JP5786116B2 - Photocatalytic filter and water purification device - Google Patents

Photocatalytic filter and water purification device Download PDF

Info

Publication number
JP5786116B2
JP5786116B2 JP2010237005A JP2010237005A JP5786116B2 JP 5786116 B2 JP5786116 B2 JP 5786116B2 JP 2010237005 A JP2010237005 A JP 2010237005A JP 2010237005 A JP2010237005 A JP 2010237005A JP 5786116 B2 JP5786116 B2 JP 5786116B2
Authority
JP
Japan
Prior art keywords
photocatalyst
light
filter
reflective material
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010237005A
Other languages
Japanese (ja)
Other versions
JP2012086195A (en
Inventor
智宏 黒羽
智宏 黒羽
和裕 丹羽
和裕 丹羽
由浩 辻
由浩 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2010237005A priority Critical patent/JP5786116B2/en
Publication of JP2012086195A publication Critical patent/JP2012086195A/en
Application granted granted Critical
Publication of JP5786116B2 publication Critical patent/JP5786116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、水質浄化装置に使用される、光触媒を利用したフィルタおよびそのフィルタを用いた水質浄化装置に関するものである。   The present invention relates to a filter using a photocatalyst and a water purification device using the filter used in a water purification device.

光触媒の有機物分解作用は約30年前に見出された。酸化チタンなどある種の半導体は光照射で電子を励起、正孔を生成し、その電荷担体が半導体表面でスパーオキサイドアニオンやヒドロキシラジカルを生成する。これらが有機分子を攻撃し、有機物を分解する。   The organic matter decomposition action of the photocatalyst was found about 30 years ago. Certain semiconductors such as titanium oxide excite electrons and generate holes when irradiated with light, and the charge carriers generate peroxide anions and hydroxy radicals on the semiconductor surface. These attack organic molecules and decompose organic matter.

この種の作用をもつ半導体材料を光触媒と呼んでいる。特に酸化チタンは、光触媒の代表的な材料の一つである。   A semiconductor material having this kind of action is called a photocatalyst. In particular, titanium oxide is one of typical materials for photocatalysts.

今までにこの光触媒による有機分解作用を利用した製品やデバイスの提案が数多くされており、多様な、フィルタ、デバイスが開発されている。   There have been many proposals for products and devices utilizing the organic decomposition action of this photocatalyst, and various filters and devices have been developed.

こうしたフィルタ、デバイスでは、光触媒による有機物分解活性向上のために、有機物を吸着剤に吸着させて、光触媒近辺の有機物濃度を相対的に高める濃縮効果によって、有機物成分をより効果的に分解する方法があり、その中でもエチレンなど特定の物質に対する吸着剤、例えばハイシリカゼオライトと組み合わせることで、対象とする有機物の分解速度を向上させているものもある(たとえば特許文献1、2参照)。   In such filters and devices, in order to improve the organic substance decomposition activity by the photocatalyst, there is a method of more effectively decomposing the organic component by the concentration effect of adsorbing the organic substance to the adsorbent and relatively increasing the organic substance concentration near the photocatalyst. Among them, there are some which improve the decomposition rate of the target organic matter by combining with an adsorbent for a specific substance such as ethylene, for example, high silica zeolite (for example, see Patent Documents 1 and 2).

さらには、吸着剤による濃縮効果に加えて、フィルタの光入射面での反射による光損失を低減するために、光を吸収する層を表面に設けることで、光触媒への受光効率を高め、脱臭効果を高めたものもある(たとえば特許文献3参照)。   Furthermore, in addition to the concentration effect by the adsorbent, in order to reduce the light loss due to reflection at the light incident surface of the filter, a light absorbing layer is provided on the surface to increase the light receiving efficiency to the photocatalyst and to deodorize it. Some have improved effects (for example, see Patent Document 3).

特開平1−189322号公報JP-A-1-189322 特開平7−16473号公報JP 7-16473 A 特開2008−272651号公報JP 2008-272651 A

しかしながら、前記従来例のような吸着剤による有機物濃縮は、吸着剤の細孔の大きさ以上の物質に対する効果は期待できないという課題を有していた。   However, the organic substance concentration by the adsorbent as in the conventional example has a problem that an effect on a substance larger than the pore size of the adsorbent cannot be expected.

一般に用いられる活性炭やゼオライトなどの吸着剤の細孔は、大きくとも数100nm程度であり、分子レベルの大きさの物質を吸着することはできるものの、細菌など、数マイクロメートル以上の物体では、吸着剤による濃縮効果は期待できない。   The pores of adsorbents such as activated carbon and zeolite, which are generally used, are about several hundred nm at most, and can adsorb substances of molecular size, but they are adsorbed on objects of several micrometers or more such as bacteria. The concentration effect by the agent cannot be expected.

また、吸着剤による濃縮効果を高めるためには、光触媒に比して、吸着剤の量を多くせねばならず、そのためフィルタ表面での光の反射や吸収による光損失が無視できなくなり、触媒組成の異なる2層にするなどの工夫が必要となる課題を有していた。   In addition, in order to enhance the concentration effect by the adsorbent, the amount of adsorbent must be increased compared to the photocatalyst, so light loss due to reflection and absorption of light on the filter surface cannot be ignored, and the catalyst composition There was a problem that required a device such as making two layers different from each other.

そこで本願発明では、有機物分解だけではなく、殺菌など微生物のような、分子レベルのサイズに比して大きな物体にも、光触媒の効果を高めることを目的として、吸着剤による濃縮効果を利用することなく、フルタ表面で混合物が光を吸収してしまうという光損失を低減し光触媒の効果を最大限に発揮できるフィルタ、および水質浄化装置を提共することを目的とする。 Therefore, in the present invention, not only the decomposition of organic matter but also the concentration effect by the adsorbent is used for the purpose of enhancing the effect of the photocatalyst on the large object compared to the molecular size such as microorganisms such as sterilization. It is another object of the present invention to provide a filter and a water purification device that can reduce the light loss that the mixture absorbs light on the surface of the filter and that can maximize the effect of the photocatalyst.

前記従来の課題を解決するため、本発明の光触媒フィルタは、少少なくとも光触媒と、その光触媒が吸収する波長のうち最も長い波長として400nmの波長の光を、89.5%以上反射する反射材料としての石英粒子と、これらを基材に結着するためのバインダーとからなる触媒材料を用い、基材に担持させた光触媒フィルタであって、前記基材に担持した光触媒と、前記反射材料と、バインダーとの重量に占める、前記反射材料の重量%が8%である光触媒フィルタである。
In order to solve the conventional problem, the photocatalyst filter of the present invention includes at least a photocatalyst and a reflective material that reflects 89.5 % or more of light having a wavelength of 400 nm as the longest wavelength among the wavelengths absorbed by the photocatalyst. and quartz particles, these the catalyst material used comprising a binder for binding the substrate, a photocatalyst filter is supported on a substrate, the photocatalyst supported on said substrate, said reflective material If account the weight of the binder, weight percent of the reflective material is a photocatalytic filter is 8%.

本構成により、照射される光の利用効率を促進することができ、吸着剤を利用することなく、混合した反射材料としての石英粒子によって、光触媒による有機物分解や殺菌等の効果を最大限に高めることができる。 With this configuration, it is possible to promote the use efficiency of irradiated light, and to maximize the effects of organic matter decomposition and sterilization by the photocatalyst by using quartz particles as a mixed reflective material without using an adsorbent. be able to.

本発明の光触媒フィルタによれば、照射される光の利用効率を促進することで、吸着剤を利用することなく、光触媒による有機物分解や殺菌等の効果を高めることができる。   According to the photocatalyst filter of the present invention, by promoting the utilization efficiency of the irradiated light, it is possible to enhance the effects of organic matter decomposition and sterilization by the photocatalyst without using an adsorbent.

本発明の実施の形態1に使用した光触媒フィルタの構成図Configuration diagram of the photocatalytic filter used in Embodiment 1 of the present invention 本発明の実施の形態1に試用した光触媒の吸収端の波長の求め方の図Diagram of how to determine the wavelength of the absorption edge of the photocatalyst used in Embodiment 1 of the present invention 本発明の実施の形態2の水質浄化装置図The water purification apparatus figure of Embodiment 2 of this invention 本発明の実施の形態2の水質浄化装置使用構成図Configuration of using a water purification device according to Embodiment 2 of the present invention

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(光触媒フィルタの作製方法)
測定に用いたフィルタの作製方法は、以下に示すとおりである。
(Method for producing photocatalytic filter)
The method for producing the filter used for the measurement is as follows.

光触媒と反射材料とを反射材料/光触媒=2.6〜17.7%にて混合したもの5gに、1M塩酸(和光純薬製を純水にて希釈)25g、エタノール特級(和光純薬製)10gを加え、氷冷にて10分ほど撹拌した。   5 g of photocatalyst and reflective material mixed at reflective material / photocatalyst = 2.6 to 17.7%, 25 g of 1M hydrochloric acid (diluted with pure water from Wako Pure Chemical Industries), ethanol special grade (manufactured by Wako Pure Chemical Industries, Ltd.) ) 10 g was added, and the mixture was stirred for about 10 minutes under ice cooling.

その後、テトラエトキシシラン(信越化学製)4.35gを加えて、30分間撹拌し、10cm□のフィルタ基材(ユニチカ製ガラスクロス:V635HT)を浸漬させ、室温にて1時間、次に80℃にて1時間、乾燥させた。   Thereafter, 4.35 g of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was added, stirred for 30 minutes, and a 10 cm □ filter substrate (Unitika glass cloth: V635HT) was immersed, and then at room temperature for 1 hour and then at 80 ° C For 1 hour.

このようにして作製したフィルタを、純水にて洗浄した後、15W型ブラックライトブルー蛍光灯(パナソニック製:FL15BL−B)を用い、361nmの紫外光強度が2.0mW/cm2以上の照射下にて24時間以上静置した。 The filter thus prepared was washed with pure water, and then irradiated with an ultraviolet light intensity at 361 nm of 2.0 mW / cm 2 or more using a 15 W type black light blue fluorescent lamp (manufactured by Panasonic: FL15BL-B). It left still for 24 hours or more below.

紫外線強度は、紫外線積算光量計(ウシオ電機製:UIT−250)に受光器(ウシオ電機製:UVD−S365)を取り付けて測定した。   The ultraviolet intensity was measured by attaching a light receiver (Ushio Electric: UVD-S365) to an ultraviolet integrated light meter (Ushio Electric: UIT-250).

今回用いた光触媒は、堺化学工業製のSSP−25の表面をフッ素処理することで、表面の水酸基の一部をフッ素に置き換えた、フッ化酸化チタンである。   The photocatalyst used this time is fluorinated titanium oxide in which the surface of SSP-25 manufactured by Sakai Chemical Industry is treated with fluorine to replace part of the hydroxyl groups on the surface with fluorine.

表1は、今回用いた反射材料の品番並びに種別、粒径、主材料であるに酸化ケイ素の純度を示した表である。   Table 1 is a table showing the product number, type, particle size, and purity of silicon oxide as the main material of the reflective material used this time.

Figure 0005786116
Figure 0005786116

いずれの反射材も組成比で99.9%以上が二酸化ケイ素からなる材料を用いた。   As each reflector, a material composed of silicon dioxide with a composition ratio of 99.9% or more was used.

(反射率測定)
反射率の測定は、紫外可視分光光度計(日本分光製:V−550)に積分球を装着し、粉末試料セルホルダを用いて測定した。
(Reflectance measurement)
The reflectance was measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation: V-550) equipped with an integrating sphere and using a powder sample cell holder.

いずれの反射材料も、用いた光触媒の吸収端である400nm以下の光を反射している。   Any of the reflective materials reflects light of 400 nm or less, which is the absorption edge of the used photocatalyst.

表2は、各波長における反射率を示した表である。   Table 2 is a table showing the reflectance at each wavelength.

Figure 0005786116
Figure 0005786116

(光触媒活性の測定)
光触媒の活性評価は、JIS R 1704、ファインセラミックス−活性酸素生成能力測定による光触媒材料の水質浄化性能試験方法に従った。
(Measurement of photocatalytic activity)
The evaluation of the activity of the photocatalyst was in accordance with JIS R 1704, a test method for water purification performance of the photocatalyst material by measuring fine ceramics-active oxygen generation ability.

その方法の概略を以下に記載する。   The outline of the method is described below.

JIS R 1704記載の試験装置に、上記方法にて作製した光触媒フィルタをセットして、20W型ブラックライトブルー蛍光灯(パナソニック製:FL20S・BL−B)2本を用い、フィルタ面での、361nmの紫外光強度が2.0mW/cm2となるように調整した。 The photocatalytic filter produced by the above method is set in the test apparatus described in JIS R 1704, and two 20W type black light blue fluorescent lamps (manufactured by Panasonic: FL20S / BL-B) are used, and the filter surface is 361 nm. The ultraviolet light intensity was adjusted to 2.0 mW / cm 2 .

次に、ジメチルスルホキシド10mg/Lの水溶液を500mL、試験装置に入れ、初期濃度測定のために10mL採取する。   Next, 500 mL of an aqueous solution of 10 mg / L of dimethyl sulfoxide is put into a test apparatus, and 10 mL is collected for initial concentration measurement.

その後、液流量が500mL/min となるようにポンプを作動させ、1時間光照射せずに循環し、暗所での吸着が飽和に達していることを確認してから、2時間光照射を行った。   Then, operate the pump so that the liquid flow rate becomes 500 mL / min, circulate without irradiating light for 1 hour, confirm that the adsorption in the dark has reached saturation, and then irradiate with light for 2 hours. went.

この間、30分ごとにサンプルを採取し、採取した溶液は液体クロマトグラフィーによってジメチルスルホキシドの濃度を測定し、その減少量から半減時間を計算した。   During this time, a sample was taken every 30 minutes, and the concentration of dimethyl sulfoxide was measured by liquid chromatography for the collected solution, and the half time was calculated from the decreased amount.

半減時間が早いほど、光触媒フィルタの活性が高いことを示すため、数値が小さいほど、光触媒フィルタの性能が高いこととなる。   The faster the half time, the higher the activity of the photocatalytic filter. Therefore, the smaller the numerical value, the higher the performance of the photocatalytic filter.

(実施の形態1)
上記、光触媒フィルタの作製方法に従って作製した、光触媒フィルタの構成を、図1を用いて説明する。
(Embodiment 1)
The structure of the photocatalyst filter produced according to the photocatalyst filter production method will be described with reference to FIG.

光触媒101としてフッ化酸化チタンを、反射材料102として表1に示した二酸化ケイ素を用いた。このとき、フィルタ基材103に担持される材料には、少なくとも、光触媒101、反射材料102、そしてバインダー104に用いたテトラエトキシシラン由来の二酸化ケイ素が含まれる。そのため、反射材料の混合比率は、式1に従って求めた。   Fluorine titanium oxide was used as the photocatalyst 101, and silicon dioxide shown in Table 1 was used as the reflective material 102. At this time, the material supported on the filter base material 103 includes at least the photocatalyst 101, the reflective material 102, and silicon dioxide derived from tetraethoxysilane used for the binder 104. Therefore, the mixing ratio of the reflective material was determined according to Equation 1.

反射材料の重量(%)
=反射材料の重量/(光触媒の重量+反射材料の重量+バインダーの重量)・・・式1
Reflective material weight (%)
= Weight of reflective material / (weight of photocatalyst + weight of reflective material + weight of binder) Formula 1

上記、光触媒フィルタの作製方法に従うと、分母の値は、バインダー104に用いたテトラエトキシシラン由来の二酸化ケイ素の質量が、1.255gと、光触媒101と反射材料102との混合物の重量が5gとを足した、6.255gとなる。   According to the above photocatalyst filter manufacturing method, the denominator value is 1.255 g of tetraethoxysilane-derived silicon dioxide used for the binder 104, and the weight of the mixture of the photocatalyst 101 and the reflective material 102 is 5 g. Is 6.255 g.

表3は、上記式1で求めた反射材料102の比率を変えたときの、上記光触媒活性の測定から求めたジメチルスルホキシド(DMSO)の半減時間を示したものである。上段にジメチルスルホキシド(DMSO)の半減時間、下段に、判定結果を○または×で示した。   Table 3 shows the half time of dimethyl sulfoxide (DMSO) obtained from the measurement of the photocatalytic activity when the ratio of the reflective material 102 obtained by the above formula 1 was changed. The upper half shows the half-life time of dimethyl sulfoxide (DMSO), and the lower half shows the determination result by ○ or ×.

Figure 0005786116
Figure 0005786116

判定基準は、比較例として用いた、反射材料を混合しない場合、すなわち光触媒のみのときのジメチルスルホキシド(DMSO)の半減時間、1.72時間より、小さいときを○、同じかそれより大きいときを×とした。   Judgment criteria are ○ when the reflective material used as a comparative example is not mixed, that is, when the dimethyl sulfoxide (DMSO) has a half time of 1.72 hours or less when it is only photocatalyst, and when it is the same or larger. X.

この結果が示すように、SIO17PB以外の材料ではすべて、反射材料102の混合比率が2%より大きく、12%より小さい範囲において、比較例である、光触媒101のみの半減時間より、反射材料102を混合したときの半減時間のほうが小さいことがわかった。   As shown in this result, in all materials other than SIO17PB, the reflective material 102 was compared with the half-time of only the photocatalyst 101 as a comparative example in the range where the mixing ratio of the reflective material 102 was larger than 2% and smaller than 12%. It was found that the half time when mixing was shorter.

また、反射材料102の混合比率が4%以上10%以下において、確実に半減時間が小さくなり、8%のとき、半減時間が最も小さくなった。   In addition, when the mixing ratio of the reflective material 102 is 4% or more and 10% or less, the half time is surely reduced, and when it is 8%, the half time is the shortest.

このことは、反射材料102によって反射された、照射光105の反射光106が光触媒101の照射光側からみて裏側に照射されることで、本来自らの影になって活用されなかった部分を有効に活用できるようになったからである。   This is because the reflected light 106 of the irradiation light 105 reflected by the reflective material 102 is irradiated on the back side as viewed from the irradiation light side of the photocatalyst 101, so that the part that was originally not used as a shadow of itself is effectively used. This is because it is now possible to use it.

表2からわかるように、SIO17PBは、光触媒101の吸収端である400nmにおいて、光を46.4%しか反射していないことから、反射材料102としての機能を十分に発揮していなかったと考えられる。   As can be seen from Table 2, SIO17PB reflects only 46.4% of light at 400 nm, which is the absorption edge of the photocatalyst 101. Therefore, it is considered that the function as the reflective material 102 was not sufficiently exhibited. .

したがって、少なくとも、光触媒101の吸収端の波長において、46.4%より反射率が大きくないと、反射材料102としての効果は示せない。   Therefore, at least at the wavelength of the absorption edge of the photocatalyst 101, unless the reflectance is larger than 46.4%, the effect as the reflective material 102 cannot be shown.

また、反射材料102として効果の見られた4つのうち、400nmでの反射率が最も小さいSIO18PBは、反射率が74.4%であることから、光触媒101の吸収端の波長において、反射率74.4%以上の反射材料102を用いることが望ましい。   In addition, among the four effective reflection materials 102, SIO 18 PB having the smallest reflectance at 400 nm has a reflectance of 74.4%, and thus the reflectance 74 at the wavelength of the absorption edge of the photocatalyst 101. It is desirable to use 4% or more of the reflective material 102.

図2に、光触媒の吸収端の求め方を示した。光触媒の吸収端の波長とは、光触媒が吸収できる波長のうち、最も長い波長のことであり、図2の反射率曲線の接線201と、吸収のない長波長域のベースライン202との交点203から求めることができる。図2の場合、交点203の垂線204から約395nmのところであると求められるが、この方法は誤差を含むため、長波長側で10nm刻みに繰上げすることと定義し、図2に示したフッ化酸化チタンの吸収端の波長は400nmであると読み取る。   FIG. 2 shows how to obtain the absorption edge of the photocatalyst. The wavelength of the absorption edge of the photocatalyst is the longest wavelength among the wavelengths that can be absorbed by the photocatalyst, and the intersection 203 between the tangent 201 of the reflectance curve in FIG. 2 and the base line 202 in the long wavelength region without absorption. Can be obtained from In the case of FIG. 2, although it is calculated | required that it is about 395 nm from the perpendicular line 204 of the intersection 203, since this method contains an error, it defines as carrying out to 10 nm increments on the long wavelength side, and the fluorination shown in FIG. It is read that the wavelength of the absorption edge of titanium oxide is 400 nm.

本発明の実施の形態1には、反射材料として、二酸化ケイ素を99.9%以上含む反射材料を用いたが、それ以外にも、ダイヤモンド、ジルコニア、アルミナ、アルミニウムなど、光触媒の吸収端の波長を反射する材料であればよい。特に二酸化ケイ素は、安価で、純度が高く、光の吸収が少ないことから望ましいが、不純物の混合によって吸収が増大することが多いため、99.9%以上の組成比を持つ材料が好ましい。中でも石英は、可視光から紫外光まで、幅広い領域での光吸収がほぼないことから、最も好ましい。   In Embodiment 1 of the present invention, a reflective material containing 99.9% or more of silicon dioxide is used as the reflective material. In addition, the wavelength of the absorption edge of the photocatalyst, such as diamond, zirconia, alumina, or aluminum, is used. Any material that reflects light may be used. In particular, silicon dioxide is preferable because it is inexpensive, has high purity, and absorbs little light. However, since absorption is often increased by mixing impurities, a material having a composition ratio of 99.9% or more is preferable. Among them, quartz is most preferable because it hardly absorbs light in a wide range from visible light to ultraviolet light.

今回光触媒としては、フッ化酸化チタンを用いたが、光触媒の種類としてはこれに限らず、酸化チタン、酸化タングステン、チタン酸ストロンチウムなど、種々の材料が利用可能である。ただし、光触媒の種類、組成が異なれば、吸収端の波長も異なるため、吸収端波長の短いものでは使えていた反射材料が、吸収端波長が長いものでは使えなくなることがある。   This time, fluorinated titanium oxide was used as the photocatalyst, but the type of photocatalyst is not limited to this, and various materials such as titanium oxide, tungsten oxide, and strontium titanate can be used. However, since the wavelength of the absorption edge varies depending on the type and composition of the photocatalyst, the reflective material that can be used with a short absorption edge wavelength may become unusable with a long absorption edge wavelength.

また、本発明は、光触媒に照射される光の利用効率を高めることが、フィルタ性能向上の理由であるため、光触媒の性能が高いほど、高い効果が望める。そのため、光触媒としては、有機物分解の活性に定評がある酸化チタンが望ましく、さらにはその表面の水酸基をフッ素で置き換えた、フッ化酸化チタンのほうが、通常の酸化チタンより有機物分解活性が高いため、より好ましい。   In addition, according to the present invention, it is the reason for improving the filter performance that the utilization efficiency of light irradiated to the photocatalyst is increased. Therefore, the higher the performance of the photocatalyst, the higher the effect can be expected. Therefore, as the photocatalyst, titanium oxide with a reputation for the activity of organic matter decomposition is desirable, and further, fluorinated titanium oxide in which the hydroxyl group on the surface is replaced with fluorine has higher organic matter decomposition activity than ordinary titanium oxide, More preferred.

基材と光触媒、反射材料とを担持させるために、バインダーとしてテトラエトキシシランを用いたが、これ以外にもテトラメトキシシラン、メチルトリメトキシシランなどのシリコンアルコキシドや、コロイダルシリカ、アルミナゾル、チタニアゾルなどの無機バインダーや、エポキシ樹脂やアクリル樹脂などの有機バインダーでも問題ない。   Tetraethoxysilane was used as a binder to support the substrate, photocatalyst, and reflective material, but other than this, silicon alkoxide such as tetramethoxysilane and methyltrimethoxysilane, colloidal silica, alumina sol, titania sol, etc. There are no problems with inorganic binders and organic binders such as epoxy resins and acrylic resins.

ただし、それ自体が光触媒に作用する光を吸収するバインダーは、光触媒への光照射の妨げになることから、反射材料と同様に、吸収が少ないものが望ましい。こうした観点から、加水分解によってシロキサン結合を作ることで、バインダー機能を果たす材料は、シロキサン結合が、可視光から紫外光まで幅広い領域での光吸収が少ないことから好ましく、その中でもテトラエトキシシランは、安価で、副生成物がエタノールであることから、工業的観点で好ましい。   However, the binder that absorbs the light acting on the photocatalyst itself hinders the light irradiation to the photocatalyst, and therefore, a binder that absorbs less light like the reflective material is desirable. From such a viewpoint, the material that fulfills the binder function by making a siloxane bond by hydrolysis is preferable because the siloxane bond has less light absorption in a wide range from visible light to ultraviolet light, and among them, tetraethoxysilane is Since it is cheap and the by-product is ethanol, it is preferable from an industrial viewpoint.

基材には、ガラスクロスを用いたが、それ以外にもガラス板やパンチングメタル、網、など、特に材質・形状にはよらない。ガラスクロスは、柔軟性や流体の通過など、フィルタ基材としての特性に加え、紫外光による劣化がないことから、紫外光照射下で使用される際に、特に好ましい。   Glass cloth was used as the base material, but other than that, there are no particular differences in the material and shape such as glass plate, punching metal, and net. Glass cloth is particularly preferable when used under ultraviolet light irradiation because it does not deteriorate due to ultraviolet light in addition to the properties as a filter base material such as flexibility and fluid passage.

(実施の形態2)
本発明の光触媒フィルタを用いた、水質浄化装置を、図3を用いて説明する。
(Embodiment 2)
A water purification apparatus using the photocatalytic filter of the present invention will be described with reference to FIG.

アクリル製の筐体301の側面に、石英ガラス板302を片側4枚、両側8枚になるようにはめ込み、光触媒フィルタ303を筐体301の中央部になるように配置した。筐体301の外部には、光源306を両側に配置し、筐体301と光源306との距離を変化することで、光の照射強度を変更できるようにした。また、筐体301の内部に水を流すために、片側に、入口側コネクタ304、その反対側に出口側コネクタ305を、図3に示すような配置にて設けた。   The quartz glass plate 302 was fitted on the side surface of the acrylic casing 301 so that four on one side and eight on both sides, and the photocatalytic filter 303 was arranged in the center of the casing 301. The light source 306 is arranged on both sides outside the housing 301, and the light irradiation intensity can be changed by changing the distance between the housing 301 and the light source 306. Further, in order to allow water to flow inside the housing 301, an inlet side connector 304 is provided on one side, and an outlet side connector 305 is provided on the opposite side in an arrangement as shown in FIG.

本発明では、図3に示した構成の装置を水質浄化装置とする。   In the present invention, the apparatus having the configuration shown in FIG. 3 is a water purification apparatus.

次に、本発明の水質浄化装置を使用する際の構成を、図4を用いて説明する。   Next, the structure at the time of using the water purification apparatus of this invention is demonstrated using FIG.

浄化するべき水を貯めておく、タンク401に、水流ポンプ402をつなぎ、その流れ後方に流量計403をつなぐ。流量計403の後方に流量調節用のバルブ404をつけ、その後ろに水質浄化装置405をつなぎ、そこで浄化された水は、タンク401に戻される。   A water flow pump 402 is connected to a tank 401 for storing water to be purified, and a flow meter 403 is connected to the rear of the flow. A flow rate adjusting valve 404 is attached to the rear of the flow meter 403, and a water quality purification device 405 is connected to the rear side of the flow meter 403, and the purified water is returned to the tank 401.

運転条件の1例を以下に記す。   An example of operating conditions is described below.

光触媒フィルタ303の面積を50cm2にし、両面から光を照射することで、100cm2とした。光源306には、30W型ブラックライトブルー蛍光灯(パナソニック製:FL30S・BL−B)2本を用い、フィルタ表面での光強度が2.0mW/cm2となるよう、光源306と筐体301との間隔を調整した。 The area of the photocatalytic filter 303 was 50 cm 2 , and light was applied from both sides to 100 cm 2 . As the light source 306, two 30 W type black light blue fluorescent lamps (manufactured by Panasonic: FL30S • BL-B) are used, and the light source 306 and the casing 301 are adjusted so that the light intensity on the filter surface becomes 2.0 mW / cm 2. The interval between and was adjusted.

次に、タンク401にジメチルスルホキシド10mg/Lの水溶液を500mL入れ、初期濃度測定のために10mL採取する。   Next, 500 mL of a 10 mg / L aqueous solution of dimethyl sulfoxide is placed in the tank 401, and 10 mL is collected for the initial concentration measurement.

その後、液流量が500mL/minとなるようにポンプを作動させ、1時間光照射せずに循環し、暗所での吸着が飽和に達していることを確認してから、2時間光照射を行った。   Then, operate the pump so that the liquid flow rate is 500 mL / min, circulate without irradiating light for 1 hour, confirm that the adsorption in the dark has reached saturation, and then irradiate with light for 2 hours. went.

この間、30分ごとにサンプルを採取し、採取した溶液は液体クロマトグラフィーによってジメチルスルホキシドの濃度を測定し、その減少量から半減時間を計算した。   During this time, a sample was taken every 30 minutes, and the concentration of dimethyl sulfoxide was measured by liquid chromatography for the collected solution, and the half time was calculated from the decreased amount.

光触媒としてフッ化酸化チタンを、反射材料としてSIO07PBを用い、反射材料の混合比率が8%となるように調整した光触媒フィルタにおいて、ジメチルスルホキシド(DMSO)の半減時間は、1.48時間であった。   In a photocatalytic filter prepared by using fluorinated titanium oxide as a photocatalyst and SIO07PB as a reflective material and adjusting the mixing ratio of the reflective material to 8%, the half time of dimethyl sulfoxide (DMSO) was 1.48 hours. .

この結果から、本発明の水質浄化装置によって、ジメチルスルホキシド(DMSO)が分解することが確認された。   From this result, it was confirmed that dimethyl sulfoxide (DMSO) was decomposed by the water purification apparatus of the present invention.

本発明では、有機物分解を対象とし、ジメチルスルホキシド(DMSO)の分解を行ったが、その他の有機物でもよく、また、水中の菌類などの殺滅にも利用できる。   In the present invention, dimethyl sulfoxide (DMSO) was decomposed for the purpose of decomposing organic matter. However, other organic matter may be used, and it can also be used for killing fungi in water.

本発明にかかる光触媒フィルタ及び水質浄化装置は、光触媒に照射される光の利用効率を促進するものであるので、飲料水、工業用水、海水等の浄化に使用される水質浄化装置として有用である。   The photocatalyst filter and the water purification device according to the present invention are useful as a water purification device used to purify drinking water, industrial water, seawater, etc., because they promote the utilization efficiency of light irradiated to the photocatalyst. .

101 光触媒
102 反射材料
103 フィルタ基材
104 バインダー
105 照射光
106 反射光
201 反射率曲線の接線
202 ベースライン
203 交点
204 垂線
301 筐体
302 石英ガラス板
303 光触媒フィルタ
304 入口側コネクタ
305 出口側コネクタ
306 光源
401 タンク
402 水流ポンプ
403 流量計
404 バルブ
405 水質浄化装置
DESCRIPTION OF SYMBOLS 101 Photocatalyst 102 Reflective material 103 Filter base material 104 Binder 105 Irradiation light 106 Reflected light 201 Reflection curve tangent 202 Baseline 203 Intersection 204 Perpendicular 301 Housing 302 Quartz glass plate 303 Photocatalyst filter 304 Inlet side connector 305 Outlet side connector 306 Light source 401 tank 402 water flow pump 403 flow meter 404 valve 405 water purification device

Claims (2)

少なくとも光触媒と、その光触媒が吸収する波長のうち最も長い波長として400nmの波長の光を、89.5%以上反射する反射材料としての石英粒子と、これらを基材に結着するためのバインダーとからなる触媒材料を用い、基材に担持させた光触媒フィルタであって、前記基材に担持した光触媒と、前記反射材料と、バインダーとの重量に占める、前記反射材料の重量%が8%である光触媒フィルタ。 At least a photocatalyst, a light having a wavelength of 400nm as the longest wavelength in the wavelength to which the photocatalyst to absorb, and the quartz particles as a reflective material that reflects more than 89.5%, for binding them to a substrate A photocatalytic filter supported on a base material using a catalyst material comprising a binder, wherein the weight percent of the reflective material is 8 % of the weight of the photocatalyst supported on the base material, the reflective material, and the binder. % Photocatalytic filter. 請求項1に記載の光触媒フィルタを用い、光触媒に作用する波長の光を出力する光源を備えた水処理用容器を有する、水質浄化装置。
The water purification apparatus which has the container for water treatment provided with the light source which outputs the light of the wavelength which acts on a photocatalyst using the photocatalyst filter of Claim 1 .
JP2010237005A 2010-10-22 2010-10-22 Photocatalytic filter and water purification device Expired - Fee Related JP5786116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010237005A JP5786116B2 (en) 2010-10-22 2010-10-22 Photocatalytic filter and water purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237005A JP5786116B2 (en) 2010-10-22 2010-10-22 Photocatalytic filter and water purification device

Publications (2)

Publication Number Publication Date
JP2012086195A JP2012086195A (en) 2012-05-10
JP5786116B2 true JP5786116B2 (en) 2015-09-30

Family

ID=46258423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237005A Expired - Fee Related JP5786116B2 (en) 2010-10-22 2010-10-22 Photocatalytic filter and water purification device

Country Status (1)

Country Link
JP (1) JP5786116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200010765A (en) * 2018-07-23 2020-01-31 (주)한경글로벌 Method for cleaning submerged membrane using photocatalyst and UV-scattering media

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109772398B (en) * 2017-11-13 2021-11-23 广州中国科学院沈阳自动化研究所分所 Immobilized F, N, Ag co-doped titanium dioxide photocatalyst and preparation method and application thereof
CN109179814B (en) * 2018-11-26 2024-06-14 南京紫江工程科技有限公司 Method for treating sewage by combined advanced oxidation
KR102409930B1 (en) * 2020-09-03 2022-06-16 세원인프라건설(주) eco-friendly protection block for both sides of river

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070415A (en) * 1999-09-01 2001-03-21 Denso Corp Photocatalyst filter
JP3991776B2 (en) * 2002-06-12 2007-10-17 株式会社デンソー Photocatalytic filter
JP2005007306A (en) * 2003-06-19 2005-01-13 Ngk Insulators Ltd Photocatalyst and production method therefor
JP2005230760A (en) * 2004-02-23 2005-09-02 Okaya Electric Ind Co Ltd Air cleaner
JP2008272616A (en) * 2007-04-25 2008-11-13 K2R:Kk Long-lived active oxygen water generating method and device using photocatalytic reaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200010765A (en) * 2018-07-23 2020-01-31 (주)한경글로벌 Method for cleaning submerged membrane using photocatalyst and UV-scattering media
KR102109560B1 (en) * 2018-07-23 2020-05-13 (주)한경글로벌 Method for cleaning submerged membrane using photocatalyst and UV-scattering media

Also Published As

Publication number Publication date
JP2012086195A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
Wang et al. Titanium incorporated with UiO-66 (Zr)-type Metal–Organic Framework (MOF) for photocatalytic application
Kuvarega et al. Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation
Li et al. Characterization and photocatalytic properties of titanium-containing mesoporous SBA-15
Araujo et al. Aerosol-assisted production of mesoporous titania microspheres with enhanced photocatalytic activity: the basis of an improved process
Apopei et al. Diclofenac removal from water by photocatalysis-assisted filtration using activated carbon modified with N-doped TiO2
JP5141846B2 (en) Ultraviolet oxidation apparatus, ultrapure water production apparatus using the same, ultraviolet oxidation method, and ultrapure water production method
EP1567259A2 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
JPWO2011049085A1 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
JP5786116B2 (en) Photocatalytic filter and water purification device
US20200101440A1 (en) Monolithic composite photocatalysts
Makama et al. Synthesis of CdS sensitized TiO2 photocatalysts: methylene blue adsorption and enhanced photocatalytic activities
Zhang et al. Morphology effect of honeycomb-like inverse opal for efficient photocatalytic water disinfection and photodegradation of organic pollutant
Sheikhsamany et al. Synthesis of novel HKUST-1-based SnO2 porous nanocomposite with the photocatalytic capability for degradation of metronidazole
Tran et al. Novel of TiO2/Ag3PO4/bentonite composite photocatalyst: preparation, characterization, and application for degradation of methylene blue in aqueous solution
RU2478413C1 (en) Composite photocatalyst for water or air treatment
Yang et al. Synthesis of Titanium Containing SBA‐15 and Its Application for Photocatalytic Degradation of Phenol
Choong et al. Unexpected discovery of superoxide radical generation by oxygen vacancies containing biomass derived granular activated carbon
Xie et al. Synthesis and Photocatalytic Activity of Cerium‐Modified CdS‐TiO2 Photocatalyst for the Formaldehyde Degradation at Room Temperature
US20220111353A1 (en) Monolithic composite photocatalysts
WO2020175847A1 (en) Glass or aluminum structure air filter using photocatalyst precoat and manufacturing method therefor
JP2006159029A (en) Fluid cleaning apparatus
Nguyen Thi Thuy et al. Kinetics of photocatalytic degradation of gaseous p‐xylene on UiO‐66‐NH2 and LaFeO3 thin films under combined illumination of ultraviolet and visible lights
KR20170043952A (en) Titanium dioxide supported with carbon and nitrogen, preparation method thereof and photocatalyst using the same
JP4757593B2 (en) photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5786116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees