され、該板体の肉厚方向には、該有効押圧面積35を起点に押圧樹脂領域30や圧縮応力分散領域31が拡大して、形成される(これらは、該止着部を切断して、その断面を目視して圧縮断面構造等を観察することで確認できる)。   Although the boundary line of the outer periphery of the effective pressing area 35 including the pulling stress curved surface 36 cannot be specified strictly, in this experimental example, the effective pressing area 35 having an outer diameter of about 55 mmΦ is approximately (about 2 of the pressing fixture). In the thickness direction of the plate body, the pressing resin region 30 and the compressive stress dispersion region 31 are enlarged and formed starting from the effective pressing area 35 (these are: This can be confirmed by cutting the fastening portion and visually observing the cross section and observing the compression cross section structure and the like).

つまり、外径35mmΦの押込固定具で止着した場合、実際の止着部に働く押圧力は、論理的には、該有効押圧面積35(外径約55mmΦの面積に相当する)からなる高い押圧力で止着させるのと略同等の高い止着力が得られることになる。さらに、該有効押圧面積35が拡大、形成される別の利点は、該有効押圧面積35の厚み方向に略比例的に拡大、形成される押圧樹脂領域30や圧縮応力分散領域31が形成されることになり、局部圧縮の分散化と、圧縮クリープ現象を抑制させる効果を発揮する。   That is, when fastened with a pressing fixture having an outer diameter of 35 mmΦ, the pressing force acting on the actual fastening portion is logically high consisting of the effective pressing area 35 (corresponding to an outer diameter of about 55 mmΦ). A high fastening force substantially equal to the fastening with pressing force is obtained. Furthermore, another advantage that the effective pressing area 35 is enlarged and formed is that a press resin region 30 and a compressive stress dispersion region 31 are formed which are enlarged and formed substantially proportionally in the thickness direction of the effective pressing area 35. As a result, the effect of dispersing local compression and suppressing the compression creep phenomenon is exhibited.

これらの押込固定具及び/又は突起部は、金属、木、硬質プラスチック、硬質弾性体等からなり、発泡合成樹脂板体中に埋没し、発泡合成樹脂板体に押圧力をかけ得る素材で構成される。特に、長年の押圧力に耐え、出来るだけ変形しないものが好ましい。最も好ましいのは、金属、木、硬質プラスチック等の素材である。押込固定具及び突起部は、同一素材であることがコストの面から好ましいが、別の素材であることを何ら制限するものではない。この押込固定具の基端部の周縁及び突起部は、押込固定具の基端部に対して90度より小の曲面及び/又は平面を有していることから押込み方向に対し押込力を応力分散させながら埋没することができる。そうしないと発泡合成樹脂板体に集中荷重が加わり局部圧縮、局部破壊を起こさせて、本発明の目的を達しないことになる。但し、すぐ後に記す突起部を有しない押込固定具をゴム状弾性板体と併用する場合を例外とする。   These push fixtures and / or projections are made of metal, wood, hard plastic, hard elastic body, etc., and are made of a material that can be embedded in the foam synthetic resin plate and apply pressure to the foam synthetic resin plate. Is done. In particular, those that can withstand the pressing force for many years and do not deform as much as possible are preferable. Most preferred are materials such as metal, wood and hard plastic. Although it is preferable from the surface of cost that a pushing fixture and a projection part are the same materials, it does not restrict | limit at all that it is a different material. Since the peripheral edge and the protrusion of the proximal end portion of the indentation fixture have a curved surface and / or plane smaller than 90 degrees with respect to the proximal end portion of the indentation fixture, the indentation force is stressed in the indentation direction. It can be buried while being dispersed. Otherwise, a concentrated load is applied to the foamed synthetic resin plate, causing local compression and local breakage, and the object of the present invention is not achieved. However, an exception is the case where a pressing fixture that does not have a protruding portion, which will be described later, is used in combination with a rubber-like elastic plate.

又、緩衝性や柔軟性の高い半硬質発泡合成樹脂板体1sは、硬質発泡合成樹脂板体1rに比し、止着部(押圧樹脂領域部分)にせん断現象の懸念が少ないため、後述する制震パネル等で、1カ所当りの止着力を向上させる方法として、例えば、押込固定具5の突起部5aの外周面の適所に緩やかな凹入部5qを設けて止着力を向上させることもできる(図4(f)参照)。   Further, the semi-rigid foam synthetic resin plate 1s having high buffering properties and flexibility is less likely to cause a shear phenomenon at the fastening portion (pressed resin region portion) than the hard foam synthetic resin plate 1r, and will be described later. As a method for improving the fastening force per place with a vibration control panel or the like, for example, a gentle recess 5q can be provided at an appropriate position on the outer peripheral surface of the protrusion 5a of the push-in fixture 5 to improve the fastening force. (See FIG. 4 (f)).

一方、突起部を有さない押込固定具は、一般に座金と呼ばれる形状であるが、本発明では突起部を有さない押込固定具をそのまま発泡合成樹脂板体に接触させて使用することはしない。突起部を有さない押込固定具と発泡合成樹脂板体との間にはゴム状弾性板体を介在させる必要がある。更に、このゴム状弾性板体の大きさは、突起部を有さない押込固定具の大きさと略同一であるか、より大であることを必要とする。この状態で、突起部を有さない押込固定具の貫通孔から止着材が、ゴム状弾性板体と発泡合成樹脂板体を貫通して構造躯体にねじ込まれる。こうして突起部を有さない押込固定具の一部又は全部がゴム状弾性板体と共に発泡合成樹脂板体中に埋没することにより、発泡合成樹脂板体に押圧力をかけることになる。突起部を有さない押込固定具の周縁が、該突起部を有さない押込固定具表面に対して90度の曲面及び/又は平面を有していても、ゴム状弾性板体が存在しているので、当該曲面及び/又は平面が、該ゴム状弾性板体によりカバーされるので集中荷重による局所破壊を起こすことはない。突起部を有さない押込固定具は、突起部を有する押込固定具と同様の素材が使用でき、負荷する押圧力に耐え、出来るだけ押圧力で湾曲状に変形しないものが望ましく、少なくとも、押込み時の変形量(湾曲高さ)は後述する突起を有する押込固定具の突起部の高さと同等以下であることが望ましい。   On the other hand, indentation fixtures that do not have protrusions have a shape generally called a washer, but in the present invention, the indentation fixtures that do not have projections are not used by directly contacting the foamed synthetic resin plate. . It is necessary to interpose a rubber-like elastic plate between the push fixture having no protrusion and the foamed synthetic resin plate. Further, the size of the rubber-like elastic plate body needs to be approximately the same as or larger than the size of the push-in fixture having no protrusion. In this state, the fastening material passes through the rubber-like elastic plate body and the foamed synthetic resin plate body and is screwed into the structural housing from the through hole of the pressing fixture having no protrusion. In this way, a part or all of the pressing fixture having no projection is buried in the foamed synthetic resin plate together with the rubber-like elastic plate, thereby applying a pressing force to the foamed synthetic resin plate. Even if the periphery of the indentation fixture that does not have a projection has a curved surface and / or a plane of 90 degrees with respect to the surface of the indentation fixture that does not have the projection, there is a rubber-like elastic plate. Therefore, the curved surface and / or the flat surface is covered with the rubber-like elastic plate body, so that local destruction due to concentrated load does not occur. The push fixture without projections can be made of the same material as the push fixture with projections, and it should be able to withstand the applied pressing force and not be deformed into a curved shape by the pressing force as much as possible. It is desirable that the amount of deformation (curved height) at the time is equal to or less than the height of the protrusion of the push-in fixture having a protrusion described later.

押込固定具、および突起部を有さない押込固定具が、発泡合成樹脂板体への局部圧縮を防止し良好な押圧力をかけるには、押込固定具の基端部の大きさ、すなわち直径は、発泡合成樹脂板体の樹脂種類、発泡倍率、厚み、表面補強材の有無、突起高さ、有効押圧面積35の形成量等の関係から、一概には論じられないが、硬質発泡合成樹脂板体の場合、断熱材の厚みの概ね2/3程度以上の外径であることが望ましく、2/3未満では、本発明を達成するのに重要な既述した有効押圧面積や押込樹脂領域や圧縮応力分散領域を形成させるのに不十分な傾向を示し、一般的には、硬質発泡合成樹脂板体では20mmΦ以上、半硬質発泡合成樹脂板体では15mmΦ以上であることが施工性からも望ましい。   In order for the indentation fixture and the indentation fixture that does not have a protrusion to prevent local compression on the foamed synthetic resin plate and apply a good pressing force, the size of the base end of the indentation fixture, that is, the diameter Is not generally discussed because of the relationship between the resin type of the foamed synthetic resin plate, the foaming ratio, the thickness, the presence or absence of a surface reinforcing material, the height of the protrusion, the amount of formation of the effective pressing area 35, etc. In the case of a plate body, the outer diameter is preferably about 2/3 or more of the thickness of the heat insulating material, and if it is less than 2/3, the effective pressing area and the indentation resin region described above that are important for achieving the present invention are used. From the viewpoint of workability, it is generally less than 20 mmΦ for a rigid foam synthetic resin plate and 15 mmΦ for a semi-rigid foam synthetic resin plate. desirable.

このことは、例えば、硬質発泡合成樹脂板体の場合、一般的に外断熱材として多用される市販の押出法・発泡ポリスチレン(カネライトフォーム、発泡倍率:30倍、30mm厚、(株)カネカ製、商品名)を用い、球面状の突起部の高さが10mmである押込固定具であって、基端部の外径が、15mmΦ(断熱材厚み×1/2)、20mmΦ(断熱材厚み×2/3)、及び30mmΦ(断熱材厚み×1/1)の3種類の押込固定具を準備し、該発泡合成樹脂板体の止着面に面一に押込み、埋没させる止着テストを実施した結果、外径15mmΦでは、止着面に局部圧縮によるせん断傷が生じると共に埋没面にも亀裂が確認され、弾性復元性が逸損されやすい状態であった。20mmΦのものは、止着面に軽微な傷は認められるものの埋没面に異常はなく、実用上の弾性復元性はほぼ確認され好ましい結果であった。30mmΦのものは、止着面、埋没面とも異常はなく、より好ましい結果であった。   This is because, for example, in the case of a hard foam synthetic resin plate, a commercially available extrusion method / polystyrene foam (Kanelite foam, expansion ratio: 30 times, 30 mm thickness, generally used as an external heat insulating material, manufactured by Kaneka Corporation) , Product name), and the height of the spherical protrusion is 10 mm, and the outer diameter of the base end is 15 mmΦ (heat insulating material thickness × 1/2), 20 mmΦ (heat insulating material thickness) × 2/3) and 30 mmΦ (insulation material thickness × 1/1) of three types of indentation fixtures are prepared, and a fastening test is carried out in which they are pushed into the fastening surface of the foamed synthetic resin plate and buried. As a result of the implementation, when the outer diameter was 15 mmΦ, shear damage due to local compression occurred on the fastening surface, and cracks were also confirmed on the buried surface, and the elastic restoring property was easily lost. In the case of 20 mmφ, a slight damage was observed on the fastening surface, but there was no abnormality in the buried surface, and practically elastic resilience was almost confirmed, which was a preferable result. Those with 30 mmΦ were more preferable because there were no abnormalities on both the fastening surface and the buried surface.

更に、この確認テストを、厚み45mmの同断熱材を使用した場合において、外径22.5mmΦ(断熱材厚み×1/2)、外径30mmΦ(断熱材厚み×2/3)、外径45mmΦ(断熱材厚み×1/1)の3種類で実施した止着テストでも、ほぼ同様の結果であった。これは、断熱材の厚みと押込固定具の外径に相関的な要素が働くものと考えられ、例えば、断熱材厚みの1/2程度の小さな外径では、求める弾性変形をする前に、局部圧縮によりせん断傷が発生しやすくなるものと判断されることから、硬質発泡合成樹脂板体の場合は、断熱材厚みの概ね、2/3以上の外径が望ましい。   Furthermore, when this heat insulating material having a thickness of 45 mm was used for this confirmation test, the outer diameter was 22.5 mmΦ (heat insulating material thickness × 1/2), the outer diameter was 30 mmΦ (heat insulating material thickness × 2/3), and the outer diameter was 45 mmΦ. The same results were obtained in the fastening test conducted with three types of (heat insulating material thickness x 1/1). This is considered to be a function of a correlation factor between the thickness of the heat insulating material and the outer diameter of the indentation fixture.For example, with a small outer diameter of about 1/2 of the heat insulating material thickness, before the desired elastic deformation, Since it is judged that shear flaws are likely to occur due to local compression, in the case of a hard foam synthetic resin plate, an outer diameter of approximately 2/3 or more of the heat insulating material thickness is desirable.

ただ、柔軟性に優れた半硬質発泡合成樹脂板体の場合、例えば、ビーズ法・発泡ポリエチレン(エペラン、発泡倍率30倍、30厚、表面補強材無、(株)カネカの商品名)を用いた場合にあっては、15mmΦ(断熱材厚み×1/2)、20mmΦ(断熱材厚み×2/3)、及び30mmΦ(断熱材厚み×1/1)の3種類の押込固定具を用いたテストを実施した結果、いずれも、問題は発生せず、断熱材の厚みの概ね、1/2以上の外径のものが望ましいことがわかる。よって、押込固定具の基端部の好ましい大きさ、すなわち直径は、使用する発泡合成樹脂の種類、厚み、押込固定具の形状、有効押圧面積35の形成状態などによっても変化する可能性があることから一概に規定しがたいが、20mmΦ以上が望ましい。   However, in the case of a semi-rigid foam synthetic resin plate excellent in flexibility, for example, a bead method / foamed polyethylene (Eperan, expansion ratio 30 times, 30 thickness, no surface reinforcement, trade name of Kaneka Corporation) is used. In that case, three types of indentation fixtures of 15 mmΦ (heat insulation thickness × 1/2), 20 mmΦ (heat insulation thickness × 2/3), and 30 mmΦ (heat insulation thickness × 1/1) were used. As a result of performing the test, it can be seen that no problem occurs in any case, and that the outer diameter of the heat insulating material is preferably 1/2 or more. Therefore, the preferable size, that is, the diameter of the base end portion of the indentation fixture may change depending on the type and thickness of the foamed synthetic resin to be used, the shape of the indentation fixture, the formation state of the effective pressing area 35, and the like. For this reason, it is difficult to specify in general, but 20 mmΦ or more is desirable.

又、これら押込固定具の基端部5bの平面形状は、必ずしも真円形状である必要はなく、例えば、略楕円形や外周縁が緩やかな凹凸曲面状を形成し、押込み時に基端部5bの周縁部で局部圧縮させず、発泡合成樹脂板体に効果的な押圧力を発揮させる形状のものであれば特に限定しない。   Further, the planar shape of the base end portion 5b of these push-in fixtures does not necessarily have to be a perfect circle shape. There is no particular limitation as long as it has a shape that does not cause local compression at the peripheral edge of the foamed resin and exerts an effective pressing force on the foamed synthetic resin plate.

本発明の押込固定具とその止着構造の目的は、構造躯体から伝達される日常的な温、湿度差や外力等で生じる様々な構造躯体の変形、歪、収縮、膨張等の動きや力を押込固定具とその止着部が形成する容積の大きな圧縮応力分散領域で吸収させ、従来の丸釘や螺子釘からなる止着部で発生していた発泡合成樹脂板体の裂断、ガタツキ、浮き上がり等が抑制、防止できる。さらに、突発的な台風や地震時の大きな外力や震動で発生する構造躯体の変形や震幅を、該止着部の圧縮応力分散領域で吸収させ得る。その一方、吸収量を超えた残余の構造躯体の大きな変形力や震動は、該止着部の圧縮応力分散領域を基点に構造躯体の変形に追従して発泡合成樹脂板体の板面の全面方向に伝達されて発泡合成樹脂板体全体が弾性変形、弾性復元するのである。このように構造躯体の変形、震幅の繰返しにも発泡合成樹脂板体が弾性変形して追従一体化し耐え得ることにより、構造躯体と発泡合成樹脂板体とが一体構造となり、構造躯体が有する耐震性と発泡合成樹脂板体が有する耐震性と制震性(緩衝性)が複合化され、本発明により始めて耐震効果と制震効果が相乗的に発現されることになるのである。   The purpose of the push-in fixture and its fastening structure of the present invention is to provide various movements and forces such as deformation, distortion, contraction, expansion, etc. of various structural bodies caused by daily temperature, humidity difference and external force transmitted from the structural body. Is absorbed in the large compressive stress dispersion region formed by the indentation fixture and its fastening part, and the foamed synthetic resin plate that has occurred at the fastening part made of conventional round nails and screw nails is not , Lifting and the like can be suppressed and prevented. Furthermore, the deformation and the seismic width of the structural frame caused by a sudden typhoon, a large external force or an earthquake during an earthquake can be absorbed in the compressive stress dispersion region of the fastening portion. On the other hand, the large deformation force or vibration of the remaining structural frame exceeding the absorbed amount follows the deformation of the structural frame based on the compressive stress dispersion region of the fastening part, and the entire surface of the foamed synthetic resin plate surface. It is transmitted in the direction, and the entire foamed synthetic resin plate is elastically deformed and elastically restored. In this way, the foamed synthetic resin plate body can be elastically deformed to follow and integrate and withstand repeated deformation and seismic amplitude, so that the structural housing and the foamed synthetic resin plate body have an integrated structure, and the structural housing has The seismic resistance and the damping property (buffering property) of the foamed synthetic resin plate are combined, and the seismic effect and the damping effect are synergistically expressed only by the present invention.

この本発明を実現させる押込固定具として、押込固定具5と押込固定具5に補強のための固定脚部を付けた固定脚部付押込固定具5´がある。また、押込固定具5の押圧力を構造躯体側から補助的に強化するための押込補助突起3がある。更には、通気胴縁14の止着面にも設け、押込固定具5の効果を補強し、あるいは、押込固定具5の代替手段として押込用突起3´がある。これらの詳細の説明は、それぞれ、図4、図5、図6、及び図7、図8の各図を説明する箇所にて行う。   As a push fixture for realizing the present invention, there is a push fixture 5 'with a fixed leg portion in which a fixed leg portion for reinforcement is attached to the push fixture 5 and the push fixture 5. In addition, there is a push assist protrusion 3 for supplementarily strengthening the push force of the push fixture 5 from the structural housing side. Furthermore, there is a pressing projection 3 ′ provided on the fastening surface of the ventilator edge 14 to reinforce the effect of the pressing fixture 5 or as an alternative to the pressing fixture 5. These details will be described at the locations where FIGS. 4, 5, 6, 7 and 8 are described.

図4の図(a)〜図(f)では、本発明の押込固定具5の具体的な実施態様の例を断面模式図や片側断面模式図により示している。
例えば、同図(a)は、最も基本的な形状の押込固定具5を示す。この形状の押込固定具5は中実であり、その基端部5bから先端部5cに向かって、押込固定具表面に対して90°より順次径の小さくなる突起部5aが設けられている。そして、その略中央には、止着材である特殊螺子釘2が貫通する貫通孔5dが穿たれており、貫通孔5dを貫通した特殊螺子釘2は、発泡合成樹脂板体1をも貫通して構造躯体4に捻じ込まれて止着され、その上面側には通気胴縁14が配設されている。以上が一般的な止着形態の例であるが、さらに同図(a)では、この基本形状に加えて、次の構造が加味された例が図示されている。すなわち、押込固定具5の貫通孔5dに、予め、特殊螺子釘2を配設させた後、先端部5cの外側から釘部2bをカシメ加工してカシメ部2cである凸部を設け、押込固定具5と止着材を一体化させてなる特別な加工を施した押込固定具5を使用した例である。こうした工夫により特殊螺子釘2を一体化させた押込固定具5等の使用は、止着部の施工の簡略化の観点から望ましく、適宜選定され使用される。
In FIG. 4 (a) to FIG. 4 (f), examples of specific embodiments of the push-in fixture 5 of the present invention are shown by cross-sectional schematic diagrams and one-side cross-sectional schematic diagrams.
For example, FIG. 5A shows the most basic shape of the push fixture 5. The pushing fixture 5 having this shape is solid, and is provided with a protruding portion 5a having a diameter that gradually decreases from 90 ° from the base end portion 5b toward the distal end portion 5c with respect to the surface of the pushing fixture. A through hole 5d through which the special screw nail 2 as a fastening material passes is bored at substantially the center, and the special screw nail 2 that has passed through the through hole 5d also penetrates the foamed synthetic resin plate body 1. Then, it is screwed into the structural housing 4 and fastened, and a ventilation trunk edge 14 is disposed on the upper surface side. The above is an example of a general fastening configuration, but FIG. 5A shows an example in which the following structure is added in addition to this basic shape. That is, after the special screw nail 2 is disposed in advance in the through-hole 5d of the push fixture 5, the nail portion 2b is crimped from the outside of the tip portion 5c to provide a convex portion that is a crimp portion 2c. This is an example using a push-in fixture 5 that has been subjected to special processing in which the fixture 5 and the fastening material are integrated. The use of the push fixture 5 or the like in which the special screw nail 2 is integrated by such a device is desirable from the viewpoint of simplifying the construction of the fastening portion, and is appropriately selected and used.

同図(b)は、同図(a)の形状の押込固定具5の先端部5cに発泡合成樹脂板体に食い込みやすい先導部5eを設けている。押込固定具5は、金属や硬質樹脂等の硬質材料でもよいが、例えば、押込固定具5自体が弾性変形、復元できれば、発泡フェノール樹脂等の脆い性質の発泡合成樹脂板体の止着部の負荷を軽減させ、保護すると共に、該発泡合成樹脂板体の弾性変形、復元性との相乗効果が得られて望ましい。これらは、図に示す金属等の硬質材料で構成される芯材5mの外周面に、合成ゴムや高減衰ゴム等の弾性体5nからなる成形品を配設して一体化させ、あるいはインサート成形等による同時成形によって提供し得る。さらに、押込固定具5の突起部5aの外周面に、環状の筋状突起5rを設けて突起部5aの表面積や係止強度を高める工夫がなされており、これらは、突起部5aの高さを低くして発泡合成樹脂板体の止着部の負担の軽減と、高い止着力が得られるので望ましい。   In FIG. 4B, a leading portion 5e that easily bites into the foamed synthetic resin plate is provided at the tip portion 5c of the pressing fixture 5 having the shape shown in FIG. The indentation fixture 5 may be a hard material such as a metal or a hard resin. For example, if the indentation fixture 5 itself can be elastically deformed and restored, the anchoring portion of the foamed synthetic resin plate having a brittle property such as a foamed phenol resin can be used. It is desirable to reduce and protect the load and to obtain a synergistic effect with the elastic deformation and restoration of the foamed synthetic resin plate. These are integrated with a molded product made of an elastic body 5n such as synthetic rubber or high damping rubber on the outer peripheral surface of a core material 5m made of a hard material such as metal as shown in the figure, or insert molding. Etc. may be provided by co-molding. Furthermore, the device has been devised to increase the surface area and the locking strength of the projection 5a by providing an annular streak 5r on the outer peripheral surface of the projection 5a of the push-in fixture 5 and the height of the projection 5a. This is desirable because the burden on the fastening portion of the foamed synthetic resin plate can be reduced and a high fastening force can be obtained.

同図(c)は、押込固定具5が、中空部5hを有する構造例を示したもので、金属のプレス品等で安価に形成可能である。押込固定具5は、例えば、突起部5aの高さが低くても、突起部5aの表面に凹凸等を設けて表面積を大きくすると、より高い押込力や、圧縮クリープ現象の抑制効果が得られるので望ましく、本例では、押込固定具5の外周縁部に沿って、環状の高さの低い突起部5aと、中心部には、やや高さの高い突起部5aを設け、これらを、緩やかな曲面で連接させてその中心部に貫通穴5dを穿った断面構造を示している。さらに、中心部の突起部5aの傾斜部には相対向した位置に4個の係止穴5sが穿たれている。こうすると、押込固定具5の突起部5aの表面積が増大すると共にし、発泡合成樹脂板体の止着部への集中荷重を軽減させつつ、高い押込み力が得られ、多次元方向の外力に対する押込固定具5の止着姿勢の安定性も増し、また、押込み時の係止穴5sには発泡合成樹脂の膨出分が食い込みより高い止着効果が発揮できるので望ましい。   FIG. 4C shows an example of a structure in which the push-in fixture 5 has a hollow portion 5h, which can be formed at a low cost with a metal press product or the like. For example, even if the height of the protrusion 5a is low, the indentation fixture 5 can provide higher indentation force and an effect of suppressing the compression creep phenomenon by providing irregularities or the like on the surface of the protrusion 5a to increase the surface area. Therefore, in this example, along the outer peripheral edge portion of the push-in fixture 5, an annular low projection portion 5 a is provided, and a central projection portion 5 a is provided at the center portion. A cross-sectional structure is shown in which a through-hole 5d is formed in the center of a continuous curved surface. Further, four locking holes 5s are formed in the inclined portions of the projection portion 5a at the center at opposite positions. In this way, the surface area of the protrusion 5a of the indentation fixture 5 is increased, and a high indentation force is obtained while reducing the concentrated load on the fastening portion of the foamed synthetic resin plate, and against an external force in a multidimensional direction. The stability of the fastening posture of the push-in fixing tool 5 is also increased, and the swelled portion of the foamed synthetic resin is more effective than the bite in the locking hole 5s at the time of push-in, which is desirable.

同図(d)は、同図(a)の押込固定具5の突起部5aの中心に凹状のインナー部5fを設けると、インナー部5fが概平行方向の外力に抗する高い応力を発揮できる構造となり、圧縮クリープ現象の抑制効果もあり、埋没深さが浅くても高い止着強度が発揮できるので好ましい。さらに、基端部5bの外周面にリング状に突出した鍔5uを設けることも適宜実施すればよいが、止着時には、鍔部5uは、押込まず、止着面と面一に止着することが望ましい。   In FIG. 4D, when the concave inner portion 5f is provided at the center of the projection 5a of the push-in fixture 5 in FIG. 5A, the inner portion 5f can exert a high stress against an external force in a substantially parallel direction. It is preferable because it has a structure, has an effect of suppressing the compression creep phenomenon, and can exhibit high fastening strength even when the buried depth is shallow. Furthermore, it is only necessary to appropriately provide a ring 5u protruding in a ring shape on the outer peripheral surface of the base end part 5b, but at the time of fastening, the collar part 5u is not pushed in but is flush with the fastening surface. It is desirable.

同図(e)は、同図(a)に類似しているが、通気胴縁に付加させて使用する目的のものであって、同図(a)との違いは、押込固定具5に予め貫通孔5dを設けず、基端部5bの周縁の適宜箇所に細釘5gが打たれており、これを予め図7(a)に示すごとく、通気胴縁の発泡合成樹脂板体側(これを止着面側ということがある)に細釘5gを利用して係止して一体化させておき、通気胴縁14の発泡合成樹脂板体と反対側(これを表面側ということがある)から特殊螺子釘2により通気胴縁14と押込固定具5及び発泡合成樹脂板体1を貫通させて構造躯体4に捻じ込む(図8(c)に図示する)ことにより作業の簡便化が期待できる態様の押込固定具5を示す。また、図示はしないが同図(e)のように、細釘5gを設けず、押込固定具の基端部側に予め両面テープを添着して通気胴縁14の止着面側に一体化させておいて、同様に施工してもよい。このような実施態様では、押込固定具5を、通気胴縁14と予め一体化させておく事前準備は必要になるものの通気胴縁14を発泡合成樹脂板体1上に敷設する際に、通気胴縁14の表面側から、特殊螺子釘2で発泡合成樹脂板体1(必要により、構造用面材15が併用される)を貫通させて間柱9にねじ込む際に、同時に押込固定具5の埋没を可能とする実施態様であるから、別途、押込固定具5での発泡合成樹脂板体1の螺着の操作が省略でき、施工の簡略化と通気胴縁14の止着強度向上の効果があるので望ましい実施態様として、適宜選択される。又、押込固定具5の突起部5aを縦方向に4分割する形態で筋状凹溝5tを設けて押込固定具5の表面積と止着強度の増大を図る構造としている。これらは、別途、細釘5gを設けず、中心部に止着材である特殊螺子釘2が貫通する貫通穴5dを穿つことにより、粘弾性に優れた半硬質発泡合成樹脂板体の押込固定具5としても適用できる。   The figure (e) is similar to the figure (a), but is intended to be used by being added to the edge of the ventilation trunk. The difference from the figure (a) A through hole 5d is not provided in advance, and a thin nail 5g is struck at an appropriate location on the periphery of the base end portion 5b. This is preliminarily shown in FIG. Is locked and integrated with a thin nail 5g, and is opposite to the foamed synthetic resin plate body of the ventilator rim 14 (this may be referred to as the surface side). ) Through the vent barrel edge 14, the push-in fixture 5 and the foamed synthetic resin plate 1 through the special screw nail 2 and screwed into the structural housing 4 (illustrated in FIG. 8 (c)), the work can be simplified. The pushing fixture 5 of the aspect which can be anticipated is shown. Although not shown, the narrow nail 5g is not provided as shown in FIG. 5 (e), and a double-sided tape is attached in advance to the proximal end side of the push-in fixture and integrated with the fastening surface side of the ventilator edge 14. You may let it work in the same way. In such an embodiment, although it is necessary to prepare the indentation fixture 5 in advance with the ventilation cylinder edge 14 in advance, when the ventilation cylinder edge 14 is laid on the foamed synthetic resin plate body 1, From the surface side of the body edge 14, when the foamed synthetic resin plate 1 (with the structural face material 15 being used together if necessary) is passed through the special screw nail 2 and screwed into the stud 9, Since it is an embodiment that enables burying, the operation of screwing the foamed synthetic resin plate 1 with the push-in fixture 5 can be omitted separately, and the effect of simplification of construction and improvement of the fastening strength of the ventilator edge 14 can be achieved. Therefore, it is appropriately selected as a desirable embodiment. In addition, a streak-like concave groove 5t is provided in a form in which the protrusion 5a of the push-in fixture 5 is divided into four in the vertical direction so as to increase the surface area and the fastening strength of the push-in fixture 5. These are not separately provided with a thin nail 5g, but are provided with a through hole 5d through which a special screw nail 2 as a fastening material penetrates in the center, thereby pressing and fixing a semi-rigid foam synthetic resin plate body excellent in viscoelasticity. It can also be applied as a tool 5.

また、同図(f)は、主として、押圧樹脂領域にせん断が発生し難い発泡ポリオレフィン等の半硬質発泡合成樹脂板体1sに用いるのに好ましい押込固定具5の実施態様であって、一カ所当りの止着力を増大させるのに適した構造例である。1つの押込固定具5に1つの貫通穴5dが穿たれ、突起部5aの曲面の適所に1以上の緩やかな凹入部5qを形成させた構造をなし、押込力で押圧樹脂領域の一部の樹脂を凹入部5q内に膨出させて止着力を向上させることが出来る。これら半硬質発泡合成樹脂板体1sの止着に供する押込固定具5は、樹脂の種類による柔軟性の差や所望する止着力に応じて、押込固定具5の外径や外形形状や突起部5aの形状や大きさ、更には前記の凹入部5qの大きさや数等を適宜選択すればよい。以上の図4には、さまざまな押込固定具の形状を例示したが、これらの具体的な態様に限定されるものではなく、種々の工夫を加えることで、さらに望ましい押込固定具5を提供することが可能となる。又、押込固定具5と連結材(紐状材、又は、テープ状材等)を所定の止着間隔で連接させたもの(図示せず)を用い、順次、発泡合成樹脂板体1を構造躯体に止着させる方法は、施工性にも優れ、適宜採用すればよい。   FIG. 5F is an embodiment of the indentation fixture 5 that is preferably used mainly for the semi-rigid foam synthetic resin plate 1s such as foamed polyolefin that hardly generates shear in the press resin region. This is an example of a structure suitable for increasing the contact fastening force. One push hole 5d is formed in one push fixture 5 and one or more gently recessed portions 5q are formed at appropriate positions on the curved surface of the projection 5a, and a part of the pressure resin region is formed by the push force. Resin can be swelled into the recessed portion 5q to improve the fastening force. The pressing fixture 5 used for fixing the semi-rigid foamed synthetic resin plate 1s has an outer diameter, an outer shape, and a protruding portion of the pressing fixture 5 depending on a difference in flexibility depending on the type of resin and a desired fixing force. What is necessary is just to select suitably the shape and magnitude | size of 5a, and also the magnitude | size and number of said recessed part 5q. In FIG. 4 described above, the shapes of various push fixtures are illustrated. However, the present invention is not limited to these specific modes, and various devices can be added to provide a more desirable push fixture 5. It becomes possible. Further, a foamed synthetic resin plate 1 is sequentially constructed by using an indentation fixture 5 and a connecting material (string-like material or tape-like material) connected at a predetermined fastening interval (not shown). The method of fixing to the frame is excellent in workability and may be adopted as appropriate.

更に、押込固定具5は、通常の使用では発泡合成樹脂板体の表面側から止着されるが、先述した図18に示す押込固定具付発泡合成樹脂板体や、図20や、図21に示す制震パネルにおいては、後述するように、押込固定具5の特別な応用例として、図20(b)や、図21(c)及び、同図(e)に示す発泡合成樹脂板体の表、裏面側から一対の押込固定具5を相対向させ、止着材で締付けて押込み止着させることにより、縦フレーム及び/又は、横フレーム(又は構造躯体)と発泡合成樹脂板体とを強固に止着することができる。   Further, the push-in fixture 5 is fixed from the surface side of the foamed synthetic resin plate in normal use. However, the above-described foamed synthetic resin plate with a push-in fixture shown in FIG. 18, FIG. 20, FIG. As shown in FIG. 20B, FIG. 21C, and the foamed synthetic resin plate shown in FIG. 21E as a special application example of the push-in fixture 5, as will be described later. The vertical frame and / or the horizontal frame (or the structural frame) and the foamed synthetic resin plate are obtained by making the pair of pressing fixtures 5 face each other from the front and back sides and tightening with a fixing material to fix the pressing. Can be firmly fixed.

図5(a)に示す押込固定具5は、突起部5aの先端部5cには構造躯体4に達する発泡合成樹脂板体の厚みと同等の長さの脚部6が延設されている。このように、脚部6の先端を構造躯体4に至るまで長くしたものを、固定脚部と称することがある。固定脚部を有する押込固定具5を他の一般的な押込固定具5と区別して表す場合には、この固定脚部付押込固定具を5´として表現する。しかし、本発明で、特別に区別して表す必要のない場合には、単に押込固定具5と表現する。よって、押込固定具5は、通常の押込固定具5と固定脚部付押込固定具5´とを包含したものとして扱う。固定脚部付押込固定具5´は、脚部6の先端が構造躯体4にまで達しているため、長い年月の間、発泡合成樹脂板体を押圧し続けても、また強い地震等の力がかかったとしても固定脚部は構造躯体4に支えられているため、クリープ等の発生も防止できる。そのため、高い止着力が求められる仕口部の近傍や入隅、出隅部等の主要箇所に用いるのに適している。   In the push-in fixture 5 shown in FIG. 5A, a leg portion 6 having a length equivalent to the thickness of the foamed synthetic resin plate reaching the structural housing 4 is extended at the tip portion 5c of the projection portion 5a. As described above, the length of the leg 6 that extends to the structure housing 4 may be referred to as a fixed leg. When the push-in fixture 5 having the fixed leg portion is expressed separately from other general push-in fixtures 5, this push-in fixture with the fixed leg portion is expressed as 5 '. However, in the present invention, when it is not necessary to express the distinction, it is simply expressed as a push-in fixture 5. Therefore, the push fixture 5 is treated as including a normal push fixture 5 and a push fixture 5 'with a fixed leg. In the push-in fixture 5 ′ with a fixed leg, since the tip of the leg 6 reaches the structural housing 4, even if the foamed synthetic resin plate is kept pressed for a long time, a strong earthquake, etc. Even if a force is applied, since the fixed leg is supported by the structural housing 4, the occurrence of creep or the like can be prevented. Therefore, it is suitable for use in the vicinity of the joint portion where a high fastening force is required, the main corner such as the entrance corner and the exit corner.

図5(b)は、同図(a)とは別の態様であって、高い止着力を必要とする場合に適する押込固定具5の基端部5bの外周面にリング状に突出した鍔5uを設けた例を示す断面図である。止着材として発泡合成樹脂体を貫通している止着材の胴部2bの径を建物躯体にねじ込まれた胴部の径より大とした段付螺子釘16b(商品名:コーチスクリュー)を配し、段付螺子釘16bの周辺部には、付加的に、螺子釘16d(ラグスクリューボルト)を配して発泡合成樹脂板体と略平行方向からの大きな外力や震動に抗する構造としている。   FIG. 5 (b) is an aspect different from FIG. 5 (a), and the ridge projecting in a ring shape on the outer peripheral surface of the base end portion 5b of the push-in fixture 5 which is suitable when a high fastening force is required. It is sectional drawing which shows the example which provided 5u. A stepped screw nail 16b (trade name: coach screw) in which the diameter of the body portion 2b of the fastening material penetrating the foamed synthetic resin body as the fastening material is larger than the diameter of the body portion screwed into the building housing. In addition, a screw nail 16d (lag screw bolt) is additionally provided in the periphery of the stepped screw nail 16b so as to resist a large external force and vibration from a direction substantially parallel to the foamed synthetic resin plate body. Yes.

図5(c)及び、同図(d)は、押込固定金具5の突起部5aの先端部5cに特殊螺子釘2の釘胴部2bに配設した中空の補助脚部6aを設けた別の態様例である。同図(d)に示す補助脚部6aは、胴径が太いので、予め、止着用の下穴を設けて止着するのが好ましい。これらの補助脚部6aは、同図(a)に示す固定脚部付押込固定具5´と同様に、構造躯体4にまで達しているため、高い止着力を発揮できる。同図(b)及び、同図(c)の例は上述の同図(a)と同じく、いずれも必要以上の押圧力が負荷された場合であっても、構造躯体4でストップされる構造であるので発泡合成樹脂板体の圧縮クリープ現象は抑制され、外力に抗する応力も高くなるので極めて良好な状態を長期に亘って維持することが出来る。主として、大きな外力が集中しやすい建物躯体の仕口や入隅、出隅や仕口の要所に適宜採用することが望ましい。さらに、固定脚部付押込固定具5´や補助脚部6aの先端が構造躯体4へ食い込んで位置の変化を防止するため、予め構造躯体4側の止着面側に特殊螺子釘2は貫通するが固定脚部6の食い込みを防止し得る金属テープ等を貼着させることも有効である。   5 (c) and FIG. 5 (d) show another example in which a hollow auxiliary leg portion 6a disposed on the nail body portion 2b of the special screw nail 2 is provided at the tip portion 5c of the projection portion 5a of the push-in fixing metal fitting 5. This is an example. Since the auxiliary leg portion 6a shown in FIG. 6D has a large trunk diameter, it is preferable to provide a pilot hole for fixing in advance and fix it. Since these auxiliary legs 6a reach the structural housing 4 similarly to the push-in fixture 5 'with a fixed leg shown in FIG. In the example of FIG. 6B and FIG. 6C, the structure is stopped by the structural frame 4 even when a pressing force more than necessary is applied as in the case of FIG. Therefore, the compression creep phenomenon of the foamed synthetic resin plate is suppressed and the stress against the external force is increased, so that a very good state can be maintained for a long time. It is mainly desirable to adopt it appropriately in the corners, entrance corners, exit corners, and important points of buildings where large external forces tend to concentrate. In addition, the special screw nail 2 penetrates the fastening surface side of the structural housing 4 in advance so that the distal ends of the push-in fixture 5 ′ with fixed legs and the auxiliary leg 6a bite into the structural housing 4 to prevent the position from changing. However, it is also effective to attach a metal tape or the like that can prevent the fixed leg portion 6 from biting.

押込固定具5の突起部5aの先端部5cの高さは、採用する発泡合成樹脂板体の材質や厚さにもよるが、発泡合成樹脂板体の厚みの1/2以下、通常、1/3以下の深さに押込み、埋没させるのが好ましい。但し、図3、図4(b)に示す先導部5eの高さは、発泡合成樹脂板体厚みより小であればよい。固定脚部付押込固定具5´の先端の到達深さは構造躯体面であるので、発泡合成樹脂板体の厚みを考慮して、固定脚部付押込固定具5´が埋没された時、固定脚部付押込固定具5´の基端部が発泡合成樹脂板体と面一になるようにするのが好ましい。固定脚部6を有さない通常の押込固定具5の場合も、特殊螺子釘等の止着材で構造躯体4にねじ込んで押込み、埋没させる基端部が発泡合成樹脂板体と面一になるようにするのが好ましい。   The height of the tip 5c of the protrusion 5a of the push-in fixture 5 depends on the material and thickness of the foamed synthetic resin plate to be used, but it is 1/2 or less of the thickness of the foamed synthetic resin plate, usually 1 It is preferable to squeeze to a depth of / 3 or less and bury it. However, the height of the leading portion 5e shown in FIGS. 3 and 4 (b) may be smaller than the thickness of the foamed synthetic resin plate. Since the reaching depth of the distal end of the pressing fixture 5 ′ with the fixed leg portion is the structure frame surface, in consideration of the thickness of the foamed synthetic resin plate body, when the pressing fixture 5 ′ with the fixed leg portion is buried, It is preferable that the base end portion of the push-in fixture 5 ′ with the fixing leg is flush with the foamed synthetic resin plate. In the case of a normal push-in fixture 5 that does not have the fixed leg 6, the base end that is screwed into the structural housing 4 with a fastening material such as a special screw nail and pushed in and buried is flush with the foamed synthetic resin plate. It is preferable to do so.

このような止着を行えば、図3で示されるごとく、構造躯体4から伝達される多次元方向の外力や震動は押込固定具5で押圧する押圧樹脂領域30や圧縮応力分散領域31から発泡合成樹脂板体中に伝播するため突起部先端5cが発泡合成樹脂板体の表面側に浮き上がって来るような現象は、まず生じない。該発泡合成樹脂板体内に押込み、埋没させる押込固定具5の外力に抗する効果を高めるには、外径を大きく、突起部5aの高さは低くした形状に設計すると、押圧樹脂領域30や圧縮応力分散領域31の平面積の拡大が図れ、発泡合成樹脂板体への変形力や震動の集中荷重がより分散でき、圧縮クリープ現象の抑制効果もあり望ましい。通常、押込固定具5は発泡合成樹脂板体の上面側に略面一に埋没されるので基端部5bの外径を大とすることに障害は無く、実際上、発泡合成樹脂板体の種類、厚み、表面補強材の有無、必要とする止着強度や止着数等から適宜設計すればよい。このように、押込固定具5や固定脚部付押込固定具5´には、さまざまな形状や構造のものが使用し得るので、ここに例示したものに限定されることは無い。   If such fastening is performed, as shown in FIG. 3, external forces and vibrations in a multidimensional direction transmitted from the structural housing 4 are foamed from the pressing resin region 30 and the compressive stress dispersion region 31 pressed by the pressing fixture 5. In order to propagate in the synthetic resin plate body, the phenomenon that the protrusion tip 5c is lifted to the surface side of the foamed synthetic resin plate body hardly occurs. In order to increase the effect against the external force of the pressing fixture 5 that is pressed into and buried in the foamed synthetic resin plate, if the outer diameter is increased and the height of the protrusion 5a is reduced, the pressing resin region 30 or The flat area of the compressive stress dispersion region 31 can be increased, the deformation force and the concentrated load of vibration on the foamed synthetic resin plate body can be further dispersed, and the effect of suppressing the compressive creep phenomenon is desirable. Usually, since the pushing fixture 5 is buried substantially flush with the upper surface side of the foamed synthetic resin plate body, there is no obstacle to increasing the outer diameter of the base end portion 5b. What is necessary is just to design suitably from a kind, thickness, the presence or absence of a surface reinforcing material, required fastening strength, the number of fastenings, etc. As described above, since various shapes and structures can be used for the push fixture 5 and the push fixture 5 ′ with a fixed leg portion, the push fixture 5 is not limited to those exemplified here.

本発明の止着構造を構成するためには、押込固定具5や固定脚部付押込固定具5´を使用するが、この押込固定具5の働きを補助し、発泡合成樹脂板体の弾性変形や外力や震動の伝播をより効果的に発現させるために、発泡合成樹脂板体の表、裏面側の適宜箇所を補助的に押圧して埋没させ、本発明の止着構造を、より強固なものにするため押込補助突起3を用いることが出来る。   In order to constitute the fastening structure of the present invention, a push fixture 5 or a push fixture 5 'with a fixed leg is used, which assists the function of the push fixture 5 and provides elasticity of the foamed synthetic resin plate. In order to develop the propagation of deformation, external force and vibration more effectively, the front and back sides of the foamed synthetic resin plate body are auxiliaryly pressed and buried, and the fastening structure of the present invention is made stronger. In order to make it easy, the push-in auxiliary projection 3 can be used.

それには、(1)図12に示す構造躯体4に発泡合成樹脂板体1を張設するにつき、構造躯体4が該発泡合成樹脂板体と接する側に、例えば、柱8、間柱9、土台10、横架材11(図示せず)、筋交い(図示せず)等の止着面の適宜箇所に表面側に突出した押込補助突起3を設けることができる。(2)図13に示すように、構造躯体4の室外側には、耐力壁として構造用面材15が敷設されることがあるが、この構造用面材15の表面に発泡合成樹脂板体1を張設するにつき、該構造用面材15の板面上の適宜箇所に表面側に突出した押込補助突起3を設けることができる。又、こうした押込補助突起3の大きさは、略球状の突起の場合、例えば直径約10〜25mmΦ(最も好ましくは、15mmΦ前後)、高さ約3〜12mm(最も好ましくは、8mm前後)程度の略皿状の球形突起や市販の傘釘(太鼓鋲:若井産業(株)製、商品名)程度のものが好ましい。この程度の大きさであれば、押込固定具や通気胴縁の止着力で発泡合成樹脂板体1中に埋没しやすくて、かつ止着強度が向上するので望ましい。押込補助突起3は、それぞれが独立していてもよく、多数の押込補助突起3を用いる場合は、シート材等に複数個以上が立設されたものを構造躯体に貼着あるいは止着させる形態でもよい。   For this purpose, (1) when the foamed synthetic resin plate 1 is stretched on the structural casing 4 shown in FIG. 10, the pushing auxiliary protrusion 3 protruding to the surface side can be provided at an appropriate position of the fastening surface such as the horizontal member 11 (not shown), the bracing (not shown), or the like. (2) As shown in FIG. 13, a structural face material 15 may be laid as a load bearing wall on the outdoor side of the structural housing 4. A foamed synthetic resin plate is formed on the surface of the structural face material 15. 1 is stretched, it is possible to provide the pushing assisting protrusion 3 projecting to the surface side at an appropriate location on the plate surface of the structural face material 15. In addition, in the case of a substantially spherical projection, the size of the pushing assist projection 3 is, for example, about 10 to 25 mm in diameter (most preferably around 15 mmΦ) and about 3 to 12 mm in height (most preferably around 8 mm). A substantially dish-shaped spherical protrusion or a commercially available umbrella nail (Taiko-an: manufactured by Wakai Sangyo Co., Ltd., trade name) is preferable. Such a size is desirable because it is easy to be embedded in the foamed synthetic resin plate 1 by the fastening force of the indentation fixture and the ventilator edge, and the fastening strength is improved. Each of the push-in auxiliary protrusions 3 may be independent. When a large number of the push-in auxiliary protrusions 3 are used, a form in which a plurality of push-in auxiliary protrusions 3 are erected on a sheet material or the like is attached to or fixed to the structural housing. But you can.

また、図7(b)や図8(c)は、通気胴縁14の止着面に設けた上述の押込補助突起3とは異なり、突起面積がそれより大である形状の押込用突起3´の例である。その形状は通気胴縁14を特殊螺子釘等で発泡合成樹脂板体1上に止着した際、押圧で埋没させ得る範囲の突起であれば良いのである。その形状としては、図7(b)(イ)に一例を示すごとく、通気胴縁14の長さ方向に、例えば、高さ約6mm×幅15mm×長さ20mm程度の断面略半円状に突起した略蒲鉾状の筋状突起xを断続的に設けている。この略半円状の突起や長さ方向の端面等は緩やかな傾斜面とすることにより、発泡合成樹脂板体への局部圧縮が防止されるので望ましい。図7(b)(ロ)の例での押込用突起3´は、通気胴縁14の止着面の長さ方向に、例えば、連続した高さ約5mm程度の略蒲鉾状の連続筋状突起yを設けている。   7 (b) and FIG. 8 (c) are different from the above-described pushing assisting protrusion 3 provided on the fastening surface of the ventilator rim 14, and the pushing protrusion 3 having a larger protrusion area. It is an example of '. The shape may be any protrusion that can be buried by pressing when the ventilator edge 14 is fixed onto the foamed synthetic resin plate 1 with a special screw nail or the like. As an example of the shape, as shown in FIG. 7B and FIG. Protruding substantially hook-like streak-like projections x are provided intermittently. It is desirable that the substantially semicircular protrusions and the end surfaces in the length direction are gently inclined surfaces, so that local compression to the foamed synthetic resin plate is prevented. 7 (b) and 7 (b), the pushing projection 3 'is, for example, a substantially hook-shaped continuous streak having a continuous height of about 5 mm in the length direction of the fastening surface of the ventilator edge 14. A protrusion y is provided.

こうした連続筋状突起yのごとき押込用突起3´を有する押込突起付通気胴縁14aを製造する場合、どのような製造方法を採用してもよいが、例えば、連続筋状突起yの形状の長尺品を予め押出成形しておき、通気胴縁14の止着面に貼着させる等して一体化させる方法がある。あるいは、予め、プレーナー加工の厚み分(例えば約5mm)を厚くした通気胴縁14の角材(例:40mm巾×(20mm+5mm)厚)を準備し、止着面側を高さ約5mmの連続筋状突起yとしてプレーナー加工(平削加工)したものを採用することも出来る。   When manufacturing the ventilation trunk edge 14a with a pressing projection having a pressing projection 3 'such as the continuous streak projection y, any manufacturing method may be adopted. For example, the shape of the continuous streak projection y There is a method in which a long product is extruded in advance and integrated by, for example, adhering to a fastening surface of the ventilator edge 14. Alternatively, a square member (for example, 40 mm width × (20 mm + 5 mm) thickness) of the ventilation trunk edge 14 that is thickened by the thickness of the planar processing (for example, about 5 mm) is prepared in advance, and the fastening surface side is a continuous line having a height of about 5 mm. It is also possible to employ a planar process (planing process) as the projection y.

押込用突起3´は、図示した連続筋状突起yのような略蒲鉾状の断面に代えて緩やかな傾斜からなる略山形状態にする等、形状の改変は自由で、発泡合成樹脂板体の表面側の適宜箇所を押圧して埋没させ、押圧樹脂領域30や圧縮応力分散領域31が形成できれば、特定な形状に制限されることは無い。例えば、埋没深さ分(例えば5mm)の厚みを厚くした通気胴縁14の止着面側の両角部14cをプレーナー加工してR面(例えば半径約5mm)を形成させても、エッジ面(Cカット)(例えば幅約5mm)を持つ略台形状の連続筋状突起(図示せず)を形成させてもよい。   The pushing projection 3 'can be freely modified in shape, such as a substantially chevron-shaped state having a gentle slope instead of the substantially saddle-shaped cross section like the continuous streak-like projection y shown in the figure. As long as the pressing resin region 30 and the compressive stress dispersion region 31 can be formed by pressing and embedding appropriate portions on the surface side, the shape is not limited to a specific shape. For example, even if the corners 14c on the fastening surface side of the ventilator edge 14 having a thickness corresponding to the buried depth (for example, 5 mm) is planarized to form an R surface (for example, a radius of about 5 mm), the edge surface ( A substantially trapezoidal continuous streak process (not shown) having a C cut (for example, a width of about 5 mm) may be formed.

図7(b)(ハ)は別の実施態様で、押込用突起3´として、多数列の細筋状突起z(例えば、高さ約4mm)を設けた硬質合成樹脂(例えば、塩化ビニル、ポリカーボネート等)の押出しシートを、通気胴縁14の止着面側に貼着させた例である。押込む突起の高さは低いが、2本の細筋状突起zを並列させているので、高い押込み止着強度や横ズレ抑制効果が高く、発泡フェノールや発泡ウレタン等の脆い発泡合成樹脂板体への負担を軽減できるので好ましい。   FIG. 7B and FIG. 7C show another embodiment in which a hard synthetic resin (for example, vinyl chloride, This is an example in which an extruded sheet of polycarbonate or the like is adhered to the fastening surface side of the ventilator rim 14. Although the height of the protrusion to be pushed in is low, the two fine streak-like protrusions z are juxtaposed, so that the high push-in fixing strength and the effect of suppressing lateral displacement are high, and the foamed synthetic resin board is brittle such as foamed phenol or foamed urethane. It is preferable because the burden on the body can be reduced.

これら既述の筋状突起x、連続筋状突起y、細筋状突起z等の押込用突起3´を有する通気胴縁14(以下、押込固定具5や押込用突起3´を設けた通気胴縁14を、押込突起付通気胴縁14aと称することがある。)を使用する際、発泡合成樹脂板体1に表面補強材1aが存在する場合は、特にその抗張力を発揮させやすいので望ましい。   A ventilation trunk edge 14 (hereinafter referred to as a pushing fixture 5 or a pushing projection 3 'provided with a pushing projection 3' such as the above-described streaks x, continuous streaks y, fine streaks z, etc. When the body edge 14 is sometimes referred to as a ventilation trunk edge 14a with a push-in projection.), When the surface reinforcing material 1a is present in the foamed synthetic resin plate 1, it is particularly desirable because the tensile strength is easily exhibited. .

これら押込用突起3´を有する押込突起付通気胴縁14aは、例えば、押込固定具5を用いないで、従来の丸釘を使用して構造躯体4上に止着した後、発泡合成樹脂板体1の表面側から、特殊螺子釘2で構造躯体4に螺着して使用できる。しかし、押込固定具5を特殊螺子釘2を用いて、構造躯体4上に発泡合成樹脂板体1を螺着し、更に、その上から押込突起付通気胴縁14aを止着して、発泡合成樹脂板体1と既螺着着の押込固定具の基端部を同時に押圧するということを実施すれば、止着強度は大幅に向上するのでより好ましい。押込固定具5と押込用突起3´を有する押込突起付通気胴縁14aとの併用の際には、筋状突起x、連続筋状突起y、細筋状突起z等の数を減らしたり、連続的なものを断続的に設ける等の工夫をすると、止着強度は十分保持できる上に、押込突起付通気胴縁14aの螺着のし易さが大幅に向上するので好ましい。   The ventilating rim 14a with push projections having the push projections 3 'is fixed on the structural housing 4 using a conventional round nail without using the push fixture 5, for example. From the surface side of the body 1, it can be used by being screwed onto the structural housing 4 with a special screw nail 2. However, the push-in fixture 5 is screwed onto the structural housing 4 by using the special screw nail 2 and the foamed synthetic resin plate body 1 is screwed onto the ventilation trunk edge 14a with the push-in projection, and foamed. If the synthetic resin plate 1 and the base end portion of the already-fitted push-in fixture are pressed simultaneously, the fastening strength is greatly improved, which is more preferable. When using the push-in fixture 5 and the ventilating rim 14a with push-in protrusion having the push-in protrusion 3 'in combination, the number of streak x, continuous streak y, fine streak z, It is preferable to devise measures such as providing a continuous one intermittently, since the fastening strength can be sufficiently maintained and the ease of screwing of the ventilating cylinder edge 14a with the push-in protrusion is greatly improved.

これらの押込用突起3´は、既述の押込固定具5とは異なり、自らが発泡合成樹脂板体1を押圧し埋没する止着機能は有しておらず、通気胴縁14を発泡合成樹脂板体1上に螺着する際、通気胴縁14に設けられた押込用突起3´が発泡合成樹脂板体1に押圧され埋没して機能することになる。そのため、押込用突起3´の大きさや数は、通気胴縁14が、発泡合成樹脂板体1上に押圧され、その止着力に応じて埋没できる大きさの突起形状と適正設置数量であることが前提となるので、発泡合成樹脂板体の材質による埋没し易さや特殊螺子釘2等の止着材の数量等を考慮して適宜選定すればよい。   Unlike the above-described push fixture 5, these push projections 3 ′ do not have a fastening function to press and embed the foamed synthetic resin plate 1 by itself, and the ventilator edge 14 is foamed and synthesized. When screwing onto the resin plate body 1, the pushing protrusion 3 ′ provided on the ventilator edge 14 is pressed by the foamed synthetic resin plate body 1 and functions. Therefore, the size and number of the pushing protrusions 3 ′ have a protrusion shape and an appropriate installation quantity of a size that allows the ventilator edge 14 to be pressed onto the foamed synthetic resin plate 1 and buried according to the fastening force. Therefore, it may be selected as appropriate in consideration of easiness of embedment due to the material of the foamed synthetic resin plate, the number of fastening materials such as the special screw nails 2, and the like.

押込突起付通気胴縁14aを用いる場合には、発泡合成樹脂板体1との間に張設される透湿防水シート22が通気胴縁14aの押込用突起3´と共に、発泡合成樹脂板体1内に押込まれ、埋没させられることから、該透湿防水シート22の表面滑性の弊害が大幅に抑制されるので押込突起付通気胴縁14aの止着強度が一層高まり、従来の外壁材17の垂れ下りや横揺れ、横ずれの課題を改善するという効果も併せ発揮することができる。   In the case of using the ventilating cylinder edge 14a with pushing projection, the moisture-permeable waterproof sheet 22 stretched between the foamed synthetic resin plate body 1 and the pushing projection 3 'of the ventilating trunk edge 14a together with the foaming synthetic resin plate body. 1 is pushed in and buried, the adverse effect of the surface slipperiness of the moisture permeable waterproof sheet 22 is greatly suppressed, so that the fastening strength of the ventilating rim 14a with push projections is further increased, and the conventional outer wall material The effect of improving the problems of 17 sag, roll, and side shift can also be exhibited.

既述の説明では、押込突起付通気胴縁14aと押込突起を有さない従来の通気胴縁14とを、区別して表現しているが、施工時に通気胴縁14と押込突起付通気胴縁14aとを適宜混在させて本発明を実施することができる。また、押込突起付通気胴縁14aの施工は、従来の通気胴縁14の止着面が発泡合成樹脂板体1面内に埋没して不陸を発生させないように敷設するのと同じ施工方法を用いればよく、作業性についても特に変わることはない。但し、従来の通気胴縁14を特殊螺子釘等で止着させる際の止着数に比し、押込突起付通気胴縁14aの場合には、止着数を増加させて止着強度を高める等、若干の差を設けるのが好ましいことがあり得る。   In the above description, the ventilator edge 14a with the push-in protrusion and the conventional ventilator edge 14 without the push-in protrusion are distinguished from each other. 14a can be mixed as appropriate to implement the present invention. In addition, the construction of the ventilation trunk edge 14a with the push-in projection is the same construction method as that in which the fastening surface of the conventional ventilation trunk edge 14 is buried in the surface of the foamed synthetic resin plate 1 so as not to cause unevenness. The workability is not particularly changed. However, in comparison with the number of fastening when the conventional ventilator edge 14 is fastened with a special screw nail or the like, in the case of the ventilator edge 14a with a pushing projection, the fastening number is increased to increase the fastening strength. It may be preferable to provide a slight difference.

押込突起を有さない通気胴縁14と押込突起付通気胴縁14aとは、こうした関係にあることから、本発明ではこれらの2者を総称して通気胴縁14と称する場合が多い。しかし、特に、押込突起を有さない従来の通気胴縁14を、押込突起付通気胴縁14aと区別して表現したほうが好ましい場合には、『通常の通気胴縁14』と称する場合がある。又、先述の押込補助突起3と押込用突起3´の内、押込補助突起3は構造躯体側に、押込用突起3´は通気胴縁14側に設ける例を示したが、特にそれぞれの用途を限定するものではなく、適宜、混在させて使用してもよい。   Since the ventilation trunk edge 14 having no pushing projection and the ventilation trunk edge 14a with pushing projection are in such a relationship, in the present invention, these two members are generally referred to as the ventilation trunk edge 14 in many cases. However, in particular, when it is preferable to express the conventional ventilation cylinder edge 14 having no pushing projections separately from the ventilation cylinder edge 14a with pushing projections, it may be referred to as "normal ventilation cylinder edge 14". In addition, of the above-described push assist protrusion 3 and push protrusion 3 ', the push assist protrusion 3 is provided on the structure housing side, and the push protrusion 3' is provided on the ventilation cylinder edge 14 side. Is not limited, and may be used in combination as appropriate.

本発明で使用する発泡合成樹脂板体としては、硬質発泡合成樹脂板体、及び半硬質発泡合成樹脂板体が使用される。硬質発泡合成樹脂板体の材質としては、発泡ポリウレタン樹脂、発泡フェノール樹脂、発泡ポリスチレン樹脂等である。半硬質発泡合成樹脂板体の材質として、発泡ハイインパクトポリスチレン樹脂(例として、商品名:カネパールHS、(株)カネカ製)、発泡ポリエチレン共重合ポリスチレン樹脂(例として、商品名:ピオセラン、積水化成品工業(株)製)、発泡ポリエチレン樹脂、発泡ポリプロピレン樹脂等が挙げられる。発泡ポリスチレンなどは、ビーズ法又は押出法によって発泡成形されたものがある。発泡フェノール、発泡ポリウレタンなどは、一般にバッチ法や連続法によってなされる。発泡ポリエチレン共重合ポリスチレン樹脂はビーズ法で、発泡ポリエチレン、発泡ポリプロピレンはビーズ法と押出法によってなされる。しかし、本発明に於いては、特に、発泡成形の仕方で制約されることはない。   As the foamed synthetic resin plate used in the present invention, a hard foamed synthetic resin plate and a semi-rigid foamed synthetic resin plate are used. Examples of the material of the hard foam synthetic resin plate include foamed polyurethane resin, foamed phenol resin, and foamed polystyrene resin. As the material of the semi-rigid foam synthetic resin plate, foam high impact polystyrene resin (for example, trade name: Kanepal HS, manufactured by Kaneka Co., Ltd.), foamed polyethylene copolymer polystyrene resin (for example, trade name: PIOCELAN, Sekisui) Seikoku Kogyo Co., Ltd.), foamed polyethylene resin, foamed polypropylene resin, and the like. Some foamed polystyrene is foam-molded by a bead method or an extrusion method. Foamed phenol, foamed polyurethane, etc. are generally made by a batch method or a continuous method. Foamed polyethylene copolymer polystyrene resin is made by a bead method, and foamed polyethylene and foamed polypropylene are made by a bead method and an extrusion method. However, in the present invention, it is not particularly limited by the foam molding method.

そして、発泡ポリスチレン、発泡ポリエチレン、発泡ポリプロピレン等は、通常、表面補強材を有さない発泡合成樹脂板体で使用される場合が多いが、必要により補強用の表面補強材(不織布、クラフト紙、アルミ蒸着フイルム等の可撓性に優れた表面補強材)を片面、または、両面に展着一体化して使用するとより好ましい。   And foamed polystyrene, foamed polyethylene, foamed polypropylene, etc. are usually used in a foamed synthetic resin plate that does not have a surface reinforcing material. It is more preferable to use a surface reinforcing material (excellent flexibility such as an aluminum vapor deposition film) that is spread and integrated on one side or both sides.

一方、発泡フェノールや発泡ウレタンは、製造上の理由から、製造段階で両面に表面補強材(不織布、クラフト紙、アルミ蒸着フイルム等)が展着一体化されて供給されているのが通常である。これら発泡フェノールや発泡ウレタンなどの発泡合成樹脂は、他の硬質発泡合成樹脂より弾性は低く、脆い欠点があるものの、表面補強材の存在により補強される結果となっており、この表面補強材の抗張力が弾性をカバーすることにより所望の特性が発揮されている。これら材料は、表面補強材が存在することにより、本発明に良好に使用される。   On the other hand, foamed phenol and foamed urethane are usually supplied with surface reinforcing materials (nonwoven fabric, kraft paper, aluminum vapor deposition film, etc.) spread and integrated on both sides at the manufacturing stage for reasons of manufacturing. . These foamed synthetic resins such as foamed phenol and foamed urethane are less elastic than other hard foamed synthetic resins and have fragile defects, but are reinforced by the presence of surface reinforcing materials. The desired properties are exhibited when the tensile strength covers elasticity. These materials are successfully used in the present invention due to the presence of surface reinforcement.

なお、これら発泡合成樹脂板体の片面又は両面に展着一体化される表面補強材は、あくまでも発泡合成樹脂板体の強度を補強するための構成材料であって、発泡合成樹脂板体の一部とも考えるべきものであるから、本表面補強材が発泡合成樹脂板体の外壁面側に展着されているからといって、先記した外装壁構成材には属さないのである。   The surface reinforcing material that is spread and integrated on one or both surfaces of the foamed synthetic resin plate is a constituent material for reinforcing the strength of the foamed synthetic resin plate, and is one of the foamed synthetic resin plates. Since the surface reinforcing material is spread on the outer wall surface side of the foamed synthetic resin plate, it does not belong to the exterior wall constituting material described above.

これら表面補強材付きの硬質発泡合成樹脂板体を用いる場合、使用する押込固定具は、半硬質発泡合成樹脂板体を用いる場合に比して、基端部の外径を大きくし、突起部高さを低くすることにより、表面補強材と発泡合成樹脂への押込み負担を軽減させることができ、止着部の耐久性が向上することになるので望ましい。   When using a rigid foam synthetic resin plate with a surface reinforcing material, the indentation fixture to be used has a larger outer diameter at the base end than when using a semi-rigid foam synthetic resin plate, By reducing the height, it is possible to reduce the burden of pushing into the surface reinforcing material and the foamed synthetic resin, and the durability of the fastening portion is improved, which is desirable.

本発明では、押込固定具5や押込突起付通気胴縁14a等を用いることを要件とするので、抗張力の高い表面補強材が存在すると、発泡合成樹脂板体への負荷が軽減されると共に、押込効果が有効に引き出されて、応力分散をより発揮させうると共に、止着部分の圧縮クリープ現象や坐屈が抑制でき、長期に安定した止着力を確保できるので望ましい。   In the present invention, since it is a requirement to use the push-in fixture 5 and the ventilating rim 14a with push-in projection, etc., if a surface reinforcing material with high tensile strength exists, the load on the foamed synthetic resin plate is reduced, This is desirable because the indentation effect can be effectively drawn out, and the stress dispersion can be further exerted, and the compression creep phenomenon and buckling of the fastening portion can be suppressed, and a stable fastening force can be secured for a long time.

本発明で使用する発泡合成樹脂板体は、発泡フェノールや発泡ウレタン等、表面補強材を元々一体化させている以外の発泡合成樹脂板体では、表面補強材の有無を問わないが、少なくとも構造躯体と反対側表面、すなわち、押込固定具と接触する側の表面に、表面補強材を設けることにより、表面補強材の抗張力と発泡合成樹脂の弾性が相まって、長期間安定した止着性能が確保できるので非常に好ましい態様として推奨しうる。   The foamed synthetic resin plate used in the present invention is a foamed synthetic resin plate other than the one in which the surface reinforcing material is originally integrated, such as foamed phenol and foamed urethane. By providing a surface reinforcing material on the surface opposite to the housing, that is, the surface in contact with the indentation fixture, the tensile strength of the surface reinforcing material and the elasticity of the foamed synthetic resin combine to ensure stable fastening performance for a long period of time. It can be recommended as a very preferred embodiment.

又、発泡合成樹脂板体は、材質により断熱性能、緩衝性(地震エネルギーの吸収性等)、可撓性、粘弾性、抗張力、剛性等に差がある。例えば、緩衝性、可撓性、粘弾性、抗張力等に優れた発泡ポリエチレンや発泡ポリプロピレン等の半硬質発泡合成樹脂板体は、緩衝性能を特に重視したい部位(仕口部や入隅、出隅等)の発泡合成樹脂板体として、あるいは、後述する制震パネルに用いる緩衝用途の発泡合成樹脂板体として採用すれば、その特性が活かされるので非常に望ましい。反面、これら半硬質発泡合成樹脂板体は、緩衝性能は優れるが、断熱性能が硬質発泡合成樹脂板体に比して劣る場合があるので、他の充填断熱材を併用して断熱補強するのが好ましい場合がある。   Further, the foamed synthetic resin plate has a difference in heat insulation performance, buffering property (such as seismic energy absorption), flexibility, viscoelasticity, tensile strength, and rigidity depending on the material. For example, semi-rigid foamed synthetic resin plates such as foamed polyethylene and foamed polypropylene, which are excellent in cushioning, flexibility, viscoelasticity, tensile strength, etc. Etc.) or as a foamed synthetic resin plate for buffer use used in a vibration control panel, which will be described later, it is very desirable because the characteristics are utilized. On the other hand, these semi-rigid foam synthetic resin plates have excellent cushioning performance, but their heat insulation performance may be inferior to that of hard foam synthetic resin plates, so they are reinforced with other filled insulation materials. May be preferred.

なお、本発明では、硬質発泡合成樹脂板体と半硬質発泡合成樹脂板体とを総称して発泡合成樹脂板体1と表すが、特に、緩衝性、可撓性、粘弾性、抗張力等に優れた半硬質発泡合成樹脂板体を区別して表現する場合には、半硬質発泡合成樹脂板体1sと称し、対する硬質発泡合成樹脂板体を1rとして表す場合がある。なお、本発明では、既に記したが、半硬質発泡合成樹脂板体1s、又は、ゴム状弾性板体20の2者を表現したい場合には、以下、緩衝用板体と略称することがある。   In the present invention, the hard foamed synthetic resin plate and the semi-rigid foamed synthetic resin plate are collectively referred to as the foamed synthetic resin plate 1, and in particular, buffer properties, flexibility, viscoelasticity, tensile strength, etc. When distinguishing and expressing an excellent semi-rigid foam synthetic resin plate, it is referred to as a semi-rigid foam synthetic resin plate 1s, and the corresponding rigid foam synthetic resin plate may be represented as 1r. In the present invention, although already described, in the case where it is desired to express the semi-rigid foam synthetic resin plate 1s or the rubber-like elastic plate 20, the following may be abbreviated as a buffer plate. .

この点を少し詳述すれば、本発明の止着構造からなる発泡合成樹脂板体1で構成される壁面の内、地震等で大きな変形、震動を受けた時、壁面全面がより均一に弾性変形、弾性復元しやすいよう、断熱性に優れた発泡ポリスチレンや発泡フェノール等の硬質発泡合成樹脂板体1rに替えて、緩衝性に優れた半硬質発泡合成樹脂板体1s、又はゴム状弾性板体20(すなわち、緩衝用板体)を配設するのが好ましいことがある。例えば、後述する実施態様6(図14)に示す建物躯体の妻側壁面や平側壁面の中でも、特に、応力集中や多次元方向に変形、剥離しやすい入隅、出隅、開口部、あるいは、略中央部近傍等の壁面に、必要に応じて適宜使用するのが好ましい場合がある。   If this point is described in detail, the entire wall surface is more evenly elastic when subjected to large deformations or vibrations due to an earthquake or the like, among the wall surfaces of the foamed synthetic resin plate 1 having the fastening structure of the present invention. In order to be easily deformed and elastically restored, instead of the hard foamed synthetic resin plate 1r made of foamed polystyrene, foamed phenol or the like having excellent heat insulation properties, the semi-rigid foamed synthetic resin plate 1s having excellent buffering properties or a rubber-like elastic plate It may be preferred to provide a body 20 (ie a buffer plate). For example, among the wife side wall surface and the flat side wall surface of the building frame shown in Embodiment 6 (FIG. 14) to be described later, in particular, an entrance corner, an exit corner, an opening, which is easily deformed and peeled in a stress concentration or multidimensional direction, or In some cases, it may be preferable to use it on the wall surface in the vicinity of the substantially central portion as needed.

こうした緩衝用板体を過大な変形や衝撃が集中しやすい壁面等の適切な位置に部分的に使用することにより、変形や衝撃を吸収、抑制し、硬質発泡合成樹脂板体1rを含む側壁面全体(例:妻側壁面)において、無理の無い弾性変形や復元を可能とし、応力集中しやすい部位の損傷や断熱劣化を抑制することができるのである。又、実施態様7(図15)に示す建物躯体の壁面を構成する各壁面の内、特に過大な変形や震動が集中する仕口部に必要に応じ緩衝用板体が良好に使用できる。   By using such a buffer plate part at an appropriate position such as a wall where excessive deformation and impact are likely to concentrate, the side wall surface including the rigid foam synthetic resin plate 1r is absorbed and suppressed. The whole (for example, the side wall surface of the wife) can be elastically deformed and restored without difficulty, and can suppress damage and adiabatic deterioration of a portion where stress is easily concentrated. Further, among the wall surfaces constituting the wall surface of the building frame shown in the embodiment 7 (FIG. 15), the buffer plate body can be satisfactorily used as required for the joint portion where excessive deformation and vibration are concentrated.

さらに又、実施態様8(図17)に示す内断熱構造において、特に過大な変形や振幅が集中し易い柱間空間を選定し、それらの柱間空間の全内周面、あるいは、上部仕口部及び/又は下部仕口部等の一部の内周面に、変形可能な制震枠体を配設して、固着させ、該制震枠体に本発明の押込固定具を用いて緩衝用板体を止着材により螺着することにより止着する。こうして、優れた耐・制震効果が発揮できる耐・制震内断熱構造を容易に得ることが出来る。   Furthermore, in the inner heat insulating structure shown in the embodiment 8 (FIG. 17), inter-column spaces where particularly excessive deformation and amplitude tend to concentrate are selected, and the entire inner peripheral surface of these inter-column spaces or upper joints are selected. A deformable vibration control frame is disposed on and fixed to a part of the inner peripheral surface of the part and / or the lower joint, and the shock control frame is buffered by using the pressing fixture of the present invention. The plate is fixed by screwing the plate with a fixing material. In this way, it is possible to easily obtain a heat-resistant / seismic heat insulation structure that can exhibit excellent anti-seismic effects.

又さらに、実施態様9(図18)に示す内断熱構造においても、特に過大な変形や振幅が集中し易い柱間空間を選定し、これらの柱間空間の全内周面、あるいは、上部仕口部及び/又は下部仕口部等の一部の内周面に、緩衝用板体を配設して、止着させるための嵌溝を彫設し、該嵌溝に本発明の押込固定具を用いて該緩衝用板体を配設し、止着材を用いて螺着により止着させることで、容易に、耐・制震効果を発揮させることが出来る。   Furthermore, also in the inner heat insulating structure shown in Embodiment 9 (FIG. 18), inter-column spaces where excessive deformation and amplitude tend to concentrate are particularly selected, and the entire inner peripheral surface of these inter-column spaces or the upper structure are selected. A buffer plate is arranged on a part of the inner peripheral surface of the mouth part and / or the lower joint part, and a fitting groove for fixing is engraved, and the pressing and fixing of the present invention is carried in the fitting groove. The shock-absorbing and vibration-damping effect can be easily exhibited by disposing the buffer plate using a tool and fastening it by screwing using a fastening material.

さらに、実施態様10(図19)に示すのは、内断熱壁構造における新規な態様を示すものである。すなわち、柱間空間の内で、特に過大な変形や震動が集中し易い、例えば、出隅、入隅や通し柱の近傍等の柱間空間を中心に、これらの柱間空間の上部仕口部及び/又は下部仕口部等の外壁面側の内周面に緩衝用板体を次のごとく配設する。すなわち、該緩衝用板体が構造躯体の外周面に対し、構造用面材の厚み寸法分だけ突出させて配設できる深さの嵌溝を彫設し、該嵌溝に該緩衝用板体を配設した後、本発明の押込固定具を用いて止着材により螺着することにより止着させる。次いで、該緩衝用板体の該施工部位を除く残余の柱間空間の外壁面側には、構造用面材を該緩衝用板体と面一にして配設して固着する。   Further, Embodiment 10 (FIG. 19) shows a novel aspect of the inner heat insulating wall structure. That is, in the inter-column spaces, particularly excessive deformation and vibration are likely to concentrate. And / or a buffer plate is arranged on the inner peripheral surface of the outer wall surface such as the lower joint portion as follows. That is, a fitting groove having a depth that allows the buffer plate body to be protruded from the outer peripheral surface of the structural housing by the thickness dimension of the structural face material is carved, and the buffer plate body is provided in the fitting groove. After being disposed, it is fixed by screwing with a fixing material using the push-in fixture of the present invention. Next, a structural face material is arranged and fixed on the outer wall surface side of the remaining inter-column space excluding the construction site of the buffer plate so as to be flush with the buffer plate.

この構成をとることにより、緩衝用板体に代表される弾性材料である発泡合成樹脂板体(耐・制震性)と塑性材料である構造用面材(耐震性)の夫々の優れた材料特性が同一壁面、同一面上で共存、複合化させることが可能となり、全く新しい構造からなる耐・制震性能を有する壁構造が形成できるのである。この壁構造は、僅かな層間変位角度(1/30rad同等以上)で容易に安全限界に達し、軸組み部(仕口部等)や構造用面材の固着部が損壊し、一気に倒壊するという従来の耐力壁(耐震住宅)が有する不可避で重篤な課題を改善、解消することが期待されるのである。本発明では、この新規な耐震性能と制震性能を有する耐力壁構造を、弾性耐力壁、又は、弾性耐力壁構造と称する。   By adopting this configuration, each of the excellent materials of the foamed synthetic resin plate (elasticity and vibration control), which is an elastic material typified by a buffer plate, and the structural surface material (earthquake resistance), which is a plastic material, are used. It is possible to coexist and combine the characteristics on the same wall and on the same surface, and it is possible to form a wall structure having a completely new structure and anti-seismic performance. This wall structure easily reaches the safety limit with a slight interlayer displacement angle (equal to 1/30 rad or more), and the shaft assembly part (joint part, etc.) and the fixing part of the structural face material are damaged and collapsed at once. It is expected to improve and eliminate the unavoidable and serious problems of conventional bearing walls (seismic houses). In the present invention, the load-bearing wall structure having the new seismic performance and damping performance is referred to as an elastic load-bearing wall or an elastic load-bearing wall structure.

又、図19では、本弾性耐力壁を内断熱壁構造における例で示したが、必ずしも内断熱壁構造に限定されるものではなく、外断熱壁構造にも適用できる。例えば、図19(b)に示す弾性耐力壁構造の外壁面側に外断熱用の発泡合成樹脂板体を配設して、本発明の押込固定具を用いて止着材により螺着することで止着すれば、既述した耐・制震外断熱壁構造とは別の弾性耐力壁構造を用いた耐・制震外断熱壁構造を構築することが出来る。   Further, in FIG. 19, the elastic bearing wall is shown as an example in the inner heat insulating wall structure, but is not necessarily limited to the inner heat insulating wall structure, and can be applied to the outer heat insulating wall structure. For example, a foamed synthetic resin plate for external heat insulation is disposed on the outer wall surface side of the elastic load-bearing wall structure shown in FIG. 19B, and is screwed with a fastening material using the push-in fixture of the present invention. If it is fixed at the above, it is possible to construct a heat-resistant / quake-proof outside heat insulation wall structure using an elastic load-bearing wall structure different from the above-mentioned structure.

なお、図19(b)に図示した内断熱壁構造における弾性耐力壁構造を外断熱壁構造にする場合には、充填断熱材は必ずしも必要ではなく、省略することが出来、コスト面からは省略することが望ましい。そして、この外断熱壁構造に適した弾性耐力壁構造は、長期優良住宅に要望される安心、安全、高耐久性等の諸条件を最も高度に達成しうる。   Note that when the elastic bearing wall structure in the inner heat insulating wall structure shown in FIG. 19B is an outer heat insulating wall structure, the filling heat insulating material is not necessarily required and can be omitted from the viewpoint of cost. It is desirable to do. The elastic load-bearing wall structure suitable for the outer heat insulating wall structure can achieve various conditions such as safety, safety, and high durability required for a long-term excellent house.

本発明に於いては、以下において、弾性耐力壁、又は、弾性耐力壁構造と称す。なお、この弾性耐力壁、又は、弾性耐力壁構造は、既述した本発明の耐・制震壁構造の範疇に含まれるものであるから、両者を特に区別せず、総称して、耐・制震壁構造(又は、耐・制震内断熱壁構造や耐・制震外断熱壁構造等)と言うことがある。   In the present invention, it is hereinafter referred to as an elastic bearing wall or an elastic bearing wall structure. In addition, since this elastic bearing wall or elastic bearing wall structure is included in the category of the above-described anti-seismic wall structure of the present invention, the two are not particularly distinguished and are collectively referred to as It may be referred to as a damping wall structure (or heat resistant / insulation heat insulating wall structure or heat resistant outside vibration control wall structure, etc.).

又、実施態様11(図20)、実施態様12(図21)に示す制震パネルは、緩衝性が最優先で求められるため、緩衝用板体の使用が適している。   Further, since the damping panels shown in the embodiment 11 (FIG. 20) and the embodiment 12 (FIG. 21) are required to have a shock-absorbing property with the highest priority, use of a shock-absorbing plate is suitable.

そして、これらの硬質発泡合成樹脂板体1rに代えて使用した緩衝用板体の断熱性能の低下分をカバーするには、例えば、該部位の内壁面側から充填断熱材として、一般的に採用されている繊維系断熱材(ガラス繊維断熱材等)を充填したり、硬質発泡合成樹脂板体1rを用いてバックアプ材として断熱補強したり、現場発泡ウレタン等を充填すればよい。(図14、図15、図17を参照)
又、半硬質発泡合成樹脂板体1sの内、発泡ポリエチレンや発泡ポリプロピレン等で、透湿性の改良が必要となる場合には、例えば、該半硬質発泡合成樹脂板体1sの適所に2mmΦ〜12mm、更に望ましくは5mmΦ〜10mmΦ程度の透湿孔を設ければ目的が達せられる。そして、これらの透湿孔により、断熱性が低下した分は、前記した断熱補強をすることにより、断熱性の低下分を補うことが出来る。(図示せず)
なお、本発明で言う緩衝(性)とは、発泡合成樹脂板体1、あるいは、緩衝用板体の止着部及び板体全体が震動や変形力に応じて弾性変形すると共に、弾性復元することにより、地震エネルギーを吸収し、揺れを抑制することを意味する。
And, in order to cover the decrease in the heat insulation performance of the buffer plate used instead of the hard foam synthetic resin plate 1r, for example, generally adopted as a filling heat insulating material from the inner wall surface side of the part What is necessary is just to fill the fiber-type heat insulating material (glass fiber heat insulating material etc.) currently used, to insulate and reinforce as a back-up material using the hard foam synthetic resin board 1r, or to fill in-situ urethane foam. (See FIGS. 14, 15, and 17)
In addition, in the case of the semi-rigid foam synthetic resin plate 1s, when the moisture permeability needs to be improved with foamed polyethylene, foamed polypropylene, or the like, for example, 2 mmΦ to 12 mm is placed at an appropriate position of the semi-rigid foam synthetic resin plate 1s. More desirably, a moisture permeable hole having a diameter of about 5 mmΦ to 10 mmΦ is provided. And the part which heat insulation reduced by these moisture permeable holes can supplement the part for heat insulation by carrying out the above-mentioned heat insulation reinforcement. (Not shown)
In addition, the buffer (property) referred to in the present invention means that the foamed synthetic resin plate 1 or the fastening portion of the buffer plate and the entire plate are elastically deformed according to vibration and deformation force and elastically restored. This means that it absorbs seismic energy and suppresses shaking.

押込固定具は、これら発泡合成樹脂板体1、あるいは、緩衝用板体が有する緩衝性をリアルタイムに、かつ、有効に発揮させるためのものであって、樹脂の種類、発泡倍率、厚み等に適合した外形形状や止着数や止着箇所を適切に選定することにより、より効果的に緩衝性を引き出すことが出来る。   The push-in fixture is for effectively exhibiting the cushioning property of the foamed synthetic resin plate 1 or the buffer plate in real time, and is suitable for the type of resin, the foaming ratio, the thickness, etc. By appropriately selecting a suitable outer shape, number of fastenings, and fastening locations, it is possible to extract the buffering effect more effectively.

硬質発泡合成樹脂板体1rを使用する場合に、例えば、押込固定具の個々の止着位置に、予め抗張力の高いパッチワーク状のシート材を貼着しておくと、発泡合成樹脂板体の止着位置での止着強度を高めるので望ましい。   When using the rigid foam synthetic resin plate 1r, for example, if a patchwork-like sheet material having a high tensile strength is attached in advance to each fastening position of the indentation fixture, This is desirable because it increases the fastening strength at the fastening position.

また、押込固定具を止着させる柱、横架材、土台、間柱、筋交いに沿って、発泡合成樹脂板体として半硬質発泡合成樹脂板体1sを使用する場合等には次の工夫が有効である。ビーズ法の発泡ポリプロピレン、発泡ポリエチレン、発泡ポリエチレン共重合ポリスチレン樹脂、ハイインパクトポリスチレン等を用いて、半硬質発泡合成樹脂板体1sを成形する際に、該半硬質発泡合成樹脂板体1sの適当箇所、又は、押込固定具5による止着部近傍に、低発泡倍率の予備発泡ビーズを充填して、一体成形し、エネルギー吸収性をより高めることが出来る。   In addition, the following devices are effective when semi-rigid foam synthetic resin plate 1s is used as the foam synthetic resin plate along the columns, horizontal members, foundations, studs, and braces that fix the indentation fixture. It is. When forming a semi-rigid foam synthetic resin plate 1s using beaded foamed polypropylene, foamed polyethylene, foamed polyethylene copolymer polystyrene resin, high impact polystyrene, or the like, an appropriate portion of the semi-rigid foam synthetic resin plate 1s is formed. Alternatively, pre-expanded beads having a low expansion ratio are filled in the vicinity of the fastening portion by the push-in fixture 5 and can be integrally molded to further enhance energy absorption.

また、該止着部に予め貫通穴5dを設けて止着材の貫通を容易にすることもでき、また、押込固定具5の突起部5aの形状と同等以下の小寸法の浅い凹部を形成させ、螺着時に埋没させたることも施工性の向上に望ましい。又、押込固定具の突起部を発泡合成樹脂板体上に浮き上がらせた状態で発泡合成樹脂板体中にインサート成型しておいて止着時、あるいは、螺着時に、押圧、埋没させてもよい。さらに、止着箇所の発泡合成樹脂部分を除去し、その部分に強度や弾性の高い、例えば、合成ゴムやエラストマー樹脂等の別素材を挿入して一体化させてもよい。これらの発泡合成樹脂板体の適当箇所や止着部を部分的に補強する方法は、大きな外力や震動が加わる場合、特に制震パネル等に有効であり適宜採用すればよい。   In addition, a through hole 5d can be provided in the fastening portion in advance to facilitate penetration of the fastening material, and a shallow concave portion having a small dimension equal to or smaller than the shape of the projection 5a of the push-in fixture 5 is formed. It is also desirable to improve the workability by burying it during screwing. In addition, even if the protrusion of the indentation fixture is floated on the foamed synthetic resin plate, it is insert-molded in the foamed synthetic resin plate, and it is pressed or buried when fastened or screwed. Good. Further, the foamed synthetic resin portion at the fastening portion may be removed, and another material having high strength and elasticity, for example, synthetic rubber or elastomer resin may be inserted into the portion and integrated. The method of partially reinforcing appropriate portions and fastening portions of these foamed synthetic resin plates is particularly effective for a vibration control panel or the like when a large external force or vibration is applied, and may be appropriately employed.

本発明で使用する発泡合成樹脂板体の表面補強材1aとしては、該発泡合成樹脂板体の表面の片面、又は、両面の全面又は一部に積層される。この表面補強材1aとして、不織布、紙、アルミ箔、アルミ蒸着フイルム、メッシュ材等の表面補強材が使用できる。その内でも、不織布が、表面補強材強度、可撓性、透湿性、製造コスト面等からより好ましい。特に、ポリエステル系長繊維不織布スパンボンド(商品名:ボランス、東洋紡績(株)製)等は、抗張力が高く、展伸性や柔軟性に富み望ましい。   The surface reinforcing material 1a of the foamed synthetic resin plate used in the present invention is laminated on one side of the surface of the foamed synthetic resin plate, or on the whole or part of both sides. As the surface reinforcing material 1a, a surface reinforcing material such as non-woven fabric, paper, aluminum foil, aluminum vapor deposited film, mesh material or the like can be used. Among these, a nonwoven fabric is more preferable from the viewpoint of surface reinforcing material strength, flexibility, moisture permeability, manufacturing cost, and the like. In particular, polyester-based long-fiber nonwoven fabric spunbond (trade name: Borance, manufactured by Toyobo Co., Ltd.) and the like are desirable because of their high tensile strength, high stretchability and flexibility.

本発明で使用する構造用面材とは、耐力壁用の面材の総称であって、針葉樹合板、構造用面材、シージングボード等を指す。例えば、シージングボードは、主に木材を解繊した繊維材を接着剤等で含浸、加圧成型されるため、高強度で、表面性に優れ、低コスト、省資源性から、構造用面材の主流を成している。これらのシージングボードは、表面滑性に優れる分、発泡合成樹脂板体との止着面に滑りやズレが発生しやすいので、その改善策が望まれる。このためには、構造用面材の表面に滑性の低い材質のシートやフィルムや粘性接着剤を全体的あるいは部分的に貼着させることもできる。   The structural face material used in the present invention is a general term for the face material for the load-bearing wall, and refers to softwood plywood, structural face material, sizing board, and the like. For example, shised boards are mainly impregnated and pressure-molded with a fiber material that has been defibrated from wood, so that it has high strength, excellent surface properties, low cost, and resource saving. Is the mainstream. Since these shising boards are excellent in surface slipperiness, slipping and misalignment are likely to occur on the fastening surface with the foamed synthetic resin plate, and an improvement plan is desired. For this purpose, a sheet or film made of a material having low slipperiness or a viscous adhesive can be adhered to the surface of the structural face material in whole or in part.

通気胴縁とは、通常の外断熱構造の場合、構造躯体の外周の開口部等を除く壁面全面に、気密状に連接させるように発泡合成樹脂板体を丸釘で止着して張設した後、該発泡合成樹脂板体の外周面と外壁材の間に通気空間を設けるため、略等間隔で発泡合成樹脂板体の押え止着材と外壁材の懸架材とを兼ねて敷設されるものである。通気胴縁は別名縦胴縁と称され、通気胴縁間に形成される縦方向の空間は、外壁の下端部(水切り部)から屋根の庇や棟に至る間を連通させて通気層が形成され、この空間を外気通気層とも称し、外気を通気させることにより四季の寒暖の外気温を24時間を通して、家屋内に侵入させないように設けている。   In the case of a normal outer heat insulation structure, the ventilator edge is stretched by fastening a foamed synthetic resin plate with round nails so that it is airtightly connected to the entire wall surface except for the opening on the outer periphery of the structural housing. After that, in order to provide a ventilation space between the outer peripheral surface of the foamed synthetic resin plate body and the outer wall material, the foamed synthetic resin plate body is laid to serve as both a pressing and fixing material for the foamed synthetic resin plate body and a suspension material for the outer wall material. Is. Ventilation rims are also called vertical trunk rims, and the vertical space formed between the ventilation rims communicates between the lower end of the outer wall (draining part) and the roof ridges and ridges. This space is also referred to as an outside air ventilation layer, and is provided so that the outside temperature of the four seasons is not allowed to enter the house through 24 hours by aerating the outside air.

通常、通気胴縁は、縦方向に配設されるが、開口部53等の修まり上、外気の縦方向の通気層を遮断しないように工夫して横方向に敷設される横胴縁や横架材が併用されることがある。本発明では、これら縦胴縁、横胴縁や横架材を単に通気胴縁と表現する。本発明の通気胴縁としては、前記した平板状の通常の通気胴縁14と押込突起付通気胴縁14aがあり(前記したごとく、これら2者を総称して通気胴縁14と称す)、これらは、押込固定具との組合せによって、構造躯体と発泡合成樹脂板体と通気胴縁と外壁材との一体化の構造強度を著しく向上させるのみならず、外壁材の垂れ下りや脱落の抑制、発泡合成樹脂板体の弾性変形、復元をより効果的に発現させることが出来るのである。   Usually, the ventilator rim is arranged in the vertical direction. However, in order to fix the opening 53 and the like, the ventilator rim is laid in the horizontal direction so as not to block the vertical vent layer of the outside air. A horizontal member may be used together. In the present invention, the vertical trunk edge, the horizontal trunk edge, and the horizontal member are simply expressed as a ventilation trunk edge. As the ventilator edge of the present invention, there are the above-described flat plate-like normal ventilator edge 14 and the ventilator edge 14a with a pushing projection (as described above, these two are collectively referred to as the ventilator edge 14), These combinations not only significantly improve the structural strength of the structural housing, foamed synthetic resin plate, ventilator rim, and outer wall material, but also prevent the outer wall material from drooping or falling off in combination with the indentation fixture. The elastic deformation and restoration of the foamed synthetic resin plate can be more effectively expressed.

この通気胴縁の寸法としては、通常、木製の桟木(巾40mmから100mm程度、厚み18mmから25mm程度)が採用され、さらに、入隅部や出隅部には幅広(幅100mmから150mm程度)の通気胴縁(通気貫とも称される)が使われている。   The size of the ventilator edge is usually a wooden pier (width of about 40 mm to 100 mm, thickness of about 18 mm to 25 mm). Ventilation trunk edge (also called ventilation penetration) is used.

次いで、止着材について記す。従来の工法においても、発泡合成樹脂板体を構造躯体に緊密に止着させる必要性、および、通気胴縁の外周面に外壁材を懸架、吊設させる必要性から、止着強度が得やすい特殊螺子釘2で止着されているのが一般的である。
そして、本発明に使用する止着材として、螺子釘が望ましく、特に、特殊螺子釘2が同様に望ましい。何故なら、1)本発明の押込固定具の突起部を発泡合成樹脂板体中の適正深さに埋没止着させる必要がある。2)一旦、適正深さに螺着された押込固定具は、高い止着強度を確保すると共に、その位置以上に埋没、沈下しない螺着構造であること。3)長期の経年後の断熱リフォームや制震リフォーム等のメンテナンス時に着脱を容易ならしめるためである。螺子釘としては、スクリューネジ、コースレッド、コーチスクリュー、セルフドリル(タッピングネジ)、及び、先に特殊螺子釘と定義した螺子釘(例:X−ポイントビス等)、Wカットビス類等が挙げられる。
Next, the fastening material will be described. Even in the conventional construction method, it is easy to obtain fastening strength because of the necessity of tightly fastening the foamed synthetic resin plate to the structural housing and the need to suspend and suspend the outer wall material on the outer peripheral surface of the ventilator edge. Generally, it is fixed with a special screw nail 2.
And as a fastening material used for this invention, a screw nail is desirable and especially the special screw nail 2 is desirable similarly. This is because 1) it is necessary to bury and fix the protrusion of the indentation fixture of the present invention to an appropriate depth in the foamed synthetic resin plate. 2) The push-in fixture once screwed to an appropriate depth has a screwed structure that ensures high fastening strength and does not bury or sink below that position. 3) This is to make it easy to attach and detach during maintenance such as thermal insulation reforming and vibration control reforming after a long period of time. Examples of screw nails include screw screws, co-threads, coach screws, self-drills (tapping screws), screw nails previously defined as special screw nails (eg, X-point screws, etc.), W-cut screws, and the like. .

さらに、本発明の止着部で、弾性変形、復元性をより効果的に発現させるためには、止着材自体の高い剛性に加えて、例えば、釘胴部2dが弾性変形性、復元性を有していることも望ましい。このため、例えば、材質をステンレス鋼等のバネ材としたり、図6(a)(イ)に示すごとく、釘胴部2bの捻じ込み部を除く部位に緩やかな凹凸部2dを設けたりして、止着材に弾性変形、復元性を付加させるのが望ましい。このようにすると、発泡合成樹脂板体の止着部における弾性変形、復元性と相複合して発揮されることになるので望ましい。   Furthermore, in order to exhibit elastic deformation and resilience more effectively in the fastening portion of the present invention, in addition to the high rigidity of the fastening material itself, for example, the nail body 2d is elastically deformable and restorable. It is also desirable to have For this reason, for example, the material is a spring material such as stainless steel, or, as shown in FIGS. It is desirable to add elastic deformation and resilience to the fastening material. This is desirable because it is combined with elastic deformation and resilience at the fastening portion of the foamed synthetic resin plate.

又、図4(a)の例示のように予め押込固定具5と特殊螺子釘2をカシメ加工して一体化させてもよい。本発明では、螺子釘という範疇に属さない止着材であっても、構造躯体にねじ込むことにより、押込固定具の突起部の一部又は全部を、発泡合成樹脂板体中に押込み、埋没させることが出来、有効な押圧力を与えうるものであれば使用できることは言うまでもない。しかるに、一般的な丸釘などは、発泡合成樹脂板体を予め構造躯体に仮止着する際に仮止め材として使用することはあるが、押圧力が不足することに加え、打ち込み深さの微調整が不能で、発泡合成樹脂板体中に容易に陥没して損傷させる欠点もあることから、本発明の止着材としては好ましくない。   Further, as shown in the example of FIG. 4A, the pressing fixture 5 and the special screw nail 2 may be integrated by caulking in advance. In the present invention, even if it is a fastening material that does not belong to the category of screw nails, by screwing it into the structural housing, a part or all of the protrusions of the push-in fixture is pushed into the foamed synthetic resin plate and buried. Needless to say, it can be used as long as it can provide an effective pressing force. However, general round nails and the like are sometimes used as a temporary fixing material when the foamed synthetic resin plate is temporarily fixed to the structural frame in advance. Since the fine adjustment is impossible and there is a defect that the foamed synthetic resin plate is easily depressed and damaged, it is not preferable as the fastening material of the present invention.

本発明で称するゴム状弾性板体とは、天然ゴムや合成ゴム等からなる防振ゴム、高減衰ゴムや、エラストマー樹脂等の素材で形成されたゴム状の弾性を有する板体である。そして、このゴム状弾性板体は、突起部を有さない押込固定具と共に用いる時には、止着材を用いて、突起部を有さない押込固定具を建物躯体にねじ込む際、その可撓性により押込固定具の周縁を覆った状態で、弾性変形したまま発泡合成樹脂板体に埋没し、押込固定具の周縁で発泡合成樹脂板体に裂断等の損傷を与えることなく、発泡合成樹脂板体に押圧力を与えうるものを言う。この目的でのゴム状弾性板体の大きさは、突起部を有さない押込固定具と同径あるいは同径より大であることが好ましい。厚みは適宜選定すればよいが、例示するならば1〜7mmくらいが好ましく、2〜5mmくらいがより好ましい。こうすれば、前述のごとく押込固定具の周縁を覆ってカバーしたまま、発泡合成樹脂板体中に一部又は全部が埋没した状態とすることができる。また、押込補助突起3や押込用突起3´を有さない通常の通気胴縁14と共に用いるゴム状弾性板体は、通常の通気胴縁の周縁を覆った状態にて発泡合成樹脂板体に埋没し、発泡合成樹脂板体に押圧力を与えることができる。   The rubber-like elastic plate referred to in the present invention is a rubber-like elastic plate made of a material such as an anti-vibration rubber, a high damping rubber, or an elastomer resin made of natural rubber or synthetic rubber. When this rubber-like elastic plate is used together with a pressing fixture that does not have a protruding portion, when the pressing fixture that does not have a protruding portion is screwed into a building frame by using a fastening material, the rubber-like elastic plate body is flexible. The foamed synthetic resin is embedded in the foamed synthetic resin plate while being elastically deformed while covering the periphery of the indentation fixture, and without causing damage such as tearing to the foamed synthetic resin plate at the periphery of the indentation fixture. The thing which can give a pressing force to a plate. The size of the rubber-like elastic plate for this purpose is preferably the same diameter or larger than the same diameter as the push-in fixture having no protrusion. The thickness may be selected as appropriate, but if exemplified, it is preferably about 1 to 7 mm, more preferably about 2 to 5 mm. If it carries out like this, as mentioned above, it can be set as the state where one part or all part was buried in the foamed synthetic resin board body, covering and covering the periphery of the pushing fixture. Further, the rubber-like elastic plate used together with the normal ventilation drum edge 14 having no pushing auxiliary protrusion 3 or pushing protrusion 3 'is formed into a foamed synthetic resin plate in a state of covering the peripheral edge of the normal ventilation drum edge. It can be buried and give a pressing force to the foamed synthetic resin plate.

硬質発泡合成樹脂板体1rを壁面の適所で緩衝用板体と組合せて使用する断熱構造の場合であって、硬質発泡合成樹脂板体1rに代えてゴム状弾性板体20を採用する場合においては、これらゴム状弾性板体20の厚みは、通気胴縁や外壁材の施工性を考慮して、規定された硬質発泡合成樹脂板体1rの断熱材厚みと同一厚みが望ましく、該ゴム状弾性板体20の断熱性能の不足分は充填断熱材60を併用して補うことで対応するのが好ましい。この点は、硬質発泡合成樹脂板体1rを半硬質発泡合成樹脂板体1sに代用する場合とほぼ同様である。   In the case of a heat insulating structure in which the hard foamed synthetic resin plate 1r is used in combination with a buffer plate at an appropriate position on the wall surface, and when the rubber-like elastic plate 20 is employed instead of the hard foamed synthetic resin plate 1r. The thickness of the rubber-like elastic plate 20 is desirably the same as the thickness of the heat insulating material of the rigid foam synthetic resin plate 1r, considering the workability of the ventilator edge and the outer wall material. The shortage of the heat insulating performance of the elastic plate member 20 is preferably dealt with by supplementing the filler heat insulating material 60 in combination. This is almost the same as the case where the hard foam synthetic resin plate 1r is substituted for the semi-rigid foam synthetic resin plate 1s.

また、後述の制震パネル40に用いるゴム状弾性板体20の厚みは、材質や緩衝性や弾性等の物性にもよるが、少なくとも15mm以上、望ましくは、20mm以上、さらに望ましくは25mm〜50mm程度が望ましい。該ゴム状弾性板体20が薄過ぎると本発明の止着方法や止着構造からなる制震効果が十分に発揮できず、外力や震動による弾性変形時にゴム状弾性板体20にねじれや反りが発生し易くなり、地震等の揺れや変形で生ずる力の分散が阻害される傾向が生じ易くなるので好ましくない。   Further, the thickness of the rubber-like elastic plate 20 used for the vibration control panel 40 described later is at least 15 mm, preferably 20 mm or more, more preferably 25 mm to 50 mm, although it depends on the material and physical properties such as buffering properties and elasticity. Degree is desirable. If the rubber-like elastic plate 20 is too thin, the damping effect of the fastening method and the fastening structure of the present invention cannot be sufficiently exhibited, and the rubber-like elastic plate 20 is twisted or warped during elastic deformation due to external force or vibration. This is not preferable because it tends to occur and tends to inhibit the dispersion of force caused by shaking or deformation such as an earthquake.

本発明の制震パネル40とは、一定の大きさの枠体(これを制震フレーム41と呼ぶ)に本発明の止着構造を用いて、半硬質発泡合成樹脂板体1s、あるいはゴム状弾性板体20等の緩衝用板体を組み付けてパネル状にしたものである。   The vibration control panel 40 of the present invention is a semi-rigid foam synthetic resin plate 1s or a rubber-like structure using the fastening structure of the present invention for a frame of a certain size (referred to as a vibration control frame 41). A buffer plate such as the elastic plate 20 is assembled into a panel shape.

この制震パネル40には3つの種類がある。その1つは、例えば、一階の壁面においては、柱と柱の間で、土台10と横架材11とで構成される柱間大空間4aの全部に、配設、連接させて敷設する長尺制震パネル40aである。他の1つは、柱と間柱の間で、土台10と横架材11とで構成される柱間小空間4bの仕口部に配設、連接させて敷設する仕口制震パネル40bである。他のもう1つは、柱間小空間4bや柱間大空間4aの高さ方向の一部に配設、連接させて敷設する汎用制震パネル40c等がある。   There are three types of vibration control panels 40. One of them is, for example, on the wall of the first floor, between the pillars and the pillars, and laid and connected to the entire inter-pillar large space 4a constituted by the base 10 and the horizontal member 11. This is a long seismic control panel 40a. The other one is a joint damping panel 40b arranged between and connected to the joint portion of the small inter-column space 4b composed of the base 10 and the horizontal member 11 between the pillars. is there. The other is a general-purpose seismic control panel 40c that is arranged in a part of the height direction of the inter-column small space 4b or the large inter-column space 4a, and is connected and laid.

その具体的な構造例は、後述する実施態様11(図20)及び、実施態様12(図21)に示すごときものである。制震パネル40は、外断熱住宅、あるいは、現在、戸建住宅業界で圧倒的なシェアーを占める鋼製や木造の充填断熱(外断熱に対し内断熱とも称す)や、在来の土壁構造のものを含む木造住宅等のいずれをも対象とする。そして、構造躯体の外周面に突出させないで外壁や間仕切壁の柱間空間である前記柱間大空間4a、または、柱間小空間4bに配設、装着することにより耐・制震効果を発揮させる。   The specific structural example is as shown in Embodiment 11 (FIG. 20) and Embodiment 12 (FIG. 21) described later. The seismic control panel 40 can be used for outer heat insulating houses, steel or wooden filling heat insulation (also called inner heat insulation for outer heat insulation), which currently occupies an overwhelming share in the detached housing industry, and conventional earth wall structures. All of wooden houses including the ones are targeted. And, it does not protrude from the outer peripheral surface of the structural frame, and exhibits the anti-seismic effect by being arranged and installed in the large inter-column space 4a or the small inter-column space 4b which is the inter-column space of the outer wall or partition wall. Let

なお、制震パネル40に使用する押込固定具5は、制震フレーム41と共に、半硬質発泡合成樹脂板体1sあるいはゴム状弾性板体20等の緩衝用板体を強固に止着することで、これらの緩衝用板体中に押込固定具5の突起部が埋没され、該緩衝用板体に押圧力を及ぼし、既述したごとき押圧樹脂領域30や圧縮応力分散領域31を形成させる効果を発揮する。又、図20、図21の説明の際に記述するように、緩衝用板体の表裏に対向する一対の押込固定具5を配し、これらを貫通する六角ボルトナット16e等の止着材で緊結し緩衝用板体と制震フレーム41とを一体化させる止着構造が最も好ましい態様として採用される。   The push-in fixture 5 used for the vibration control panel 40 is firmly fixed to the buffer plate such as the semi-rigid foam synthetic resin plate 1s or the rubber elastic plate 20 together with the vibration control frame 41. The protrusions of the pressing fixture 5 are buried in these buffer plates, exerting a pressing force on the buffer plates, and forming the pressing resin region 30 and the compressive stress dispersion region 31 as described above. Demonstrate. Also, as described in the description of FIGS. 20 and 21, a pair of pressing fixtures 5 facing the front and back of the buffer plate are arranged, and a fixing material such as a hexagonal bolt nut 16e penetrating them is used. A fastening structure in which the buffer plate and the damping frame 41 are integrated together is adopted as the most preferable mode.

市販の壁面用の制震装置には、GVA(商品名、(株)アイ・エム・エー製)、MGEO(商品名、ミサワホーム(株)製)、シーカス(商品名、積水ハウス(株)製)、減震くん(商品名、(株)日立製作所製)等があり、仕口用の制震装置には、仕口ダンパー(商品名、(株)鴻池組製)等がある。特に、これら制震装置の共通点は、イ)かなり高価で複雑な制震メカニズムを利用するため装着数は、建物躯体の平面方向から見て、X、Y軸方向の多数の外壁面や間仕切壁面の内、合計2〜10個+α/戸(2階建、建坪40坪)程度と、少ない設置壁面数(施主の経済的負担の軽減策)に限定されがちであるが、その分、装着壁面と、未装着壁面、又は、部屋間に性能バラツキが出やすい。ロ)構造躯体の水平方向と交差(対向)する方向に制震アームや制震ブレストを設けて梃子の原理で地震動をキャッチしその変形や震動を高制震ゴムやオイルダンパーの制震部に伝達させるという複雑な伝達構造からなり、その分、応答タイムラグが大となる。ハ)標準仕様の柱間距離より狭い、又は、広い壁面や、地震負荷や変形に弱い開口部壁面の垂れ壁や腰壁では作動しないか、装着できない。ニ)制震メカニズム上、主として、1階の上部の梁の変形量や震動を吸収して作動するため、制震効果は2階部分からとされる。ホ)X,Y軸の水平方向の変形に捩れが生じる場合は性能が低下しやすい。へ)梃子の原理で作動するため、軸組み部(仕口部)に集中荷重が働き、木造住宅には不向きとされる。ト)以上のような制約条件が多く自由設計度が低い。等の課題が指摘されている。   Commercially available seismic control devices for wall surfaces include GVA (trade name, manufactured by IMO Co., Ltd.), MGEO (trade name, manufactured by Misawa Homes Co., Ltd.), Seacus (trade name, manufactured by Sekisui House Co., Ltd.) ), Vibration reduction kun (trade name, manufactured by Hitachi, Ltd.), etc., and as a vibration control device for the joint, there is a joint damper (trade name, manufactured by Konoike Gumi Co., Ltd.). In particular, the common features of these seismic control devices are: a) A large number of external wall surfaces and partitions in the X and Y axis directions as viewed from the plane of the building frame, since they use a rather expensive and complex seismic control mechanism. Of the wall surface, it tends to be limited to a total of about 2 to 10 pieces + α / door (2 stories, 40 tsubo) and a small number of installed wall surfaces (measures to reduce the financial burden of the owner). There is a tendency for performance variations between the wall surface and the unmounted wall surface or the room. B) A vibration control arm or vibration control breast is installed in the direction that intersects (opposites) the horizontal direction of the structural frame to catch the ground motion by the lever principle, and the deformation or vibration is applied to the vibration control section of the high vibration control rubber or oil damper. It consists of a complicated transmission structure for transmission, and the response time lag increases accordingly. C) It does not work or cannot be mounted on a wall surface that is narrower or wider than the standard specification inter-column distance, or a hanging wall or waist wall of an opening wall surface that is vulnerable to earthquake load or deformation. D) Because the seismic control mechanism works mainly by absorbing the deformation and vibration of the beam on the upper part of the first floor, the seismic control effect is taken from the second floor. E) When the horizontal deformation of the X and Y axes is twisted, the performance is likely to deteriorate. F) Since it operates on the principle of lever, concentrated load acts on the shaft assembly (joint part), making it unsuitable for wooden houses. G) There are many constraints as described above and the degree of free design is low. These issues are pointed out.

一方、本発明の制震パネル40には、次の利点が存在する。イ)緩衝用板体と制震フレーム41を押込固定具5と止着材等を使用して組み付けるだけのシンプルな制震メカニズムであるから、低価格で施工性に優れる。ロ)一定の予算額内で装備できる制震パネルの数を、例えば、1階のみならず2階の必要壁面にまで増加させ得るので、制震バランスが良好となり、優れた制震設計が出来る。ハ)柱、間柱、土台、横架材や仕口部に直付けでき、構造躯体の変形や震動を個々の押込固定具や発泡合成樹脂板体の全部がリアルタイムにキャッチし、構造躯体と一体化して弾性変形、復元し、制震効果を発揮する。ニ)1階の壁面の柱間に設置されるため柱の変形が即緩衝用板体に伝達されるためリアルタイムに制震でき、従来品では不得手な1階の壁部分でも制震効果を発揮する。ホ)従来品のごとく複雑な伝達系を介さないため、従来品では不可能とされる狭小や幅広の壁面や開口部の垂れ壁、腰壁にも制約無く配設できる。へ)建物躯体の平面図上のX軸、Y軸の方向の変形に捩れや蛇行が生じた場合、厚みが3〜10mm程度の薄い制震材(エラストマー樹脂等)で構成される従来品は、性能低下や作動不良を起こしやすいが、厚みが20〜50mm程度の厚い緩衝用板体(制震材料)で構成される本制震パネルは、安定した制震性能を発揮できる。ト)構造躯体や断熱構造(外断熱又内断熱)にマッチした自由度の高い制震パネルの設計、製作が可能である。チ)メンテナンスフリー性やメンテナンス性に優れる。   On the other hand, the vibration control panel 40 of the present invention has the following advantages. B) Since the shock-absorbing plate and the vibration-suppressing frame 41 are simply assembled by using the push-in fixture 5 and the fastening material, etc., they are inexpensive and have excellent workability. B) The number of seismic control panels that can be equipped within a certain budget amount can be increased to the required walls on the second floor as well as the first floor, for example, so that the seismic balance is good and an excellent seismic control design is possible. . C) It can be directly attached to columns, studs, foundations, horizontal members and joints, and the deformation and vibration of the structural frame can be caught in real time by the individual push fixtures and foamed synthetic resin plate, and integrated with the structural frame. It is elastically deformed and restored, and exhibits a seismic control effect. D) Since it is installed between the pillars on the first floor wall surface, the deformation of the pillars is immediately transmitted to the shock-absorbing plate so that the vibration can be controlled in real time. Demonstrate. E) Since it does not involve a complicated transmission system as in the conventional product, it can be arranged on the narrow and wide wall surfaces, the hanging wall of the opening, and the waist wall, which are impossible with the conventional product. F) When twisting or meandering occurs in the deformation of the X-axis and Y-axis directions on the plan view of the building frame, Although this tends to cause performance degradation and malfunction, the present damping panel composed of a thick buffer plate (damping material) having a thickness of about 20 to 50 mm can exhibit stable damping performance. G) It is possible to design and manufacture a vibration control panel with a high degree of freedom that matches the structural frame and heat insulation structure (outside insulation or inside insulation). H) Excellent maintenance-free and maintainability.

そして、本制震パネルは、外断熱と内断熱のいずれにも、又、新築とリフォーム、外壁面や間仕切り壁面とを問わず、広く適用でき、低コストで、施工性に優れる等の多くの利点を有している。   And this vibration control panel can be widely applied to both outer and inner heat insulation, whether it is new construction or renovation, outer wall surface or partition wall surface. Has advantages.

尚、本発明の説明の中では、本発明の押込固定具を止着材(特殊螺子釘等)を用いて発泡合成樹脂板体を構造躯体に螺着させることにより、押込固定具の突起部を発泡合成樹脂板体中に押込み、埋没させ、押圧樹脂領域や30や圧縮応力分散領域31を形成させて、大きな応力を発現させる行為を止着という表現で表している。そして、本発明で言う止着を実施する方法を止着方法と表現している。なお、本発明の説明において、この止着方法を省略する場合には、本発明の押込固定具を用いて、発泡合成樹脂板体を配設し、止着させるというような記載をすることがある。さらに、本発明においては、この止着によって構成される構造を止着構造と表現する。   In the description of the present invention, the projecting portion of the indentation fixture is obtained by screwing the foamed synthetic resin plate to the structural housing using the fastening material (special screw nail or the like). Is expressed by the expression “fastening”, in which the pressure resin region 30 or the compressive stress dispersion region 31 is formed by pressing the material into the foamed synthetic resin plate body and burying it. And the method of implementing the fastening said by this invention is expressed as the fastening method. In the description of the present invention, when this fastening method is omitted, a description may be made such that the foamed synthetic resin plate is disposed and fastened using the indentation fixture of the present invention. is there. Furthermore, in this invention, the structure comprised by this fixation is expressed as a fixation structure.

一方、例えば、従来法の発泡合成樹脂板体を止着材(丸釘や特殊螺子釘)を用い、構造躯体に固定や固着させる場合や、構造用面材を止着材で構造躯体に固定や固着させる場合等においては、これらは、一般的な用語である、固着、あるいは固着構造、固着方法と称し、双方を区別して用いるようにしている。尚、丸釘や特殊螺子釘等の止着材については、共通用語としての止着材という用語を用いている。   On the other hand, for example, a conventional foamed synthetic resin plate is fixed to a structural housing using a fastening material (round nail or special screw nail), or a structural face material is fixed to the structural housing with a fastening material. In the case of fixing, these are referred to as general terms, fixing, fixing structure, fixing method, and both are used separately. Note that the term “fastening material” as a common term is used for fastening materials such as round nails and special screw nails.

以下に、本発明をより具体的に明確化させるため、いくつかの実施態様、および、試験の例を記載するが、これらはあくまでも例示であるからして、本発明は、これらの具体例になんら制限されるものではない。
(実施態様1)
図8は、図(a)及び図(b)及び図(c)からなり、通気胴縁14を止着した際における本発明の止着構造の数例を示す断面模式図を記載する。同図(a)〜(c)は、構造躯体4である柱8に構造用面材15を配し、構造用面材15の止着面には、それぞれ発泡合成樹脂板体1が配設されている。
In the following, in order to clarify the present invention more specifically, some embodiments and test examples will be described. However, these are merely examples, and the present invention is not limited to these specific examples. There are no restrictions.
(Embodiment 1)
FIG. 8 is a cross-sectional schematic diagram showing several examples of the fastening structure of the present invention when the ventilator edge 14 is fastened, comprising FIG. (A), FIG. (B) and FIG. (C). In FIGS. 4A to 4C, a structural face material 15 is arranged on a column 8 which is a structural housing 4, and a foamed synthetic resin plate 1 is disposed on a fastening surface of the structural face material 15. Has been.

同図(a)は、構造用面材15の外周面に、発泡合成樹脂板体1として、押出法ポリスチレン(商品名、カネライトフォームF3、厚み40mm、密度30Kg/m、(株)カネカ製)と押込固定具5(直径40mmΦ、略球面体である突起部の高さ12mm、材質:塩化ビニル)を用い、特殊螺子釘2(Xポイントビス、長さ80mm)により構造躯体4に捻じ込み止着させた。直径40mmΦの押込固定具5の突起部先端5cを押込み、埋没させる深さは、12mmで押込固定具の基端部面と発泡合成樹脂板体1面が同一面となるようにし止着した。止着間隔は、400mmピッチとした。この押込固定具5の突起部先端5cを押込むために要する力は、1つの押込固定具5の垂直方向の止着強度に相当し、この力が発泡合成樹脂板体1の裏面側に伝達され、該発泡合成樹脂板体1と構造用面材15との止着力や摩擦力も向上させることになり一体構造化が著しく強化されるのである。又、構造力学的には止着部における通気胴縁14と構造用面材15で挟持されてなる40mm肉厚の発泡合成樹脂板体1の存在は中空部と見なされ、実質的に止着強度は低下するとみなされるものの、本実施態様では、押込固定具5の突起部先端5cを12mm押込み、埋没させることにより、構造用面材15までの中空部に相当する距離は実質的に28mmに減縮されると共に、既述したように、押込固定具5の高い押込力に対応して形成される押圧樹脂領域30や圧縮応力分散領域31の力学的効果とが相俟って止着強度が顕著に向上するのである。 FIG. 6A shows an extruded polystyrene (trade name, Kanelite Foam F3, thickness 40 mm, density 30 Kg / m 3 , manufactured by Kaneka Corporation) on the outer peripheral surface of the structural face material 15 as the foamed synthetic resin plate 1. ) And the push-in fixture 5 (diameter 40 mmΦ, height of projecting portion 12 mm, substantially spherical body, material: vinyl chloride) and screwed into the structural housing 4 with a special screw nail 2 (X point screw, length 80 mm) It was fixed. The protrusion 5c of the pressing fixture 5 having a diameter of 40 mmΦ was pressed and buried at a depth of 12 mm so that the base end surface of the pressing fixture and the surface of the foamed synthetic resin plate 1 were flush with each other. The fastening interval was 400 mm pitch. The force required to push in the projection tip 5c of the push fixture 5 corresponds to the vertical fastening strength of one push fixture 5, and this force is transmitted to the back side of the foamed synthetic resin plate 1; The fastening force and frictional force between the foamed synthetic resin plate 1 and the structural face material 15 are also improved, and the integral structure is remarkably strengthened. Further, in terms of structural mechanics, the presence of the 40 mm thick foamed synthetic resin plate 1 sandwiched between the ventilation cylinder edge 14 and the structural face material 15 in the fastening portion is regarded as a hollow portion and is substantially fastened. Although it is considered that the strength is lowered, in this embodiment, the distance corresponding to the hollow portion to the structural face material 15 is substantially 28 mm by pressing and embedding the protrusion tip 5c of the pressing fixture 5 by 12 mm. In addition to being reduced, as described above, the fastening strength is combined with the mechanical effect of the pressing resin region 30 and the compressive stress dispersion region 31 formed corresponding to the high pressing force of the pressing fixture 5. This is a significant improvement.

次いで、押込固定具5を止着後、通気胴縁14(40mm幅×18mm厚、赤松)を、特殊螺子釘2(長さ100mm)を用いて、止着間隔400mmピッチで、通気胴縁14と発泡合成樹脂板体1との接触面が、面一となるように止着した。従来の通気胴縁14が発泡合成樹脂板体1に食い込ませないために、弱い止着面圧力で止着せざるを得なかったが、本実施態様では、押込固定具5の上面(基盤部5b)を安定した止着基盤面とすることが出来るため、通気胴縁14の発泡合成樹脂板体1内への食い込みを意識することなく通気胴縁14と発泡合成樹脂板体1(押込固定具5を含む)の上面と構造躯体4とを強固な締付力で一体化構造にさせることが出来るのである。この結果、外壁材を取り付ける通気胴縁14の止着強度が向上し、外壁材の垂れ下がりや剥離の懸念が大きく改善できるのである。又、丸釘や、通気胴縁を介し特殊螺子釘のみで止着されている従来の止着方法では、僅かな外力や変形が加わった場合、止着部に局部的な裂断や破損が生じ易い欠点があったのに対し、本実施態様の止着構造とすることで、既述の押圧樹脂領域30や圧縮応力分散領域31の力学的作用が働いて、発泡合成樹脂板体1が構造躯体4の変形に追従・一体化して弾性変形、弾性復元出来るようになり、構造躯体4が有する耐震強度と、発泡合成樹脂板体1が保有するエネルギー吸収量の相乗効果が建物躯体50の変形量(揺れ)や衝撃を抑制、緩和できるようになるのである。   Next, after fixing the push-in fixture 5, the ventilation trunk edge 14 (40 mm width × 18 mm thickness, Akamatsu) is attached to the ventilation trunk edge 14 at a fastening interval of 400 mm pitch using the special screw nail 2 (length 100 mm). And the foamed synthetic resin plate 1 were fixed so that the contact surface was flush. Since the conventional ventilator edge 14 does not bite into the foamed synthetic resin plate 1, it has been forced to fasten with a weak fastening surface pressure. In this embodiment, the upper surface (base part 5b) of the push-in fixture 5 is used. ) Can be used as a stable fastening base surface, so that the ventilating drum edge 14 and the foamed synthetic resin plate 1 (indentation fixture) can be used without being conscious of the biting of the ventilating drum edge 14 into the foamed synthetic resin plate 1. 5) and the structural housing 4 can be made into an integrated structure with a strong clamping force. As a result, the fastening strength of the ventilator edge 14 to which the outer wall material is attached is improved, and the fear of the outer wall material hanging down and peeling off can be greatly improved. In addition, in the conventional fastening method that is fastened with only a special nail through a round nail or a ventilating trunk edge, if a slight external force or deformation is applied, local tearing or damage to the fastening part will occur. In contrast to the drawbacks that are likely to occur, by adopting the fastening structure of the present embodiment, the mechanical action of the above-described pressing resin region 30 and compressive stress dispersion region 31 works, so that the foamed synthetic resin plate 1 is It is possible to follow and integrate with the deformation of the structural housing 4 so that it can be elastically deformed and elastically restored, and the synergistic effect of the seismic strength of the structural housing 4 and the energy absorption amount possessed by the foamed synthetic resin plate 1 is The amount of deformation (swing) and impact can be suppressed and mitigated.

同図(b)は、発泡合成樹脂板体1として、発泡フェノール樹脂(商品名、ネオマフォーム、厚み35mm、密度27Kg/m、両面に表面補強材PET不織布張り、旭化成建材(株)製)を押込固定具5(直径50mmΦ、略皿面体状の突起部の高さ9mm、材質:塩化ビニル)を用い、特殊螺子釘2(Xポイントビス、長さ100mm)とした以外は図8(a)と同様の止着構造とした。発泡フェノール樹脂は、硬質樹脂の脆さを表面補強材1aで補強しているが、局部圧縮を避けることが望ましいので、押込固定具5の直径を50mmΦと大きくし、突起部の高さは9mmと低くし、表面補強材1aである不織布の抗張力を生かして発泡合成樹脂への局部負担を軽減させる止着構造とした。このため平面積が大きく深さの浅い押圧樹脂領域30や圧縮応力分散領域31が形成された。 FIG. 4 (b) shows a foamed synthetic resin plate 1 in which a foamed phenol resin (trade name, Neomafoam, thickness 35mm, density 27Kg / m 3 , surface reinforcing material PET nonwoven fabric stretched on both sides, manufactured by Asahi Kasei Construction Co., Ltd.). Fig. 8 (a) except that a special screw nail 2 (X point screw, length 100 mm) is used by using a push-in fixture 5 (diameter 50 mmΦ, height of the substantially flat plate-shaped protrusion 9 mm, material: vinyl chloride). The fastening structure is the same as that shown in FIG. In the foamed phenolic resin, the brittleness of the hard resin is reinforced with the surface reinforcing material 1a, but it is desirable to avoid local compression. Therefore, the diameter of the push-in fixture 5 is increased to 50 mmΦ, and the height of the protrusion is 9 mm. Thus, a fastening structure that reduces the local burden on the foamed synthetic resin by utilizing the tensile strength of the nonwoven fabric that is the surface reinforcing material 1a was obtained. For this reason, the press resin area | region 30 and the compressive-stress dispersion | distribution area | region 31 with a large flat area and shallow depth were formed.

この同図(b)での実施態様では、押込固定具5の基端部5bの平面積が大であるため、通気胴縁14の止着強度が向上出来た。さらに、通気胴縁14を配設後、螺子釘16dで通気胴縁14と押込固定具5を固定し、一体化させた。こうすることで、表面補強材1a上に張設された透湿防水シート22の滑りが抑制され、通気胴縁14の外周面に懸架、吊設される外壁材の重量負担も軽減できた。さらに本実施態様では、構造躯体4の構造用面材15の適宜適所に、押込補助突起3である傘釘(商品名、傘スクリュー3641STR、若井産業(株)製)を打ち込んだため、構造用面材15の表面側の滑りが抑制でき、構造躯体4、発泡合成樹脂板体1、押込固定具5、通気胴縁14との一体化が強化され、止着強度が向上した。   In the embodiment shown in FIG. 5B, the fastening area of the ventilator rim 14 can be improved because the base area 5b of the push-in fixture 5 is large. Further, after the ventilation trunk edge 14 was disposed, the ventilation trunk edge 14 and the push-in fixture 5 were fixed with a screw nail 16d and integrated. By doing so, the slip of the moisture permeable waterproof sheet 22 stretched on the surface reinforcing material 1a was suppressed, and the weight burden of the outer wall material suspended and suspended on the outer peripheral surface of the ventilator rim 14 could be reduced. Furthermore, in this embodiment, since an umbrella nail (trade name, umbrella screw 3641STR, manufactured by Wakai Sangyo Co., Ltd.), which is a push-in auxiliary projection 3, is driven into an appropriate position of the structural surface material 15 of the structural housing 4, The slip on the surface side of the face material 15 can be suppressed, and the integration of the structural housing 4, the foamed synthetic resin plate 1, the push-in fixture 5, and the ventilation trunk edge 14 is strengthened, and the fastening strength is improved.

同図(c)は、発泡合成樹脂板体1として、硬質発泡ポリウレタン樹脂(商品名:アキレスボードPE、厚み30mm、密度30Kg/m、両面特殊防湿紙張り、アキレス(株)製)を用い、図4(e)や図7(a)に示すごとき細釘5gを有する押込固定具5(直径45mmΦ、略皿状体の突起部の高さ9mm、材質:塩化ビニル)を用い、図7(a)に示す通気胴縁14の止着面側に押込固定具5を、予め止着させた通気胴縁14を用いて、該通気胴縁14の表面側から、特殊螺子釘2により押込固定具5を貫通させ構造躯体4に捻じ込み止着させた。埋没深さは、通気胴縁14の止着面が発泡合成樹脂板体1の表面側に食い込まないようにするため押込固定具5の基端部5bと発泡合成樹脂板体1面を同一面となるよう止着させた。この実施態様では、押込固定具5と通気胴縁14を止着させるそれぞれの特殊螺子釘2を共用化したため、同図(a)の態様に比べ使用本数と止着工程が削減できた。 FIG. 4C shows the use of rigid foamed polyurethane resin (trade name: Achilles board PE, thickness 30 mm, density 30 kg / m 3 , double-sided special moisture-proof paper, Achilles Co., Ltd.) as the foamed synthetic resin plate 1. 4 (e) and FIG. 7 (a), a pushing fixture 5 (diameter 45 mmΦ, height of the projection of the substantially dish-shaped body, material: vinyl chloride) having a thin nail 5g is used. The pushing fixture 5 is pushed in from the surface side of the ventilating drum edge 14 by the special screw nail 2 using the ventilating drum edge 14 fixed in advance on the fastening surface side of the ventilating drum edge 14 shown in FIG. The fixing tool 5 was penetrated and screwed into the structural housing 4 to be fixed. The buried depth is such that the base end portion 5b of the push-in fixture 5 and the surface of the foamed synthetic resin plate 1 are the same surface so that the fastening surface of the ventilator edge 14 does not bite into the surface side of the foamed synthetic resin plate 1. It was fixed to become. In this embodiment, since the special screw nails 2 for fixing the push-in fixture 5 and the ventilator edge 14 are shared, the number of use and the fixing process can be reduced as compared with the embodiment shown in FIG.

また、発泡合成樹脂板体1の構造躯体4側(すなわち、構造用面材15の表面側)には、予め、押込補助突起3(商品名、太鼓鋲、若井産業(株)製)を400mm間隔で設けた。また、通気胴縁14の止着面側には、押込固定具5間の略中間位置に、図7(b)記載の押込用突起3´(蒲鉾状の筋状突起x:5mm高さ×10mm幅×25mm長)を予め設けた押込突起付通気胴縁14aを使用している。このように、発泡合成樹脂板体1の表、裏面側に押込補助突起3や押込用突起3´を採用して通気胴縁14や押込固定具5の止着力を補強することにより、押込固定具5が発泡合成樹脂板体内に形成する押圧樹脂領域30や圧縮応力分散領域31に加えて、押込補助突起3や押込用突起3´が形成するやや小型の押圧樹脂領域30や圧縮応力分散領域31の作用も利用でき、長期により安定したより強力な止着構造が形成できる特徴があるので好ましい。尚、これらに図示した止着構造は多くの想定される実施態様の中の一例に過ぎないので種々の応用、改変が可能である。
(実施態様2)
図9は、従来の止着構造である(a)及び(b)と、本発明の止着構造である(c)とを対比して、その止着強度の差異について、模式的な断面図にて図解したものである。止着材はいずれも特殊螺子釘2を採用して実施した。そして、通常の外張り断熱での止着構造では、通気胴縁14と発泡合成樹脂板体1の間に透湿防水シートが配設されるのであるが、本実施態様における実験では、いずれも透湿防水シート22を省略して実施した。又、場合により、構造用面材15が使用されることもあるが、図9では、これらの2者を省略している。この省略の理由は、透湿防水シート22の滑性による影響を排除し、かつ、必須でない構造用面材15を省略し、データーを出来るだけ単純化して、図9(a)(イ)と同図(c)(イ)との止着構造の差による対比を明確化するためである。
Further, on the structure housing 4 side of the foamed synthetic resin plate body 1 (that is, the surface side of the structural face material 15), an indentation auxiliary protrusion 3 (trade name, Taikoku, manufactured by Wakai Sangyo Co., Ltd.) is 400 mm in advance. Provided at intervals. Further, on the fastening surface side of the ventilator rim 14, the pushing projection 3 ′ shown in FIG. 7B (saddle-like streak x: 5 mm height × 10 mm width × 25 mm length) is used in advance. In this way, by adopting the indentation auxiliary projection 3 and the indentation projection 3 ′ on the front and back sides of the foamed synthetic resin plate body 1 to reinforce the fastening force of the ventilating drum edge 14 and the indentation fixture 5, In addition to the pressing resin region 30 and the compressive stress dispersion region 31 formed by the tool 5 in the foamed synthetic resin plate body, the slightly smaller pressing resin region 30 and the compressive stress dispersion region formed by the pressing auxiliary protrusion 3 and the pressing protrusion 3 '. The action of 31 can also be used, and it is preferable because it has a feature that a more stable and stronger fastening structure can be formed. Note that the fastening structures shown in the drawings are merely examples of many assumed embodiments, and various applications and modifications are possible.
(Embodiment 2)
FIG. 9 is a schematic cross-sectional view showing the difference in fastening strength between the conventional fastening structure (a) and (b) and the fastening structure of the present invention (c). This is illustrated in All the fastening materials were implemented using special screw nails 2. And, in the fastening structure with normal outer heat insulation, a moisture permeable waterproof sheet is disposed between the ventilator edge 14 and the foamed synthetic resin plate 1, but in the experiment in this embodiment, both The moisture permeable waterproof sheet 22 was omitted. In some cases, the structural face material 15 may be used, but in FIG. 9, these two members are omitted. The reason for this omission is to eliminate the influence due to the slipperiness of the moisture permeable waterproof sheet 22, omit the non-essential structural face material 15, and simplify the data as much as possible. This is for the purpose of clarifying the comparison due to the difference in the fastening structure from FIGS.

発泡合成樹脂板体1としては、ビーズ法発泡ポリスチレン(商品名、カネパール、発泡倍率35倍、厚み35mm、(株)カネカ製)を用い測定した。   The foamed synthetic resin plate 1 was measured using beaded polystyrene foam (trade name, Kanepal, expansion ratio 35 times, thickness 35 mm, manufactured by Kaneka Corporation).

同図(a)(イ)は、従来法の止着部を示すものであって、発泡合成樹脂板体1を特殊螺子釘2(釘頭径:11.5mmΦ、釘胴径:6mmΦ)で間柱9に捻じ込み止着させた断面模式図である。そして、発泡合成樹脂板体1の厚み方向に直交するXの矢印方向(釘頭のせん断貫通方向)(以下、略垂直方向と称することあり)の力を加えることを表している。さらに同図(a)(イ)には、発泡合成樹脂板体1の表裏面に沿ったYの矢印方向(釘胴部の裂断方向)(以下、略平行方向と称することあり)の力を加えることを表している。   FIGS. 4A and 4B show a fastening portion of a conventional method, in which a foamed synthetic resin plate 1 is replaced with a special screw nail 2 (nail head diameter: 11.5 mmΦ, nail barrel diameter: 6 mmΦ). FIG. 5 is a schematic cross-sectional view of a spacer 9 that is screwed and fastened. Then, it represents applying a force in the direction indicated by the arrow X (the shear penetration direction of the nail head) (hereinafter sometimes referred to as a substantially vertical direction) orthogonal to the thickness direction of the foamed synthetic resin plate 1. Furthermore, (a) and (a) in the same figure show the force in the direction of the arrow Y (the tearing direction of the nail body) along the front and back surfaces of the foamed synthetic resin plate 1 (hereinafter, sometimes referred to as a substantially parallel direction). Represents adding.

同図(b)(イ)も、従来法の止着部を示すものであるが、同図(a)(イ)の構造に、更に、通気胴縁14(40mm幅×18mm厚)が付加された構造を示す。すなわち、通気胴縁14の表面側から特殊螺子釘2(釘頭径:11.5mmΦ、釘胴径:6mmΦ)で発泡合成樹脂板体1を介し間柱9に止着させた断面図である。そして、Xの矢印で示す略垂直方向の力とYの矢印で示す略平行方向の力を通気胴縁14と特種螺子釘2で構成される止着部に加えることを表している。   (B) and (b) also show the fastening portion of the conventional method, but a ventilator rim 14 (40 mm width x 18 mm thickness) is added to the structure of Figs. The structure is shown. That is, it is a cross-sectional view in which a special screw nail 2 (nail head diameter: 11.5 mmΦ, nail cylinder diameter: 6 mmΦ) is fixed to the intermediate pillar 9 via the foamed synthetic resin plate body 1 from the surface side of the ventilation cylinder edge 14. Then, it is indicated that a substantially vertical force indicated by an arrow X and a substantially parallel force indicated by an arrow Y are applied to the fastening portion constituted by the ventilator edge 14 and the special screw nail 2.

同図(c)(イ)は、本発明の止着部を示すものであって、発泡合成樹脂板体1を押込固定金具5(外径30mmΦ、丸皿形の突起部5aの高さ10mm)を用い、特殊螺子釘2(釘頭径11.5mmΦ、釘胴径6mmΦ)で間柱9に止着した断面模式図で、Xの矢印で示す略垂直方向の力とYの矢印で示す略平行方向の力を押込固定具5と特種螺子釘2で構成される止着部に加えることを表している。   FIGS. 3C and 3A show the fastening portion of the present invention, in which the foamed synthetic resin plate 1 is pushed into the fixing metal fitting 5 (outer diameter 30 mmΦ, the height of the round plate-shaped projection 5a is 10 mm. ), And is a schematic cross-sectional view secured to the stud 9 with a special screw nail 2 (nail head diameter 11.5 mmΦ, nail barrel diameter 6 mmΦ), and is a substantially vertical force indicated by an X arrow and an abbreviation indicated by an Y arrow. This shows that a force in the parallel direction is applied to the fastening portion composed of the push-in fixture 5 and the special thread nail 2.

同図(a)(ロ)は、同図(a)(イ)のXの矢印で示す略垂直方向に力を加えた結果であるところの、釘頭2aが該発泡合成樹脂板体1をせん断貫通したときのせん断貫通穴1bを示す。その際の止着力の測定結果は、6、1Kgであった。同図(a)(ハ)は、同図(a)(イ)のYの矢印で示す略平行方向に力を加えた後に、発泡合成樹脂板体1の間柱9との止着面側(Xの矢印方向)から見た止着部の正面図である。釘胴部2bがYの矢印で示す方向に20mm幅まで該板体を裂断させるに要する力は、11、2Kgであり、裂断後は、裂断痕25を生じたままで、止着位置に弾性復元出来なかった。なお、25aは裂断痕跡である。このように、従来法である同図(a)の止着方法では、略垂直方向の釘頭のせん断力が低く、Yの矢印で示す略平行方向では止着部が略釘胴径で容易に裂断、破損し、何れも復元挙動は示さなかった。つまり、従来の止着方法では、発泡合成樹脂板体1を構造躯体に配設した後、通気胴縁を止着するというステップを踏むが、その強度は弱く、ましてや弾性変形や弾性復元などは全く期待できないものであった。   FIGS. 6A and 6B are results of applying a force in a substantially vertical direction indicated by an arrow X in FIGS. 4A and 4A, and the nail head 2a has the foamed synthetic resin plate 1 attached thereto. The shear through hole 1b when shearing through is shown. The measurement results of the fastening force at that time were 6, 1 kg. (A) and (c) are applied to a substantially parallel direction indicated by an arrow Y in (a) and (b) of FIG. It is a front view of the fixation part seen from the arrow direction of X). The force required for the nail body 2b to tear the plate to a width of 20 mm in the direction indicated by the arrow Y is 11 or 2 kg. It was not possible to restore elasticity. In addition, 25a is a tear trace. Thus, in the conventional fastening method shown in FIG. 5A, the shearing force of the nail head in the substantially vertical direction is low, and the fastening portion is easily formed with a substantially nail barrel diameter in the substantially parallel direction indicated by the arrow Y. No tearing or breakage was observed, and no restoration behavior was shown. In other words, in the conventional fastening method, after the foamed synthetic resin plate 1 is disposed on the structural housing, the step of fastening the ventilating cylinder edge is taken, but its strength is weak, and moreover, elastic deformation and elastic restoration are not possible. It was something I could not expect at all.

同図(b)(ロ)は、前記の同図(b)(イ)に示す構造に、Xの矢印で示す略垂直方向の力を負荷し、釘頭2aが通気胴縁14を介して、発泡合成樹脂板体1をせん断貫通させる実験を示すが、通気胴縁14の止着面積が非常に大きいため、せん断貫通せず、特殊螺子釘2の間柱9へ捻じ込んだ止着部が破損したため測定不能であった。   (B) and (b) show that the structure shown in FIGS. (B) and (b) is loaded with a force in a substantially vertical direction indicated by an arrow X, and the nail head 2a is passed through the ventilating trunk edge 14. An experiment in which the foamed synthetic resin plate 1 is sheared through is shown, but since the fastening area of the ventilator edge 14 is very large, the shearing portion does not penetrate and the fastening portion screwed into the intermediate pillar 9 of the special screw nail 2 is provided. Measurement was impossible due to damage.

同図(b)(ハ)は、同図(a)(ハ)と同じく、間柱9側から見た発泡合成樹脂板体1の止着面の正面図である。同図(b)(ハ)において、Yの矢印で示す略平行方向の力で下方に止着部を20mm幅まで裂断させる実験によれば、下方に20mm幅まで裂断させる力は、28,5Kgであった。そして、裂断後、裂断痕25が生じたまま、止着位置に復元出来なかった。なお、25aは裂断痕跡である。先述の同図(a)(ハ)の裂断させる力13,5Kgに対し28,5Kgであり、この違いは、通気胴縁14の張設が加わったことにより、通気胴縁14と発泡合成樹脂板体1との略平行方向の摩擦力が付加されたことによる差である。しかし、実際には、通気胴縁14と発泡合成樹脂板体1の間には透湿防水シートが存在するので実際の止着力は本測定値28,5Kgをかなり下回ることになる。   (B) and (c) are front views of the fastening surface of the foamed synthetic resin plate body 1 as seen from the inter-column 9 side, as in FIGS. In the experiment (b) and (c), the force for tearing the fastening portion down to a width of 20 mm with the force in the substantially parallel direction indicated by the arrow Y is 28 , 5 kg. And after a tear, it was not able to restore | restore to a fastening position with the tear mark 25 produced. In addition, 25a is a tear trace. It is 28,5 kg against the breaking force of 13,5 kg in the same figure (a) and (c) described above. This is a difference due to the addition of a friction force in a direction substantially parallel to the resin plate 1. However, in practice, since a moisture-permeable waterproof sheet exists between the ventilating trunk edge 14 and the foamed synthetic resin plate 1, the actual fastening force is considerably lower than this measured value of 28.5 kg.

このことから、同図(b)(ロ)に示されたごとく、特殊螺子釘2のXの矢印に示す略垂直方向の止着力は十分確保されたものの、同図(b)(ハ)で分かるように、肝心のYの方向に示す略平行方向の僅かな力で容易に裂断や、横ズレが発生し、力を除いても,止着位置に弾性復元できないことが確認された。   Therefore, as shown in FIGS. 2B and 2B, although the fixing force in the substantially vertical direction indicated by the arrow X of the special screw nail 2 is sufficiently secured, in FIGS. As can be seen, it was confirmed that tearing or lateral displacement easily occurred with a slight force in a substantially parallel direction shown in the Y direction, and it was not possible to elastically restore the fastening position even if the force was removed.

つまり、従来の止着方法である同図(a)と同図(b)の内、同図(a)の止着構造では、経年後の略平行方向や略垂直方向等の多次元方向の外力や震動に対してその抗力が期待できないことがわかる。又、同図(b)の止着構造では、発泡合成樹脂板体1を構造躯体4から略垂直方向に剥離させようとする大きな外力に対する通気胴縁の抗力は有しているが、外壁材の止着材と外気の通気層の形成材とを兼ねる通気胴縁14にあっては、発泡合成樹脂板体1の止着面に食い込み不陸を生じることの無い弱い面圧で止着させる必要があることから、Yの矢印で示す略平行方向の外力で釘胴部の裂断や横ズレが簡単に発生し、そのまま止着位置に復元できないのである。これらの簡単な実験からも、従来の外断熱住宅にあっては、経年と共に、略平行方向や略垂直方向等の大小さまざまな多次元方向の外力や、震動を受け続け、中、小の数次の地震にも被災する度に、高気密、高断熱ラインの損傷が増大して行くことが容易に理解されるのである。   That is, in the fastening structure shown in FIG. 6A, the conventional fastening method shown in FIGS. 6A and 6B, the multi-dimensional direction such as a substantially parallel direction or a substantially vertical direction after a lapse of time. It turns out that the resistance against external force and vibration cannot be expected. Further, in the fastening structure of FIG. 5B, the outer wall material has the resistance of the ventilating cylinder edge against a large external force that attempts to peel the foamed synthetic resin plate 1 from the structural housing 4 in a substantially vertical direction. In the ventilator rim 14 which serves as both a fixing material and a material for forming a vent layer for the outside air, it is fixed with a weak surface pressure that does not bite into the fixing surface of the foamed synthetic resin plate 1 and does not cause unevenness. Since it is necessary, the nail barrel tears or laterally shifts easily due to the external force in the substantially parallel direction indicated by the arrow Y, and cannot be restored to the fixed position as it is. From these simple experiments, it can be seen that conventional exterior heat-insulated houses continue to receive external forces in various sizes, such as approximately parallel and approximately vertical, and vibrations with the passage of time. It is easy to understand that the damage to highly airtight and highly insulated lines increases with each earthquake.

一方、本発明の実施態様である同図(c)(イ)において、発泡合成樹脂板体1のXの矢印で示す略垂直方向の力を加えた時の状態を示す同図(c)(ロ)では、押込固定具5がせん断貫通した時のせん断貫通穴1bを示す。その際の止着力は、56,8Kgであった。同図(c)(ハ)は、Yの矢印で示す略平行方向に力を加えた後に、発泡合成樹脂板体1の間柱9との止着面側から見た止着部の正面図である。釘胴部2bが矢印で示す下方に20mm幅まで裂断させる方向の力は、押込固定具5の押込力による発泡合成樹脂板体1内の押圧樹脂領域や圧縮応力分散領域の止着効果と間柱9との摩擦力の向上の相乗効果で68,5Kgであった。これは、実質的には、該発泡合成樹脂板体1の止着部が特殊螺子釘2と共に下方に概20mm分だけ弾性変形したのであるが、該発泡合成樹脂板体側の止着部には致命的な裂断痕25は発生せず、負荷を除けば特殊螺子釘2と共に、止着位置にほぼ弾性復元したことを示している。この時、止着部には図示した軽微な裂断痕跡25aが認められが、同図(a)(ハ)や同図(b)(ハ)に示されるような致命的な裂断痕は生じておらず、再度繰り返し荷重をかけた後の弾性復元性も確保されており、実用的に全く問題はなく、今後、例えば、特殊螺子釘2の釘胴径の増大や釘胴部の曲げ強度の向上を図れば、更に良好な結果が得られることが覗われた。   On the other hand, in the same figure (c) (b) which is an embodiment of the present invention, the same figure (c) (c) showing a state when a force in a substantially vertical direction indicated by an arrow X of the foamed synthetic resin plate 1 is applied. (B) shows the shear through hole 1b when the push-in fixture 5 is sheared through. The fastening force at that time was 56,8 kg. (C) and (c) are front views of the fastening portion as seen from the fastening surface side with the intermediate column 9 of the foamed synthetic resin plate 1 after applying force in the substantially parallel direction indicated by the arrow Y. is there. The force in the direction in which the nail body 2b is torn down to a width of 20 mm as indicated by the arrow is the fastening effect of the pressing resin region and the compressive stress dispersion region in the foamed synthetic resin plate 1 by the pressing force of the pressing fixture 5. The synergistic effect of improving the frictional force with the stud 9 was 68.5 kg. This is because the fastening part of the foamed synthetic resin plate 1 is elastically deformed downward by approximately 20 mm together with the special screw nail 2, but the fastening part on the foamed synthetic resin plate side is The fatal tear mark 25 does not occur, and it shows that the special screw nail 2 is almost elastically restored to the fastening position when the load is removed. At this time, a slight tear mark 25a shown in the figure is recognized at the fastening portion, but a fatal tear mark as shown in FIGS. (A) (c) and (b) (c) is It does not occur and the elastic resilience after repeated loading is ensured, and there is no problem in practical use. For example, the nail barrel diameter of the special screw nail 2 is increased and the nail barrel is bent in the future. It was observed that better results could be obtained if the strength was improved.

また、本実験は、それぞれ、一ヵ所の独立した止着部(一押込固定具5の止着部)をモデルとした止着力の測定であるが、本発明の実用上の適応においては、複数の押込固定具5や通気胴縁14(あるいは押込突起付通気胴縁14a)を隣接、併設して存在させるのであるから、1箇所の止着部が集中的にせん断破損や裂断破損を受ける前に、隣接する複数の止着部のそれぞれの押込固定具5や押込突起付通気胴縁14a等が形成する押圧樹脂領域30と圧縮応力分散領域31を基点として発泡合成樹脂板体1の全板面方向に応力分散や、応力伝達がなされ得る。こうした現象が該発泡合成樹脂板体全体に波及して、該発泡合成樹脂板体自体が全体として構造躯体の変形や復元(又は、正負の振幅)に追従・一体化して弾性変形、弾性復元できるようになるのである。   In addition, this experiment is a measurement of the fastening force using a single independent fastening portion (fastening portion of the one-pressing fixture 5) as a model. Since the push-in fixture 5 and the ventilator edge 14 (or the ventilator edge 14a with the push-in protrusion) are adjacent to each other and are present side by side, one fastening part is intensively subjected to shearing damage or tearing damage. Before, all of the foamed synthetic resin plate body 1 is based on the pressing resin region 30 and the compressive stress dispersion region 31 formed by the pressing fixture 5 of each of the plurality of adjacent fastening portions, the ventilation trunk edge 14a with the pressing projection, and the like Stress distribution and stress transmission can be performed in the plate surface direction. Such a phenomenon spreads over the entire foamed synthetic resin plate, and the foamed synthetic resin plate itself can follow and integrate with deformation and restoration (or positive and negative amplitudes) of the structural casing as a whole, and can be elastically deformed and elastically restored. It becomes like this.

更に、本発明の止着構造の一例を示す既述の図9(c)において、発泡合成樹脂板体1を硬質発泡合成樹脂板体1rから、半硬質発泡合成樹脂板体1s(商品名、エペラン、ビーズ法発泡ポリエチレン、発泡倍率30倍、厚み35mm、(株)カネカ製)に代替した試験を別途、実施した結果は、次のようなものであった。   Furthermore, in the above-described FIG. 9C showing an example of the fastening structure of the present invention, the foamed synthetic resin plate 1 is changed from the hard foamed synthetic resin plate 1r to the semi-rigid foamed synthetic resin plate 1s (trade name, The results of separately performing a test in place of Eperan, beaded foamed polyethylene, expansion ratio 30 times, thickness 35 mm, manufactured by Kaneka Co., Ltd. were as follows.

・ 同図(c)(イ)のXの矢印で示す略垂直方向の力で押込固定具5をせん断貫通させる
試験では、同図(c)(ロ)に図示する様な、硬質発泡合成樹脂板体1rの場合のせん断貫通穴は発生せず、特殊螺子釘2を間柱に捻じ込んだ止着部位が破損(螺子釘の抜け現象)してしまったため、せん断力も測定不能であった。すなわち、半硬質発泡合成樹脂板体1sが有する粘弾性や抗張力や緩衝性は、硬質発泡合成樹脂板体1rに比して非常に大きいことが証された。
-In the test in which the push-in fixture 5 is sheared through with a substantially vertical force indicated by the arrow X in (c) and (b) in the same figure, a rigid foam synthetic resin as illustrated in (c) and (b) in the figure. No shear through hole was generated in the case of the plate body 1r, and the fastening site where the special screw nail 2 was screwed into the intermediate column was damaged (the screw nail pulling phenomenon), so the shear force could not be measured. That is, it was proved that viscoelasticity, tensile strength, and buffering property of the semi-rigid foam synthetic resin plate 1s are much larger than those of the hard foam synthetic resin plate 1r.

2)同図(c)(ハ)のYの矢印で示す略平行方向の力を加え、釘胴部2が下方に20mm裂断させる方向の力は61.2Kgであった。さらに加力し、40mm程度まで裂断させる方向に押し下げた結果では、特殊螺子釘2を間柱に捻じ込んだ止着部が破損し、該特殊螺子釘2が押し曲げられて剥離した。この時においても半硬質発泡合成樹脂板体1sの止着部は弾性復元し、裂断痕25は軽微で実用上問題は無く、この試験においても半硬質発泡合成樹脂板体1sの弾性変形、復元性や緩衝性が非常に優秀であることが証された。この結果から、本発明の止着方法や止着構造を実施するについて、特に、高い粘弾性、抗張力、緩衝性等が要求される施工部位(例:仕口部等)において、硬質発泡合成樹脂板体1rに代え、優先的に半硬質発泡合成樹脂板体1sを配設することの目的と効果は明らかである。   2) A force in a substantially parallel direction indicated by an arrow Y in (c) and (c) in the same figure was applied, and the force in the direction in which the nail barrel 2 was torn 20 mm downward was 61.2 kg. As a result of further applying force and pushing down in the direction of tearing to about 40 mm, the fastening portion where the special screw nail 2 was screwed into the stud was broken, and the special screw nail 2 was pushed and bent and peeled off. Even at this time, the fastening portion of the semi-rigid foam synthetic resin plate 1s is elastically restored, and the tear mark 25 is slight and has no practical problem. Even in this test, the elastic deformation of the semi-rigid foam synthetic resin plate 1s, It was proved that the resilience and buffering properties are very excellent. From this result, when implementing the fastening method and fastening structure of the present invention, particularly in construction sites where high viscoelasticity, tensile strength, buffering properties, etc. are required (for example, joints), a rigid foam synthetic resin The purpose and effect of preferentially arranging the semi-rigid foam synthetic resin plate 1s in place of the plate 1r are obvious.

なお、以上の試験でYの矢印で示す略水平方向に裂断させるに際し、裂断巾を±20mmとしたのは、次の理由による。すなわち、図1に例示す1階の階高が3000mmとする耐震等級1の外断熱住宅が中地震(震度:6強)に被災した場合、安全限界とされる層間変位角度1/30radの発生が想定されるが、この時の層間変位量は、±100mmに相当する。この階高3000mmの発泡合成樹脂板体の高さ方向に、例えば、等間隔で10本の押込固定具5を設けた場合、押込固定具5の1本当り(止着部一箇所当り)の相当変位量は、裂断巾(層間変位量)±100mm÷10本=±10mm/本となる。   In the above test, the tear width was set to ± 20 mm for the following reason when tearing in the substantially horizontal direction indicated by the arrow Y. In other words, when an outer insulation house of earthquake resistance class 1 with a floor height of 3000 mm as shown in FIG. However, the amount of interlayer displacement at this time corresponds to ± 100 mm. For example, in the case where ten pressing fixtures 5 are provided at equal intervals in the height direction of the foamed synthetic resin plate body having a floor height of 3000 mm, the number of the pressing fixtures 5 per one (per one fastening portion) The equivalent displacement amount is the breaking width (interlayer displacement amount) ± 100 mm ÷ 10 pieces = ± 10 mm / piece.

これは、1本当たりの押込固定具5が、最低限、止着部を含む、発泡合成樹脂板体全体を略平行方向に±10mm分だけ弾性変形、弾性復元させるか、又は、該発泡合成樹脂板体の止着部に損傷を与えることなく止着部自体が±10mm分だけ弾性変形し、かつ、弾性復元する正負の弾性変位量を意味している。実際の止着部には、略平行方向を含めた様々な多次元方向の要素や力が働くことから、最低限2倍の安全率を加味し、本発明では、本発明の止着部及び発泡合成樹脂板体が必要とする最大の弾性変位量(以下、本弾性変位量と称する場合がある。)の指標として、±10mm×2=±20mmを簡易的に定めた。   This is because the indentation fixing tool 5 per one, at a minimum, elastically deforms and elastically restores the entire foamed synthetic resin plate body including the fastening portion by ± 10 mm in a substantially parallel direction, or the foamed synthetic resin. This means a positive and negative elastic displacement amount in which the fastening portion itself is elastically deformed by ± 10 mm without causing damage to the fastening portion of the resin plate body and elastically restored. Since various multi-dimensional elements and forces including a substantially parallel direction act on the actual fastening portion, a safety factor of at least twice is added, and in the present invention, the fastening portion of the present invention and ± 10 mm × 2 = ± 20 mm was simply determined as an index of the maximum amount of elastic displacement required by the foamed synthetic resin plate (hereinafter sometimes referred to as this amount of elastic displacement).

因みに、本弾性変位量の範囲内で止着部及び発泡合成樹脂板体全体が弾性変形、弾性復元することが出来れば、本発明の第1の目的である、数次の中地震に被災した場合においても、長期に安定した外断熱構造の性能維持が実現される。さらに、本発明の第2の目的である中地震で想定される地震の変形力や揺れを、本弾性変位量の範囲内である最適の弾性変形量及び、弾性復元量に抑制、緩和する止着方法及び止着構造を設計、選定し、必要とする耐・制震性能を有する外断熱構造が実現しえる。   Incidentally, if the fastening part and the entire foamed synthetic resin plate body can be elastically deformed and elastically restored within the range of the elastic displacement, the first objective of the present invention was damaged by several middle earthquakes. Even in this case, it is possible to maintain the performance of the outer heat insulating structure which is stable for a long time. In addition, the deformation force and shaking of the earthquake assumed in the second earthquake of the present invention, which is the middle earthquake, are suppressed and reduced to the optimum elastic deformation amount and elastic restoration amount within the range of the elastic displacement amount. Designing and selecting a wearing method and a fastening structure, it is possible to realize an outer heat insulation structure having the required anti-seismic performance.

以上の試験結果から、従来の耐震外断熱住宅と、本発明の耐・制震外断熱住宅が同一条件下で地震に被災した場合を想定すれば、従来の止着構造を用いた耐震・外断熱住宅(発泡合成樹脂板体の弾性変形や弾性復元が機能しない構造)が受けるであろう層間変位角度(層間変位量)や衝撃に対し、本発明の止着構造を用いた耐・制震外断熱住宅(弾性変形、弾性復元が機能する構造)が受けるであろう層間変位角度(層間変位量)や衝撃は、大幅に抑制、低減されさらにその分前記した止着部の安全率も向上し数次の地震に被災することを想定した止着部や建物躯体全体の耐久性も大きく改善されることが理解される。
(実施態様3)
(試験方法と条件)
図10図(a)、(b)は、従来法と本発明を対比する試験に供する試験躯体7の立面正面模式図である。この試験躯体7を用い、建築基準法に定める柱頭柱脚固定式の面内せん断試験(耐力壁及び壁倍率の試験方法)を模したミニモデル実験を行った。該基準法に定める試験法では、例えば、躯体寸法(1820mm幅×2730mm高)の試験躯体を用い、静的水平荷重の正負交番の加力試験でなされるのであるが、これを模した次のミニモデル実験の実施条件や実施状況は下の通りである。
Based on the above test results, assuming that the conventional earthquake-resistant and heat-insulated housing and the earthquake-resistant and non-seismic heat-insulated housing of the present invention are affected by an earthquake under the same conditions, the conventional earthquake-resistant and Anti-seismic and seismic control using the fastening structure of the present invention against the inter-layer displacement angle (inter-layer displacement) and impact that an insulated house (a structure in which elastic deformation and elastic restoration of a foamed synthetic resin plate do not function) will be subjected Interlaminar displacement angle (interlayer displacement) and impact that the outer heat-insulated housing (structure that functions elastic deformation and elastic restoration) will be greatly suppressed and reduced, and the safety factor of the above-mentioned fastening part is improved accordingly. However, it is understood that the durability of the fastening part and the entire building frame, which are assumed to be affected by several earthquakes, is greatly improved.
(Embodiment 3)
(Test methods and conditions)
FIGS. 10A and 10B are elevational front schematic views of a test housing 7 used for a test comparing the conventional method and the present invention. Using this test housing 7, a mini-model experiment simulating the in-plane shear test (the test method for the bearing wall and wall magnification) of the stigma and column base fixed type defined in the Building Standard Law was conducted. In the test method stipulated in the standard method, for example, a test case having a case size (1820 mm width × 2730 mm height) is used, and a positive horizontal test of a static horizontal load is performed. The implementation conditions and implementation status of the mini model experiment are as follows.

1)試験躯体7の詳細は、図10(a)に示す従来の固着方法における試験躯体7aと、同図(b)に示す本発明の止着法における試験躯体7bと、同じ同図(b)に併記した試験躯体7cの3体である。これらの試験躯体7は、それぞれ、床コンクリート55にアンカーボルト(16mmΦ)で強固に固定される。   1) The details of the test housing 7 are the same as the test housing 7a in the conventional fixing method shown in FIG. 10 (a) and the test housing 7b in the fastening method of the present invention shown in FIG. 3) of the test housing 7c described together. Each of these test cases 7 is firmly fixed to the floor concrete 55 with anchor bolts (16 mmΦ).

試験躯体7aでは、図10(a)が正面図であり、同図のA矢視の断面図である図11(c)(イ)に示した従来の固着方法による固着断面構造により、硬質発泡合成樹脂板体1rを止着材として特殊螺子釘2(70mm長さ)を用い、図10(a)に示す黒丸の表記位置に縦3列(柱8、間柱9)×5本=15本、横2列(土台10、横架材11)×5本=10本の合計25本で止着させた。   In the test housing 7a, FIG. 10 (a) is a front view, and the rigid foaming is achieved by the fixing cross-sectional structure according to the conventional fixing method shown in FIG. Using a special screw nail 2 (70 mm length) with the synthetic resin plate 1r as a fastening material, three vertical rows (columns 8 and column 9) × 5 = 15 at the black circled positions shown in FIG. , 2 rows in a row (base 10, horizontal member 11) × 5 = 10, a total of 25.

試験躯体7bは、図10(b)が正面図であり、同図のB矢視の断面図である図11(c)(ロ)に示した本発明の止着方法による止着断面構造により、硬質発泡合成樹脂板体1rを本発明の押込固定具5(直径:45mmΦ、略皿球状の突起高さ:12mm、アルミ製)と止着材として特殊螺子釘2(70mm長さ)を用い、図10(b)に示す白抜き菱形の表記位置に、縦3列(柱8、間柱9)×3本=9本、横2列(土台10、横架材11)×9本=18本の合計27本を止着させた。押込固定具5は、突起部5aの全部が発泡合成樹脂板体1中に面一に押込み、埋没させる状態で止着させた(埋没深さ34:12mm)。   FIG. 10 (b) is a front view of the test housing 7b, and is a cross-sectional view taken along the arrow B in FIG. 11 (c) (b). The rigid foamed synthetic resin plate 1r is used with the indentation fixture 5 of the present invention (diameter: 45 mmΦ, substantially dish-shaped projection height: 12 mm, made of aluminum) and a special screw nail 2 (70 mm length) as a fastening material. 10 (b), there are three vertical rows (pillars 8 and studs 9) × 3 = 9, and two horizontal rows (base 10, horizontal member 11) × 9 = 18. A total of 27 books were fixed. The pushing fixture 5 was fixed so that all of the protrusions 5a were flush with the foamed synthetic resin plate 1 and buried (buried depth 34: 12 mm).

試験躯体7cは、図10(b)が正面図、及び、図11(c)(ロ)に示した本発明の止着方法による止着断面構造により、半硬質発泡合成樹脂板体1sを試験躯体7bの止着方法と同じに止着した。止着箇所も試験躯体7bと同じとし、合計27本とした。   The test housing 7c is a semi-rigid foam synthetic resin plate 1s tested by the fastening cross-sectional structure according to the fastening method of the present invention shown in FIG. 10 (b) as a front view and as shown in FIG. 11 (c) and (b). It was fixed in the same manner as the fixing method of the housing 7b. The number of fixing points was the same as that of the test case 7b, and the total number was 27.

2)試験躯体7a、試験躯体7b、試験躯体7cのそれぞれの試験躯体7の構造寸法は、いずれも910mm幅×1500mm高(芯芯距離)とした。
3)試験躯体7の軸組み構造は、105mm正四角形の角材からなる柱8、土台10、横架材11と、105mm幅×50mm厚の間柱9からなり、土台10と横架材11と柱8、間柱9の軸組み部は、図11(d)(イ)に示すホゾ差し12の構造とし、図11(d)(ロ)に示すT型金物16c(帯鋼40mm幅×6mm厚:T型寸法300mm幅×300mm高)を両面から挟持させ六角ボルトナット16e(10mmΦ×150mm長 8本)で止着させた。
2) The structural dimensions of each of the test housings 7a, 7b, and 7c were 910 mm wide × 1500 mm high (core distance).
3) The frame structure of the test housing 7 is composed of a pillar 8 made of 105 mm square square material, a base 10, a horizontal member 11, and a middle pillar 9 having a width of 105 mm and a thickness of 50 mm, and the base 10, the horizontal member 11 and the pillar. 8. The shaft assembly part of the stud 9 has a structure of a side insert 12 shown in FIGS. 11D and 11B, and a T-shaped metal piece 16c shown in FIGS. 11D and 11B (band steel 40 mm width × 6 mm thickness: T-shaped dimensions of 300 mm wide × 300 mm high) were sandwiched from both sides and fixed with hexagon bolts and nuts 16e (eight 10 mmΦ × 150 mm long).

この試験の目的が、硬質発泡合成樹脂板体1rと半硬質発泡合成樹脂板体1sの水平方向の層間変位に伴う発泡合成樹脂板体の止着(固着)挙動、止着(固着)強度、止着(固着)部位の損傷挙動や該板体の弾性変形、弾性復元挙動等を把握することにあることから、構造用面材やホールダウン金物や耐震金物の影響を避けるため、これらは併用しなかった。   The purpose of this test was to fix (fix) the foamed synthetic resin plate with the horizontal interlayer displacement between the rigid foam synthetic resin plate 1r and the semi-rigid foam synthetic resin plate 1s, These are used in combination to avoid the effects of structural face materials, hole-down hardware, and seismic hardware, because it is necessary to understand the damage behavior of the fastening (adhering) part and the elastic deformation and elastic recovery behavior of the plate. I did not.

4)試験方法は、図10(a)に示す試験躯体7a、図10(b)に示す試験躯体7bと、試験躯体7cは、それぞれの横架材11の左右の両側端面に手動の牽引ジャッキを設置し、安全限界とされる層間変位角度51(1/30rad)の時の層間変位量52(標点位置56に対し±50mmの変位量)を牽引する正負交番の加力試験を各3回実施した。そして、それぞれの試験躯体7に止着(又は固着)された硬質発泡合成樹脂板体1r、又は、半硬質発泡合成樹脂板体1sの変形と復元挙動、及び、止着部位の弾性変形、復元や裂断、損傷、損壊等の挙動を観察した。しかし、手動の牽引ジャッキによる正負交番の加力試験時には、牽引力等の測定計器の準備が間に合わなかったため、加力時のピーク負荷量や、牽引時の負荷と変位量との相関(一般的なストレス―ストレイン曲線図)等についての数値測定はできず、牽引ワイヤーの張力の触感、目視観察や発泡合成樹脂板体の動的な変形、復元挙動の変化等の観察で行った。また、手動の牽引ジャッキによる牽引(牽引1往復の所要時間の目安:約5分)であるため牽引スピードは一定ではなかった。   4) The test method includes a test housing 7a shown in FIG. 10 (a), a test housing 7b shown in FIG. 10 (b), and a test housing 7c that are manually pulled to the left and right end faces of the horizontal member 11. And a positive / negative alternating force test that pulls the interlayer displacement 52 (displacement of ± 50 mm with respect to the gauge position 56) when the interlayer displacement angle 51 (1/30 rad), which is regarded as a safety limit, is set. Conducted once. Then, the deformation and restoration behavior of the rigid foam synthetic resin plate 1r or the semi-rigid foam synthetic resin plate 1s fixed (or fixed) to each test housing 7, and the elastic deformation and restoration of the fixing portion. Behaviors such as breaking, breaking, and breaking were observed. However, during the positive / negative alternating force test with a manual traction jack, the preparation of measuring instruments such as traction force was not in time, so the peak load amount during force application and the correlation between load and displacement during traction (general The numerical measurement of the stress-strain curve diagram, etc., was not possible, and it was performed by observing the tactile sensation of the tension of the pulling wire, visual observation, dynamic deformation of the foamed synthetic resin plate, and change in the restoring behavior. In addition, the traction speed was not constant because the traction was performed by a manual traction jack (estimated time required for one traction reciprocation: about 5 minutes).

5)本試験に供した硬質発泡合成樹脂板体1rとして、両面に表面補強材1aとして不織布(商品名:ボランス4101、101g/m品、東洋紡績(株)製)を全面熱貼付させたビーズ法発泡ポリスチレン(カネパール、発泡倍率:35倍)を用いた。該硬質発泡合成樹脂板体1rの寸法は、1500mm高×910mm幅×40mm厚とした。
半硬質発泡合成樹脂板体1sとしては、ビーズ法発泡ポリエチレン(エペラン、発泡倍率30倍)を用い、補強用の表面補強材は用いなかった。該半硬質発泡合成樹脂板体1sの寸法は、1500mm高×910mm幅×40mm厚とした。
(試験結果と所見)
1)従来の固着方法である試験躯体7aの1回目の牽引試験は、正負の層間変位角度51が、略1/30radの時の層間変位量52を、標点位置56に対し、略±50mmとして、この条件下で、まず、正方向(右方向)に牽引し試験躯体7aを変形させた結果、硬質発泡合成樹脂板体1rは試験躯体7の変位に追従して弾性変形できず、その分、特殊螺子釘2の釘孔の裂断、損傷、亀裂が観察された。特に、上部の横架材11の横方向に沿って設けた止着材5本の内、特に左、右の端部の固着部の裂断、損傷、亀裂が激しく、次いで縦方向の固着部3列×5本の内、上端、下端の止着部の裂断、損傷、亀裂が激しく、硬質発泡合成樹脂板体1rが構造躯体7aの変形に追従一体化して弾性変形することは無かった。また、硬質発泡合成樹脂板体1rと横架材11との左右の端部の固着部を中心に、横ズレや縦ズレや部分的なガタツキ(緩み)が発生し、土台10側の固着部にも同様の現象が見られたが横架材11の側より損傷度合いは軽微であった。これは、牽引箇所が横架材の両端面側であり、変位量が大きくなることに起因していると判断される。
5) Non-woven fabric (trade name: Borance 4101, 101 g / m 2 product, manufactured by Toyobo Co., Ltd.) as the surface reinforcing material 1a was thermally bonded on both surfaces as the hard foamed synthetic resin plate 1r subjected to this test. Bead-method expanded polystyrene (Kanepal, expansion ratio: 35 times) was used. The dimensions of the rigid foam synthetic resin plate 1r were 1500 mm high × 910 mm wide × 40 mm thick.
As the semi-rigid foam synthetic resin plate 1s, bead method foamed polyethylene (Eperan, foaming ratio 30 times) was used, and no reinforcing surface reinforcing material was used. The dimension of the semi-rigid foam synthetic resin plate 1s was 1500 mm high × 910 mm wide × 40 mm thick.
(Test results and findings)
1) The first traction test of the test housing 7a, which is a conventional fixing method, has an interlayer displacement amount 52 when the positive / negative interlayer displacement angle 51 is approximately 1/30 rad with respect to the gauge position 56 of approximately ± 50 mm. As a result of first deforming the test housing 7a by pulling in the positive direction (right direction) under these conditions, the rigid foam synthetic resin plate 1r cannot be elastically deformed following the displacement of the test housing 7, In particular, tearing, damage and cracking of the nail hole of the special screw nail 2 were observed. In particular, among the five fastening members provided along the horizontal direction of the upper horizontal member 11, particularly, the left and right end fixing portions are severely broken, damaged, and cracked, and then the vertical fixing portion. There were severe tearing, damage and cracking of the fastening parts at the upper and lower ends of the 3 rows × 5, and the rigid foam synthetic resin plate 1r did not elastically deform by integrating with the deformation of the structural housing 7a. . Also, horizontal and vertical shifts and partial backlash (loosening) occur around the fixed portions of the left and right end portions of the rigid foam synthetic resin plate 1r and the horizontal member 11, and the fixed portion on the base 10 side. The same phenomenon was observed, but the degree of damage from the side of the horizontal member 11 was slight. It is determined that this is due to the fact that the towed portion is on both end surfaces of the horizontal member, and the amount of displacement increases.

また、土台10、横架材11、柱8、間柱9に固着された該硬質発泡合成樹脂板体1rの略中央部近傍の固着部の損傷は、階高方向の上(横架材)、下(土台木)の近傍部の固着部に比し小さく、大きな裂断、亀裂は発生しなかった。これら固着位置による損傷の差は、試験躯体の牽引による変形に伴う各固着位置毎の変形量の差に比例して現れる現象であって、試験躯体7aの変形に硬質発泡合成樹脂板体1rが追従一体化して弾性変形できない固着方法で固着された場合に起こる不可避の現象である。これらは、硬質発泡合成樹脂板体1rが試験躯体7の変形に追従一体化し弾性変形することが可能な止着構造にすることによって解決される現象である。   In addition, the damage of the fixed portion in the vicinity of the substantially central portion of the rigid foamed synthetic resin plate 1r fixed to the base 10, the horizontal member 11, the column 8, and the interposition column 9 is in the upper floor direction (horizontal member), It was smaller than the fixed part in the vicinity of the lower part (base tree), and no large tearing or cracking occurred. The difference in the damage due to the fixing position is a phenomenon that appears in proportion to the difference in deformation amount for each fixing position due to the deformation due to the pulling of the test casing, and the rigid foamed synthetic resin plate 1r is deformed by the deformation of the test casing 7a. This is an unavoidable phenomenon that occurs when fixing is performed by a fixing method that cannot be elastically deformed by tracking and integration. These are phenomena that are solved by adopting a fastening structure in which the rigid foam synthetic resin plate 1r can be integrated and elastically deformed following the deformation of the test housing 7.

次いで実施した負方向の牽引では、正方向の最大変位量52(+50mm)から標点位置56までの戻し時には、特殊螺子釘2が該硬質発泡合成樹脂板体1rの正方向の牽引の際に発生した裂断、亀裂傷に沿って摺動して、ほぼ標点位置に復元した。さらに、標点位置56から負方向の牽引の際には、正方向の牽引時に比して、やや、軽微な裂断、損傷、亀裂が発生した。これは正方向の牽引時に、一旦、該硬質発泡合成樹脂板体1rの固着部に緩みや亀裂が生じ、固着強度の低下や緩みが生じているため、固着部にゆるみが生じたためと推察される。さらに負方向の最大変位量52(−50mm)から元の標点位置まで戻した際には、特殊螺子釘は、裂断痕、亀裂傷に沿って摺動して、ほぼ標点位置に復元したが固着部に横ズレ、縦ズレ、ガタツキ(緩み)等が拡大した。   Next, in the negative pulling performed, the special screw nail 2 pulls the hard foam synthetic resin plate 1r in the positive direction when the maximum displacement 52 (+50 mm) in the positive direction is returned to the gauge position 56. It slides along the generated tears and cracks, and is almost restored to the mark position. Further, when pulling in the negative direction from the gauge position 56, slight breakage, damage, and cracking occurred as compared to when pulling in the positive direction. This is presumably because, when pulling in the positive direction, the fixed portion of the rigid foamed synthetic resin plate 1r is once loosened or cracked, and the fixing strength is lowered or loosened. The Furthermore, when the maximum displacement 52 (-50mm) in the negative direction is returned to the original mark position, the special screw nail slides along the tear marks and cracks and is almost restored to the mark position. However, lateral misalignment, vertical misalignment, rattling (slackness), etc. increased in the fixed part.

これらの正負方向の牽引後に標点位置56に戻した結果、元の固着位置に対し右側に大きな裂断、損傷、亀裂する傾向が確認されたが、予め、硬質発泡合成樹板体1rの両面に設けた表面補強材1aの補強効果で、例えば、特に損傷度合いの大きな上端部の左、右の隅角部の該板体の一部が欠けて脱落する、又は、該硬質発泡合成樹脂板体1rの全体が自重で試験躯体7の止着部(特殊螺子釘)から剥離、脱落することにはならなかった。   As a result of returning to the gauge position 56 after pulling in these positive and negative directions, it was confirmed that there was a tendency to rupture, damage, and crack to the right with respect to the original fixing position. Due to the reinforcing effect of the surface reinforcing material 1a provided on the hardened synthetic resin plate, for example, a part of the plate body at the left and right corner portions of the upper end portion having a particularly high degree of damage is missing or dropped. The whole body 1r did not peel off from the fastening part (special screw nail) of the test housing 7 due to its own weight.

牽引状況については、まず、正方向(右)に牽引した際のワイヤーの張力は弱く、牽引中の張力は一定ではなく強弱の波動が観察された。これは固着部の裂断、損傷、亀裂の発生に伴う張力のバラツキが原因と考えられる。次いで負方向の牽引張力は、正方向に比し、さらに不均一で弱かったが、これは正方向の牽引時に、裂断、損傷を受けた固着部の緩みの影響と考えられる。   As for the towing condition, first, the tension of the wire when pulling in the positive direction (right) was weak, and the tension during towing was not constant, and strong and weak waves were observed. This is considered to be caused by the variation in tension associated with the breaking, damage, and cracking of the fixed part. Next, the traction tension in the negative direction was more uneven and weaker than that in the positive direction. This is considered to be due to the loosening of the fractured part and the damaged fixing part during the traction in the positive direction.

1回目の正負方向の最大変位量52(±50mm)から標点位置56に戻した時の復元力は、発泡合成樹脂板体1rの固着部及び該板体1rの全体が構造躯体と一体化して弾性変形した場合においては、それに見合った大きな弾性復元力を伴って元の位置に復元しようとする。しかし、本試験躯体7aにおいては、階高方向の該中央部の比較的損傷(変形)の小さかった固着部の小さな変形量に相当する小さな弾性復元力は発揮されたものの、大きな変形量を伴う主要な固着部(上、下の横架材や土台木近傍等)では、裂断等の損傷により、大きな変形量に相当する大きな弾性復元力が発揮されず、本発明が期待するところの大きな耐・制震性能(耐力量)を発揮しえる状態にはならなかった。   The restoring force when the first positive / negative maximum displacement 52 (± 50 mm) is returned to the gage position 56 is that the fixed portion of the foamed synthetic resin plate 1r and the whole plate 1r are integrated with the structural housing. When it is elastically deformed, it tries to restore it to its original position with a large elastic restoring force commensurate with it. However, in this test case 7a, although a small elastic restoring force corresponding to a small deformation amount of the fixed portion where the damage (deformation) of the central portion in the height direction is relatively small was exhibited, a large deformation amount is involved. The main fixing part (upper and lower horizontal members and the base tree vicinity, etc.) does not exhibit a large elastic restoring force corresponding to a large amount of deformation due to damage such as tearing, which is a great expectation of the present invention. It was not in a state where it could exhibit its anti-seismic performance (damage capacity).

1回目の正負の牽引試験後において、目視や手動で試験躯体7aと硬質発泡合成樹脂板体1rの間のガタツキ(緩み)や、固着位置のズレが確認され、実質的に断熱、気密性は逸損していると判断された。そのため、復元力は小さく、僅かな牽引力を加えることによって、元の標点位置56にほぼ復元できたが、横ズレ、縦ズレ、緩みは拡大していた。これらの状況から、3回目の正負交番の加力試験には耐え得ない(耐・制震性は発揮されえない)と判断し本試験を打ち切った。   After the first positive / negative traction test, rattling (loosening) between the test housing 7a and the hard foamed synthetic resin plate 1r and displacement of the fixing position are confirmed visually or manually. Judged to be lost. For this reason, the restoring force is small, and by applying a slight traction force, the restoring point can be substantially restored to the original mark position 56, but the lateral deviation, the vertical deviation, and the looseness are enlarged. Based on these conditions, it was judged that the test could not withstand the third positive / negative alternating force test (cannot exhibit anti-seismic performance), and the test was terminated.

以上から、従来の固着方法による試験躯体7aでは、層間変位量に比例して固着部の損傷、損壊、劣化が著しく、発泡合成樹脂板体の弾性変形力や復元力を活用することで発現される耐・制震効果は殆ど期待できず、例えば、比較的小さな中地震に被災した場合でも、固着部が容易に損傷、損壊し、断熱、気密性の逸損が指摘されている現状の外断熱住宅の課題が明白となった。   From the above, in the test case 7a by the conventional fixing method, damage, breakage, and deterioration of the fixing part are remarkable in proportion to the amount of interlayer displacement, which is manifested by utilizing the elastic deformation force and restoring force of the foamed synthetic resin plate. The anti-seismic effect is hardly expected.For example, even when a relatively small medium earthquake hits, the fixed part can be easily damaged or damaged, and heat insulation and loss of airtightness are pointed out. The issue of insulated housing became clear.

2)本発明の止着法である試験躯体7bの一回目の牽引試験では、正負の層間変位角51が、略1/30radの時の層間変位量52は、標点位置56に対し、略±50mmで、まず、正方向に牽引して試験躯体を変形させた時、硬質発泡合成樹脂板体1rは、試験躯体7の変形に僅かに遅れ気味ではあるが最大牽引量(層間変位量+50mm)にほぼ追従一体化して弾性変形することが観察された。この遅れ気味に牽引されている現象は、各止着部がそれぞれ弾性変形しているために起こるタイムラグの影響によるものと判断される。   2) In the first traction test of the test housing 7b which is the fastening method of the present invention, the interlayer displacement 52 when the positive / negative interlayer displacement angle 51 is approximately 1/30 rad is substantially equal to the gauge position 56. First, when the test casing is deformed by pulling in the positive direction at ± 50 mm, the hard foamed synthetic resin plate 1 r is slightly delayed from the deformation of the test casing 7 but the maximum pulling amount (interlayer displacement +50 mm). ) Was observed to be elastically deformed by following and integrating. It is determined that the phenomenon that is pulled by this delay is due to the influence of the time lag that occurs because each fastening portion is elastically deformed.

正方向の牽引後、標点位置56までの戻し時には、復元に要する牽引力は要さず、牽引ワイヤーに緩みが生じた状態で自力の弾性復元力で標準位置56に容易に復元した。これは、正方向の牽引時に硬質発泡合成樹脂板体1r及び止着部が弾性変形し、その弾性復元力が有効に働いたものと考えられる。さらに負方向の最大牽引量(−50mm)まで牽引した結果、正方向の牽引時にも観察された試験躯体7の変形に伴って硬質発泡合成樹脂板体1rの変形が、僅かに遅れ気味に、追従一体化して変形することが観察された。負方向の牽引後、標点位置56までの戻し時は、正方向の時と同じ、自力で容易に弾性復元した。   At the time of returning to the gauge position 56 after towing in the forward direction, the traction force required for restoration was not required, and it was easily restored to the standard position 56 with its own elastic restoring force in a state where the traction wire was loosened. This is considered that the rigid foam synthetic resin plate 1r and the fastening portion were elastically deformed during towing in the positive direction, and the elastic restoring force worked effectively. Furthermore, as a result of pulling to the maximum pulling amount in the negative direction (−50 mm), the deformation of the rigid foam synthetic resin plate 1r is slightly delayed along with the deformation of the test casing 7 observed even when pulling in the positive direction. It was observed that the follow-up integrated and deformed. After pulling in the negative direction, when returning to the gauge position 56, it was easily elastically restored by itself as in the positive direction.

以降、2、3回目の正負交番の牽引に於いても、概ね1回目と同じ状況が観察された。回を追って発泡合成樹脂板体1rの追従変形量はやや少なく、牽引力もやや低下してくるものの、試験躯体7aの試験で呈したような致命的な裂、亀裂等は発生せず、試験後には標点位置56にほぼ弾性復元できた。ワイヤーの牽引張力は正負の方向による張力差は無く、牽引中の張力に波動も無く均一に牽引された。また、試験後、止着部の押込固定具5を解体した結果、両面に張設された表面補強材1aの抗張力の効果が生かされ、押圧樹脂領域30の一部に裂断痕25aの損傷は認められたが、大きなガタツキはなく、断熱、気密性は維持できる程度の損傷でしかなく、これらのことから、本発明の目的である耐・制震効果は発揮されていると判断された。   Since then, the same situation as the first time was observed in the second and third tractions. Although the amount of follow-up deformation of the foamed synthetic resin plate 1r is slightly less and the traction force is slightly reduced over time, no fatal cracks, cracks, etc. as shown in the test of the test housing 7a occur, and after the test Was almost elastically restored at the gauge position 56. There was no difference in tension between the positive and negative directions of the wire pulling tension, and the pulling tension was evenly pulled without any wave. In addition, after the test, as a result of disassembling the push-in fixture 5 of the fastening portion, the effect of the tensile strength of the surface reinforcing material 1a stretched on both surfaces is utilized, and damage to the tear mark 25a is caused in a part of the pressed resin region 30. However, it was judged that the anti-seismic effect, which is the object of the present invention, was exerted. .

3)試験躯体7cを用いた1回目の正負交番の牽引試験として、前記2)の試験方法と同様の方法で実施した結果、半硬質発泡合成樹脂板体1sは、試験躯体7cに追従一体化して、弾性変形、弾性復元し実用上の何等の問題はなかった。ワイヤー牽引状態は、標点位置56から、それぞれの正負の変位量(±50mm)まで均一な負荷状態で牽引され、正負の弾性変形位置(±50mm)から標点位置56までの戻し時には、それぞれの弾性復元力でスムースに自力で容易に復元でき、効果的な耐・制震効果が確認された。引き続き実施した2、3回目の正負交番試験においても、1回目と同じ挙動を示し、異常は認められなかった。参考のため、さらに、4、5、6回の正負交番試験を追加実施したが異常は認められず、正常な弾性変形、弾性復元を再現した。   3) As a result of the first positive / negative alternating traction test using the test housing 7c, the semi-rigid foam synthetic resin plate 1s was integrated with the test housing 7c. Thus, there was no problem in practical use due to elastic deformation and elastic recovery. The wire pulling state is pulled in a uniform load state from the gauge position 56 to each positive and negative displacement amount (± 50 mm), and when returning from the positive / negative elastic deformation position (± 50 mm) to the gauge position 56, respectively. The elastic restoring force of the slab was able to restore smoothly and easily by itself, and an effective anti-seismic effect was confirmed. In the second and third positive / negative alternating tests that were subsequently conducted, the same behavior as in the first test was observed, and no abnormality was observed. For reference, 4, 5 and 6 positive / negative alternating tests were additionally performed, but no abnormality was observed, and normal elastic deformation and elastic restoration were reproduced.

さらに、本試験法の過酷な過負荷試験として、層間変位角度51を、通常の安全限界1/30radを超える略1/20rad(層間変位量±75mm)に設定し、該条件で正負交番の牽引試験を各3回実施した。その結果、3回目の牽引試験でも、弾性変形、復元中の半硬質発泡合成樹脂板体1s及び止着部に異常は認められず、試験終了時には、標点位置56に復元した。僅かに縦ずれ、横ずれが確認されたが断熱、気密性に影響の無い程度であった。試験後の該板体の止着部の解体確認では、半硬質発泡合成樹脂板体1sの止着部側の特殊螺子釘の釘穴が左右に押し広げられた裂断痕25が目視されたが大きな裂断、亀裂には至らず実用上の問題は認められず、特殊螺子釘2の剥離、脱落も無かった。   Furthermore, as a severe overload test of this test method, the interlayer displacement angle 51 is set to approximately 1/20 rad (interlayer displacement ± 75 mm) exceeding the normal safety limit of 1/30 rad, and positive and negative alternating traction is performed under these conditions. Each test was performed three times. As a result, even in the third traction test, no abnormality was observed in the elastic deformation, the semi-rigid foam synthetic resin plate 1s during restoration, and the fixing portion, and the test point was restored to the mark position 56 at the end of the test. A slight vertical shift and lateral shift were confirmed, but there was no effect on heat insulation and airtightness. In the disassembly confirmation of the fastening portion of the plate body after the test, a tear mark 25 in which the nail hole of the special screw nail on the fastening portion side of the semi-rigid foam synthetic resin plate body 1s was expanded to the left and right was visually observed. However, there was no major breakage, no cracks, and no practical problems were observed, and the special screw nail 2 was not peeled off or dropped off.

この試験結果から、例えば、建物躯体50が安全限界を超える層間変位角度(1/30rad)以上に大きな層間変位角度に被災したと仮定しても、本発明の止着構造からなる半硬質発泡合成樹脂板体1sが有する緩衝性と粘弾性と抗張力が有効に働き、耐・制震性を発揮しつつ、構造躯体の安全限界とされる層間変位角度(1/30rad)を拡大させえて、仕口部等の構造躯体の軸組み部の破損、損壊を抑制、保護する補強材(保護プロテクター)としての機能も発揮することになり、家屋が一気に倒壊する危険性を大幅に抑制、緩和するものと期待される。   From this test result, for example, even if it is assumed that the building housing 50 has been damaged by an interlayer displacement angle larger than the interlayer displacement angle (1/30 rad) exceeding the safety limit, the semi-rigid foam composite comprising the fastening structure of the present invention is used. The resin plate 1s has effective buffering, viscoelasticity, and tensile strength, and exhibits an anti-seismic property while increasing the interlayer displacement angle (1/30 rad), which is considered a safety limit of the structural frame. It will also function as a reinforcing material (protective protector) that suppresses and protects the shaft assembly of the structural frame such as the mouth, and greatly reduces or alleviates the risk of the house collapsing at once. It is expected.

又、今回は、模擬的に実施した柱頭柱脚固定式の面内せん断試験法(静的試験方法)による試験であるが、これ以外の耐震性や、制震性や、耐久性の試験方法であって、より実用的な試験方法とされる新エネルギー法(動的評価法)によって、さらに、本発明の止着構造を有する外断熱構造の評価試験を実施すれば、従来の静的試験方法(耐力壁量等)だけでは解明しえていない本発明の止着構造が有する新しい耐震性や制震性の知見や外断熱構造の高耐久性に関わる多くの知見が得られるものと期待される。特に、今後、さらに、外断熱住宅の長期優良住宅への指向が高まる中、発泡合成樹脂板体1の止着構造や止着強度に関する高信頼性の試験方法として、新エネルギー法の評価方法が益々重要になるものと予測される。
(実施態様4)
図12は、本発明による外断熱構造の躯体構造を含めた一実施態様であって、外壁材を張設した場合における一部切欠き斜視図である。同図は、構造用面材15等による耐力壁を設けない構造の壁面部の外断熱構造で、構造躯体4を構成する柱8、間柱9、土台10、横架材11(図示せず)や筋交い(図示せず)等の外周面に発泡合成樹脂板体1を押込固定具5、及び脚部付押込固定具5´を発泡合成樹脂板体1の表面側から特殊螺子釘2を用いて構造躯体4に捻じ込み止着させている。
In addition, this time, it is a test by the simulated in-plane shear test method (static test method) of the stigma and pedestal, but other test methods for seismic resistance, vibration control and durability. However, if the evaluation test of the outer heat insulation structure having the fastening structure of the present invention is further performed by a new energy method (dynamic evaluation method) which is a more practical test method, the conventional static test It is expected that a lot of knowledge related to the new earthquake resistance and damping properties of the fastening structure of the present invention and the high durability of the outer heat insulation structure, which cannot be clarified only by the method (bearing wall amount etc.), will be obtained. The In particular, in the future, as the direction of exterior heat-insulated houses toward long-term excellent houses is increasing, the evaluation method of the new energy method is a highly reliable test method for the fastening structure and fastening strength of the foamed synthetic resin sheet 1. Expected to become more and more important.
(Embodiment 4)
FIG. 12 is a partially cutaway perspective view showing an embodiment including a casing structure of an outer heat insulating structure according to the present invention, in the case where an outer wall material is stretched. The figure shows an outer heat insulating structure of a wall surface portion having a structure in which a bearing wall is not provided by a structural face material 15 or the like, and includes a pillar 8, a pillar 9, a base 10, and a horizontal member 11 (not shown) constituting the structural housing 4. A foamed synthetic resin plate 1 is pushed into the outer peripheral surface of a brace or bracing (not shown), and a legged push-in fixture 5 'is used from the surface side of the foamed synthetic resin plate 1 using a special screw nail 2. Then, it is screwed and fixed to the structural housing 4.

さらに発泡合成樹脂板体1を介し、柱8、間柱9に沿って、通気胴縁14が特殊螺子釘2で止着され、通気胴縁14の外周面に外壁材17を懸架している。該外壁材17と発泡合成樹脂板体1の間には、通気胴縁14の存在により外気の通気層を形成させている。   Further, the ventilator edge 14 is fastened by the special screw nail 2 along the pillars 8 and the intermediate pillars 9 through the foamed synthetic resin plate 1, and the outer wall material 17 is suspended on the outer peripheral surface of the ventilator edge 14. Between the outer wall material 17 and the foamed synthetic resin plate 1, an air ventilation layer is formed due to the presence of the ventilation cylinder edge 14.

本実施態様では、発泡合成樹脂板体1の例として、押出法発泡ポリスチレン(カネライトフォームF3、厚み40mm、密度30Kg/m)の両面に補強用の表面補強材1a(商品名:ボランス4061N、ポリプロピレン系不織布:70g/m、東洋紡績(株)製)を全面熱接着したものを使用した。発泡合成樹脂は、一般的に、局部圧縮に弱く局部破損しやすい一方、板体としての弾性力を有している。しかし、本実施態様のごとき3000mm階高×910mm幅×40mm厚であるような大寸法の矩形の板体全体を弾性変形させるのは容易ではない。例えば、該板体を高さ3000mmに対し、±100mmまで、止着部の破損や剥離を抑制しながら、概平行四辺形状に変形させるに要する力は大きいものになる。本態様では、押込固定具5(外径45mmΦ×突起部高さ12mmの概半円状の鋼製プレス品;中空状)(図4(c)を参照)を用いて、土台10と横架材11(図示せず)と柱8、間柱9に沿って止着させた。なお、この止着に対し、構造躯体4側に、予め、押込補助突起3(傘スクリュー:3641STR)を設けて押込固定具5の止着力を補強した例を示す。この押込補助突起3は、必要に応じ適宜採用すればよい。 In this embodiment, as an example of the foamed synthetic resin plate 1, a surface reinforcing material 1 a (trade name: Borans 4061N) for reinforcement on both surfaces of extruded foamed polystyrene (Kanelite foam F3, thickness 40 mm, density 30 Kg / m 3 ). A polypropylene non-woven fabric: 70 g / m 2 , manufactured by Toyobo Co., Ltd.) was used. In general, a foamed synthetic resin is weak against local compression and easily damaged locally, but has an elastic force as a plate. However, it is not easy to elastically deform the entire large rectangular plate having a height of 3000 mm × 910 mm width × 40 mm thickness as in this embodiment. For example, the force required to deform the plate body into a substantially parallelogram shape while suppressing breakage and peeling of the fastening portion up to ± 100 mm with respect to a height of 3000 mm becomes large. In this embodiment, the pressing fixture 5 (an outer semi-circular steel press product having an outer diameter of 45 mmΦ x a protrusion height of 12 mm; hollow shape) (see FIG. 4C) is used to mount the base 10 and the horizontal mount. It was fixed along the material 11 (not shown), the pillars 8 and the studs 9. It should be noted that an example in which a pressing assist projection 3 (bevel screw: 3641STR) is provided in advance on the structure housing 4 side to reinforce the fixing force of the pressing fixture 5 is provided. This push-in assist projection 3 may be appropriately adopted as necessary.

本実施態様ではより良好な止着を目的として、発泡合成樹脂板体1の上、下端の両コーナー部には脚部付押込固定具5´(外径45mmΦ×突起部高さ15mm、塩化ビニル製)(図5(a)を参照)を特殊螺子釘2で止着し、次いで、通気胴縁14を止着させることにより、使用した縦長の発泡合成樹脂板体1を弾性変形させ、弾性復元させることが出来た。さらに、発泡合成樹脂板体1の下端部や上端部には変形時に大きな負荷がかかりやすいことから、押込固定具5、及び脚付押込固定具5´の止着面を補強するための補強用のテープ状シート材43を設けた例を示している。   In this embodiment, for the purpose of better fastening, the upper and lower corners of the foamed synthetic resin plate 1 are provided with leg-attached push fixtures 5 ′ (outer diameter 45 mmΦ × projection height 15 mm, vinyl chloride. (See FIG. 5 (a)) is fastened with the special screw nail 2, and then the ventilating cylinder edge 14 is fastened to elastically deform the vertically elongated synthetic resin plate body 1 used. I was able to restore it. Furthermore, since a large load is likely to be applied to the lower end and upper end of the foamed synthetic resin plate 1 during deformation, the reinforcement for reinforcing the fastening surfaces of the push fixture 5 and the legged push fixture 5 'is recommended. The example which provided the tape-shaped sheet material 43 of this is shown.

なお、発泡合成樹脂板体1の連接部には、従来用いられている気密テープ23(商品名:ブチルテープ4420、幅:50mm、厚さ:0.75mm、(株)タカハシ製)で封緘し気密性の確保を行っている。   The connecting portion of the foamed synthetic resin plate 1 is sealed with a conventionally used airtight tape 23 (trade name: butyl tape 4420, width: 50 mm, thickness: 0.75 mm, manufactured by Takahashi Co., Ltd.). Airtightness is ensured.

又、本態様にて、通気胴縁14の止着面に押込補助突起3や、押込用突起3´を設けた押込突起付通気胴縁14aを採用した場合には、押込固定具5(脚付押込固定具5´)の数は、それらを使用しない場合に比して低減させることが出来る。   Further, in this embodiment, when the pushing auxiliary projection 3 or the pushing projection-provided ventilation trunk edge 14a provided with the pushing protrusion 3 'on the fastening surface of the ventilation trunk edge 14 is adopted, the pushing fixture 5 (leg The number of attached pressing fixtures 5 ') can be reduced as compared to the case where they are not used.

また、従来の止着構造からなる発泡合成樹脂板体1では、当然のことであるが構造用面材15のように耐力壁面材としての強度や機能は発揮されないが、本発明の止着構造とすることにより、発泡合成樹脂板体1が構造躯体4の変形に追従一体化して弾性変形するので、この時に発現する耐力は、制震性能や耐力壁量に相当する。   Further, in the foamed synthetic resin plate 1 having the conventional fastening structure, as a matter of course, the strength and function as the load-bearing wall material are not exhibited like the structural face material 15, but the fastening structure of the present invention. By doing so, the foamed synthetic resin plate body 1 is elastically deformed by following the deformation of the structural housing 4, and thus the proof stress expressed at this time corresponds to the vibration control performance and the load-bearing wall amount.

よって、本発明の止着構造は、構造用面材15を使用しなくとも、発泡合成樹脂板体1自体が地震エネルギーの吸収性と断熱性能と弾性復元性を有する構造用面材としての機能を発揮するので、公的認定等を得れば、従来の構造用面材の一部又は全部を省略することができるのである。
(実施態様5)
図13に示す例は、本発明の外断熱構造からなる外壁面の実施態様の他の一例を表す躯体断面図である。同図(a)は、構造躯体4の外周面に耐力壁として構造用面材15を止着させて、その外周面に本発明の止着方法で止着された発泡合成樹脂板体1と通気胴縁を介し外壁材が懸架、止着されている。特に構造用面材であるシージングボードは、構造用合板等に比し発泡合成樹脂板体1との摩擦力や止着力の低下が著しいので、止着面に押込補助突起3や押込用突起3´を設けることが望ましい。詳細な実施内容は、実施態様4に類するので省略するが、本態様では、発泡合成樹脂板体1の例として押出法発泡ポリスチレン(カネライトフォームF3、厚み40mm、密度30Kg/m)の表面側に補強用の表面補強材1a(商品名:ボランス4051N、不織布:53g/m、東洋紡績(株)製)を全面熱接着したものを用いた。押込固定具5(又は固定脚付押込固定具5´)での発泡合成樹脂板体の止着部への補強用には角型のパッチワークシート42(80mm×80mm角、厚み:0,5mm、粘着材付ゴムシート)を採用した。
Therefore, the fastening structure of the present invention functions as a structural face material in which the foamed synthetic resin plate 1 itself has seismic energy absorption, heat insulation performance, and elastic resilience without using the structural face material 15. Therefore, a part or all of the conventional structural face material can be omitted if official approval or the like is obtained.
(Embodiment 5)
The example shown in FIG. 13 is a cross-sectional view of a casing showing another example of the embodiment of the outer wall surface composed of the outer heat insulating structure of the present invention. FIG. 4A shows a foamed synthetic resin plate 1 having a structural face material 15 fixed to the outer peripheral surface of the structural housing 4 as a load bearing wall and fixed to the outer peripheral surface by the fixing method of the present invention. The outer wall material is suspended and fastened through the ventilator edge. In particular, since the shearing board, which is a structural face material, has a significant decrease in frictional force and fastening force with the foamed synthetic resin plate 1 as compared with a structural plywood or the like, the pushing auxiliary projection 3 or the pushing projection 3 on the fastening surface. It is desirable to provide '. Although detailed implementation contents are omitted because they are similar to those of Embodiment 4, in this embodiment, as an example of the foamed synthetic resin plate 1, the surface side of extruded polystyrene foam (Kanelite foam F3, thickness 40 mm, density 30 Kg / m 3 ) is used. A surface reinforcing material 1a for reinforcement (trade name: Borans 4051N, non-woven fabric: 53 g / m 2 , manufactured by Toyobo Co., Ltd.) was thermally bonded. In order to reinforce the fastening portion of the foamed synthetic resin plate with the indentation fixture 5 (or the indentation fixture 5 ′ with a fixed leg), a square patchwork sheet 42 (80 mm × 80 mm square, thickness: 0.5 mm) Adhesive material rubber sheet).

構造躯体4に追従し、一体化して弾性変形、弾性復元し気密性を確保させる他の工夫としては、前記のごとき縦長の発泡合成樹脂板体1の縦方向や横方向の接続部に、同図(b)に示すように、相差継手1fを設けておくことで、経年や日常的な膨張収縮時に対応でき、被災時には弾性変形、復元しやすく気密性の逸損が抑制できるので望ましい。
(実施態様6)
図14に示す実施態様は、本発明の外断熱構造の別の実施態様を表すものであり、通気胴縁を止着する前の状態を示す施工平面模式図である。建物躯体50に対し地震時に応力集中や多次元方向の変形が集中しやすく、損傷が発生しやすい外壁面などに配設する発泡合成樹脂板体1と、その他の外壁面に配設する発泡合成樹脂板体1とを異なる材質とし、それぞれを適材適所に配設して、さらに望ましい外断熱構造を提供しようとするものである。
As another contrivance that follows the structural housing 4 and integrates and elastically deforms and elastically restores and secures airtightness, the longitudinal and lateral connecting portions of the vertically long synthetic resin plate body 1 are the same as described above. As shown in the figure (b), it is desirable to provide the phase difference joint 1f because it can cope with aging and daily expansion and contraction, and can be easily elastically deformed and restored in the event of a disaster, and the loss of airtightness can be suppressed.
(Embodiment 6)
The embodiment shown in FIG. 14 represents another embodiment of the outer heat insulating structure of the present invention, and is a construction plan schematic diagram showing a state before the ventilator edge is fastened. Foamed synthetic resin plate 1 disposed on the outer wall surface and the like on the outer wall surface, where stress concentration and multi-dimensional deformation are likely to be concentrated on the building frame 50 during an earthquake, and damage is likely to occur. The resin plate body 1 is made of a different material, and each is disposed at an appropriate position in order to provide a more desirable outer heat insulating structure.

通常、建物躯体50の内、入隅、出隅や、窓等の開口部53や、通し柱等のある概中央部近傍の壁面は、応力集中(集中荷重)や多次元方向の変形や損傷を受け易く、これらの構造躯体4の部位には、地震対策上、構造用面材15、筋交い、耐震金物、補強金物等が多数配設される。このため、これらの部位に配設される発泡合成樹脂板体1も構造躯体4と同様に大きな変形や震動や損傷を受けやすく、その他の部位の壁面よりも損傷の防止により配慮して、弾性変形をし易くし、復元し易くする等の対策を講じることが望ましい。   Usually, the wall in the vicinity of the central part of the building housing 50, such as the entrance and exit corners, the opening 53 such as a window, and the through pillar, etc., is subject to stress concentration (concentrated load) and multidimensional deformation and damage. These structural housings 4 are easily received, and a large number of structural face materials 15, bracings, seismic hardware, reinforcement hardware, and the like are arranged for earthquake countermeasures. For this reason, the foamed synthetic resin plate 1 disposed in these parts is also susceptible to large deformations, vibrations, and damages, like the structural casing 4, and is more elastic than the other part of the wall surface in order to prevent damage. It is desirable to take measures such as facilitating deformation and facilitating restoration.

ここに、同図(a)は、本発明の実施態様を示す建物の壁面構造の施工平面模式図であって、入隅、出隅、開口部53、及び、概中央部近傍等の壁面部には、標準仕様の硬質発泡合成樹脂板体1rに替えて、半硬質発泡合成樹脂板体1sやゴム状弾性板体20等の緩衝用板体を配設した例である。但し、以下の説明では、該半硬質発泡合成樹脂板体1sを使用した例を代表として説明する。該半硬質発泡合成樹脂板体1s自らが主体的に変形や震動を緩衝、抑制すると共に、隣接して配設される標準仕様の硬質発泡合成樹脂板体1rの変形や震動を抑制、緩和し、妻側壁面や平側壁面に形成された入隅、出隅を含む外周壁面全体が無理の無い弾性変形、復元が可能な構造としている。これらの外周面は気密テープ23で封緘し、透湿防水シート22(図示せず)で被覆させた後、通気胴縁14、又は、押込突起付通気胴縁14aにより止着される。   Here, FIG. 5A is a schematic plan view of the construction of the wall surface structure of the building showing the embodiment of the present invention, and the wall surface portions such as the entrance corner, the exit corner, the opening 53, and the vicinity of the central portion. This is an example in which a buffer plate such as a semi-rigid foam synthetic resin plate 1s or a rubber-like elastic plate 20 is provided in place of the standard hard foam synthetic resin plate 1r. However, in the following description, an example using the semi-rigid foam synthetic resin plate 1s will be described as a representative. The semi-rigid foam synthetic resin plate 1s itself mainly buffers and suppresses deformation and vibration, and also suppresses and reduces deformation and vibration of the standard specification rigid foam synthetic resin plate 1r. The entire outer peripheral wall surface including the entrance corner and the exit corner formed on the side wall surface or the flat side wall surface has a structure capable of elastic deformation and restoration without difficulty. These outer peripheral surfaces are sealed with an airtight tape 23, covered with a moisture permeable waterproof sheet 22 (not shown), and then fastened by a ventilation drum edge 14 or a ventilation drum edge 14a with a pushing projection.

こうした構造の一例としては、例えば、入隅、出隅や、窓等の開口部53や通し柱等のある概中央部近傍等を除く壁面には、断熱仕様を満足する硬質発泡合成樹脂板体1r(例:カネライトフォームF3、厚さ40mm、密度30Kg/m)を配設し、前記の入隅、出隅等の一部の壁面には、半硬質発泡合成樹脂板体1sの例として、発泡ポリプロピレン(商品名:エペランPP、厚さ40mm、密度25Kg/m、(株)カネカ製)を配設し、押込固定具5で止着させた状態を示す。但し、通気胴縁4を配設する前の施工平面模式図である。なお、間柱9や構造用面材15や透湿防水シート22は図示していない。 As an example of such a structure, for example, a hard foamed synthetic resin plate 1r that satisfies the heat insulation specifications is provided on the wall surface except the entrance corner, the exit corner, the opening 53 such as a window, and the vicinity of the approximate central portion such as a through pillar. (Example: Kanelite Foam F3, thickness 40 mm, density 30 Kg / m 3 ) is disposed, and as a part of the semi-rigid foam synthetic resin plate 1 s on some wall surfaces such as the entrance corner and the exit corner, A state where foamed polypropylene (trade name: Eperan PP, thickness 40 mm, density 25 Kg / m 3 , manufactured by Kaneka Corporation) is disposed and fixed with the push-in fixture 5 is shown. However, it is a construction plane schematic diagram before the ventilation trunk edge 4 is disposed. In addition, the interposition pillar 9, the structural surface material 15, and the moisture-permeable waterproof sheet 22 are not illustrated.

この場合、硬質発泡合成樹脂板体1rと半硬質発泡合成樹脂板体1sの厚みは、これら合成樹脂板体1上に張設する通気胴縁や外壁材の仕上り面を面一に揃えなければならないため、同一厚み(本態様では、例えば40mm厚)にすることが望ましい。この結果としては、半硬質発泡合成樹脂板体1sの施工部位の断熱性能が不足する傾向が生じる。この不足した断熱性能分を補完するため、内壁面側から、充填断熱材60を用いた。   In this case, the thickness of the rigid foam synthetic resin plate 1r and the semi-rigid foam synthetic resin plate 1s should be the same as the ventilation cylinder edge and the finished surface of the outer wall material stretched on the synthetic resin plate 1. Therefore, it is desirable to have the same thickness (in this embodiment, for example, 40 mm thickness). As a result, the heat insulation performance of the construction site of the semi-rigid foam synthetic resin plate 1s tends to be insufficient. In order to compensate for the insufficient heat insulation performance, the filled heat insulating material 60 was used from the inner wall surface side.

この充填断熱材60として、例えば、一般的に多用されているガラス繊維断熱材(例:密度16Kg/m)を用い、内壁面側に充填する充填断熱構造(内断熱構造)で断熱補強を実施した。こうすれば、硬質発泡合成樹脂板体1rの施工部位と、半硬質発泡合成樹脂板体1sを施工した部位の断熱性能の差は解消されるので好ましい。充填断熱材60の種類としては、ガラス繊維等の繊維系断熱材以外の発泡合成樹脂板体、あるいは、現場吹き付け発泡ウレタン等でもよく、特に限定されることはない。 As this filled heat insulating material 60, for example, a commonly used glass fiber heat insulating material (for example, density 16Kg / m 3 ) is used, and heat insulating reinforcement is performed with a filled heat insulating structure (inner heat insulating structure) filled on the inner wall surface side. Carried out. This is preferable because the difference in the heat insulation performance between the construction site of the rigid foam synthetic resin plate 1r and the site of construction of the semi-rigid foam synthetic resin plate 1s is eliminated. The type of the filling heat insulating material 60 may be a foamed synthetic resin plate other than a fiber-based heat insulating material such as glass fiber, or an on-site blown urethane foam, and is not particularly limited.

同図(b)は、出隅部に半硬質発泡合成樹脂板体1sを用い、それを押込固定具5で止着した断面模式図の例である。(但し、内装材は省略してある。)
同図(c)は、入隅部に半硬質発泡合成樹脂板体1sを用い、それを押込固定具5で止着した施工断面模式図の例である。半硬質発泡合成樹脂板体1sを用いる部位や面積は、建物躯体50の構造、耐震強度、必要とする制震性能等から適宜選定すればよい。この半硬質発泡合成樹脂板体1sの止着部には、柱8、間柱9等の構造躯体4に加えて、半硬質発泡合成樹脂板体1sの止着を強化するため、例えば、図に示す止着架材8aのごとき専用の止着架材等を適宜設けて強固に止着させるとよい効果を得ることが出来る。
FIG. 4B is an example of a schematic cross-sectional view in which a semi-rigid foam synthetic resin plate 1 s is used at a protruding corner and is fixed by a pressing fixture 5. (However, interior materials are omitted.)
FIG. 2C is an example of a schematic cross-sectional view of a construction in which a semi-rigid foam synthetic resin plate 1 s is used at a corner and fastened with a pressing fixture 5. The site and area where the semi-rigid foam synthetic resin plate 1s is used may be appropriately selected from the structure of the building housing 50, the seismic strength, the required vibration control performance, and the like. In order to reinforce the fixing of the semi-rigid foam synthetic resin plate 1s in addition to the structural housing 4 such as the columns 8 and the inter-columns 9 in the fixing portion of the semi-rigid foam synthetic resin plate 1s, It is possible to obtain a good effect by providing a dedicated fastening member such as the fastening member 8a shown in the drawing as needed and firmly fastening it.

同図(b)及び、同図(c)に示す2枚の半硬質発泡合成樹脂板体1s同士を突合せて形成させる入隅、出隅のコーナー部の突き当て構造に代えて、予め、入隅、出隅のコーナー部をL型のコーナーパット形状(図示せず)に成形してある成形品を用いたり、予め貼り合せしている加工品を採用すれば施工性が向上し、多次元方向の外力や変形の受け材としての強度や弾性復元力も向上し、かつ隙間防止も出来るので望ましい。   In place of the abutting structure of the entrance corner and the exit corner that are formed by abutting the two semi-rigid foam synthetic resin plates 1s shown in FIG. Use of molded products with the corners of the corners and the corners of the protruding corners formed into L-shaped corner pad shapes (not shown), or the use of workpieces that have been bonded in advance improve workability and multidimensional It is desirable because the strength and elastic restoring force as a direction external force and deformation receiving material can be improved and the gap can be prevented.

これらの半硬質発泡合成樹脂板体1sは、構造躯体4の安全限界の目安とされる層間変位角度(1/30rad)より大きな変位角度にも十分に追従しての弾性変形、復元が可能で、エネルギーの吸収量も大きい。この結果、半硬質発泡合成樹脂板体1sが有する緩衝性と抗張力(靭性)により、制震効果が大きく発揮されるのみならず、構造躯体4の軸組み部(仕口部)や、構造用面材の止着部が破壊して起こる家屋の一気倒壊を抑制する保護装備、あるいは連結材として機能することが期待される。又、本発明の半硬質発泡合成樹脂板体1sを外周壁面の入隅、出隅等の部分的に採用することは、現状の外断熱構造にも、又、既築の外断熱住宅の断熱リフォームにも適宜実施することができ、この実施で大きな制震効果を発揮することが期待できる。   These semi-rigid foam synthetic resin plates 1s can be elastically deformed and restored sufficiently following a displacement angle larger than an interlayer displacement angle (1/30 rad), which is a standard of the safety limit of the structural housing 4. Also, the amount of energy absorption is large. As a result, the damping effect and the tensile strength (toughness) of the semi-rigid foam synthetic resin plate 1s not only greatly exerts the vibration control effect but also the shaft assembly part (joint part) of the structural housing 4 and the structural It is expected to function as protective equipment that suppresses sudden collapse of the house that occurs when the fastening part of the face material breaks down, or as a connecting material. In addition, the semi-rigid foam synthetic resin plate 1s of the present invention is partially adopted at the corners of the outer peripheral wall such as the entrance corner and the exit corner. It can also be carried out as appropriate for renovation, and it can be expected that this implementation will exert a great vibration control effect.

さらに、半硬質発泡合成樹脂板体1sを用いた別の実施態様として、外周壁面の全面に半硬質発泡合成樹脂板体1sを配設する外断熱構造とすることにより、耐震性、制震性をさらに向上させることができる。この場合の半硬質発泡合成樹脂板体1sの材質や発泡倍率や厚み等の仕様の決定は、当該建物躯体50に求められる最適の耐震性、制震性を発揮しうる最適設計値を最優先して選定し、その結果、省エネ基準の1〜5地区別に規定された断熱基準との間に生じる断熱性能の不足分については、内壁面側から充填断熱材60等を柱間大空間や柱間小空間に充填して補完するところの、外断熱と内断熱を併用した断熱構造とすることで、高度の耐・制震外断熱住宅が可能となる。
(実施態様7)
図15及び、図16に示す実施態様は、本発明の外断熱構造である別の実施態様を表すものであり、図15は、いずれも通気胴縁を配設させる前の状態を表す正面立面模式図で、間柱9は省略した図面とした。
構造躯体4が様々な水平方向の外力や震動を受けた時、もっとも大きな変形や損傷を受けるのが土台10や柱8や間柱9や横架材11等から構成される軸組み工法の要である仕口部である。そして、この仕口部は、上部隅角部と下部隅角部とが存在するが、以下、上部隅角部を上部仕口部、下部隅角部を下部仕口部と呼ぶことがある。
Furthermore, as another embodiment using the semi-rigid foam synthetic resin plate 1s, by adopting an outer heat insulating structure in which the semi-rigid foam synthetic resin plate 1s is disposed on the entire outer peripheral wall surface, the earthquake resistance and vibration control properties are achieved. Can be further improved. In this case, the determination of specifications such as the material of the semi-rigid foam synthetic resin plate 1s, the expansion ratio, the thickness, etc. gives top priority to the optimum design values that can exhibit the optimum earthquake resistance and damping required for the building housing 50. As a result, for the shortage of heat insulation performance that occurs between the heat insulation standards stipulated for each of the 1 to 5 areas of the energy conservation standard, the filler insulation 60 and the like are inserted from the inner wall surface into a large space between the columns and the pillars. A highly heat-resistant and anti-seismic heat-insulated house can be realized by using a heat insulation structure that uses both external heat insulation and internal heat insulation to fill the space.
(Embodiment 7)
The embodiment shown in FIG. 15 and FIG. 16 represents another embodiment which is the outer heat insulating structure of the present invention, and FIG. 15 is a front standing view showing a state before the ventilator edge is disposed. In the schematic view of the plane, the inter-column 9 is omitted.
When the structural frame 4 is subjected to various horizontal external forces and vibrations, the largest deformation and damage are the key points of the shaft assembly method composed of the base 10, the column 8, the intermediary column 9, the horizontal member 11, and the like. It is a certain part. The joint portion has an upper corner portion and a lower corner portion. Hereinafter, the upper corner portion may be referred to as an upper joint portion and the lower corner portion may be referred to as a lower joint portion.

なお、本発明で言う仕口部とは、柱、間柱、土台、各種の横架材からなる仕口及び仕口の近傍部位を総称して指すものとする。これら外断熱住宅を含む戸建住宅の地震対策の主要ポイントは、仕口部が如何に耐震構造や、制震構造で防御されているかにあり、従来から、構造用面材や筋交いや各種の耐震金物やホールダウン金物等が集中的に設けられてきたが、その性能限界は既述の通りである。   In addition, the joint part said by this invention shall refer generically to the joint consisting of a pillar, a stud, a base, various horizontal members, and the site | part vicinity of a joint. The main point of earthquake countermeasures for detached houses, including these external insulation houses, is how the joints are protected by earthquake-resistant structures and vibration control structures. Seismic hardware and hole-down hardware have been concentrated, but the performance limits are as described above.

本実施態様では、主要な仕口部に本発明の止着方法を用いた硬質発泡合成樹脂板体1rの代替として半硬質発泡合成樹脂板体1s、又は、ゴム状弾性板体20等の緩衝用板体を優先的に配設する。このことにより、変形力や震動のエネルギーを主として緩衝用板体で吸収させ、構造躯体4全体の変形や揺れを抑制(制震)し、その他の壁面に連接して配設される硬質発泡合成樹脂板体1rに働く地震の変形や震動を抑制、低減させ、外断熱構造全体の耐・制震性を確保すると共に、断熱性と気密性の経時劣化を長期に抑制させるようにする。   In this embodiment, a buffer such as a semi-rigid foam synthetic resin plate 1s or a rubber-like elastic plate 20 is used as a substitute for the hard foam synthetic resin plate 1r using the fastening method of the present invention at the main joint. Preferentially arrange the plate. By this, the deformation force and vibration energy are absorbed mainly by the buffer plate, the deformation and shaking of the entire structural frame 4 are suppressed (damping), and the rigid foam composition is arranged in connection with other wall surfaces. The deformation and vibration of the earthquake acting on the resin plate 1r are suppressed and reduced to ensure the resistance and vibration control of the entire outer heat insulating structure and to suppress the deterioration of heat insulation and airtightness over time for a long time.

図15は、同図(イ)〜同図(ニ)からなり、これらの各種の建物躯体50の壁面の仕口部には、緩衝用板体を配設、止着し、仕口部の損傷の抑制と建物躯体50全体の耐・制震効果を発揮させようとする本発明の外断熱構造の実施態様である。   FIG. 15 is composed of FIGS. (A) to (d). A buffer plate is disposed and fixed to the joint portion of the wall surface of each of these various types of building housings 50. It is an embodiment of the outer heat insulation structure of the present invention which intends to exhibit damage suppression and the effect of seismic control of the entire building housing 50.

同図(イ)は、1階の全壁面に形成される土台10と柱8と間柱9が形成する下部仕口部と、横架材11と柱8と間柱9が形成する上部仕口部を、それぞれ帯状に連接させて緩衝用板体を配設した例を示す。該緩衝用板体の施工部位を除く壁面全体(柱間空間の階高方向の該中央部)には硬質発泡合成樹脂板体1rが連接して配設、止着され外断熱構造が形成されている。緩衝用板体として用いた半硬質発泡合成樹脂板体1sとしては、例えば、緩衝性の高い発泡ポリエチレン(商品名:エペラン、30倍品、1820mm幅×400mm高×40mm厚、(株)カネカ製)で帯状に配設し、押込固定具5(例:図4(f)に示す基端部の外径:45mmΦ×突起部高さ12mmの突起部の略球面部の外周面に外径15mmΦの凹入部5qを4箇所設けた。)で止着させる。その他の壁面には、硬質発泡合成樹脂板体1rとして、例えば、断熱性に優れた発泡フェノール(例:ネオマフォーム、厚み40mm)を押込固定具5(例:外径:35mmΦ×突起高さ8mmの略球面状)で止着した。   FIG. 4A shows a lower joint formed by the base 10, the column 8 and the inter-column 9 formed on the entire wall surface of the first floor, and an upper joint formed by the horizontal member 11, the column 8 and the inter-column 9. Are respectively connected in a band shape, and an example in which a buffer plate is disposed is shown. Rigid foam synthetic resin plate 1r is connected and secured to the entire wall surface (the central portion of the inter-column space in the height direction of the floor) except for the construction site of the buffer plate to form an outer heat insulating structure. ing. As the semi-rigid foam synthetic resin plate 1s used as the buffer plate, for example, foamed polyethylene having a high buffering property (trade name: Eperan, 30 times product, 1820 mm width × 400 mm height × 40 mm thickness, manufactured by Kaneka Corporation) ) And a push fixture 5 (example: outer diameter of the base end shown in FIG. 4 (f): 45 mmΦ × projection height 12 mm outer diameter 15 mmΦ The four recessed portions 5q are provided). On the other wall surface, for example, a foamed phenol (e.g., neoma foam, thickness 40 mm) excellent in heat insulation is used as the rigid foam synthetic resin plate 1r, and the pressing fixture 5 (e.g., outer diameter: 35 mmΦ x protrusion height 8 mm). It was fixed with a substantially spherical shape.

こうして、上部仕口部と下部仕口部に配設される半硬質発泡合成樹脂板体1sが有する耐震性と制震性が主体的に機能して、構造躯体の変形や揺れを吸収(減衰)、抑制することにより、大きな変形や集中荷重にやや脆い硬質発泡合成樹脂板体1rの止着部の負担(弾性変形、復元量)を軽減させ得て、長期に安定した高断熱、高気密性を維持することが出来る。こうして、従来の制震装置に見られる建物の平面部位間(部屋間)の制震効果の差等の課題が緩和され、建物全体がバランスの取れた高性能の耐・制震性能を発揮することが出来るのである。   Thus, the seismic resistance and vibration control of the semi-rigid foam synthetic resin plate 1s disposed in the upper and lower joints mainly function to absorb (attenuate) deformation and vibration of the structural frame. ) By suppressing, it is possible to reduce the burden (elastic deformation, restoration amount) of the fastening part of the rigid foam synthetic resin plate 1r, which is slightly brittle to large deformations and concentrated loads, and stable and highly insulated and highly airtight over the long term Sex can be maintained. In this way, problems such as differences in the vibration control effect between the flat parts of the building (between rooms) found in conventional vibration control devices are alleviated, and the entire building exhibits balanced and high-performance anti-seismic performance. It can be done.

同図(ロ)は、同図(イ)と同等の効果を1階の入隅、出隅や、通し柱近傍や開口部等の上部仕口部や、下部仕口部に緩衝用板体を非連続に配設することによって行うものである。半硬質発泡合成樹脂板体1sとして、例えば、前記発泡ポリエチレンよりエネルギー吸収性の高い発泡ポリプロピレン(エペランPP、30倍品、910mm幅×500mm高×45mm厚、(株)カネカ製)を帯状に配設して、その他の壁面には、硬質発泡合成樹脂板体1rである発泡フェノール(例:ネオマフォーム、厚み45mm)を配設させてなる。押込固定具5は、同図(イ)で用いたものと同等品とした。   The same figure (b) has the same effect as the figure (b). The buffer plate is provided in the upper and lower joints of the first floor entrance and exit corners, the vicinity of the through pillars and the opening, and the lower joint part. This is done by discontinuous arrangement. As the semi-rigid foam synthetic resin plate 1s, for example, foamed polypropylene (Eperan PP, 30 times product, 910 mm width x 500 mm height x 45 mm thickness, manufactured by Kaneka Corporation) with higher energy absorption than the foamed polyethylene is arranged in a band shape. In addition, the other wall surface is provided with a foamed phenol (eg, neoma foam, thickness 45 mm) which is the hard foamed synthetic resin plate 1r. The indentation fixture 5 was the same as that used in FIG.

必要とする制震性能は、建物躯体50の構造、重量、重心、剛心、偏心率と、緩衝用板体の樹脂種類、発泡倍率等の性質、仕口部に配設される該緩衝用板体の高さ寸法(例:500mm高)、配設する壁面数等を適宜増減させ、押込固定具の形状、止着数等の組合せ等から最適な耐・制震設計を行うことで選定される。また、樹脂種類、発泡倍率、厚み、押込固定具5の形状や止着数等からなるある一定条件下では、例えば、緩衝用板体の幅寸法と押込固定具の形状や止着間隔を一定とした場合、緩衝用板体の高さ寸法と制震効果とは、略比例的な関係にあり、高さ寸法を増減させることにより緩衝用板体の配設壁面数の増減が可能で、適宜、最適化設計をすればよい。   The required vibration control performance includes the structure of the building housing 50, weight, center of gravity, stiffness, eccentricity, resin type of buffer plate, properties such as expansion ratio, etc. Select by optimizing and suppressing vibrations from the combination of the shape of the push fixture, the number of fastenings, etc. Is done. Also, under certain conditions consisting of resin type, expansion ratio, thickness, shape of the push fixture 5 and the number of fastening, etc., for example, the width of the buffer plate and the shape and fastening interval of the push fixture are constant. In this case, the height of the buffer plate and the vibration control effect are in a substantially proportional relationship, and by increasing / decreasing the height, the number of wall surfaces of the buffer plate can be increased or decreased. Optimization design may be performed as appropriate.

同図(ハ)は、1階の壁面の上部仕口部や下部仕口部の内、建物躯体50の構造上、特に上部仕口部に応力集中や変形や損傷が集中し易いことから、1階の上部仕口部のみに主体的に緩衝用板体としてエネルギー吸収性の優れた半硬質発泡合成樹脂板体1sを配設した例ある、同図(ロ)にも用いたエペランPP、30倍品、1820mm幅×500mm高×45mm厚を帯状に連接して配設、止着して効果的な耐・制震効果を発揮させた構造例を示している。1階の上部仕口部以外に用いた硬質発泡合成樹脂板状1rや押込固定具5は、同図(イ)に記載品と同等品とした。施工性やコスト的にも優れるので、適宜実施できる。   In the figure (C), stress concentration, deformation and damage are likely to concentrate on the upper joint part of the wall structure on the first floor, especially on the structure of the building housing 50, especially in the upper joint part. An example of the semi-rigid foam synthetic resin plate 1s having excellent energy absorption as a buffer plate mainly disposed only in the upper joint portion on the first floor, Eperan PP used also in FIG. A 30-times product, 1820 mm wide x 500 mm high x 45 mm thick are arranged and connected in a belt shape and fastened to show an effective anti-seismic effect. The hard foam synthetic resin plate 1r and the push-in fixture 5 other than the upper joint portion on the first floor were the same as the products shown in FIG. Since it is also excellent in terms of workability and cost, it can be implemented as appropriate.

同図(ニ)は、1階の壁面の上部仕口部と共に、2階の壁面の上部仕口部に、緩衝用板体としての半硬質発泡合成樹脂板体1s、例えば、エペラン、30倍品、1820mm幅×450mm高×45mm厚を用いて帯状に覆う構造例である。この構造を採用することで、1階より揺れが大きくなる2階部位の揺れの抑制効果が高まり望ましい。しかも、2階部分を耐・制震化構造とする場合、特別な構造とする必要はなく、1階部分と同じく施工性は平易で、かつ、低コストで施工が可能であり、しかも、このように、1、2階の揺れを抑制することによって、家屋が一気倒壊するという危険性が、大幅に軽減され安心、安全性と耐久性が高度に向上するので極めて好ましい実施態様である。硬質発泡合成樹脂板状1rや押込固定具5は、同図(イ)と同等品とした。又、こうした構造は、既築の耐・制震性の低い外断熱住宅を、断熱、耐・制震リフォームをする際においても、外壁材の全面を解体せず、該仕口部近傍の外壁構成材料の一部と外断熱材の一部を解体、改修ることにより容易にかつ低コストで施工できるという大きな利便性をも有する。   In the same figure (D), a semi-rigid foam synthetic resin plate 1s as a buffer plate is provided on the upper joint of the wall on the second floor as well as the upper joint of the first floor, for example, Eperan, 30 times. This is an example of a structure covered in a strip shape using a product, 1820 mm wide × 450 mm high × 45 mm thick. By adopting this structure, it is desirable to increase the effect of suppressing the vibration of the second floor part where the vibration is larger than the first floor. In addition, when the second floor part is made to be earthquake-resistant and vibration-damping structure, it is not necessary to have a special structure, as with the first floor part, the workability is as simple and can be constructed at low cost. Thus, by suppressing the shaking of the first and second floors, the risk that the house collapses at once is greatly reduced, and the safety, safety and durability are highly improved, which is a very preferable embodiment. The hard foam synthetic resin plate 1r and the indentation fixture 5 were the same as those shown in FIG. In addition, such a structure does not dismantle the entire surface of the outer wall material, even when heat-insulating and anti-seismic renovation of an existing externally insulated house with low anti-seismic properties, and the outer wall in the vicinity of the joint. It also has the great convenience that it can be constructed easily and at low cost by disassembling and repairing part of the constituent materials and part of the outer heat insulating material.

図16は、図15の施工詳細図であって、同図(a)〜同図(c)からなる。同図(a)は、図15(ロ)のA矢視部の立面平面詳細図である。図中の(2)は、柱―間柱―柱間からなる一壁面の上部仕口部と、下部仕口部に、緩衝用板体として、半硬質発泡合成樹脂板体1s(発泡ポリプロピレン、エペランPP)が帯状に配設、止着されており、それ以外の残余の壁面には、硬質発泡合成樹脂板体1r(発泡フェノール、ネオマフォーム)が連接して配設、止着されている。又、図中の壁面(1)と壁面(3)は、先述した柱―間柱―柱間の全外周面に硬質発泡合成樹脂板体1r(発泡フェノール、ネオマフォーム)を配設、止着した立面正面図である。   FIG. 16 is a construction detail view of FIG. 15, and is composed of FIG. The figure (a) is an elevation plane detailed drawing of the A arrow part of Drawing 15 (b). (2) in the figure is a semi-rigid foam synthetic resin plate 1s (foamed polypropylene, eperan) as a buffer plate on the upper and lower joints of one wall consisting of pillars-intermediate-columns. PP) is disposed and fastened in a band shape, and the hard foamed synthetic resin plate 1r (foamed phenol, neoma foam) is continuously disposed and fastened to the remaining wall surfaces. In addition, the wall surface (1) and wall surface (3) in the figure are standing upright with rigid foamed synthetic resin plate 1r (foamed phenol, neoma foam) disposed on the entire outer peripheral surface between the pillars-inter-columns-columns described above. It is a surface front view.

又、さらに、必要に応じ、柱―柱間、又は、柱―間柱―柱間に緩衝用板体や硬質発泡合成樹脂板体を止着させる止着架材8a(例:60mm正四角形 赤松)を設ければ、発泡合成樹脂板体の弾性変形、復元を補完する等、耐・制震性の向上が期待され、適宜実施すればよい。   In addition, if necessary, a fastening material 8a for fixing a buffer plate or a hard foam synthetic resin plate between pillars or between pillars or between pillars and pillars between pillars (example: 60 mm regular square Akamatsu) If it is provided, improvement of anti-seismic properties such as complementation of elastic deformation and restoration of the foamed synthetic resin plate body is expected, it may be carried out as appropriate.

同図(b)は、同図(a)のB−B断面模式図であって、半硬質発泡合成樹脂板体1sと硬質発泡合成樹脂板体1rが相差し継手1fで連接されている状態が図示されている。そして、半硬質発泡合成樹脂板体1sの施工部位の断熱不足が懸念される場合には、例えば、柱8と間柱9との間の柱間小空間4bに、例えば、充填断熱材60(例:ガラス繊維16Kg/m品)を内壁面側から充填し、内装材61を配設した断面構造が図示されている。充填断熱材60の充填高さは、緩衝用板体の高さ寸法(例:500mm)よりもやや大(例:550mm)とすることが熱欠損の防止上望ましく、充填断熱材60の固定は、適宜、止着架材8aや内装材61による押込み等で実施される。充填断熱材60は、繊維系断熱材に限られること無く、発泡合成樹脂板体でも現場吹付け発泡ポリウレタンでも良く、特に限定するものではない。 FIG. 4B is a schematic cross-sectional view taken along the line B-B of FIG. 4A, in which the semi-rigid foam synthetic resin plate 1s and the rigid foam synthetic resin plate 1r are connected to each other by an interphase coupling 1f. Is shown. And when there is a concern about insufficient heat insulation of the construction site of the semi-rigid foam synthetic resin plate 1s, for example, in the inter-column small space 4b between the columns 8 and the inter-columns 9, for example, the filling heat insulating material 60 (example) : Glass fiber 16Kg / m 3 product) is filled from the inner wall surface side, and the cross-sectional structure in which the interior material 61 is disposed is shown. The filling height of the filling heat insulating material 60 is desirably slightly larger (eg, 550 mm) than the height of the buffer plate (eg, 500 mm) in order to prevent thermal deficiency. As appropriate, it is carried out by pressing with the fastening member 8a or the interior material 61. The filling heat insulating material 60 is not limited to a fiber heat insulating material, and may be a foamed synthetic resin plate or an in-situ blown polyurethane foam, and is not particularly limited.

同図(c)は、同図(a)のC−C断面模式図で、土台10と半硬質発泡合成樹脂板体1sの止着構造は、押込固定具5と押込補助突起3(例えば、太鼓鋲:外径15Φ×6mm高)で挟持する構造で止着させて構造躯体4との一体化強度を高めて制震効果を発揮させている。なお、連接する硬質発泡合成樹脂板体1rと半硬質発泡合成樹脂板体1sの連接部は、相差し継手1fを採用するのが断熱、気密上望ましいが、突合せ構造として突合せ部に気密テープを用いてもよい。   The figure (c) is a CC cross-sectional schematic diagram of the figure (a), and the fixation structure of the base 10 and the semi-rigid foam synthetic resin plate body 1s is the pushing fixture 5 and the pushing auxiliary projection 3 (for example, It is fastened with a structure that is clamped by a drum drum (outer diameter 15Φ × 6 mm height) to enhance the integrated strength with the structural housing 4 and exert a vibration control effect. It should be noted that it is desirable to use a phase-fitting joint 1f for the connecting portion of the rigid foam synthetic resin plate 1r and the semi-rigid foam synthetic resin plate 1s to be connected in terms of heat insulation and airtightness. It may be used.

又、先述したが、寒冷地(省エネルギー基準の1〜2地区)の外断熱材の必要厚みは、業界が指導する1層目の最大断熱材厚み50mm(例:押出法発泡ポリスチレン)を上回ることから、2層張り外断熱構造でなされるが、止着部の耐久性(耐震性)の課題が未解決でほとんど実用化されていない。   In addition, as described above, the required thickness of the outer heat insulating material in cold regions (1 to 2 areas of energy saving standards) exceeds the maximum heat insulating material thickness of 50 mm (example: extruded polystyrene foam) of the first layer, which the industry provides. Therefore, although it is made with a two-layer stretched outer heat insulating structure, the problem of durability (seismic resistance) of the fastening portion is unsolved and is hardly practically used.

こうし実態に鑑み、本発明では、例えば、1)図15や図16に示す態様に準じ、まず、1層目の外断熱材層を配設する方法として、外周壁面の仕口部に本発明の止着構造からなる半硬質発泡合成樹脂板体1s(例:最大厚み50mm)を配設して、該仕口部を除く残余の壁面には、本発明の止着構造からなる硬質発泡合成樹脂板体1r(例:最大厚み50mm)を配設して建物躯体50が必要とする耐・制震性能を有する1層目の外断熱材層を形成させる。次いで、2層目の外断熱材層として、本発明の止着構造からなる硬質発泡合成樹脂板体1rを全外周壁面に配設させ、本発明の2層張りの耐・制震外断熱構造を完成させる。   In view of the actual situation, in the present invention, for example, according to the embodiment shown in FIGS. The rigid foam made of the fastening structure of the present invention is disposed on the remaining wall surface except for the joint portion by placing the semi-rigid foam synthetic resin plate 1s (for example, the maximum thickness of 50 mm) having the fastening structure of the invention. A synthetic resin plate 1r (for example, a maximum thickness of 50 mm) is disposed to form a first outer heat insulating material layer having the anti-seismic performance required by the building housing 50. Next, as the second outer heat insulating material layer, the hard foamed synthetic resin plate 1r having the fastening structure of the present invention is disposed on the entire outer peripheral wall surface, and the two-layer tension-resistant / damping outer heat insulating structure of the present invention is provided. To complete.

2)前記1)の1層目の外断熱材層と同等の方法で、まず、建物躯体50が必要とする耐・
制震性能を有する1層目の外断熱材層(例:最大断熱材厚み 50mm)を形成させ、2層目の外断熱層は設けずに断熱性能の不足分は、充填断熱材60として、例えば、繊維系断熱材(例:ガラス繊維断熱材、密度16Kg/m)を柱間小空間内や柱間大空間内に充填し、所定の断熱性能を確保して、本発明の外断熱工法と従来の内断熱工法を併用した耐・制震外断熱構造を完成させる。あるいは又、繊維系断熱材に代えて発泡合成樹脂板体を柱間空間に充填する従来の内断熱工法と組合せ、本発明の耐・制震外断熱構造としてもよい。
これらの施工方法を用いることで、従来の寒冷地における2層張り外断熱構造の耐・制
震性や耐久性(断熱材や外壁材の脱落、剥離)や、従来の内断熱工法(断熱欠損、結露)が有する課題が明快に解消されるので望ましい。
2) In the same manner as the first outer heat insulating material layer of 1), first, the building
The first outer heat insulating material layer (eg, maximum heat insulating material thickness 50 mm) having the vibration control performance is formed, and the second heat insulating material is not provided without providing the second outer heat insulating layer. For example, a fiber-based heat insulating material (eg, glass fiber heat insulating material, density 16 Kg / m 3 ) is filled in a small space between columns or a large space between columns, ensuring a predetermined heat insulating performance, A heat-resistant and anti-seismic heat insulation structure that combines the construction method and the conventional inner insulation method will be completed. Alternatively, it may be combined with a conventional inner heat insulation method in which a foamed synthetic resin plate is filled in the inter-column space instead of the fiber heat insulating material, and the heat resistant / anti-vibration heat insulating structure of the present invention may be used.
By using these construction methods, the conventional two-layered outer heat insulation structure in the cold region has anti-seismic performance and durability (dropping and peeling of the heat insulating material and outer wall material), as well as the conventional inner heat insulating method (heat insulation defect) , Dew condensation) is desirable because it clearly solves the problem.

上述した如く、断熱性能に優れた硬質発泡合成樹脂板体1rと緩衝性に優れた緩衝用板体の固有の特性を生かし、多次元方向の変形力や震動や揺れが集中しやすい主要な仕口部等には、主体的に、例えば、半硬質発泡合成樹脂板体1sを配設して、残る外壁面には硬質発泡合成樹脂板体1rを配設して、それぞれの耐震性や制震性や断熱性の特性が最も発揮しやすい押込固定具5の形状、止着数、止着間隔等の配列や、止着材等の最適選定、設計や通気胴縁の設計等をすることによりなされる本発明の複合効果は、従来の外断熱構造(寒冷地を含む)が抱えている根幹的な断熱気密性の劣化、耐・制震性の不安(危険性)、メンテナンス性、トータルコスト、施工性等、広範に関わる種々の課題が改良、解消でき、省エネ性、高耐久性、安心、安全性や、長期優良住宅に求められる多くの資質を有する耐・制震外断熱住宅の実現が期待されるのである。
(実施態様8)
図17(a)、(b)は、日本の戸建住宅の大半をしめる内断熱(充填断熱)工法の内、主として、柱間空間に繊維系断熱材(ガラス繊維やロックウール等)を充填してなる建物を引例に、主要な外壁や間仕切り壁等の柱間空間に、本発明の止着方法や止着構造からなる硬質発泡合成樹脂板体1rや、半硬質発泡合成樹脂板体1s又は、ゴム状弾性板体20等の緩衝用板体を変形可能な制震枠体19を介して配設、止着して、耐・制震性を付与させる実施態様を示し、詳細の説明では、主として、半硬質発泡合成樹脂板体の適用を中心に記載するが、特に限定するものではない。
As described above, taking advantage of the unique characteristics of the hard foam synthetic resin plate 1r with excellent heat insulation performance and the buffer plate with excellent cushioning properties, the main features that tend to concentrate deformation forces, vibrations and vibrations in multidimensional directions. For example, a semi-rigid foam synthetic resin plate 1s is mainly disposed in the mouth portion and the like, and a rigid foam synthetic resin plate 1r is disposed on the remaining outer wall surface. The shape, the number of fastenings, the arrangement of fastening intervals, etc., the optimum choice of fastening materials, etc., the design and the design of the ventilator rim, etc., where the seismic and thermal insulation properties are most likely to be exhibited The combined effect of the present invention is based on the deterioration of the fundamental heat insulation and airtightness of conventional external heat insulation structures (including cold regions), fear of seismic resistance and vibration control (danger), maintainability, total Various problems related to a wide range such as cost and workability can be improved and solved, energy saving, high durability, and security Safety and is the realization of anti-seismic damping outer insulated houses having many of the qualities of a long-term quality housing is expected.
(Embodiment 8)
Figures 17 (a) and 17 (b) show the main thermal insulation (filling thermal insulation) method for most detached houses in Japan, and mainly filling the space between pillars with fiber-based thermal insulation (glass fiber, rock wool, etc.) As an example, the rigid foamed synthetic resin plate 1r or the semi-rigid foamed synthetic resin plate 1s composed of the fastening method and the fastening structure of the present invention is provided in the inter-column space such as the main outer wall or partition wall. Alternatively, an embodiment in which a shock-absorbing plate 19 such as a rubber-like elastic plate 20 is disposed and fastened via a deformable vibration-damping frame 19 to provide resistance to vibration and vibration is described. Then, although it mainly describes centering on application of a semi-rigid foam synthetic resin board body, it does not specifically limit.

同図(a)は、内断熱工法の1階の外壁面側から見た構造用面材15が配設される前の柱間小空間4bに緩衝用板体としての半硬質発泡合成樹脂板体1sを制震枠体19を介して配設、止着させてなる実施態様の一例を示す部分正面立面模式図であって、図中の(1)は、従来の繊維系断熱材が充填されてなる柱間空間4bを示し、図中の(2)は、柱間空間の上部仕口部や下部仕口部の内周面に本発明の半硬質発泡合成樹脂板体1sを制震枠体19を介して配設、止着させてなる柱間小空間4bを示し、図中の(3)は柱間空間の内周面の全面に本発明の半硬質発泡合成樹脂板体1sを制震枠体19を介して配設、止着させてなる柱間小空間4bを示し、図中の(4)は柱間空間の一部の内周面に本発明の半硬質発泡合成樹脂板体1sを制震枠体19を介して配設、止着させてなる柱間小空間4bを示している。   The figure (a) is a semi-rigid foam synthetic resin plate as a buffer plate in the small post-column space 4b before the structural face material 15 is disposed as viewed from the outer wall surface side of the first floor of the inner heat insulation method. It is a partial front elevation schematic diagram showing an example of an embodiment formed by arranging and fixing a body 1s via a vibration control frame 19, wherein (1) in the figure is a conventional fiber-based heat insulating material. An inter-column space 4b filled is shown, and (2) in the figure controls the semi-rigid foam synthetic resin plate 1s of the present invention on the inner peripheral surfaces of the upper and lower joints of the inter-column space. A small inter-column space 4b that is disposed and fixed via the seismic frame 19 is shown. (3) in the drawing is the semi-rigid foam synthetic resin plate of the present invention on the entire inner peripheral surface of the inter-column space. 1s is arranged via a vibration control frame 19 and fixed to a small inter-column space 4b. (4) in the drawing is a semi-rigid foam of the present invention on a part of the inner peripheral surface of the inter-column space. Controls synthetic resin plate 1s Disposed through the frame 19, it shows a pillar between the small space 4b made by secured.

以下、本実施態様の詳細は、同図(a)の(2)に示す柱間小空間4bの上、下の仕口部に半硬質発泡合成樹脂板体1sを制震枠体19を介して配設、止着させてなる実施態様の一例を中心に記載する。
本実施態様を建物全体に施工した場合の施工イメージ図としては、図15(イ)〜(ニ)に図示した建物躯体50の構造躯体4の外壁面側に直接、緩衝用板体である半硬質発泡合成樹脂板体1sや硬質発泡合成樹脂板体1rを止着してなる外断熱構造の施工立面模式図に類似するが、主たる相違点は、本実施態様は内断熱構造であって、柱間大空間4aや柱間小空間4bの内周面の全部あるいは、上部仕口部や下部仕口部等の一部の内周面に半硬質発泡合成樹脂板体を制震枠体19を介して配設、止着させていることにある。
図17(b)は、同図(a)の(2)の柱間小空間4bのA−A断面の断面模式図である。
Hereinafter, the details of this embodiment are as follows. The semi-rigid foam synthetic resin plate 1s is placed on the lower joint portion above and below the small space 4b shown in (2) of FIG. An example of an embodiment that is disposed and fastened will be mainly described.
As a construction image diagram when this embodiment is applied to the entire building, it is a semi-rigid plate which is a buffer plate directly on the outer wall surface side of the structural housing 4 of the building housing 50 illustrated in FIGS. Although it is similar to the construction elevation schematic diagram of the outer heat insulating structure formed by fastening the foamed synthetic resin plate 1s and the hard foamed synthetic resin plate 1r, the main difference is that this embodiment is an inner heat insulating structure, A semi-rigid foam synthetic resin plate is attached to the entire inner peripheral surface of the large inter-column space 4a and the small inter-column space 4b or to a part of the inner peripheral surface such as the upper joint portion and the lower joint portion. It is that it is arranged and fixed via.
FIG. 17B is a schematic cross-sectional view taken along the line AA of the inter-column space 4b in FIG.

従来の内断熱構造は、同図(b)に示す外壁面側に構造用面材15を、内壁面側にはプラスターボード等の内装材61が配設され、柱間小空間4b(又は柱間大空間4a)に充填する充填断熱材としては、繊維系断熱材が多用されているが、これに限定されることなく、現場発泡ウレタン系断熱材や、最近では、発泡合成樹脂板体が多用されてきている。   In the conventional inner heat insulating structure, the structural surface material 15 is disposed on the outer wall surface side shown in FIG. 5B, and the interior material 61 such as a plaster board is disposed on the inner wall surface side. As the heat insulating material for filling the large space 4a), a fiber-based heat insulating material is frequently used, but is not limited to this, and an in-situ foamed urethane-based heat insulating material, and recently, a foamed synthetic resin plate is frequently used. Has been.

本例では、同図(a)の(2)の柱間小空間4b及び、同図(b)に示す柱間小空間4b(例として、柱芯:910mm、柱8:120mm正四角形角材と、間柱9:120mm幅×60mm厚からなる柱間小空間4bの内幅寸法:365mm、階高方向の柱間空間高さ:2600mm高さ)の上部仕口部や下部仕口部に、本発明の押込固定具5を用いて、半硬質発泡合成樹脂板体1s(例:押出法発泡ポリエチレン、25倍品、外形寸法:365mm幅×500mm高×50mm厚、サンテックフォーム、旭化成ケミカルズ(株)製)を制震枠体19に螺着により強固に止着させて、構造躯体4の外周面側と略面一になるように配設して、制震枠体19を固着、一体化させている。   In this example, the small inter-column space 4b of (2) in the same figure (a) and the small inter-column space 4b shown in the same figure (b) (for example, pillar core: 910 mm, pillar 8: 120 mm regular square square , Inter-column 9: 120 mm width × 60 mm-thick inter-column small space 4 b inner width dimension: 365 mm, floor space height between columns: 2600 mm height) Semi-rigid foam synthetic resin plate 1s (Example: Extruded polyethylene foam, 25-fold product, external dimensions: 365 mm width x 500 mm height x 50 mm thickness, Suntec foam, Asahi Kasei Chemicals Co., Ltd.) Are firmly fixed to the vibration control frame body 19 by screwing, and are arranged so as to be substantially flush with the outer peripheral surface side of the structural housing 4 so that the vibration control frame body 19 is fixed and integrated. ing.

該制震枠体19は、例えば、45mm正四角形の角材(例:赤松)からなる縦基材19a(500mm高)と横基材19b(275mm幅)からなる矩形の枠体(4辺又は3辺からなる枠体)であって、構造躯体4からの変形や震動をリアルタイムに緩衝用板体に伝達し、かつ、半硬質発泡合成樹脂板体が有する弾性変形力や弾性復元力をリアルタイムに構造躯体4にフィードバックし耐・制震効果を発揮させる伝達媒体としての機能を担う。そのため、該制震枠体19は、構造躯体の変形に追従して変形可能な枠体であることが望ましく、例えば、隅角部は、相互に非連続の突合せ構造として半硬質発泡合成樹脂板体と止着一体化させれば多次元方向に変形可能なパネル構造となり、構造躯体4の変形や震動及び、半硬質発泡合成樹脂板体の弾性変形、復元に容易に追従一体化することができる。   The seismic control frame body 19 is, for example, a rectangular frame body (four sides or three sides) composed of a vertical base material 19a (500 mm high) made of 45 mm square square material (eg, red pine) and a horizontal base material 19b (275 mm width). Frame), which transmits deformation and vibration from the structural housing 4 to the buffer plate in real time, and the elastic deformation force and elastic restoring force of the semi-rigid foam synthetic resin plate in real time. It functions as a transmission medium that feeds back to the structural frame 4 and exhibits anti-seismic and seismic control effects. Therefore, it is desirable that the seismic control frame body 19 is a frame body that can be deformed following the deformation of the structural housing. For example, the corner portions are semi-rigid foam synthetic resin plates as a non-continuous butting structure. A panel structure that can be deformed in a multi-dimensional direction if it is integrated with the body, and can be easily integrated with the deformation and vibration of the structural housing 4 and the elastic deformation and restoration of the semi-rigid foam synthetic resin plate. it can.

施工方法としては、例えば、1)本発明の押込固定具5で矩形の半硬質発泡合成樹脂板体を制震枠体19に螺着して止着し、構造躯体4の変形に容易に追従一体化できるパネル構造にしたものを用い、上部仕口部や下部仕口部に対し、同図(b)に示すラグスクリーボルト16d(例:10mmΦ)で、夫々、柱8や土台10や横架材11に固着させる。   As a construction method, for example, 1) A rectangular semi-rigid foam synthetic resin plate is screwed to the vibration control frame 19 and fastened with the push-in fixture 5 of the present invention, and easily follows the deformation of the structural housing 4. A panel structure that can be integrated is used, and for the upper and lower joints, the lug screen bolts 16d (example: 10 mmΦ) shown in FIG. Secure to the base 11.

2)制震枠体19の縦基材19aと横基材19bからなる4隅角部を、例えば柔軟性のある布、フイルム等のシート材で連結して、4隅部が自在に変形、復元できる変形可能な制震枠体19を形成させて各仕口部に配設して、前記したボルト16dで固着した後、前記の矩形の半硬質発泡合成樹脂板体を押込固定具5で制震枠体19に螺着により止着させる。   2) The four corners composed of the vertical base material 19a and the horizontal base material 19b of the vibration control frame 19 are connected by a sheet material such as a flexible cloth or film, for example, and the four corners are freely deformed. A deformable seismic control frame 19 that can be restored is formed and disposed at each joint, and fixed with the bolt 16d, and then the rectangular semi-rigid foam synthetic resin plate is fixed with the push-in fixture 5. The vibration control frame 19 is fixed by screwing.

3)縦基材19a(2本)と土台10又は横架材(梁)11に止着させる横基材19b(1本)をそれぞれ単独で、上部仕口部や下部仕口部に前記のボルト16dで螺着により固着し、3辺からなる制震枠体19(図示せず)を形成させた後、前記の矩形の半硬質発泡合成樹脂板体を押込固定具5で螺着により止着させる等、適宜選定すればよい。4)制震枠体19を構成する縦基材19aや横基材19bを、予め、プレカット工場で、柱8、間柱9、土台10、横架材11等の当該位置に固着しておけば、現場では、制震枠体に半硬質発泡合成樹脂板体を配設して、止着すればよく施工性が向上するので望ましい。   3) The vertical base material 19a (two pieces) and the horizontal base material 19b (one piece) to be fixed to the base 10 or the horizontal member (beam) 11 are individually used for the upper joint portion and the lower joint portion, respectively. After fixing with a bolt 16d by screwing to form a vibration damping frame 19 (not shown) consisting of three sides, the rectangular semi-rigid foam synthetic resin plate is fixed by screwing with the push-in fixture 5. What is necessary is just to select suitably, such as making it wear. 4) If the vertical base material 19a and the horizontal base material 19b which comprise the seismic control frame 19 are beforehand fixed to the said positions, such as the pillar 8, the interposition pillar 9, the base 10, the horizontal member 11, etc. in a precut factory. In the field, it is desirable that the semi-rigid foam synthetic resin plate is disposed on the seismic control frame and fastened to improve the workability.

これらの制震枠体19は、後述する実施態様11(図20)や実施態様12(図21)に記載した縦フレーム41aや横フレーム41bからなる制震フレーム41に相当し、これらは、地震時には概水平方向の正負の変形や震動に対し、半硬質発泡合成樹脂板体をリアルタイムに弾性変形、復元させることが出来、必要とする耐・制震性能を効果的に発揮させうる。ここに押込固定具5としては、例えば、図4(f)に図示するような外径:45mmΦ×突起部高さ12mmH、外径12mmΦの凹入部5qを4箇所設けた射出成型品(塩ビ製)のものを用い、それぞれ10箇所/1仕口部毎に止着させた。   These seismic control frame bodies 19 correspond to the seismic control frame 41 composed of the vertical frame 41a and the horizontal frame 41b described in the embodiment 11 (FIG. 20) and the embodiment 12 (FIG. 21) to be described later. In some cases, semi-rigid foam synthetic resin plates can be elastically deformed and restored in real time against positive and negative deformations and vibrations in the horizontal direction, and the necessary anti-seismic performance can be effectively exhibited. Here, as the push fixture 5, for example, an injection molded product (made of polyvinyl chloride) provided with four recessed portions 5 q having an outer diameter: 45 mmΦ × projection height 12 mmH and an outer diameter 12 mmΦ as illustrated in FIG. ), And fixed at 10 locations / one joint portion.

これらの制震枠体19に止着してなる半硬質発泡合成樹脂板体の配設箇所や配設位置は、必ずしも、全壁面の上部仕口部や下部仕口部に設ける必要はなく、例えば、図15図(イ)〜(ハ)に示す如く、適宜選定し配設すればよく、又、同図(a)の(1)の柱間小空間4bの如く全く設けない柱間空間があってもよく、建物構造が必要とする耐・制震性能や、構造用面材の耐力壁量をも勘案して、半硬質発泡合成樹脂板体の樹脂種類、幅寸法、高さ寸法、厚みや、押込固定具5の形状や止着数等から適宜設計、選定して配設すればよい。   The location and location of the semi-rigid foam synthetic resin plate that is fixed to these seismic control frames 19 need not necessarily be provided in the upper and lower joints of the entire wall surface, For example, as shown in FIGS. 15 (a) to 15 (c), the space between the columns may be appropriately selected and arranged, and the space between the columns is not provided at all, such as the small space 4b between the columns (1) in FIG. In consideration of the anti-seismic performance required by the building structure and the bearing wall amount of the structural face material, the resin type, width dimension, height dimension of the semi-rigid foam synthetic resin plate The thickness, the shape of the push fixture 5 and the number of fastenings may be appropriately designed, selected, and disposed.

又、構造躯体4の構造によっては、柱間大空間4aや、垂壁27や腰壁28等にも適宜適用することが出来る。又、制震枠体19に止着する半硬質発泡合成樹脂板体の柱間空間内の奥行方向の止着位置は、該半硬質発泡合成樹脂板体が各壁面の外周面や内周面から突出しない範囲であれば特に限定しないが、これらと略面一に止着すれば半硬質発泡合成樹脂板体と構造用面材や内装材との止着面圧が生かされるので望ましい。このように、本発明の押込固定具5を使用し、制震枠体19に止着した半硬質発泡合成樹脂板体を柱間小空間4b等の各仕口部に配設、止着後、外壁面側に外壁構成材である構造用面材15、透湿防水シート、通気胴縁が順次、配設され、次いで外壁材が懸架、固着される。   Further, depending on the structure of the structural housing 4, the structure can be appropriately applied to the inter-column large space 4 a, the hanging wall 27, the waist wall 28, and the like. Further, the fixing position in the depth direction in the space between the columns of the semi-rigid foam synthetic resin plate that is fixed to the vibration control frame 19 is such that the semi-rigid foam synthetic resin plate is arranged on the outer peripheral surface and inner peripheral surface of each wall surface. Although it does not specifically limit if it is the range which does not protrude from this, since it will utilize the fixation surface pressure of a semi-rigid foam synthetic resin board, a structural surface material, and an interior material, if it adheres substantially flush with these, it is desirable. Thus, using the indentation fixture 5 of the present invention, the semi-rigid foam synthetic resin plate fixed to the vibration control frame 19 is disposed in each joint portion such as the inter-column small space 4b, and after fixing The structural wall material 15 which is the outer wall constituting material, the moisture permeable waterproof sheet, and the ventilator edge are sequentially arranged on the outer wall surface side, and then the outer wall material is suspended and fixed.

さらに、それぞれの柱間大空間には、所定の内断熱仕様に準じ、例えば、ガラス繊維断熱材(密度:16Kg/m)等を充填し、プラスターボード等の内装材61を配設することにより、本発明の耐・制震内断熱構造が完成する。本実施態様は、従来の市販の制震装置の少数個数を導入した場合と比し、コスト面から多数の壁面に導入、設置が可能で、構造躯体の平面図から見た各部の制震性能のバラツキが少なくなり、バランスの取れた安全性の高い耐・制震内断熱構造が提供可能となる。 Furthermore, each large space between the columns is filled with a glass fiber heat insulating material (density: 16 Kg / m 3 ) according to a predetermined internal heat insulating specification, and an interior material 61 such as a plaster board is disposed. Thus, the heat-resistant / seismic insulation structure of the present invention is completed. Compared with the case where a small number of conventional commercially available vibration control devices are introduced, this embodiment can be installed and installed on a large number of wall surfaces in terms of cost, and the vibration control performance of each part viewed from the plan view of the structural frame This makes it possible to provide a well-balanced and highly safe and anti-seismic thermal insulation structure.

さらに又、図17(a)の(3)に示す柱間小空間4bには、例えば、内幅寸法365mm、階高方向の柱間空間2600mmの内周面と同寸法の矩形の制震枠体19を設け、柱間空間の全内周面を封緘する構造で半硬質発泡合成樹脂板体を配設、止着させてなる実施態様の一例を図示している。このように、柱間小空間4bの内周面の全面に長尺の制震枠体19を介し半硬質発泡合成樹脂板体を配設、止着させることにより、1柱間小空間4bが耐・制震壁構造を形成することができ、例えば、大きな変形や震動が集中しやすい入隅、出隅や通し柱等がある概中央部近傍の壁面等に適用することでさらに効果的な耐・制震効果が発揮されるため、必要に応じて構造用面材の耐力壁数量を低減することも可能で、前記の上部仕口部や下部仕口部への実施態様の一例とも組合せ、適宜採用すればよい。   Furthermore, in the small inter-column space 4b shown in (3) of FIG. 17A, for example, a rectangular damping frame having an inner width dimension of 365 mm and the same dimension as the inner peripheral surface of the inter-column space 2600 mm in the height direction. An example of an embodiment is shown in which a body 19 is provided and a semi-rigid foam synthetic resin plate is disposed and fastened in a structure that seals the entire inner peripheral surface of the inter-column space. In this way, the semi-rigid foam synthetic resin plate body is disposed and fixed to the entire inner peripheral surface of the inter-column small space 4b via the long vibration control frame body 19, whereby the one inter-column small space 4b is formed. It is possible to form a seismic-resistant / damping wall structure. -Since the seismic control effect is exhibited, it is possible to reduce the number of bearing walls of the structural face material as necessary, combined with an example of the embodiment of the upper joint part and the lower joint part, What is necessary is just to employ | adopt suitably.

また、図(a)の(3)の壁面の実施態様の構造や施工上の詳細は、前記の図(a)の(2)に示す上部仕口部や下部仕口部における実施態様の一例と類似しており、必要に応じ適宜適用すればよく、詳述は省略する。   Moreover, the details of the construction and construction of the embodiment of the wall surface of (3) in FIG. (A) are an example of the embodiment in the upper joint portion and the lower joint portion shown in (2) of FIG. And may be applied as needed, and will not be described in detail.

さらに又、図(a)の(4)に示す柱間小空間4bには、前記した図(a)の(2)の上部仕口部や下部仕口部の例や、図(a)の(3)の柱間小空間4bの内周面の全面に施工する実施態様とは異なり、開口部や特殊な壁面構造等の柱間小空間に適宜採用可能な部分的な実施態様の例であって、施工方法等の詳細は、図(a)の(2)に準じるので省略する。   Furthermore, in the inter-column space 4b shown in (4) of FIG. (A), examples of the upper and lower joints shown in (2) of FIG. Unlike the embodiment in which the construction is performed on the entire inner peripheral surface of the inter-column small space 4b in (3), it is an example of a partial embodiment that can be appropriately adopted for the small inter-column spaces such as openings and special wall structures. The details of the construction method and the like are the same as those in FIG.

又、最近の内断熱住宅において、高省エネ化の観点から、充填用の繊維系断熱材に替えて発泡合成樹脂板体を充填する工法が増加しつつある。例えば、外壁面の柱間小空間4b(例;内幅365mmW×階高2600mmH)には、充填の施工性から、やや狭小の外形寸法(例;幅360mm×階高2593mm×厚み65mm)の発泡合成樹脂板体(例:カネライトフォーム3種、4地区対応)が充填され、外壁面側には構造用面材15、内壁面側には内装材61が夫々配設されて、固着された構造からなっている。   Moreover, in recent inner heat insulation houses, from the viewpoint of energy saving, a method of filling a foamed synthetic resin plate instead of a fiber-based heat insulating material for filling is increasing. For example, the small space 4b between the columns on the outer wall surface (eg, inner width 365 mmW × floor height 2600 mmH) is foamed with a somewhat narrow outer dimension (eg, width 360 mm × floor height 2593 mm × thickness 65 mm) because of filling workability. A structure in which a synthetic resin plate (eg, three types of canelite foams, corresponding to four districts) is filled, and a structural surface material 15 is disposed on the outer wall surface side, and an interior material 61 is disposed on the inner wall surface side, and is fixed It is made up of.

これらの該柱間小空間4bに充填される発泡合成樹脂板体と該柱間小空間を構成する構造躯体との間には、充填作業用の隙間が存在しているので、構造躯体(柱、土台、梁、構造用面材、内装材等)と発泡合成樹脂板体とは、無拘束状態であり、相互に固着されていない。そのため、例えば、中地震に被災した場合(例:層間変位角度:1/30rad程度を想定)などにおいては、構造躯体と該板体とは、力学的な外力や震動の伝達構造にはなっていず、両者は、それぞれが不規則で、バラバラな挙動や変形を示すことになる。   Since there is a gap for filling work between the foamed synthetic resin plate filled in the small space 4b between the columns and the structural frame constituting the small space between the columns, the structural frame (column , Foundation, beam, structural surface material, interior material, etc.) and the foamed synthetic resin plate are in an unconstrained state and are not fixed to each other. Therefore, for example, in the case of being affected by a middle earthquake (example: assuming an interlayer displacement angle of about 1/30 rad), the structural frame and the plate body have a dynamic external force or vibration transmission structure. Rather, both are irregular and exhibit disjoint behavior and deformation.

その結果、外力や震動が構造躯体にのみに集中し、変形や揺れや損傷を拡大させてしまう。また、柱間小空間内に固着されていない状態で存在する該板体は、部分的な反り、捩れ、局部破損(局部圧縮)等を発生するだけであるから、本発明の止着方法で止着された発泡合成樹脂板体が、外力や震動を受けての弾性変形や弾性復元によって発現される耐・制震壁構造には全くなり得ないのである。   As a result, external forces and vibrations concentrate only on the structural frame, expanding deformation, shaking, and damage. In addition, the plate body that is not fixed in the small space between the columns only causes partial warping, twisting, local breakage (local compression), and the like. The fixed foamed synthetic resin plate body cannot be an anti-vibration-resistant wall structure developed by elastic deformation or elastic recovery due to external force or vibration.

これらの充填用の発泡合成樹脂板体からなる内断熱構造において、図示はしないが、次の実施態様が採用しうる。例えば、前記した図17図(a)の図中の(2)や(3)に示す柱間小空間4bの上、下の仕口部の内周面や全内周面に沿って設けた制震枠体19に半硬質発泡合成樹脂板体を配設、止着させてなる耐・制震壁構造の別態様として、次のような構造が実施しえる。例えば、1)図17図(a)の図中(3)に示す1柱間小空間4b(例;内幅365mmW×階高2600mmH)の全内周面に沿って、制震枠体19を設け、該制震枠体に発泡合成樹脂板体(例;内幅360mmW×階高2593mmH×厚み65mm)を配設して、止着することにより、耐・制震内断熱構造が形成される。   In the inner heat insulating structure made of the foamed synthetic resin plate for filling, although not shown, the following embodiments can be adopted. For example, it is provided along the inner peripheral surface or the entire inner peripheral surface of the lower joint portion above and below the small inter-column space 4b shown in (2) and (3) in FIG. 17 (a). The following structure can be implemented as another aspect of the anti-seismic and anti-seismic wall structure in which the semi-rigid foam synthetic resin plate is disposed and fixed to the vibration control frame 19. For example, 1) The damping frame 19 is arranged along the entire inner peripheral surface of the small space 4b between the columns shown in (3) of FIG. 17A (example: inner width 365 mmW × floor height 2600 mmH). A foamed synthetic resin plate (e.g., inner width 360 mmW × floor height 2593 mmH × thickness 65 mm) is disposed on the seismic control frame and fixed to form an anti-seismic heat-insulating structure. .

2)同図(a)の図中の(2)に示す1柱間小空間4bの上部仕口部や下部仕口部に制震枠体を設けて、制震枠体に発泡合成樹脂板体を止着し、該柱間小空間4bの階高方向の中央部は、内断熱において、止着せずにフリーな状態で充填されている充填用発泡合成樹脂板体を残存させたままにしておく。この構造であっても、耐・制震性能は、該両仕口部で発揮しえるので適宜採用すればよい。   2) A vibration control frame is provided in the upper and lower joints of the small space 4b shown in (2) in FIG. 2A, and a foamed synthetic resin plate is provided on the vibration control frame. The center part in the floor height direction of the small space 4b between the columns is left with the foamed synthetic resin plate for filling filled in a free state without being fixed in the inner heat insulation. Keep it. Even with this structure, the anti-seismic performance can be exhibited at both joints, so that it may be adopted as appropriate.

この図示しない構造においては、新たな緩衝用板体を用いることなく、通常の内断熱構造で採用される本来の充填用の発泡合成樹脂板体をそのまま、活用できるので望ましい。更に、制震枠体を設ける別の効果として、該柱間小空間内に充填される発泡合成樹脂板体の隙間を閉止し、気密性を向上するメリットをも有する。   This structure (not shown) is desirable because the original foamed synthetic resin plate used for filling can be used as it is without using a new buffer plate. Furthermore, as another effect of providing the seismic control frame body, there is also a merit of improving the airtightness by closing the gap of the foamed synthetic resin plate body filled in the small space between the columns.

充填される発泡合成樹脂板体の樹脂種類や発泡倍率や厚みや止着構造等によって一概に言えないが、全ての内断熱壁面(全柱間空間)に制震枠体を設け、耐・制震壁構造とする必要はない。例えば、本来、構造躯体自体が有する耐力壁量(例:耐震等級1)に1つの柱間空間を本耐・制震壁構造とした場合に発現される耐・制震性能等を合算して、トータルで耐震等級3となるように設計すればよい。特に、入隅、出隅、間仕切り壁や開口部壁面等の大きな変形や損傷が発生しやすい壁面を中心に本耐・制震壁構造とすることが望ましい。又、本実施態様の施工等に関わる詳細については、先述の繊維系断熱材を充填してなる図17図(a)の図中の(2)や(3)に示す耐・制震内断熱構造の実施態様に類似するため省略する。   Although it cannot be generally stated depending on the resin type, expansion ratio, thickness, fastening structure, etc. of the foamed synthetic resin plate to be filled, all inner heat insulating wall surfaces (spaces between all pillars) are provided with vibration control frames to provide resistance and control. There is no need for a seismic wall structure. For example, the strength / damping performance that is expressed when the space between pillars is the main / damping wall structure is added to the amount of the bearing wall (e.g., earthquake resistance grade 1) that the structural frame itself originally has. The design should be such that the total earthquake resistance is 3. In particular, it is desirable to have a fully seismic resistant / damping wall structure centering on wall surfaces where large deformations and damages such as entrance corners, exit corners, partition walls and opening wall surfaces are likely to occur. In addition, for the details related to the construction of this embodiment, the heat insulation and vibration control insulation shown in (2) and (3) in FIG. 17 (a) filled with the above-described fiber-based heat insulating material. Since it is similar to the embodiment of the structure, it is omitted.

上記した1柱間空間の上、下仕口部等の一部の内周面や全内周面に制震枠体を設け、発泡合成樹脂板体を配設し、止着させてなる耐・制震壁構造の実施態様は、内断熱住宅の外壁面のみへの適用に限定されるものではなく、内断熱住宅や外断熱住宅の間仕切り壁面へ本発明の耐・制震壁構造を適用して併用することが出来る。   An anti-vibration frame body is provided on a part of the inner space and the entire inner surface of the lower joint, and the foamed synthetic resin plate is disposed and fixed on the space between the above-mentioned one pillars. The embodiment of the seismic control wall structure is not limited to application only to the outer wall surface of the inner heat insulating house, but the anti-seismic wall structure of the present invention is applied to the partition wall surface of the inner heat insulating house or the outer heat insulating house. Can be used together.

さらには、1階の間仕切り壁面のみでなく2階の間仕切り壁への採用によっても、重い屋根部の揺れや変形を抑制、緩和できる等、その効果はさらに顕著に発揮される。これらの間仕切り壁面への応用は、耐・制震上、最も重要な建物の剛心、重心のズレや、偏心率等の補正等に効果を発揮し、より望ましい耐・制震設計が可能となる。これら間仕切り壁面へ応用する際の構造や施工の詳細は、前記した図17(a)の(2)、(3)に示す実施態様に類似しており省略する。   Furthermore, not only the partition wall of the first floor but also the partition wall of the second floor can be used to suppress and alleviate the effects of the heavy roof portion, such as shaking and deformation, and the effects are more prominent. The application to these partition walls is effective in correcting the most important building stiffness, center of gravity deviation, eccentricity, etc. in terms of anti-seismic and seismic control, enabling more desirable anti-seismic design. Become. Details of the structure and construction when applied to these partition walls are similar to the embodiment shown in FIGS. 17 (a) (2) and (3) and will be omitted.

さらに又、本発明の簡易な適用例として次のような施工がなしえる。例えば、既存の住宅の耐・制震リフォームに際し、既存の外壁面はそのままにして残し、解体、改修が平易な間仕切り壁のみを本発明の耐・制震壁構造に改修すれば、該間仕切り壁面が、市販の制震装置と同等以上の耐・制震効果を発揮することが期待されることから、最も安価にして効果的な耐・制震リフォームがなし得る。
(実施態様9)
図18は、内断熱(充填断熱)工法のさらに別の実施態様であって、先述の実施態様8や図17に記載の制震枠体に代えて構造躯体の外壁面側に彫設した嵌溝33を設けてなる実施態様を示している。
Furthermore, the following construction can be performed as a simple application example of the present invention. For example, when renovating an existing house, if the existing outer wall surface is left as it is and only the partition wall that is easy to dismantle and repair is refurbished to the structure of the present invention, the partition wall surface However, since it is expected to exhibit an anti-seismic effect equivalent to or better than that of a commercially available anti-vibration device, the most inexpensive and effective anti-seismic reform can be achieved.
(Embodiment 9)
FIG. 18 shows still another embodiment of the inner heat insulation (filling heat insulation) method, which is a fitting carved on the outer wall surface side of the structural frame in place of the vibration control frame body described in the eighth embodiment and FIG. An embodiment in which a groove 33 is provided is shown.

図18(a)は、1階の外壁面側から見た構造用面材15が配設される前の柱、間柱、土台木、梁等の構造躯体からなる柱間小空間4bを示す。そして、この柱間小空間4bの全内周面、あるいは、上、下の仕口部等、当該する一部の内周面には、予め、嵌溝33をプレカット工場で彫り込み加工して彫設した構造躯体を使用する。そして、該嵌溝33に発泡合成樹脂板体を配設し、止着させた部分立面模式図が図18(a)である。図中の(1)は、従来の充填断熱材60からなる柱間小空間4bを示し、図中の(2)及び(3)は、柱間小空間4bの上、下の仕口部に嵌溝33を彫設し、本発明の押込固定具を用いて、発泡合成樹脂板体を配設して、止着させてなる柱間小空間4bを示している。   FIG. 18 (a) shows a small inter-column space 4b made of a structural frame such as a column, an inter-column, a base tree, and a beam before the structural surface material 15 is disposed as viewed from the outer wall surface side of the first floor. Then, a fitting groove 33 is preliminarily engraved at the precut factory on the entire inner peripheral surface of the small inter-column space 4b, or on a part of the inner peripheral surface such as the upper and lower joints. Use the structural frame provided. FIG. 18A is a partial elevation schematic diagram in which a foamed synthetic resin plate is disposed in the fitting groove 33 and fastened. (1) in the figure shows a small inter-column space 4b made of a conventional filled heat insulating material 60, and (2) and (3) in the figure are the upper and lower joints on the lower inter-column space 4b. A small inter-column space 4b is shown in which the fitting groove 33 is carved and the foamed synthetic resin plate is disposed and fixed using the pressing fixture of the present invention.

又、上、下の仕口部に配設、止着される発泡合成樹脂板体のそれぞれの上、下の端部面には、必要に応じ実施態様7に記載の横基材19bを、柱―間柱―柱間に橋渡し状に設けてもよく、横基材19bと、柱、間柱とは、連結、又は非連結であることは特に問わない。図中の(4)は柱間空間の全内周面に亘り嵌溝33を彫設し、該嵌溝を含む柱間空間を封緘状に発泡合成樹脂板体を配設し、止着させてなる柱間小空間4bを示している。   In addition, on the upper and lower end surfaces of the foamed synthetic resin plates to be disposed and fixed at the upper and lower joints, the lateral base material 19b described in the embodiment 7 is provided as necessary. It may be provided in the form of a bridge between the pillars, the inter-columns and the pillars, and it is not particularly limited that the horizontal base material 19b and the columns and the inter-columns are connected or unconnected. (4) in the figure shows a groove 33 that is engraved over the entire inner peripheral surface of the inter-column space, and a foamed synthetic resin plate is disposed in a sealed manner in the inter-column space including the fitted groove, and is fastened. A small inter-column space 4b is shown.

同図(b)は、同図(a)に示す(3)の柱間小空間4bのA−A矢視の断面模式図である。同図(c)は、同図(a)のB−B矢視の断面模式図である。同図(b)及び同図(c)は、いずれも、本発明の柱間空間に予め彫設された嵌溝33に本発明の押込固定具を用いて発泡合成樹脂板体を配設、止着させてなる縦断面構造と、横断面構造をそれぞれ図示している。これら、柱、間柱、土台木、梁等からなる構造躯体の所定の位置に、所定の寸法の嵌溝33を彫設するには、現場で彫設作業を行ってもよいが、柱、梁等に対し、プレカット工場で加工する工程で、同時に嵌溝33を彫設加工しておけば、低コストで彫設が出来、現場での施工性も向上する。   The figure (b) is a cross-sectional schematic diagram of the AA arrow view of the inter-column small space 4b of (3) shown in the figure (a). The figure (c) is a cross-sectional schematic diagram of the BB arrow of the figure (a). Both (b) and (c) in the figure are provided with a foamed synthetic resin plate body using the pressing fixture of the present invention in the fitting groove 33 previously carved in the inter-column space of the present invention, A vertical cross-sectional structure and a cross-sectional structure formed by fastening are respectively illustrated. In order to carve the fitting groove 33 having a predetermined size at a predetermined position of the structural frame made of these columns, inter-columns, foundation trees, beams, etc., the engraving work may be performed on the site. On the other hand, if the fitting groove 33 is engraved at the same time in the process of processing at the precut factory, it can be engraved at a low cost and the workability at the site is improved.

該嵌溝33の彫設加工に当っての嵌溝の深さ寸法は、発泡合成樹脂板体の厚み寸法(例:40mm)と同等以上であればよい。また、嵌溝の幅寸法は、構造躯体の内周面に発泡合成樹脂板体を配設して、止着することにより必要とする止着強度が得られる幅寸法が必要であって、少なくとも20mm以上、さらに望ましくは、30mm以上が望ましい。   The depth dimension of the fitting groove in the engraving process of the fitting groove 33 may be equal to or greater than the thickness dimension (for example, 40 mm) of the foamed synthetic resin plate. In addition, the width dimension of the fitting groove needs to be a width dimension that provides a required fastening strength by disposing a foamed synthetic resin plate body on the inner peripheral surface of the structural housing and fastening it. 20 mm or more, more desirably 30 mm or more is desirable.

これらの構造躯体に彫り込まれる嵌溝33の彫設加工に伴う材料欠損で懸念される強度低下の対応策として、その分、構造材料の寸法を増大させる方法を適宜採用してもよい。しかし、実質的には、本発明の嵌溝には、粘弾性や圧縮応力の高い発泡合成樹脂板体が、軸組み部を含む柱間空間や上、下の仕口部等に配設され、本発明の止着構造で強力に止着させることから、従来の軸組み部(仕口部)のみで構成される構造躯体の構造強度(剛性強度や耐震強度等)に比べ、本発明の構造強度(剛性強度)は、従来の強度を上回るものと考えられ、これらを斟酌して適宜実施すればよい。   As a countermeasure against a decrease in strength which is a concern due to material loss associated with the engraving process of the fitting groove 33 engraved in these structural frames, a method of increasing the size of the structural material accordingly may be adopted as appropriate. In practice, however, a foamed synthetic resin plate having high viscoelasticity and compressive stress is disposed in the fitting groove of the present invention in the inter-column space including the shaft assembly, the upper and lower joints, and the like. Because of the strong fastening with the fastening structure of the present invention, compared to the structural strength (rigidity strength, seismic strength, etc.) of the structural housing composed only of the conventional shaft assembly (joint part), The structural strength (rigidity strength) is considered to exceed the conventional strength, and these may be implemented as appropriate.

本実施態様に用いる発泡合成樹脂板体の幅寸法は、例えば、図中(2)、(3)や(4)に示す柱間空間の内幅寸法に両端の柱に設けられる嵌溝の幅寸法が加算された幅寸法となる。高さ寸法は、図中の(2)、(3)の上、下の仕口部や図中の(4)に充填して配設される発泡合成樹脂板体の高さに、夫々、土台木や梁(横架材)に設けられる嵌溝の幅寸法が加算された高さ寸法となる。本実施態様の詳細や効果は、先述の実施態様8に類似するため省略する。以下には、補足事項を記載する。   The width dimension of the foamed synthetic resin plate used in this embodiment is, for example, the width of the fitting groove provided in the pillars at both ends in the inner width dimension of the inter-column space shown in (2), (3) and (4) in the figure. The width dimension is obtained by adding the dimensions. The height dimension is the height of the foamed synthetic resin plate that is filled and arranged in the upper and lower joints (2) and (3) in the figure and (4) in the figure, respectively. The height dimension is obtained by adding the width dimension of the fitting groove provided in the base tree or beam (horizontal member). Details and effects of the present embodiment are similar to those of the above-described eighth embodiment, and thus are omitted. The supplementary items are described below.

図18(d)は、同図(b)や同図(c)の断面模式図に示す本発明の押込固定具を用いた発泡合成樹脂板体の止着方法の施工性を改良するための試みの例を示すのもであって、予め押込固定具と発泡合成樹脂板体を一体化させた押込固定具付発泡合成樹脂板体1uを示すものである。   FIG. 18 (d) is a view for improving the workability of the method for fastening a foamed synthetic resin plate body using the indentation fixture of the present invention shown in the schematic cross-sectional views of FIG. 18 (b) and FIG. 18 (c). The example of trial is also shown, and shows a foamed synthetic resin plate 1u with a push fixture in which a push fixture and a foam synthetic resin plate are integrated in advance.

具体的には、4つの例を挙げる。1)図18(d)中の(イ)に示す該板体1uの断面構造は、緩衝用板体である発泡合成樹脂板体(例:発泡ポリプロピレン、30倍発泡品、厚み40mm)の押込固定具の止着位置に、予めビーズ法型内成型方法で、使用予定の押込固定具の外形形状(例:外径40mmΦ、突起部高さ12mm、略円皿状、ポロプロピレン射出成型品)と同等寸法より小寸法(例:外径31mmΦ、突起部深さ6mm、略円皿状)の装着凹部1wと止着貫通穴1d(例:6mmΦ)を付形した状態を示す。この状態の該板体1uを現場に持ち込み、施工現場において、該装着凹部1wに押込固定具を接着剤等で仮装着し、該押込固定具を発泡合成樹脂板体中に略面一に押込み埋没さて止着させて使用する。   Specifically, four examples are given. 1) The cross-sectional structure of the plate body 1u shown in FIG. 18 (d) is an indentation of a foamed synthetic resin plate body (eg, foamed polypropylene, 30-fold foamed product, thickness 40 mm) that is a buffer plate. The external shape of the push fixture to be used in advance by the bead method in-mold molding method at the fixing position of the fixture (eg, outer diameter 40 mmΦ, protrusion height 12 mm, substantially disc shape, polypropylene injection molded product) And a mounting recess 1w and a fastening through hole 1d (eg, 6 mmΦ) having a smaller dimension (eg, outer diameter of 31 mmΦ, protrusion depth of 6 mm, substantially disc shape) than those shown in FIG. The plate body 1u in this state is brought to the site, and at the construction site, a pressing fixture is temporarily attached to the mounting recess 1w with an adhesive or the like, and the pressing fixture is pushed substantially flush into the foamed synthetic resin plate body. It is buried and fastened for use.

2)図18(d)中の(ロ)に示す該板体1uの断面構造は、前記の1)に記載の方法で装着凹部1wと止着貫通穴1d(例:6mmΦ)を付形しておき、次いで該装着凹部1wに、該押込固定具を接着剤等で仮装着させて押込固定具付発泡合成樹脂板体1uを形成させた状態を示す。この板体1uは、施工現場では特殊螺子釘2の螺着により、該押込固定具を発泡合成樹脂板体中に略面一に押込み、埋没させ止着させて使用する。   2) The cross-sectional structure of the plate body 1u shown in (b) of FIG. 18 (d) is formed by attaching the mounting recess 1w and the fastening through hole 1d (example: 6 mmΦ) by the method described in 1) above. Next, a state is shown in which the pressing fixture is temporarily mounted in the mounting recess 1w with an adhesive or the like to form the foamed synthetic resin plate 1u with the pressing fixture. This plate body 1u is used at a construction site by pushing the fixing fixture into the foamed synthetic resin plate body substantially flush with a special screw nail 2 and buried and fixed.

3)図18(d)中の(ハ)に示す該板体1uの断面構造は、発泡合成樹脂板体の表裏両面に、前記の1)に記載の成形方法で、押込固定具を相対向させて装着させる位置に装着凹部1w(止着貫通穴1dを含む)を付形して成形し、次いで該板体1uの相対向する該装着凹部1wに、該押込固定具を接着剤等で仮装着して形成した押込固定具付発泡合成樹脂板体1uを示す。   3) The cross-sectional structure of the plate body 1u shown in (c) of FIG. 18 (d) is that the pressing fixtures are opposed to each other on the front and back surfaces of the foamed synthetic resin plate by the molding method described in 1) above. The mounting recess 1w (including the fastening through hole 1d) is formed at the position to be mounted, and then the pressing fixture is attached to the mounting recess 1w opposite to the plate 1u with an adhesive or the like. The foaming synthetic resin board 1u with a pressing fixture formed by temporary attachment is shown.

この該板体1uは、施工現場では、特殊螺子釘2の螺着により、相対向する該押込固定具を両面から発泡合成樹脂板体中に略面一に押込み、埋没させて使用する。これらは、大きな外力や震動が付加されやすい止着位置(例:入隅、出隅や上、下の仕口部の隅角部等)に適することから、適宜採用することが望ましい。(なお、上記1)、2)の板体1uの止着後の止着構造は、図18(b)、(c)に示されている。)
4)図18(d)中の(ロ)、又は、(ハ)に示す押込固定具付発泡合成樹脂板体1uの上記以外の別の形成方法を開示する。例えば、ビーズ法型内成形方法において、押込固定具付発泡合成樹脂板体1uを成形する成形用金型内の押込固定具の装着位置に、予め、該板体の止着面から押込固定具の一部が突出させた状態で該押込固定具を装着し、予備発泡ビーズを充填後、加熱成形(同時一体成形)することにより該押込固定具付発泡合成樹脂板体1uを成形する方法も採用できる。
In the construction site, the plate body 1u is used by pressing the opposite fixing fixtures from both sides into the foamed synthetic resin plate substantially flush with each other by being screwed with a special screw nail 2 and buried. Since these are suitable for fastening positions where a large external force or vibration is likely to be applied (e.g., entering corners, exiting corners, upper, lower corners, etc.), it is desirable to employ them appropriately. The fastening structure after fastening the plate 1u of (1) and (2) is shown in FIGS. 18 (b) and 18 (c). )
4) Disclosed is another method of forming the foamed synthetic resin plate 1u with a push-in fixture shown in (b) or (c) in FIG. For example, in a bead method in-mold molding method, a pressing fixture from the fastening surface of the plate body in advance to the mounting position of the pressing fixture in the molding die for molding the foamed synthetic resin plate body 1u with the pressing fixture. There is also a method of molding the foamed synthetic resin plate 1u with the indentation fixture by mounting the indentation fixture in a state where a part of the indentation is protruded, filling the pre-expanded beads, and performing heat molding (simultaneous integral molding). Can be adopted.

以上の方法等によって押込固定具付発泡合成樹脂板体1uが形成されるが、全ての止着位置に押込固定具を仮装着させておく必要はなく、例えば、前記の1)〜4)に記載の方法を適宜混在させて採用して使用すればよい。   The foamed synthetic resin plate 1u with a push-in fixture is formed by the above method or the like, but it is not necessary to temporarily attach the push-in fixture to all the fastening positions. For example, in the above 1) to 4) The described methods may be used by appropriately mixing them.

又、本押込固定具付発泡合成樹脂板体1uは、押込固定具で螺着する際、発泡合成樹脂板体の樹脂種類、発泡倍率、厚みや、押込固定具の形状にもよるが、少ない埋没深さで大きな止着力(圧縮応力分散領域等)が得やすい粘弾性や高い圧縮応力(エネルギー吸収性)等の優れた特性を有する半硬質発泡合成樹脂板体等の緩衝用板体に主として適用することが望ましい。   In addition, the foamed synthetic resin plate 1u with a push-in fixture has a small amount when screwed with the push-in fixture, although it depends on the resin type, the foaming magnification, the thickness of the foam synthetic resin plate, and the shape of the push-in fixture. It is mainly used for buffer plates such as semi-rigid foam synthetic resin plates that have excellent properties such as viscoelasticity and high compressive stress (energy absorption) that make it easy to obtain a large fastening force (compression stress dispersion region, etc.) at the buried depth. It is desirable to apply.

又、押込固定具を発泡合成樹脂板体中に押込み、埋没させる際の埋没深さは、該板体と該押込固定具の基端部5bが略面一となることが最も望ましいが、特に限定されるものではなく、必要な止着力が得られる埋没深さであればよく、止着面から基端部が多少突出していてもよく、あるいは、押込固定具の基端部5bが止着部の面一面よりも更に深く押込み、埋没されていてもよく、いずれにしても、それぞれの押込固定具が必要とする安定した止着力を発揮していればよい。
(実施態様10)
図19は、図(a)、図(b)、図(c)からなり、同図(a)は、内断熱住宅の1階の外壁面側から見た外壁構成材を被着させる前の弾性耐力壁構造からなる部分立面模式図である。本弾性耐力壁構造とは、1柱間空間に、発泡合成樹脂板体からなる耐・制震壁構造と、構造用面材からなる耐力壁構造を面一状に配設、固着させることで構成され、前者の発泡合成樹板体からなる耐・制震壁構造の耐・制震性能と、後者の構造用面材からなる耐力壁構造の耐震性能を複合化して発揮させることが出来る耐・制震壁構造を指す。
Further, it is most desirable that the depth of embedding when the indentation fixture is pushed into the foamed synthetic resin plate and buried is substantially flush with the base end portion 5b of the indentation fixture, It is not limited, and any depth may be used as long as the required fastening force can be obtained, and the proximal end portion may slightly protrude from the fastening surface, or the proximal end portion 5b of the push-in fixture may be secured. It may be pushed deeper than the entire surface of the part and buried, and in any case, it is only necessary to exhibit a stable fastening force required by each pushing fixture.
(Embodiment 10)
FIG. 19 is composed of FIG. (A), FIG. (B), and FIG. (C). FIG. 19 (a) shows the state before attaching the outer wall constituent material as viewed from the outer wall surface side of the first floor of the inner heat insulating house. It is a partial elevation schematic diagram consisting of an elastic bearing wall structure. This elastic load-bearing wall structure is made by arranging and fixing a load-bearing wall structure made of foamed synthetic resin plate and a structural wall material in a single plane in the space between pillars. Constructed, the anti-seismic performance of the anti-seismic wall structure composed of the former foamed synthetic wood board and the anti-seismic performance of the anti-seismic wall structure composed of the latter structural face material can be combined and exhibited.・ Refers to a damping wall structure.

例えば、1柱間小空間4bの上部仕口部、及び/又は、下部仕口部等の外壁面側の内周面に、発泡合成樹脂板体を配設して、止着させるに際し、該板体の外壁面側の一部を例えば、併用する耐力壁用の構造用面材15(例:9mm)の厚み相当分だけ突出させる溝深さの嵌溝33を彫設し、該嵌溝33に該板体を配設して、本発明の押込固定具を用いて止着させる。次いで、該板体が配設、止着された施工部位を除く残余の該柱間小空間4bを封緘する構造で構造用面材を該板体と面一にして配設し、固着させ、さらに該柱間小空間4b内に充填断熱材を配し、内装材61を配設すれば、本弾性耐力壁構造が形成される。   For example, when the foamed synthetic resin plate body is disposed and fixed to the inner peripheral surface on the outer wall surface side such as the upper joint portion and / or the lower joint portion of the small space 4b between the pillars, For example, a fitting groove 33 having a groove depth that projects a part corresponding to the thickness of the structural wall material 15 for a load bearing wall (for example, 9 mm) to be used together is carved on the outer wall surface side of the plate body. The plate body is disposed at 33 and is fixed by using the pressing fixture of the present invention. Next, the plate member is disposed, and the structural face material is disposed flush with the plate member in a structure that seals the remaining small space 4b between the columns excluding the fixed construction site, and is fixed. Furthermore, if a filling heat insulating material is disposed in the small space 4b between the columns and the interior material 61 is disposed, the present elastic bearing wall structure is formed.

さらに詳しく説明するに、発泡合成樹脂板体として、緩衝用板体からなる押込固定具付発泡合成樹脂板体1u(例;発泡ポリプロピレン、30倍発泡品、40mm厚み品、押込固定具;外径40mmΦ、突起部高さ12mm高、略円皿状、突出高さ5mm、塩ビ射出品)を用い、耐力壁材としては構造用面材15(例:9mm)を用いることを例にして、以下、説明する。   To explain in more detail, as the foamed synthetic resin plate, a foamed synthetic resin plate 1u with a push-in fixture made of a buffer plate (eg; foamed polypropylene, 30-fold foamed product, 40mm-thick product, push-in fixture; outer diameter) 40mmΦ, protrusion height 12mm height, approximately disc shape, protrusion height 5mm, PVC injection product), and the structural wall material 15 (example: 9mm) is used as the load bearing wall, for example, ,explain.

図19(a)の(1)に示す柱間小空間4bの外壁面側には、構造用面材を配設し、固着させ、該柱間空間には、充填断熱材60(例:ガラス繊維断熱材、密度:16Kg/m)が充填されている一般的な内断熱の壁構造が示されている。 A structural face material is disposed and fixed on the outer wall surface side of the small inter-column space 4b shown in (1) of FIG. 19A, and a filled heat insulating material 60 (example: glass) is provided in the inter-column space. A typical internal thermal insulation wall structure filled with fiber insulation, density: 16 Kg / m 3 ) is shown.

そして、同図(a)の(2)及び(3)に示す柱間小空間4bの外壁面側には、柱間小空間4bの上、下の仕口部の内周面に、該板体1uの外壁面側を構造用面材の厚み相当分だけ突出させる溝深さ(すなわち、該板体1uの厚み−構造用面材厚み=40mm−9mm=31mmの溝深さ)と幅(例:35mm)からなる嵌溝33を彫設し、該嵌溝33に該板体1uを配設して、該押込固定具を用いて止着させ耐・制震壁構造を形成させる。次いで、これらの該板体1uの上、下の端部には、必要に応じて、横基材19b(実施態様8に記載)が設けられる。   And on the outer wall surface side of the inter-column small space 4b shown in (2) and (3) of FIG. 4 (a), the plate is placed on the inner peripheral surface of the lower joint portion above and below the inter-column small space 4b. Groove depth for projecting the outer wall surface side of the body 1u by an amount corresponding to the thickness of the structural face material (that is, the thickness of the plate 1u−the thickness of the structural face material = 40 mm−9 mm = 31 mm groove depth) and the width ( For example, a fitting groove 33 made of 35 mm) is carved, the plate body 1u is arranged in the fitting groove 33, and is fixed by using the pressing fixture to form a resistance / damping wall structure. Next, lateral base materials 19b (described in Embodiment 8) are provided on the upper and lower ends of these plate bodies 1u as necessary.

さらに、上、下の仕口部に配設して、止着された該板体1uの施工部位を除く残余の該柱間小空間(階高方向の略中央部)の外壁面側の全面には、該板体1uの外周面と面一に連接させて構造用面材を配設し、固着させ、該耐力壁の上、下の端部には横架材11(例:60mm×60mm角材、赤松)を柱―間柱―柱間に連結させて設け、耐力壁の構造強度を強化させている。(横架材11は、構造用面材を配設する前に先に設けてもよい。)この構造にすることによって、大きな変形や震動は、主として、該板体1uからなる耐・制震壁構造が負担し、耐震性を発揮する耐力壁構造の変形、損傷、損壊を抑制して、長期に安定した耐・制震性能を発揮させえる。   Further, the entire surface on the outer wall surface side of the remaining small space between the columns (substantially central portion in the height direction of the floor) except for the construction site of the plate body 1u which is disposed at the upper and lower joints. Is provided with a structural face material that is connected to and flush with the outer peripheral surface of the plate body 1u, and is secured to the horizontal wall 11 (eg, 60 mm × 60mm square material, red pine) is connected between the pillars, the pillars, and the pillars to strengthen the structural strength of the bearing walls. (The horizontal member 11 may be provided before the structural face material is disposed.) By adopting this structure, large deformation and vibration are mainly caused by the plate body 1u. Strain and seismic performance can be demonstrated over a long period of time by suppressing deformation, damage, and breakage of the load bearing wall structure that bears the wall structure and exhibits earthquake resistance.

以上のように、特に過大な変形や震動が集中し易い柱間空間の上部仕口部及び/又は下部仕口部等には、粘弾性や、応力分散性や弾性変形、弾性復元性に優れた緩衝用板体を配設して、止着し、耐・制震壁構造を形成させ、残余の変形や震動の少ない該柱間空間の中心部には弾性変形、復元性に欠けるが耐力壁量に優れ、低コストの構造用面材を面一に連接あるいは、非連接で設けて耐力壁構造を形成させることにより、両者が有する材料特性、施工性耐久性、トータルコスト、メンテナンスフリー等の利点を最も効果的に複合化させることができ、従来にない全く新しい構造からなる耐・制震性能を有する弾性耐力壁構造が提供できる。   As described above, the upper joint part and / or the lower joint part of the inter-column space where excessive deformation and vibration are likely to concentrate is excellent in viscoelasticity, stress dispersion, elastic deformation, and elastic resilience. A shock-absorbing plate structure is installed and fastened to form a vibration-resistant wall structure. The center of the space between the columns with little residual deformation and vibration is not elastically deformable and lacks resilience, but its strength By providing a load bearing wall structure by connecting structural surfaces with excellent wall quantity and low cost in a flush or non-joint manner, the material properties, workability durability, total cost, maintenance-free, etc., both have It is possible to provide the elastic bearing wall structure having the anti-seismic performance and the anti-seismic performance, which can be combined with the advantages of the most effectively.

図19(b)は、同図(a)に示す(2)の柱間小空間4aのA−A矢視の断面模式図であり、同図(c)は、同図(a)のB−B矢視の断面模式図である。
同図(b)及び同図(c)は、いずれも、柱間小空間の内周面に予め彫設された嵌溝33に本発明の押込固定具付発泡合成樹脂板体1uの外壁面側を構造用面材の厚み寸法分だけ突出させた構造で配設して、止着させてなる施工方法及び、該板体1uと構造用面材の外壁面側が面一に止着される施工方法をそれぞれ示す縦断面構造図と横断面構造図である。
FIG. 19B is a schematic cross-sectional view taken along the line AA of the small inter-column space 4a in FIG. 19A shown in FIG. 19A, and FIG. 19C shows B in FIG. It is a cross-sectional schematic diagram of -B arrow.
In both FIG. 2 (b) and FIG. 1 (c), the outer wall surface of the foamed synthetic resin plate 1u with a pressing fixture of the present invention is fitted into the fitting groove 33 previously carved on the inner peripheral surface of the inter-column space. A construction method in which the side is arranged and protruded by the thickness dimension of the structural face material, and the outer wall surface side of the plate body 1u and the structural face material is secured to the same surface. It is the longitudinal cross-section structure figure and horizontal cross-section structure figure which show a construction method, respectively.

これら図19(a)、(b)、(c)に示す本弾性耐力壁構造からなる内断熱住宅においては、該弾性耐力壁の外壁面側に、従来の内断熱住宅の外周面に設けられていた構造用面材からなる耐力壁を新たに配設させる必要は無くなり、該弾性耐力壁の外周面に直接、防湿防水シートや通気胴縁や外壁材等の外壁構成材を配設して耐・制震内断壁構造を完成すればよい。さらに又、高価で、複雑な構造の市販の制震装置を導入することも全く不要となる。   19 (a), (b), and (c), the inner heat insulating house having the elastic load bearing wall structure is provided on the outer wall surface of the elastic load bearing wall on the outer peripheral surface of the conventional inner heat insulating house. It is no longer necessary to newly install the load bearing wall made of the structural face material, and the outer wall constituting material such as a moisture proof waterproof sheet, a ventilation trunk edge, and an outer wall material is directly arranged on the outer peripheral surface of the elastic load bearing wall. It is only necessary to complete the seismic resistant and seismic barrier structure. Furthermore, it is not necessary to introduce a commercially available vibration control device having an expensive and complicated structure.

さらに又、本弾性耐力壁構造は、外断熱住宅にも、適用が可能で、同図(a)、(b)、(c)に示された充填断熱材60を充填させることなく、該弾性耐力壁の外壁面側に、直接、外断熱用の発泡合成樹脂板体を配設して、本発明の押込固定具を用いて止着させた後、その外周面に直接、防湿防水シートや通気胴縁や外壁材等の外壁構成材を配設すれば、既述した耐・制震外断熱構造とは異なる本弾性耐力壁構造からなる耐・制震外断熱構造が提供できる。   Furthermore, this elastic load-bearing wall structure can be applied to an outer heat insulating house, and without being filled with the filling heat insulating material 60 shown in (a), (b) and (c) of FIG. A foamed synthetic resin plate for external heat insulation is disposed directly on the outer wall surface side of the load bearing wall, and is fixed using the indentation fixture of the present invention. If an outer wall constituent material such as a ventilator rim or an outer wall material is disposed, a heat-resistant / damped outer heat insulating structure composed of the elastic load-bearing wall structure different from the above-mentioned heat-resistant / damped outer heat-resistant structure can be provided.

このように、本弾性耐力壁構造は、構造的には、シンプルであるにもかかわらず、高性能、高信頼、高耐久の耐・制震性能が長期に維持できるという効果を奏するのである。ここで用いた嵌溝33の加工方法等は先述の実施態様9に準じてプレカット方法を採用すればよい。   As described above, this elastic bearing wall structure has an effect that it can maintain high performance, high reliability, and high durability / damping performance over a long period of time, though it is structurally simple. The processing method of the fitting groove 33 used here may adopt the pre-cut method according to the above-mentioned embodiment 9.

又、先記した実施態様8(図17)に記載の制震枠体に押込固定具を用いて緩衝用板体を止着してなる耐・制震壁構造を、本弾性耐力壁構造に改変することもできる。例えば、該緩衝用板体の一部が構造躯体の外周面から構造用面材の厚み寸法分だけ突出するように該制震枠体を柱間空間の内周面に固着させ、該制震枠体に該緩衝用板体を配設し、本発明の押込固定具を用いて止着させ、次いで、残余の該柱間空間に構造用面材を該緩衝用板体と面一にして固着すれば、実施態様8(図17)においても、本実施態様10に記載したと同等の性能を有する弾性耐力壁構造とすることが可能となり、これらは適宜実施すればよい。   In addition, the anti-seismic wall structure, in which the shock-absorbing frame is fixed to the anti-vibration frame body described in the above-described embodiment 8 (FIG. 17) using a pressing fixture, is changed to the elastic load-bearing wall structure. It can also be modified. For example, the damping frame is fixed to the inner circumferential surface of the inter-column space so that a part of the buffer plate protrudes from the outer circumferential surface of the structural frame by the thickness dimension of the structural face material. The buffer plate is disposed on the frame, and is fixed using the indentation fixture of the present invention, and then the structural face material is flush with the buffer plate in the remaining space between the columns. If fixed, the elastic bearing wall structure having the same performance as described in the tenth embodiment can be obtained also in the eighth embodiment (FIG. 17), and these may be implemented as appropriate.

図19(c)は、発泡合成樹脂板体の表裏両面に相対向させて押込固定具を仮装着させた押込固定具付発泡合成樹脂板体1uを用い、該板体1uを嵌溝33に配設し、止着材の螺着により止着させてなる実施態様を示す。
(実施態様11)
図20に示す実施態様は、本発明の押込固定具を用い、半硬質発泡合成樹脂板体1s又は、ゴム状弾性板体2などの緩衝用板体を制震フレーム41に止着して形成した長尺制震パネル40を、建物躯体50の外周壁や間仕切壁の柱間大空間4aや、柱間小空間4b等に配設、装着してなる立面模式図である。
FIG. 19 (c) shows a foamed synthetic resin plate 1u with a push-in fixture in which a push-in fixture is temporarily mounted opposite to both front and back surfaces of the foamed synthetic resin plate. An embodiment is shown which is disposed and fastened by screwing of a fastening material.
(Embodiment 11)
The embodiment shown in FIG. 20 is formed by fixing a buffer plate such as a semi-rigid foam synthetic resin plate 1s or a rubber-like elastic plate 2 to the vibration control frame 41 using the indentation fixture of the present invention. FIG. 5 is a schematic elevational view of the long seismic control panel 40 arranged and mounted in the large inter-column space 4a, the small inter-column space 4b, and the like of the outer peripheral wall of the building housing 50 and the partition wall.

本発明では、本実施態様11(図20)に示す長尺制震パネル40aと、後述の実施態様12(図21)に示す仕口制震パネル40b、及び、汎用制震パネル40cを総称して制震パネル40と称することがある。   In the present invention, the long vibration control panel 40a shown in the present embodiment 11 (FIG. 20), the joint vibration control panel 40b shown in the following embodiment 12 (FIG. 21), and the general-purpose vibration control panel 40c are generically named. Sometimes referred to as a vibration control panel 40.

これらの制震パネル40は、市販の粘弾性ダンパーやオイルダンパー等の制震装置に代わる制震装置であって、建物躯体50の柱間大空間4a、又は柱間小空間4b等に装着し、構造躯体4が受ける変形や震動等の地震エネルギーを制震パネル40にリアルタイムに吸収、減衰、復元させる構造となっている。   These seismic control panels 40 are seismic control devices that replace commercial seismic control devices such as viscoelastic dampers and oil dampers, and are attached to the large inter-column space 4a or the small inter-column space 4b of the building housing 50. The seismic energy such as deformation and vibration received by the structural frame 4 is absorbed, attenuated and restored in real time by the vibration control panel 40.

図20(a)は、長尺制震パネル40aの正面立面詳細図で、柱8、土台10(例:120mm正四角形角材)、横架材11(例:120mm幅×240mm高)、で構成する階高2800mm、柱芯幅910mmからなる柱間大空間4a(例:2620mm高×790mm幅×120mm奥行)に、図示したごとき長尺制震パネル40aを配設、装着た態様である。   FIG. 20A is a detailed front elevation view of the long vibration control panel 40a, with the pillar 8, the base 10 (example: 120 mm square square), and the horizontal member 11 (example: 120 mm width × 240 mm height). This is a mode in which a long seismic control panel 40a as shown in the figure is installed and mounted in a large inter-column space 4a (for example, 2620 mm high × 790 mm wide × 120 mm deep) having a floor height of 2800 mm and a column core width of 910 mm.

図20(b)は、同図(a)のA−A断面詳細図である。長尺制震パネル40aは、緩衝用板体として、例えば、2620mm高×790mm幅の長尺の半硬質発泡合成樹脂板体1s(例:ビーズ法発泡ポリエチレン、発泡倍率30倍、厚み45mm、商品名エペラン、カネカ製)と制震フレーム41(例:鋼製の縦フレーム41aと横フレーム41bと補助フレーム41cとからなる。)を押込固定具5や押込補助突起3や六角ボルト16e等の止着材を用いパネル状に組立てた構造を有する。こうして作成した長尺制震パネル40aを柱間大空間4aに配設して螺子釘(ラグスクリューボルト)16d等で制震フレーム41と構造躯体4とを強固に装着一体化させた。   FIG.20 (b) is AA sectional detail drawing of the figure (a). The long vibration control panel 40a is, for example, a long semi-rigid foam synthetic resin plate 1s having a width of 2620 mm and a width of 790 mm (e.g., beaded polyethylene foam, expansion ratio 30 times, thickness 45 mm, product) Name Eperan, manufactured by Kaneka Co., Ltd.) and a vibration control frame 41 (for example, a steel vertical frame 41a, a horizontal frame 41b, and an auxiliary frame 41c) are fixed to the pressing fixture 5, the pressing auxiliary projection 3, the hexagon bolt 16e, etc. It has a structure assembled in a panel form using a dressing. The long vibration control panel 40a thus created was disposed in the large inter-column space 4a, and the vibration control frame 41 and the structural frame 4 were firmly attached and integrated with a screw nail (lag screw bolt) 16d or the like.

柱間大空間4aに装着された該長尺制震パネル40aは、構造躯体4からの変形や震動挙動を制震フレーム41がリアルタイムにキャッチし伝達媒体となって、その変形や震動挙動をそのまま、押込固定具5の止着部から制震材である半硬質発泡合成樹脂板体1sやゴム状弾性板体20等の緩衝用板体の押圧樹脂領域や圧縮応力分散領域を経て緩衝用板体内に直接伝達し、緩衝用板体が有する緩衝性や粘弾性や抗張力等の複合効果により、止着部や緩衝用板体全体が弾性変形や弾性復元を発現することで制震効果を発揮する。この弾性変形時に要する抗力が、構造躯体4が受ける変形や震動を抑止する抑止力(変形や揺れを吸収、減衰する。)に相当し、弾性変形時に受圧して吸収したエネルギー量(弾性歪量)が弾性復元力に相当し、これらの力学的な挙動そのものが本発明の制震メカニズムである。このため、従来の制震装置が変形や震動を梃子やシリンダー等の伝達媒体を経て高減衰ゴムやオイルダンパー等の制震機材に2次的に伝達させることにより生じる応答性のタイムラグの課題も解消されるのである。   The long vibration control panel 40a mounted in the large inter-column space 4a is used as a transmission medium by the vibration control frame 41 catching deformation and vibration behavior from the structural frame 4 in real time, and the deformation and vibration behavior are maintained as they are. The buffer plate passes through the pressing resin region and the compressive stress dispersion region of the buffer plate body such as the semi-rigid foam synthetic resin plate body 1s and the rubber-like elastic plate body 20 which are the vibration control materials from the fixing portion of the push fixture 5 It transmits directly to the body, and the damping part and the entire buffer plate exhibit elastic deformation and elastic recovery due to the combined effect of buffer plate, viscoelasticity, tensile strength, etc. To do. The drag force required at the time of elastic deformation corresponds to a deterrent force (absorbing and attenuating deformation and vibration) that suppresses the deformation and vibration received by the structural frame 4, and the amount of energy received and absorbed by the elastic deformation (elastic strain amount) ) Corresponds to the elastic restoring force, and the dynamic behavior itself is the vibration control mechanism of the present invention. For this reason, there is also a problem of responsive time lag that occurs when the conventional vibration control device secondarily transmits deformation and vibration to the vibration control equipment such as high damping rubber and oil damper through the transmission medium such as insulator and cylinder. It will be resolved.

こうした制震性能は、緩衝用板体の材質、発泡倍率、厚み、止着材を含む押込固定具5の形状や止着数量、更に、建物躯体50の重心、剛心、偏心率等から該パネル40aの構造設計と、断熱材の有無を問わない外壁面や間仕切り壁面等の設置箇所や設置数量等の選定により効果的に発揮される。例えば、1階床面積(20坪)の場合、X、Y方向に各10ヶ所(合計20箇所)の柱間大空間41aに建物のバランスを考慮して、偏心率が0.3以下となるように配置することによってなされる。   Such seismic control performance depends on the material of the buffer plate, the expansion ratio, the thickness, the shape and the number of the fastening fixture 5 including the fastening material, the center of gravity of the building housing 50, the stiffness, the eccentricity, etc. It is effectively exhibited by the structural design of the panel 40a and the selection of the installation location, the installation quantity, etc. of the outer wall surface and the partition wall surface regardless of the presence or absence of a heat insulating material. For example, in the case of the first floor area (20 tsubo), the eccentricity is 0.3 or less in consideration of the balance of the buildings in the large inter-column space 41a in each of 10 locations (20 locations in total) in the X and Y directions. Is made by arranging as follows.

以下の説明では、緩衝用板体として、半硬質発泡合成樹脂板体1sを使用した例を代表として説明する。これらの最適化された特定の柱間大空間41aに設置される該長尺制震パネル40aに用いる半硬質発泡合成樹脂板体1sは、1該パネル当りに負荷される外力や変形や震動は大きいので、これらを吸収、抑制する半硬質発泡合成樹脂板体1sのエネルギー吸収量を高めるためには、半硬質発泡合成樹脂板体1sを低発泡倍率化させるか、又は、厚みを増大させるのが好ましい。   In the following description, an example in which a semi-rigid foam synthetic resin plate 1s is used as a buffer plate will be described as a representative. The semi-rigid foamed synthetic resin plate 1s used for the long seismic control panel 40a installed in the optimized large inter-column space 41a is not subjected to external force, deformation or vibration applied to the panel. In order to increase the energy absorption amount of the semi-rigid foam synthetic resin plate 1s that absorbs and suppresses these, the semi-rigid foam synthetic resin plate 1s is reduced in foaming ratio or increased in thickness. Is preferred.

しかし、その反面、半硬質発泡合成樹脂板体1sの剛性が増すこととなり、該半硬質発泡合成樹脂板体1sを略平行四辺形状に弾性変形、弾性復元させる際に、該発泡合成樹脂板体1sに多少の撓みや反り等が発生し易い傾向を持つこととなる。これを抑止するために、柱間の中心部の縦方向や柱間に横桟状の補助フレーム41cを設けることができる。他に、次のごとき、種々の工夫を適宜実施すればよい。例えば、1)該半硬質発泡合成樹脂板体1sの高さ2620mmの高さ方向を、例えば2〜3等分に分割し、小寸法高さ寸法の板体を組み合せて応力分散させる。2)ビーズ法成形品では、押込固定具5等の止着部及びその近傍部分からなる該半硬質発泡合成樹脂板体1sの外周部分と中央部等の部分の発泡倍率を変える。例えば、外周部分には、20倍品をその他の部分には30倍の予備発泡ビーズをそれぞれ充填し異倍率の発泡成形品を型内成形する。3)同図(a)に図示した該半硬質発泡合成樹脂板体1sの撓みや反りを吸収(抑制)させる種々の形状の抜き穴1h加工を行う方法がある。さらに、該板体1sの該抜き穴1hや止着部に、該発泡合成樹脂板体1sと弾性や剛性の異なる他の素材である天然ゴム等のゴム状弾性板体20等を嵌入し、一体化させる。4)ビーズ法の該半硬質発泡合成樹脂板体1sを用いる場合等においては、後述する実施態様12(図21(d)及び同図(e))に示したごとく緩衝用凹凸部1tを該板体1sの表、裏面の適所に形成させる。
等の手法により、該半硬質発泡合成樹脂板体1sの撓みや反りを抑制する方法が存在する。尚、図20(c)は、同図(b)のA矢視の詳細図で、内壁面側から見た制震フレーム41の立面部分詳細図である。
However, on the other hand, the rigidity of the semi-rigid foam synthetic resin plate 1s is increased, and when the semi-rigid foam synthetic resin plate 1s is elastically deformed and elastically restored to a substantially parallelogram, the foam synthetic resin plate is obtained. There will be a tendency for some bending or warping to occur in 1 s. In order to suppress this, it is possible to provide an auxiliary frame 41c in the form of a horizontal rail between the columns in the longitudinal direction between the columns. In addition, various devices may be appropriately implemented as follows. For example, 1) The height direction of 2620 mm in height of the semi-rigid foamed synthetic resin plate 1s is divided into, for example, 2 to 3 equal parts, and a plate with a small size is combined to disperse the stress. 2) In the bead method molded product, the expansion ratio of the outer peripheral portion and the central portion of the semi-rigid foam synthetic resin plate 1s composed of the fastening portion of the indentation fixture 5 and the like and the vicinity thereof is changed. For example, a 20-fold product is filled in the outer peripheral portion, and 30-fold pre-expanded beads are filled in the other portions, and foam-molded products with different magnifications are molded in the mold. 3) There is a method of performing a punching hole 1h processing of various shapes for absorbing (suppressing) bending and warping of the semi-rigid foam synthetic resin plate 1s illustrated in FIG. Further, a rubber-like elastic plate 20 such as natural rubber, which is another material having elasticity and rigidity different from that of the foamed synthetic resin plate 1s, is fitted into the hole 1h and the fastening portion of the plate 1s, Integrate. 4) In the case of using the semi-rigid foam synthetic resin plate 1s of the bead method, as shown in Embodiment 12 (FIG. 21 (d) and FIG. It is formed at appropriate positions on the front and back surfaces of the plate 1s.
There is a method for suppressing the bending and warping of the semi-rigid foam synthetic resin plate 1s by a method such as the above. FIG. 20C is a detailed view as seen from the direction of arrow A in FIG. 20B, and is an elevational partial detail view of the vibration control frame 41 viewed from the inner wall surface side.

これら制震フレーム41は、半硬質発泡合成樹脂板体1sを張設させる枠体であり、この制震フレーム41は、ラグスクリューボルト16d等で構造躯体4に強固に固着されて、構造躯体4の変形や震動エネルギーをリアルタイムに半硬質発泡合成樹脂板体1s等の緩衝用板体に伝達させる伝達媒体として機能させる必要がある。このため、制震フレーム41は、鋼製や木製等の剛性の高い材料で形成される。制震フレーム41は、主として、縦フレーム41aや横フレーム41bで構成されるが、必要に応じ、図示したような垂直方向や水平方向の補助フレーム41cや、対角方向(図省略)の補助フレーム41cを併用する。又、押込固定具5でもって半硬質発泡合成樹脂板体1sを制震フレーム41に確実に止着するに際し、その止着力を補完するため、必要に応じ、制震フレーム41の半硬質発泡合成樹脂板体1sの止着面側に適宜、押込補助突起3(図示せず)を設けてもよい。   These seismic control frames 41 are frames for stretching the semi-rigid foam synthetic resin plate 1s, and the seismic control frames 41 are firmly fixed to the structural housing 4 with lag screw bolts 16d and the like. It is necessary to function as a transmission medium for transmitting the deformation and vibration energy to the buffer plate such as the semi-rigid foam synthetic resin plate 1s in real time. For this reason, the vibration control frame 41 is formed of a highly rigid material such as steel or wood. The vibration control frame 41 is mainly composed of a vertical frame 41a and a horizontal frame 41b. If necessary, the auxiliary frame 41c in the vertical direction or the horizontal direction as shown in the figure, or an auxiliary frame in the diagonal direction (not shown). 41c is used in combination. In addition, when firmly fixing the semi-rigid foam synthetic resin plate 1s to the vibration control frame 41 with the push-in fixture 5, the semi-rigid foam composite of the vibration control frame 41 is used as necessary to complement the fixing force. A pressing assist protrusion 3 (not shown) may be appropriately provided on the fastening surface side of the resin plate 1s.

柱8に沿って固着される縦フレーム41aと、土台10や横架材11に沿って固着される横フレーム41bは、それぞれが地震動で構造躯体4の正負の略平行四辺形状に変形、復元する挙動にリアルタイムに追従一体化できるフレーム構造とするため、縦フレーム41aと横フレーム41bの連結部は、図20(c)に示すように、隅角部に切り欠き部を設けて柔軟性を持たせて、隅角部を可動状態にするか、あるいは、相互に接触させても連結させずに、それぞれが単独で半硬質発泡合成樹脂板体1sに確実に止着できる構造にしておけば、縦フレーム41aと横フレーム41bとは、相互に干渉することなく、それぞれが構造躯体4の挙動にリアルタイムに追従一体化でき半硬質発泡合成樹脂板体1sを弾性変形、弾性復元させ得る構造にできるので望ましい。さらに、従来の制震装置の設置壁面の4仕口部にはホールダウン金物や緊結金物が必須であるのに対し、同図(c)の示す縦フレーム41aと横フレーム41bの隅角部が柔軟性のある可動状態で連結されていれば制震フレーム41自体がホールダウン金物や緊結金物の機能を代替できるので、これらを省略できる利点をも有する。   The vertical frame 41a fixed along the pillar 8 and the horizontal frame 41b fixed along the base 10 and the horizontal member 11 are each deformed and restored to a substantially parallelogram of positive and negative structures 4 by seismic motion. As shown in FIG. 20 (c), the connecting portion of the vertical frame 41a and the horizontal frame 41b is provided with a notch at the corner so as to be flexible so that the behavior can be integrated in real time. If the corners are in a movable state or are not connected to each other even if they are brought into contact with each other, each can be reliably fixed to the semi-rigid foam synthetic resin plate 1s, The vertical frame 41a and the horizontal frame 41b can be integrated in real time with the behavior of the structural housing 4 without interfering with each other, and the semi-rigid foam synthetic resin plate 1s can be elastically deformed and elastically restored. Desirable because it. Furthermore, while the four joints on the wall surface of the conventional seismic control device are required to have a hole-down hardware or a binding hardware, the corners of the vertical frame 41a and the horizontal frame 41b shown in FIG. If connected in a flexible movable state, the seismic control frame 41 itself can replace the function of a hole-down hardware or a binding hardware, so that there is an advantage that these can be omitted.

長尺制震パネル40aの組立て構造は、同図(a)のA−A断面詳細図である同図(b)に示すように、半硬質発泡合成樹脂板体1sの両側面が鋼製の山形鋼(例:60mm高×60mm幅×5mm厚)からなる縦フレーム41aに止着され、柱8にラグスクリューボルト16d(例:8mmΦ×60mm長)等で強固に固着されて構造躯体4と一体化されている。半硬質発泡合成樹脂板体1sと制震フレーム41との止着構造は、該板体1sの表裏面側から1対の押込固定具5(例:基端部の外径50mmΦ×突起部高さ15mm、突起部は概円球状の中実体で図4(a)の断面構造からなる塩ビ成形品)を対向させて六角ボルトナット16e(例:M8mmΦ×長さ80mm)で双方の押込固定具5を該板体1s内に面一に押込み、埋没させる構造で制震フレーム41と一体化させている。対向して押込み、埋没させる1対の押込固定具5の押圧力は非常に高く制震パネル40の止着構造としては極めて望ましい。   The assembly structure of the long seismic control panel 40a is as shown in FIG. 4B, which is a detailed cross-sectional view taken along the line AA of FIG. The structural frame 4 is fixed to a vertical frame 41a made of angle steel (eg, 60 mm high × 60 mm wide × 5 mm thick) and firmly fixed to the column 8 with a lag screw bolt 16d (eg, 8 mmΦ × 60 mm long) or the like. It is integrated. The fastening structure between the semi-rigid foam synthetic resin plate 1s and the vibration control frame 41 is a pair of pressing fixtures 5 (for example, the outer diameter of the base end 50 mmΦ × the height of the protrusion) from the front and back sides of the plate 1s. 15mm in length, protruding part is a substantially spherical solid body and a PVC molded product having the cross-sectional structure of FIG. 4 (a) facing each other, and a hexagonal bolt nut 16e (for example, M8mmΦ × 80mm in length) 5 is integrated with the vibration control frame 41 in a structure in which the plate 5 is pushed into the plate body 1s and buried. The pressing force of the pair of pressing fixtures 5 that are pressed and buried facing each other is extremely high, which is extremely desirable as a fastening structure for the vibration control panel 40.

又、該制震パネル40aの組立作業の効率化を図るため、例えば、ビーズ法からなる半硬質発泡合成樹脂板体1sである場合の止着位置に、該押込固定具5の断面構造寸法(基端部直径や突起部高さ)より小寸法の凹部や止着貫通穴1dを予め形成させておき、その凹部の表裏面側から一対の該押込固定具5を配設、装着して、該板体1sに対して基端部が面一になるまで埋没させ、押圧樹脂領域や圧縮応力分散領域を形成させる止着方法も適宜実施することも出来る(図示せず)。   Further, in order to increase the efficiency of the assembly work of the vibration control panel 40a, for example, the cross-sectional structure dimension of the push-in fixture 5 (in the fixing position in the case of the semi-rigid foam synthetic resin plate 1s made of the bead method) A recess having a smaller dimension than the base end diameter and the height of the protrusion) and a fastening through hole 1d are formed in advance, and the pair of pressing fixtures 5 are disposed and mounted from the front and back sides of the recess, A fixing method in which the base end portion of the plate body 1s is buried until it is flush with each other to form a pressed resin region or a compressive stress dispersion region can also be appropriately implemented (not shown).

又、止着箇所は、土台10と横架材11に固着する横フレーム41b、及び縦フレーム41aの上、下の仕口部の近傍においては、例えば、約150mm間隔と密にし縦方向の中間部は例えば約250mm間隔とする等、止着部の間隔を、損傷を防止し易いように適宜調整し、構造躯体4の変形や震動をリアルタイムに吸収しやすくするよう工夫することが望ましい。   Further, in the vicinity of the joint portion on the upper side and the lower side of the horizontal frame 41b and the vertical frame 41a that are fixed to the base 10 and the horizontal member 11, for example, the fixing point is densely spaced at intervals of about 150 mm. It is desirable to adjust the interval between the fastening portions as appropriate so that damage is easily prevented, for example, by setting the interval to about 250 mm, so that the deformation and vibration of the structural housing 4 can be easily absorbed in real time.

長尺制震パネル40aは、必ずしも、図20(a)に示すような柱間大空間4aに挿嵌させる柱間モジュール(例:尺モジュールやメートルモジュール)とする必要はなく、狭い柱間や柱8と間柱9の狭い柱間小空間4bに配設、装着する幅狭の長尺制震パネル40aとしてもよい。また、柱間モジュール以上の幅広(例:1200mm幅)にも、補助フレーム41cの併用等で適用可能である。このため、従来の制震装置が、ある一定の柱間寸法(910mm以上)でないと装着できないか、あるいは制震効果が発揮されないという制約が解消でき、施工物件の状況に応じた制震パネル幅にすればよく、設計の自由度が大幅に向上するという高い利点を有する。   The long seismic control panel 40a does not necessarily need to be an inter-column module (eg, a length module or a metric module) to be inserted into the large inter-column space 4a as shown in FIG. It is good also as the narrow long seismic control panel 40a arrange | positioned and installed in the narrow space 4b between the pillars 8 and the narrow pillar 9 between. Moreover, it can be applied to a wide width (for example, a width of 1200 mm) larger than the inter-column module by using the auxiliary frame 41c together. For this reason, the conventional vibration control device can be installed only with a certain inter-column dimension (910 mm or more), or the restriction that the vibration control effect cannot be exerted can be solved, and the vibration control panel width according to the situation of the construction property Therefore, there is a high advantage that the degree of freedom of design is greatly improved.

又、上記では、新築時の施工例を示したが、既築住宅を改造して制震リフォームする場合に、必ずしも、長尺制震パネル40aの完成品を現場に持ち込む必要は無く、例えば、既存の構造躯体4の所定の柱間大空間4a、あるいは柱間小空間4bに、先ず、木製又は鋼製の縦フレーム41aと横フレーム41bを非連結で固着し、外壁面側、又は、内壁面側に半硬質発泡合成樹脂板体1sを配設し押込固定具5等で止着すれば現場にて長尺制震パネル40aの設置が完了する。又、柱間大空間4a、あるいは柱間小空間4bに既築の突起部や配管類や充填断熱材等の障害物があって、長尺制震パネル40aの装着、設置が困難な場合には次の方策が実施できる。例えば、1)障害となる鉄骨のブレース等の障害物の突起部分に該当する半硬質発泡合成樹脂板体1sや制震フレーム41の一部を切欠き除去して配設、設置することが出来る。2)内断熱構造(充填断熱)等で柱間大空間4aや柱間小空間4bに配設、設置が不可能の場合等には、従来の制震装置で実施されているところの構造躯体4の外壁面側に制震装置を突出させて設けるという、いわゆる、通称、外付け方法に準じたものであって、長尺制震パネル40aを構造躯体4の外壁面側に突出させても設置できるので、自由度の高い施工や、施工の簡略化が可能である。このように、本長尺制震パネル40aは構造が簡単であり、かつ従来の制震装置に比し、低コストであるという利点を生かして、耐震リフォーム(耐震補強工事)並みの低価格で、耐震性向上に加えて、制震性をも同時に付与する制震リフォームが可能となる。
(実施態様12)
図21(a)は、柱間小空間4bに配設、装着した仕口制震パネル40bと汎用制震パネル40cの実施態様を示す。柱8、土台10(例:120mm正四角形)、横架材11(例:120mm幅×240mm高)の芯高さ:2800mm高で、柱間の柱芯幅:910mmで、その中心に間柱9(例:120mm幅×60厚)を設けた柱間小空間4b(例:2620mm高×365mm幅×120mm奥行)の2空間からなる上、下4箇所の仕口部に仕口制震パネル40bを装着してなる実施態様の一例と、階高方向の略中央部に、柱8間と間柱9間を橋渡し状に汎用制震パネル40cを連接させて配設、装着してなる実施態様の一例とを外壁面側から見た立面模式図である。
Moreover, although the construction example at the time of new construction was shown in the above, when remodeling and remodeling an existing house, it is not always necessary to bring the finished product of the long seismic control panel 40a to the site. First, a wooden or steel vertical frame 41a and a horizontal frame 41b are fixed to a predetermined large space 4a or small inter-column space 4b of an existing structural frame 4 in a non-connected manner, and the outer wall surface side or inner If the semi-rigid foam synthetic resin plate 1s is disposed on the wall surface side and is fixed by the push-in fixture 5 or the like, the installation of the long vibration control panel 40a is completed at the site. Also, when there are obstacles such as existing protrusions, piping, filling insulation, etc. in the large inter-column space 4a or the small inter-column space 4b, and it is difficult to install and install the long vibration control panel 40a The following measures can be implemented. For example, 1) A part of the semi-rigid foam synthetic resin plate 1s or the vibration control frame 41 corresponding to a protruding portion of an obstacle such as a steel brace that becomes an obstacle can be removed and disposed and installed. . 2) When it is impossible to install and install in the large inter-column space 4a or the small inter-column space 4b due to internal heat insulation structure (filled heat insulation), etc. 4, in accordance with a so-called so-called external mounting method, in which a vibration control device is provided protruding from the outer wall surface side, and the long vibration control panel 40 a is protruded from the outer wall surface side of the structural housing 4. Since it can be installed, construction with a high degree of freedom and simplification of construction are possible. In this way, the long seismic control panel 40a is simple in structure and has the low cost as compared with the conventional seismic control device. In addition to improving seismic resistance, it is possible to perform seismic reforming that simultaneously provides seismic control.
(Embodiment 12)
Fig.21 (a) shows the embodiment of the joint damping panel 40b and the general purpose damping panel 40c which were arrange | positioned and attached to the small space 4b between pillars. Column 8, foundation 10 (example: 120 mm square), horizontal member 11 (example: 120 mm width × 240 mm height) core height: 2800 mm height, column core width between columns: 910 mm, center column 9 at the center The seismic control panel 40b is composed of two spaces, ie, a small space 4b between columns provided with (e.g., 120 mm width x 60 thickness) (e.g., 2620 mm height x 365 mm width x 120 mm depth). And an embodiment in which a general-purpose seismic control panel 40c is connected and installed in a bridge shape between the pillars 8 and 9 between the pillars 8 at a substantially central portion in the height direction of the floor. It is the elevation surface schematic diagram which looked at an example from the outer wall surface side.

さらに詳しくは、図21(b)に仕口制震パネル40bの正面詳細図を示す。仕口制震パネル40bは、仕口部に装着するものであって、次の構造を有する。略三角形状(例:1辺が350mmの正三角形)の半硬質発泡合成樹脂板体1s(例:ビーズ法発泡ポリプロピレン、発泡倍率30倍、厚み45mm)やゴム状弾性板体20などの緩衝用板体と、構造躯体4の仕口部に固着させる縦フレーム41aと横フレーム41bからなる制震フレーム41と、更に、押込固定具5や六角ボルト16eの止着材等から構成される。以下の説明では、緩衝用板体として、半硬質発泡合成樹脂板体1sを使用した例を代表として説明する。同図(a)では、該制震パネル40bを柱間小空間4bの上、下の4つの仕口部に相対向して設けた好ましい例を示しているが、特に限定はなく、構造躯体4の耐震強度とのバランスを考慮し、例えば、上、下の仕口部のいずれかに一対、又は、対角に一対等、適宜装着することも出来る。例えば、これらの一対の仕口制震パネル40bを上部の仕口に対向して装着した場合、柱間小空間4bが正負方向に交番変形した時、正の変形時には、1の該仕口制震パネル40bに圧縮方向の変形が働き、他の1の該仕口制震パネル40bには引張方向(引裂き)の変形が働く。逆に、負の変形時には、1の該仕口パネル40bには、引張方向(引裂き)の変形が働き、他の該仕口パネル40bには、圧縮方向の変形が働き、それぞれに働く圧縮力や引張力が地震エネルギーに相当し、これを弾性吸収、弾性復元して制震効果を発揮するのである。該仕口制震パネル40bは、仕口部に働く変形や震動をリアルタイムに半硬質発泡合成樹脂板体1sに伝達させるために縦フレーム41aと横フレーム41bの隅部の接続部は非連続、又は、柔軟性(非剛性)のあるL型形状に連結することが望ましい。   More specifically, FIG. 21B shows a detailed front view of the joint damping panel 40b. The joint damping panel 40b is attached to the joint part and has the following structure. For buffering semi-rigid foam synthetic resin plates 1s (eg: foamed bead method, expansion ratio 30 times, thickness 45 mm) and rubber-like elastic plates 20 in a substantially triangular shape (eg, regular triangle with sides of 350 mm) The plate body, the vibration control frame 41 composed of the vertical frame 41a and the horizontal frame 41b fixed to the joint portion of the structural housing 4, and the fixing member for the push-in fixing tool 5 and the hexagon bolt 16e, and the like. In the following description, an example in which a semi-rigid foam synthetic resin plate 1s is used as a buffer plate will be described as a representative. FIG. 2A shows a preferable example in which the vibration control panel 40b is provided opposite to the four joints above and below the inter-column space 4b, but there is no particular limitation. In consideration of the balance with the seismic strength 4, for example, a pair of upper or lower joints or a pair of diagonals may be appropriately attached. For example, when these pair of joint damping panels 40b are mounted opposite to the upper joint, when the small inter-column space 4b is alternately deformed in the positive and negative directions, one positive joint is formed during positive deformation. Deformation in the compression direction acts on the seismic panel 40b, and deformation in the tensile direction (tearing) acts on the other one seismic control panel 40b. On the contrary, at the time of negative deformation, one of the joint panels 40b is subjected to deformation in the tensile direction (tearing), and the other joint panel 40b is subjected to deformation in the compression direction. The tensile force is equivalent to the seismic energy, and it absorbs and recovers elastically and exhibits the seismic control effect. The joint damping panel 40b has a discontinuous connection at the corners of the vertical frame 41a and the horizontal frame 41b in order to transmit deformation and vibration acting on the joint to the semi-rigid foam synthetic resin plate 1s in real time. Alternatively, it is desirable to connect to an L shape having flexibility (non-rigidity).

同図(c)に示す仕口制震パネル40bの取り付け構造は、半硬質発泡合成樹脂板体1sの両側面から、夫々、1対の縦フレーム41aと横フレーム41b(例:50mm高×35mm幅×6mm厚、不等辺山形鋼)で挟持して組立て、ラグスクリューボルト16d(例:8mmΦ)等で構造躯体4に固着させた状態を示す。   The attachment structure of the joint damping panel 40b shown in FIG. 5C is a pair of a vertical frame 41a and a horizontal frame 41b (for example, 50 mm high × 35 mm) from both side surfaces of the semi-rigid foam synthetic resin plate 1s. It shows a state in which it is sandwiched and assembled with a width × 6 mm thickness and an uneven side angle steel, and fixed to the structural housing 4 with a lag screw bolt 16d (for example, 8 mmΦ).

該仕口制震パネル40bに用いる半硬質発泡合成樹脂板体1sは、仕口部の変形に追従し大きな弾性変形力や復元力が求められ、発泡合成樹脂の種類や発泡倍率や厚みや押込固定具5の形状や止着数によって適宜最適なものを選定すればよいが、弾性変形、復元しやすい形状に工夫することが望ましい。例えば、同図(b)に示す対角面を湾曲形状41eとし、角隅部を角隅カット41fとすることも適宜実施すればよい。又、弾性変形力や弾性復元力を付加するために、予め、湾曲させた制震補助材41d(例:巾20mm幅×2mm厚、バネ鋼製)を該板体1sに埋没一体化させることも望ましい。例えば、該半硬質発泡合成樹脂板体1sがビーズ法成型品の場合は、制震補助材41dを型内成形で一体成形することが出来る。又、該半硬質発泡合成樹脂板体1sが押出品の場合は、予め、制震補助材41dをインサートする湾曲したスリットをトムソン刃等で抜き加工し、該スリットに制震補助材41dを配設し、接着剤等で一体化させる等すればよい。制震補助材41dの形状は、特に限定は無く、湾曲させた形状であると正負の変形に順応しやすいので望ましい。制震補助材41dの材質は、バネ鋼やポリカーネート樹脂等のバネ性に富むものが望ましく、断面形状は、平板状でも、丸棒状でも特に限定しない。又、別の制震補助材41dとして、例えば、略三角形状の半硬質発泡合成樹脂板体1sと概同形状の網状体を用いてもよい。この場合、ビーズ成形法により、型内成形にて該網状体を半硬質発泡合成樹脂板体1sとサンドイッチ状に一体成形することも出来る。又、該半硬質発泡合成樹脂板体1sが押出品の場合は、予め、該板体1sの厚みを二分割にスライスし、中心部に金網をサンドイッチ状に挟み、接着剤等で一体化させてもよい。金網は、例えば、平織金網の場合、例えば、線径:1mmΦ、目開き:25mm程度、さらに望ましくは、線径:2mmΦ、目開き:30mm程度のものが望ましく、材質はステンレス線やポリカーボネート線等のばね性と防腐性に優れたものが望ましい。   The semi-rigid foam synthetic resin plate 1s used for the joint damping panel 40b is required to have a large elastic deformation force and restoring force following the deformation of the joint portion, and the kind, foam magnification, thickness and indentation of the foam synthetic resin. An optimal one may be selected as appropriate depending on the shape of the fixture 5 and the number of fastenings, but it is desirable to devise a shape that can be easily elastically deformed and restored. For example, the diagonal surface shown in FIG. 5B may be a curved shape 41e and the corner may be a corner cut 41f as appropriate. In addition, in order to add an elastic deformation force or an elastic restoring force, a previously-suppressed vibration control auxiliary material 41d (eg, width 20 mm × 2 mm thickness, made of spring steel) is embedded and integrated in the plate 1s. Is also desirable. For example, when the semi-rigid foam synthetic resin plate 1s is a bead method molded product, the vibration control auxiliary material 41d can be integrally molded by in-mold molding. When the semi-rigid foam synthetic resin plate 1s is an extruded product, a curved slit for inserting the vibration control auxiliary material 41d is previously punched with a Thomson blade or the like, and the vibration control auxiliary material 41d is arranged in the slit. And then integrated with an adhesive or the like. The shape of the vibration control auxiliary material 41d is not particularly limited, and a curved shape is desirable because it easily adapts to positive and negative deformations. The material of the vibration control auxiliary material 41d is desirably a material having high spring properties such as spring steel or polycarbonate resin, and the cross-sectional shape is not particularly limited to a flat plate shape or a round bar shape. Further, as another seismic auxiliary material 41d, for example, a substantially triangular net-like body may be used as the substantially rigid semi-rigid foam synthetic resin plate 1s. In this case, the net-like body can be integrally formed with the semi-rigid foam synthetic resin plate 1s in a sandwich shape by in-mold molding by a bead molding method. In addition, when the semi-rigid foam synthetic resin plate 1s is an extruded product, the thickness of the plate 1s is sliced into two parts in advance, and a metal mesh is sandwiched in the center and integrated with an adhesive or the like. May be. For example, in the case of a plain weave wire mesh, for example, wire diameter: 1 mmΦ, mesh opening: about 25 mm, more preferably wire diameter: 2 mmΦ, mesh opening: about 30 mm, and the material is stainless steel wire, polycarbonate wire, etc. Those with excellent springiness and antiseptic properties are desirable.

同図(c)は、同図(b)のA−A断面図であって、該仕口制震パネル40bの組立構造部分断面図を示す。半硬質発泡合成樹脂板体1sの表裏面側から1対の押込固定具5(例:基端部の外径50mmΦ×突起部高さ15mm、突起部の形状は概円球状で、具体的には図4(a)に示す中実体の塩ビ成形品)を対向させて、六角ボルトナット16e(例:M8mmΦ×長さ75mm)で1対の制震フレーム41aに挟持させて双方の押込固定具5を該板体1s内に面一に埋没させて止着し組立て、柱8にラグスクリューボルト16d(例:6mmΦ)等で固着している。該仕口制震パネル40bの平面形状は、略三角形状が望ましく、略正三角形状や略不等辺三角形状等、特に限定は無く、仕口に働く正負の力を効果的に受け止める形状であればよい。大きさも特に限定はないが、汎用性を考慮して少なくとも柱8と間柱9の柱間小空間4bに容易に配設、装着できることが望ましい。仕口制震パネル40bは、柱間大空間4aや柱間小空間4bに障害物があっても、狭い面積で大きな制震効果が発揮できるので望ましい。そして、施工性に優れ、間仕切り壁や床下や屋根等の様々な仕口部においても採用可能であり、例えば、修復保存が必須で耐震補強が困難な社寺や古民家等の文化財的な建築物の耐・制震化においても容易に実施できる。又、木造住宅の床面や天井面には、通常、耐震用の火打ち金物が用いられるが、この火打ち金物に代えて該仕口制震パネル40bを採用すると制震性のある火打ち金物の代用物とすることが出来る。このように施工部位に応じた専用の仕口制震パネル40bの設計が可能で自由度が高く、コスト面でも優れるので、新築、既築を問わず広く適用できる。   FIG. 4C is a cross-sectional view taken along the line AA of FIG. 4B, and shows a partial cross-sectional view of the assembled structure of the joint damping panel 40b. A pair of indentation fixtures 5 from the front and back sides of the semi-rigid foam synthetic resin plate 1s (e.g., the outer diameter of the base end 50 mmΦ × the height of the protrusion 15 mm, the shape of the protrusion is approximately spherical, Is a solid PVC molded article shown in FIG. 4 (a) facing each other and sandwiched between a pair of vibration control frames 41a with a hexagonal bolt nut 16e (e.g., M8 mmΦ × 75 mm in length). 5 is embedded in the plate body 1s in a flush manner, fixed and assembled, and fixed to the column 8 with a lag screw bolt 16d (for example, 6 mmΦ) or the like. The planar shape of the joint damping panel 40b is preferably a substantially triangular shape, and is not particularly limited, such as a substantially regular triangle shape or a substantially unequal triangular shape, and can be a shape that effectively receives positive and negative forces acting on the joint. That's fine. Although the size is not particularly limited, it is desirable that it can be easily disposed and mounted in at least the small space 4b between the columns 8 and 9 in consideration of versatility. The joint damping panel 40b is desirable because it can exert a large damping effect in a small area even if there are obstacles in the large inter-column space 4a and the small inter-column space 4b. And it is excellent in workability and can be used in various joints such as partition walls, under floors, and roofs. For example, it is a cultural property building such as shrines and temples and houses that are difficult to seismically reinforce due to their restoration and preservation. It can also be easily implemented for anti-seismic and anti-seismic properties In addition, a fire-resistant metal for earthquake resistance is usually used for the floor surface and ceiling surface of a wooden house, but if the joint damping panel 40b is used instead of this metal-fired metal, it can be used as a substitute for a fire-resistant metal with vibration control. It can be a thing. As described above, the dedicated joint damping panel 40b can be designed according to the construction site, has a high degree of freedom, and is excellent in cost. Therefore, it can be widely applied regardless of whether it is a new construction or an existing construction.

また、図21(a)に示す汎用制震パネル40cは、柱8と間柱9の間(すなわち、柱間小空間4b)に装着した。ラグスクリューボルト16d(例:6mmΦ)等で柱間小空間4bに固着した一対の縦フレーム41aに、半硬質発泡合成樹脂板体1s(例:ビーズ法発泡ポリプロピレン、発泡倍率45倍、365mm幅×300mm高×45mm厚)を表裏面側から1対の押込固定具5を対向させて止着した構造の組み立て例を示した。しかし、柱8間用の幅広(すなわち、柱間大空間4a)(例:790mm幅×300mm高)の汎用制震パネル40cとしてもよく、高さの寸法も特に限定はなく、必要に応じ、縦フレーム41aに加え、上下、又はいずれか一方に横フレーム41bを設けて、上部又は下部の仕口部に止着すれば仕口制震パネル40bと同等の効果を発揮することも出来る。   Further, the general-purpose vibration control panel 40c shown in FIG. 21A is mounted between the column 8 and the inter-column 9 (that is, the inter-column small space 4b). A pair of vertical frames 41a fixed to the inter-column space 4b with a lag screw bolt 16d (for example, 6 mmΦ) or the like is attached to a semi-rigid foam synthetic resin plate 1s (for example, bead method foamed polypropylene, expansion ratio 45 times, 365 mm width × An assembly example of a structure in which a pair of pressing fixtures 5 are opposed to each other from the front and back sides and fixed to 300 mm high × 45 mm thick) is shown. However, it may be a general-purpose vibration control panel 40c having a wide space between columns 8 (that is, a large space 4a between columns) (example: 790 mm width × 300 mm height), and the height dimension is not particularly limited. In addition to the vertical frame 41a, if the horizontal frame 41b is provided on the upper or lower side or any one of them and is fixed to the upper or lower joint part, the same effect as the joint damping panel 40b can be exhibited.

図22(d)は、図21(a)に示す汎用制震パネル40cの正面詳細図で、例えば、ビーズ法の半硬質発泡合成樹脂板体1sの表面側に、成型時に格子状の緩衝用凹凸部1tを設けて変形時の反りやねじれを抑制し、効果的な弾性変形、復元をさせる工夫例である。この緩衝用凹凸部1tの断面形状は後に説明する図22(e)に示す。又、該緩衝用凹凸部1tの形状や大きさや、表裏面側の付形位置も特に限定は無く、樹脂の種類、発泡倍率、厚み、緩衝用板体寸法、及び弾性変形や復元量等から適宜設計すればよい。さらに、該緩衝用凹凸部1tは、長尺制震パネルや仕口制震パネルにも適用でき、また、前記した実施態様7や実施態様8における各種の緩衝用板体にも適宜適用できる。この緩衝用凹凸部1tの採用は、弾性変形、復元と制震効果の更なる向上が得られるので望ましい。   FIG. 22 (d) is a detailed front view of the general-purpose vibration control panel 40c shown in FIG. 21 (a). For example, on the surface side of the bead-method semi-rigid foam synthetic resin plate 1s, a lattice-like buffer for molding is formed. This is a contrivance example in which an uneven portion 1t is provided to suppress warping and twisting during deformation, and to perform effective elastic deformation and restoration. The cross-sectional shape of the buffering uneven portion 1t is shown in FIG. Also, the shape and size of the bumpy uneven portion 1t and the shaping positions on the front and back sides are not particularly limited. From the type of resin, the expansion ratio, the thickness, the size of the buffer plate, and the amount of elastic deformation and restoration, etc. What is necessary is just to design suitably. Further, the buffering uneven portion 1t can be applied to a long vibration control panel and a joint vibration control panel, and can also be appropriately applied to various buffer plates in the above-described Embodiment 7 and Embodiment 8. Adoption of this buffering uneven portion 1t is desirable because further improvement in elastic deformation, restoration and damping effect can be obtained.

図22(e)は、図21(a)のB−B断面図であって、汎用制震パネル40cの組立て断面図である。該汎用制震パネル40cにおける押込固定具5での止着構造は、先記した長尺制震パネル40aと同等の構造からなる。この汎用制震パネル40cは、施工部位に限定が無く、各種の仕口部や垂壁27や腰壁28や屋根や天井裏の要部等、構造躯体4の状況に応じ適宜形状設計し採用すればよい。従来の制震装置が梃子等の力の伝達媒体装置の作動上、階高や柱間の必要寸法が規定されるが、これらの制約がなく、新築、既築を問わず、又、様々な部位や様々な寸法、形状等、自由度の高い設計、施工が可能となる。   FIG.22 (e) is BB sectional drawing of Fig.21 (a), Comprising: It is an assembly sectional view of the general purpose damping panel 40c. The fixing structure of the general-purpose vibration control panel 40c with the pressing fixture 5 is the same as that of the long vibration control panel 40a described above. The general-purpose seismic control panel 40c is not limited in the construction site, and is appropriately designed and adopted according to the situation of the structural housing 4 such as various joints, the hanging wall 27, the waist wall 28, the main part of the roof and the ceiling, etc. do it. Conventional seismic control devices define the height of the floor and the required dimensions between the pillars for the operation of the transmission medium device such as a lever, but there are no restrictions on these, regardless of whether it is a new construction or an existing construction. Design and construction with a high degree of freedom, such as parts, various dimensions, and shapes, are possible.

かくして、本発明の制震パネル40(長尺制震パネル40a、仕口制震パネル40b、汎用制震パネル40cを含む)は、配設、装着した壁面が弾性変形し、弾性復元することにより、非装着の壁面の変形や震動をも吸収、抑制させることができることから建物躯体50全体の制震効果が良好に発揮されるのである。はた、長尺制震パネル40a、仕口制震パネル40b、汎用制震パネル40cは、それぞれ、施工上や性能上に特徴があり、この特性を活かし1建物の耐・制震設計に際して、施工部位毎に最適の制震パネル40を選定すれば、さらに望ましい耐・制震設計が可能となり望ましい。   Thus, the seismic control panel 40 (including the long seismic control panel 40a, the joint seismic control panel 40b, and the general-purpose seismic control panel 40c) of the present invention is provided by elastically deforming and restoring the elastic wall of the disposed and mounted walls. Since the deformation and the vibration of the non-mounted wall surface can be absorbed and suppressed, the seismic control effect of the entire building housing 50 can be satisfactorily exhibited. The long seismic control panel 40a, joint seismic control panel 40b, and general-purpose seismic control panel 40c have characteristics in construction and performance, respectively. If the optimum vibration control panel 40 is selected for each construction site, it is desirable because a more desirable anti-seismic design is possible.

又、木造の耐震等級1の構造躯体4が有する耐震性の一指標である層間変位角度(例:1/30rad)を超える例えば層間変位角度(例:1/20rad)程度の被災にも耐える抗張力の高い半硬質発泡合成樹脂板体1sやゴム状弾性板体20等の緩衝用板体を使用した制震パネル40としておけば、制震パネル40自体の損傷が抑制されて、数次の中地震等の被災でもメンテナンスフリーで性能が維持され、長期に安定した制震効果を発揮することが期待される。又、本制震パネル40の設計は、従来の制震装置の設計方法と変わらず、最も効果的な外壁面や間仕切り壁面等の壁面やその他の仕口部に、建物の剛心、重心、偏心率等から少なくともX方向とY方向のバランスを考慮し配置される。制震パネル40の設置数は多いほど建物躯体50全体の制震効果のバランスが発揮されやすいので、弱い制震性能を有する制震パネル40を多数設けることが高耐久性や安全性からも望ましい。これは、制震パネルネル40の一個当たりのコストが安価であることから初めて可能となる。又、従来の制震装置の性能限界とされる1階部分の低い制震効果の課題が改善されるのみならず、2階部以上の制震効果も従来の制震装置を上回る施工が期待される。
現在、長期優良住宅への志向が高まっているが、高耐久性面から、耐震等級を3等級にアップして開口部(窓、出入り口等)が狭く、少く、暗い開放感の少ない住宅が常態化している。しかし、本発明を採用した耐・制震性外断熱住宅や、耐・制震内断熱住宅、及び本発明の制震パネルを用いた住宅においては、構造躯体の耐震等級を1等級にしたと仮定しても、良好な耐・制震性が付加されることから地震の揺れや損傷が抑制されて、耐久性や居住性等の向上が期待され、今後の長期優良住宅の選択肢をより広げることができることが期待される。
Also, the tensile strength that can withstand the damage of the interlaminar displacement angle (example: 1/20 rad) exceeding the interlaminar displacement angle (example: 1/30 rad), which is one index of seismic resistance of the wooden structural frame 4 of earthquake resistance grade 1 If the damping panel 40 using a shock absorbing plate body such as the semi-rigid foam synthetic resin plate body 1s or the rubber-like elastic board body 20 having a high height is used, damage to the damping panel 40 itself is suppressed, It is expected to maintain maintenance-free performance even in earthquakes and other disasters, and to exhibit stable seismic control effects over the long term. In addition, the design of the seismic control panel 40 is the same as the design method of the conventional seismic control device, and the most effective outer wall surface, partition wall surface, etc. In consideration of the eccentricity and the like, at least the balance in the X direction and the Y direction is taken into consideration. As the number of installation of the vibration control panels 40 increases, the balance of the vibration control effect of the entire building housing 50 is more easily demonstrated. Therefore, it is desirable from the viewpoint of high durability and safety to provide a large number of vibration control panels 40 having weak vibration control performance. . This is possible for the first time because the cost per seismic control panel 40 is low. In addition, not only the problem of low seismic control effect on the first floor, which is considered to be the performance limit of the conventional seismic control device, is improved, but also the seismic control effect on the second floor or higher is expected to exceed the conventional seismic control device. Is done.
Currently, there is a growing preference for long-term excellent housing, but from the viewpoint of high durability, the earthquake resistance grade has been increased to 3 grades, the openings (windows, doorways, etc.) are narrow, and there are few, dark houses with little openness. It has become. However, the seismic rating of the structural frame is assumed to be 1 in the case of the heat-resistant and anti-seismic outer heat-insulated housing adopting the present invention, the heat-resistant and inner heat-insulated housing, and the housing using the vibration control panel of the present invention. Assuming that good earthquake resistance is added, earthquake shaking and damage are suppressed, and durability and comfort are expected to be improved. It is expected to be possible.

1 発泡合成樹脂板体
1a 表面補強材
1b せん断貫通孔
1c せん断破断線
1d 止着貫通穴
1f 相差し継手
1h 抜き穴
1n 弾性接着剤
1r 硬質発泡合成樹脂板体
1s 半硬質発泡合成樹脂板体
1t 緩衝用凹凸部
1u 押込固定具付発泡合成樹脂板体
1w 装着凹部
2 特殊螺子釘
2a 釘頭
2b 釘胴部
2c カシメ部
2d 弾性用凹凸部
3 押込補助突起
3´ 押込用突起
x 筋状突起
y 連続筋状突起
z 細筋状突起
4 構造躯体
4x 柱間空間
4a 柱間大空間
4b 柱間小空間
5 押込固定具
5a 突起部
5b 基端部
5c 突起部先端
5d 貫通孔
5e 先導部
5f インナー部
5g 細釘
5h 中空部
5m 芯材部
5n 弾性体
5q 凹入部
5r 筋状突起
5s 係止穴
5t 筋状凹溝
5u 鍔
5´ 固定脚部付押込固定具
6 固定脚部
6a 補助脚部
7 試験躯体
7a 試験躯体
7b 試験躯体
7c 試験躯体
8 柱
8a 止着架材
9 間柱
10 土台
11 横架材
12 ホゾ差し
13 基礎
14 通気胴縁
14a 押込突起付通気胴縁
14c 角部
15 構造用面材
16 止着材
16a 丸釘
16b 段付螺子釘
16c T型金物
16d 螺子釘
16e 六角ボルトナット
17 外壁材
19 制震枠体
19a 縦基材
19b 横基材
20 ゴム状弾性板体
21 突起部を有さない押込固定具
22 透湿防水シート
23 気密テープ
24 胴縁受け桟木
25 裂断部
25a 裂断痕跡
26 破断塊
27 垂れ壁
28 腰壁
29 凹部
30 押圧樹脂領域
31 圧縮応力分散領域
32 押圧力
33 嵌溝
34 埋没深さ
35 有効押圧面積
36 引き込み応力曲面
40 制震パネル
40a 長尺制震パネル
40b 仕口制震パネル
40c 汎用制震パネル
41 制震フレーム
41a 縦フレーム
41b 横フレーム
41c 補助フレーム
41d 制震補強材
41e 湾曲形状
41f 角隅カット
42 パッチワークシート
43 テープ状シート材
50 建物躯体
51 層間変位角度
52 層間変位量
53 開口部
54 アンカーボルト
55 床コンクリート
56 標点位置
60 充填断熱材
61 内装材
62 床材
DESCRIPTION OF SYMBOLS 1 Foam synthetic resin board 1a Surface reinforcement 1b Shear through-hole 1c Shear fracture line 1d Fastening through-hole 1f Interphase joint 1h Drain hole 1n Elastic adhesive 1r Hard foam synthetic resin board 1s Semi-rigid foam synthetic resin board 1t Buffering uneven part 1u Foamed synthetic resin plate with pressing fixture 1w Mounting recess 2 Special screw nail 2a Nail head 2b Nail body 2c Caulking part 2d Elastic uneven part 3 Pushing auxiliary protrusion 3 'Pushing protrusion x Strike protrusion y Continuous streak projection z Fine streak projection 4 Structure housing 4x Inter-column space 4a Large inter-column space 4b Small inter-column space 5 Pushing fixture 5a Protruding part 5b Base end part 5c Protruding part tip 5d Through hole 5e Leading part 5f Inner part 5g Nail 5h Hollow part 5m Core part 5n Elastic body 5q Recessed part 5r Streaky protrusion 5s Locking hole 5t Streaky concave groove 5u 鍔 5 'Pushing fixture with fixed leg part 6 Fixed leg part 6a Supplement Leg 7 Test housing 7a Test housing 7b Test housing 7c Test housing 8 Pillar 8a Fastening material 9 Intermediary column 10 Base 11 Horizontal material 12 Hose insert 13 Base 14 Venting trunk edge 14a Venting trunk edge 14c corner part 15 Structure Surface material 16 Fastening material 16a Round nail 16b Stepped screw nail 16c T-shaped hardware 16d Screw nail 16e Hexagon bolt nut 17 Outer wall material 19 Damping frame 19a Vertical substrate 19b Horizontal substrate 20 Rubber elastic plate 21 Projection Push-in fixing tool having no part 22 Moisture permeable waterproof sheet 23 Airtight tape 24 Trunk edge receiving pier 25 Broken part 25a Broken mark 26 Broken mass 27 Dripping wall 28 Waist wall 29 Recessed part 30 Pressure resin area 31 Compressive stress dispersion area 32 Pressing force 33 Fitting groove 34 Burying depth 35 Effective pressing area 36 Retraction stress curved surface 40 Damping panel 40a Long damping panel 40b Panel 40c General-purpose damping panel 41 Damping frame 41a Vertical frame 41b Horizontal frame 41c Auxiliary frame 41d Damping reinforcement 41e Curved shape 41f Corner corner cut 42 Patchwork sheet 43 Tape-like sheet material 50 Building frame 51 Interlaminar displacement angle 52 Interlaminar displacement Quantity 53 Opening 54 Anchor bolt 55 Floor concrete 56 Marking position 60 Filling heat insulating material 61 Interior material 62 Floor material

Claims (6)

発泡合成樹脂板体の外壁面側に外装壁構成材を配設させる前に、発泡合成樹脂板体を構造躯体に止着材により止着するための押込固定具であって、基端部と該基端部から突出した突起部を有し、該基端部の略中央に止着材を貫通させる貫通孔を有し、該基端部の周縁が、該押込固定具表面に対して90度より小の曲面及び/又は平面を有し、該基端部の貫通孔から貫通させる止着材で該突起部を該発泡合成樹脂板体中に押込み、埋没させて、該発泡合成樹脂板体を該構造躯体に螺着により止着する押込固定具を用いて
略3角形状の発泡合成樹脂板体を、縦フレーム及び横フレームに止着してなる仕口制震パネルであって、
該発泡合成樹脂板体の表裏面のうち少なくともいずれか一方に前記押込固定具、該フレームをこの順に配し、
該フレーム、該押込固定具、及び該発泡合成樹脂板体に止着材を螺着して貫通させ、
これにより該押込固定具の突起部を該発泡合成樹脂板体中に押込み、埋没させることにより、これら3者を一体化してなる仕口制震パネル。
Before placing the exterior wall constituent material on the outer wall surface side of the foamed synthetic resin plate, it is a push fixture for fastening the foamed synthetic resin plate to the structural housing with a fastening material, A protrusion projecting from the base end, and a through-hole through which a fastening material passes through substantially the center of the base end, the periphery of the base end being 90 with respect to the surface of the push-in fixture. The foamed synthetic resin plate having a curved surface and / or plane smaller than the above-mentioned degree, and being pushed and buried in the foamed synthetic resin plate body with a fastening material penetrating from the through hole of the base end portion Using a push fixture that fastens the body to the structural housing by screwing ,
It is a joint damping panel formed by fixing a substantially triangular foamed synthetic resin plate to a vertical frame and a horizontal frame,
Arrange the push fixture and the frame in this order on at least one of the front and back surfaces of the foamed synthetic resin plate,
A fastening material is screwed and passed through the frame, the push-in fixture, and the foamed synthetic resin plate,
Thus, a joint damping panel formed by integrating the three members by pressing and embedding the protruding portion of the pressing fixture into the foamed synthetic resin plate.
フレーム、押込固定具、及び発泡合成樹脂板体の3者を一体化する前に、予め該フレームと該押込固定具を予め一体化させ請求項に記載の仕口制震パネル。 Frame, push the fixture, and foaming synthetic before integrating the three parties of the resin plate body, Joint Seismic panel according to claim 1 which has been previously integrated in advance the frame and pressing write fixture. 一対の前記押込固定具を該発泡合成樹脂板体の表裏両面上にそれぞれ相対向するように配し、該相対向する一対の押込固定具を貫通する止着材にて螺着し、該相対向する一対の押込固定具の突起部が、該発泡合成樹脂板体の表裏両面の対向する位置で該発泡合成樹脂板体中に押込まれ、埋没されている請求項又はに記載の仕口制震パネル。 A pair of the pressing fixtures are arranged so as to face each other on both the front and back surfaces of the foamed synthetic resin plate body, screwed with a fastening material penetrating the pair of opposing pressing fixtures, and the relative protruding portions of the pair of push fixture countercurrent is forced into the foamed synthetic resin plate in the body at a position where the front and back surfaces of the opposed foamed synthetic resin plate body rare, specifications according to claim 1 or 2 are buried Mouth vibration control panel. 発泡合成樹脂板体の一部又は全部を半硬質発泡合成樹脂板体、及び/又は、ゴム状弾性板体に置換した請求項乃至のいずれか1項に記載の仕口制震パネル。 Foamed synthetic resin board member semirigid foam synthetic resin plate body part or the whole of, and / or, Joint Seismic according to any one of Motomeko 1 to 3 was replaced with a rubber-like elastic plate member panel. 押込固定具が、金属、木、発泡又は非発泡の合成樹脂、及びゴム、エラストマー等のゴム状弾性体から選ばれる1以上の素材により形成されてなる請求項1乃至4のいずれか1項に記載の仕口制震パネル。The push-in fixture is formed of one or more materials selected from rubber-like elastic bodies such as metal, wood, foamed or non-foamed synthetic resin, and rubber and elastomer. The joint seismic control panel described. 押込固定具が、埋没深さを規定する固定脚部を設けてなる請求項1乃至5のいずれか1項に記載の仕口制震パネル。The joint seismic control panel according to any one of claims 1 to 5, wherein the indentation fixture is provided with a fixed leg portion that defines a buried depth.
JP2011081561A 2010-08-18 2011-04-01 Indentation fixture and fastening structure using the same Expired - Fee Related JP5787576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081561A JP5787576B2 (en) 2010-08-18 2011-04-01 Indentation fixture and fastening structure using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010182944 2010-08-18
JP2010182944 2010-08-18
JP2011081561A JP5787576B2 (en) 2010-08-18 2011-04-01 Indentation fixture and fastening structure using the same

Publications (3)

Publication Number Publication Date
JP2012062745A JP2012062745A (en) 2012-03-29
JP2012062745A5 JP2012062745A5 (en) 2014-06-19
JP5787576B2 true JP5787576B2 (en) 2015-09-30

Family

ID=46058720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081561A Expired - Fee Related JP5787576B2 (en) 2010-08-18 2011-04-01 Indentation fixture and fastening structure using the same

Country Status (1)

Country Link
JP (1) JP5787576B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929839B2 (en) 2014-08-08 2018-03-27 Futurewei Technologies, Inc. Device, network, and method for communications with fast adaptive transmission and reception
CN114396128B (en) * 2022-03-04 2024-03-08 广州工程总承包集团有限公司 External protruding light partition wall with detachable construction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931867B2 (en) * 2003-02-05 2007-06-20 マックス株式会社 Attachment for installation of insulation materials and installation method
JP3787782B2 (en) * 2003-07-24 2006-06-21 ナイス株式会社 Thermal insulation panel
JP4944441B2 (en) * 2005-12-28 2012-05-30 日鉄住金鋼板株式会社 Drill screw

Also Published As

Publication number Publication date
JP2012062745A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
CA2678586C (en) Insulated modular building frame
US20090211194A1 (en) System and method for reinforcing structures
US20090255213A1 (en) Sandwich panel with closed edge and methods of fabricating
JP2020534458A (en) Modular building system that can be deployed quickly
JP5787576B2 (en) Indentation fixture and fastening structure using the same
JP2012526936A (en) Flexible material
JP4927424B2 (en) Wall structure and its construction method
US20090313926A1 (en) Connection for sandwich panel and foundation
JP2018184743A (en) Joint structure of steel column and beam and wooden building
CN206279688U (en) A kind of shockproof sound-insulating composite wallboard structure
JP4473771B2 (en) Exterior wall structure
JP4414323B2 (en) Floor panel support legs and floor panel construction method
JP2011157728A (en) Damper and wood construction using the same
JP2006057388A (en) Base isolation construction method of building
CN106522461B (en) A kind of shockproof sound-insulating composite wallboard structure
JP2021113474A (en) Heat-insulating and waterproof roof structure and construction method of the same
JP4271123B2 (en) Soundproof floor structure, combination of soundproof flooring material and konneta, and construction method of soundproof floor structure
JP2008169608A (en) Bearing wall
JP2005126955A (en) Anti-seismic strengthening structure and seismic strengthening method
WO2024029210A1 (en) Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material
JPH09170284A (en) Bearing wall panel and bearing wall structure
JP5671169B1 (en) Building and construction method
US20140260053A1 (en) Columnar structural component and method of forming
JP2006104916A (en) Connection hardware
JP2001123638A (en) External wall modification structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5787576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees